1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 static umode_t udf_convert_permissions(struct fileEntry *); 49 static int udf_update_inode(struct inode *, int); 50 static int udf_sync_inode(struct inode *inode); 51 static int udf_alloc_i_data(struct inode *inode, size_t size); 52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 53 static int8_t udf_insert_aext(struct inode *, struct extent_position, 54 struct kernel_lb_addr, uint32_t); 55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 56 struct kernel_long_ad *, int *); 57 static void udf_prealloc_extents(struct inode *, int, int, 58 struct kernel_long_ad *, int *); 59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 61 int, struct extent_position *); 62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 63 64 static void __udf_clear_extent_cache(struct inode *inode) 65 { 66 struct udf_inode_info *iinfo = UDF_I(inode); 67 68 if (iinfo->cached_extent.lstart != -1) { 69 brelse(iinfo->cached_extent.epos.bh); 70 iinfo->cached_extent.lstart = -1; 71 } 72 } 73 74 /* Invalidate extent cache */ 75 static void udf_clear_extent_cache(struct inode *inode) 76 { 77 struct udf_inode_info *iinfo = UDF_I(inode); 78 79 spin_lock(&iinfo->i_extent_cache_lock); 80 __udf_clear_extent_cache(inode); 81 spin_unlock(&iinfo->i_extent_cache_lock); 82 } 83 84 /* Return contents of extent cache */ 85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 86 loff_t *lbcount, struct extent_position *pos) 87 { 88 struct udf_inode_info *iinfo = UDF_I(inode); 89 int ret = 0; 90 91 spin_lock(&iinfo->i_extent_cache_lock); 92 if ((iinfo->cached_extent.lstart <= bcount) && 93 (iinfo->cached_extent.lstart != -1)) { 94 /* Cache hit */ 95 *lbcount = iinfo->cached_extent.lstart; 96 memcpy(pos, &iinfo->cached_extent.epos, 97 sizeof(struct extent_position)); 98 if (pos->bh) 99 get_bh(pos->bh); 100 ret = 1; 101 } 102 spin_unlock(&iinfo->i_extent_cache_lock); 103 return ret; 104 } 105 106 /* Add extent to extent cache */ 107 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 108 struct extent_position *pos) 109 { 110 struct udf_inode_info *iinfo = UDF_I(inode); 111 112 spin_lock(&iinfo->i_extent_cache_lock); 113 /* Invalidate previously cached extent */ 114 __udf_clear_extent_cache(inode); 115 if (pos->bh) 116 get_bh(pos->bh); 117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 118 iinfo->cached_extent.lstart = estart; 119 switch (iinfo->i_alloc_type) { 120 case ICBTAG_FLAG_AD_SHORT: 121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 122 break; 123 case ICBTAG_FLAG_AD_LONG: 124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 125 break; 126 } 127 spin_unlock(&iinfo->i_extent_cache_lock); 128 } 129 130 void udf_evict_inode(struct inode *inode) 131 { 132 struct udf_inode_info *iinfo = UDF_I(inode); 133 int want_delete = 0; 134 135 if (!inode->i_nlink && !is_bad_inode(inode)) { 136 want_delete = 1; 137 udf_setsize(inode, 0); 138 udf_update_inode(inode, IS_SYNC(inode)); 139 } 140 truncate_inode_pages_final(&inode->i_data); 141 invalidate_inode_buffers(inode); 142 clear_inode(inode); 143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 144 inode->i_size != iinfo->i_lenExtents) { 145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 146 inode->i_ino, inode->i_mode, 147 (unsigned long long)inode->i_size, 148 (unsigned long long)iinfo->i_lenExtents); 149 } 150 kfree(iinfo->i_ext.i_data); 151 iinfo->i_ext.i_data = NULL; 152 udf_clear_extent_cache(inode); 153 if (want_delete) { 154 udf_free_inode(inode); 155 } 156 } 157 158 static void udf_write_failed(struct address_space *mapping, loff_t to) 159 { 160 struct inode *inode = mapping->host; 161 struct udf_inode_info *iinfo = UDF_I(inode); 162 loff_t isize = inode->i_size; 163 164 if (to > isize) { 165 truncate_pagecache(inode, isize); 166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 167 down_write(&iinfo->i_data_sem); 168 udf_clear_extent_cache(inode); 169 udf_truncate_extents(inode); 170 up_write(&iinfo->i_data_sem); 171 } 172 } 173 } 174 175 static int udf_writepage(struct page *page, struct writeback_control *wbc) 176 { 177 return block_write_full_page(page, udf_get_block, wbc); 178 } 179 180 static int udf_writepages(struct address_space *mapping, 181 struct writeback_control *wbc) 182 { 183 return mpage_writepages(mapping, wbc, udf_get_block); 184 } 185 186 static int udf_readpage(struct file *file, struct page *page) 187 { 188 return mpage_readpage(page, udf_get_block); 189 } 190 191 static int udf_readpages(struct file *file, struct address_space *mapping, 192 struct list_head *pages, unsigned nr_pages) 193 { 194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 195 } 196 197 static int udf_write_begin(struct file *file, struct address_space *mapping, 198 loff_t pos, unsigned len, unsigned flags, 199 struct page **pagep, void **fsdata) 200 { 201 int ret; 202 203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 204 if (unlikely(ret)) 205 udf_write_failed(mapping, pos + len); 206 return ret; 207 } 208 209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 210 { 211 struct file *file = iocb->ki_filp; 212 struct address_space *mapping = file->f_mapping; 213 struct inode *inode = mapping->host; 214 size_t count = iov_iter_count(iter); 215 ssize_t ret; 216 217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 219 udf_write_failed(mapping, iocb->ki_pos + count); 220 return ret; 221 } 222 223 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 224 { 225 return generic_block_bmap(mapping, block, udf_get_block); 226 } 227 228 const struct address_space_operations udf_aops = { 229 .readpage = udf_readpage, 230 .readpages = udf_readpages, 231 .writepage = udf_writepage, 232 .writepages = udf_writepages, 233 .write_begin = udf_write_begin, 234 .write_end = generic_write_end, 235 .direct_IO = udf_direct_IO, 236 .bmap = udf_bmap, 237 }; 238 239 /* 240 * Expand file stored in ICB to a normal one-block-file 241 * 242 * This function requires i_data_sem for writing and releases it. 243 * This function requires i_mutex held 244 */ 245 int udf_expand_file_adinicb(struct inode *inode) 246 { 247 struct page *page; 248 char *kaddr; 249 struct udf_inode_info *iinfo = UDF_I(inode); 250 int err; 251 struct writeback_control udf_wbc = { 252 .sync_mode = WB_SYNC_NONE, 253 .nr_to_write = 1, 254 }; 255 256 WARN_ON_ONCE(!inode_is_locked(inode)); 257 if (!iinfo->i_lenAlloc) { 258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 260 else 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 262 /* from now on we have normal address_space methods */ 263 inode->i_data.a_ops = &udf_aops; 264 up_write(&iinfo->i_data_sem); 265 mark_inode_dirty(inode); 266 return 0; 267 } 268 /* 269 * Release i_data_sem so that we can lock a page - page lock ranks 270 * above i_data_sem. i_mutex still protects us against file changes. 271 */ 272 up_write(&iinfo->i_data_sem); 273 274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 275 if (!page) 276 return -ENOMEM; 277 278 if (!PageUptodate(page)) { 279 kaddr = kmap_atomic(page); 280 memset(kaddr + iinfo->i_lenAlloc, 0x00, 281 PAGE_SIZE - iinfo->i_lenAlloc); 282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 283 iinfo->i_lenAlloc); 284 flush_dcache_page(page); 285 SetPageUptodate(page); 286 kunmap_atomic(kaddr); 287 } 288 down_write(&iinfo->i_data_sem); 289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 290 iinfo->i_lenAlloc); 291 iinfo->i_lenAlloc = 0; 292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 294 else 295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 296 /* from now on we have normal address_space methods */ 297 inode->i_data.a_ops = &udf_aops; 298 up_write(&iinfo->i_data_sem); 299 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 300 if (err) { 301 /* Restore everything back so that we don't lose data... */ 302 lock_page(page); 303 down_write(&iinfo->i_data_sem); 304 kaddr = kmap_atomic(page); 305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 306 inode->i_size); 307 kunmap_atomic(kaddr); 308 unlock_page(page); 309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 310 inode->i_data.a_ops = &udf_adinicb_aops; 311 up_write(&iinfo->i_data_sem); 312 } 313 put_page(page); 314 mark_inode_dirty(inode); 315 316 return err; 317 } 318 319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 320 udf_pblk_t *block, int *err) 321 { 322 udf_pblk_t newblock; 323 struct buffer_head *dbh = NULL; 324 struct kernel_lb_addr eloc; 325 uint8_t alloctype; 326 struct extent_position epos; 327 328 struct udf_fileident_bh sfibh, dfibh; 329 loff_t f_pos = udf_ext0_offset(inode); 330 int size = udf_ext0_offset(inode) + inode->i_size; 331 struct fileIdentDesc cfi, *sfi, *dfi; 332 struct udf_inode_info *iinfo = UDF_I(inode); 333 334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 335 alloctype = ICBTAG_FLAG_AD_SHORT; 336 else 337 alloctype = ICBTAG_FLAG_AD_LONG; 338 339 if (!inode->i_size) { 340 iinfo->i_alloc_type = alloctype; 341 mark_inode_dirty(inode); 342 return NULL; 343 } 344 345 /* alloc block, and copy data to it */ 346 *block = udf_new_block(inode->i_sb, inode, 347 iinfo->i_location.partitionReferenceNum, 348 iinfo->i_location.logicalBlockNum, err); 349 if (!(*block)) 350 return NULL; 351 newblock = udf_get_pblock(inode->i_sb, *block, 352 iinfo->i_location.partitionReferenceNum, 353 0); 354 if (!newblock) 355 return NULL; 356 dbh = udf_tgetblk(inode->i_sb, newblock); 357 if (!dbh) 358 return NULL; 359 lock_buffer(dbh); 360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 361 set_buffer_uptodate(dbh); 362 unlock_buffer(dbh); 363 mark_buffer_dirty_inode(dbh, inode); 364 365 sfibh.soffset = sfibh.eoffset = 366 f_pos & (inode->i_sb->s_blocksize - 1); 367 sfibh.sbh = sfibh.ebh = NULL; 368 dfibh.soffset = dfibh.eoffset = 0; 369 dfibh.sbh = dfibh.ebh = dbh; 370 while (f_pos < size) { 371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 373 NULL, NULL, NULL); 374 if (!sfi) { 375 brelse(dbh); 376 return NULL; 377 } 378 iinfo->i_alloc_type = alloctype; 379 sfi->descTag.tagLocation = cpu_to_le32(*block); 380 dfibh.soffset = dfibh.eoffset; 381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 384 sfi->fileIdent + 385 le16_to_cpu(sfi->lengthOfImpUse))) { 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 brelse(dbh); 388 return NULL; 389 } 390 } 391 mark_buffer_dirty_inode(dbh, inode); 392 393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 394 iinfo->i_lenAlloc); 395 iinfo->i_lenAlloc = 0; 396 eloc.logicalBlockNum = *block; 397 eloc.partitionReferenceNum = 398 iinfo->i_location.partitionReferenceNum; 399 iinfo->i_lenExtents = inode->i_size; 400 epos.bh = NULL; 401 epos.block = iinfo->i_location; 402 epos.offset = udf_file_entry_alloc_offset(inode); 403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 404 /* UniqueID stuff */ 405 406 brelse(epos.bh); 407 mark_inode_dirty(inode); 408 return dbh; 409 } 410 411 static int udf_get_block(struct inode *inode, sector_t block, 412 struct buffer_head *bh_result, int create) 413 { 414 int err, new; 415 sector_t phys = 0; 416 struct udf_inode_info *iinfo; 417 418 if (!create) { 419 phys = udf_block_map(inode, block); 420 if (phys) 421 map_bh(bh_result, inode->i_sb, phys); 422 return 0; 423 } 424 425 err = -EIO; 426 new = 0; 427 iinfo = UDF_I(inode); 428 429 down_write(&iinfo->i_data_sem); 430 if (block == iinfo->i_next_alloc_block + 1) { 431 iinfo->i_next_alloc_block++; 432 iinfo->i_next_alloc_goal++; 433 } 434 435 udf_clear_extent_cache(inode); 436 phys = inode_getblk(inode, block, &err, &new); 437 if (!phys) 438 goto abort; 439 440 if (new) 441 set_buffer_new(bh_result); 442 map_bh(bh_result, inode->i_sb, phys); 443 444 abort: 445 up_write(&iinfo->i_data_sem); 446 return err; 447 } 448 449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 450 int create, int *err) 451 { 452 struct buffer_head *bh; 453 struct buffer_head dummy; 454 455 dummy.b_state = 0; 456 dummy.b_blocknr = -1000; 457 *err = udf_get_block(inode, block, &dummy, create); 458 if (!*err && buffer_mapped(&dummy)) { 459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 460 if (buffer_new(&dummy)) { 461 lock_buffer(bh); 462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 463 set_buffer_uptodate(bh); 464 unlock_buffer(bh); 465 mark_buffer_dirty_inode(bh, inode); 466 } 467 return bh; 468 } 469 470 return NULL; 471 } 472 473 /* Extend the file with new blocks totaling 'new_block_bytes', 474 * return the number of extents added 475 */ 476 static int udf_do_extend_file(struct inode *inode, 477 struct extent_position *last_pos, 478 struct kernel_long_ad *last_ext, 479 loff_t new_block_bytes) 480 { 481 uint32_t add; 482 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 483 struct super_block *sb = inode->i_sb; 484 struct kernel_lb_addr prealloc_loc = {}; 485 uint32_t prealloc_len = 0; 486 struct udf_inode_info *iinfo; 487 int err; 488 489 /* The previous extent is fake and we should not extend by anything 490 * - there's nothing to do... */ 491 if (!new_block_bytes && fake) 492 return 0; 493 494 iinfo = UDF_I(inode); 495 /* Round the last extent up to a multiple of block size */ 496 if (last_ext->extLength & (sb->s_blocksize - 1)) { 497 last_ext->extLength = 498 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 499 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 500 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 501 iinfo->i_lenExtents = 502 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 503 ~(sb->s_blocksize - 1); 504 } 505 506 /* Last extent are just preallocated blocks? */ 507 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 508 EXT_NOT_RECORDED_ALLOCATED) { 509 /* Save the extent so that we can reattach it to the end */ 510 prealloc_loc = last_ext->extLocation; 511 prealloc_len = last_ext->extLength; 512 /* Mark the extent as a hole */ 513 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 514 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 515 last_ext->extLocation.logicalBlockNum = 0; 516 last_ext->extLocation.partitionReferenceNum = 0; 517 } 518 519 /* Can we merge with the previous extent? */ 520 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 521 EXT_NOT_RECORDED_NOT_ALLOCATED) { 522 add = (1 << 30) - sb->s_blocksize - 523 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 524 if (add > new_block_bytes) 525 add = new_block_bytes; 526 new_block_bytes -= add; 527 last_ext->extLength += add; 528 } 529 530 if (fake) { 531 udf_add_aext(inode, last_pos, &last_ext->extLocation, 532 last_ext->extLength, 1); 533 count++; 534 } else { 535 struct kernel_lb_addr tmploc; 536 uint32_t tmplen; 537 538 udf_write_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 /* 541 * We've rewritten the last extent but there may be empty 542 * indirect extent after it - enter it. 543 */ 544 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 545 } 546 547 /* Managed to do everything necessary? */ 548 if (!new_block_bytes) 549 goto out; 550 551 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 552 last_ext->extLocation.logicalBlockNum = 0; 553 last_ext->extLocation.partitionReferenceNum = 0; 554 add = (1 << 30) - sb->s_blocksize; 555 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 556 557 /* Create enough extents to cover the whole hole */ 558 while (new_block_bytes > add) { 559 new_block_bytes -= add; 560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 561 last_ext->extLength, 1); 562 if (err) 563 return err; 564 count++; 565 } 566 if (new_block_bytes) { 567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 568 new_block_bytes; 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 576 out: 577 /* Do we have some preallocated blocks saved? */ 578 if (prealloc_len) { 579 err = udf_add_aext(inode, last_pos, &prealloc_loc, 580 prealloc_len, 1); 581 if (err) 582 return err; 583 last_ext->extLocation = prealloc_loc; 584 last_ext->extLength = prealloc_len; 585 count++; 586 } 587 588 /* last_pos should point to the last written extent... */ 589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 590 last_pos->offset -= sizeof(struct short_ad); 591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 592 last_pos->offset -= sizeof(struct long_ad); 593 else 594 return -EIO; 595 596 return count; 597 } 598 599 /* Extend the final block of the file to final_block_len bytes */ 600 static void udf_do_extend_final_block(struct inode *inode, 601 struct extent_position *last_pos, 602 struct kernel_long_ad *last_ext, 603 uint32_t final_block_len) 604 { 605 struct super_block *sb = inode->i_sb; 606 uint32_t added_bytes; 607 608 added_bytes = final_block_len - 609 (last_ext->extLength & (sb->s_blocksize - 1)); 610 last_ext->extLength += added_bytes; 611 UDF_I(inode)->i_lenExtents += added_bytes; 612 613 udf_write_aext(inode, last_pos, &last_ext->extLocation, 614 last_ext->extLength, 1); 615 } 616 617 static int udf_extend_file(struct inode *inode, loff_t newsize) 618 { 619 620 struct extent_position epos; 621 struct kernel_lb_addr eloc; 622 uint32_t elen; 623 int8_t etype; 624 struct super_block *sb = inode->i_sb; 625 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 626 unsigned long partial_final_block; 627 int adsize; 628 struct udf_inode_info *iinfo = UDF_I(inode); 629 struct kernel_long_ad extent; 630 int err = 0; 631 int within_final_block; 632 633 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 634 adsize = sizeof(struct short_ad); 635 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 636 adsize = sizeof(struct long_ad); 637 else 638 BUG(); 639 640 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 641 within_final_block = (etype != -1); 642 643 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 644 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 645 /* File has no extents at all or has empty last 646 * indirect extent! Create a fake extent... */ 647 extent.extLocation.logicalBlockNum = 0; 648 extent.extLocation.partitionReferenceNum = 0; 649 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 650 } else { 651 epos.offset -= adsize; 652 etype = udf_next_aext(inode, &epos, &extent.extLocation, 653 &extent.extLength, 0); 654 extent.extLength |= etype << 30; 655 } 656 657 partial_final_block = newsize & (sb->s_blocksize - 1); 658 659 /* File has extent covering the new size (could happen when extending 660 * inside a block)? 661 */ 662 if (within_final_block) { 663 /* Extending file within the last file block */ 664 udf_do_extend_final_block(inode, &epos, &extent, 665 partial_final_block); 666 } else { 667 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 668 partial_final_block; 669 err = udf_do_extend_file(inode, &epos, &extent, add); 670 } 671 672 if (err < 0) 673 goto out; 674 err = 0; 675 iinfo->i_lenExtents = newsize; 676 out: 677 brelse(epos.bh); 678 return err; 679 } 680 681 static sector_t inode_getblk(struct inode *inode, sector_t block, 682 int *err, int *new) 683 { 684 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 685 struct extent_position prev_epos, cur_epos, next_epos; 686 int count = 0, startnum = 0, endnum = 0; 687 uint32_t elen = 0, tmpelen; 688 struct kernel_lb_addr eloc, tmpeloc; 689 int c = 1; 690 loff_t lbcount = 0, b_off = 0; 691 udf_pblk_t newblocknum, newblock; 692 sector_t offset = 0; 693 int8_t etype; 694 struct udf_inode_info *iinfo = UDF_I(inode); 695 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 696 int lastblock = 0; 697 bool isBeyondEOF; 698 699 *err = 0; 700 *new = 0; 701 prev_epos.offset = udf_file_entry_alloc_offset(inode); 702 prev_epos.block = iinfo->i_location; 703 prev_epos.bh = NULL; 704 cur_epos = next_epos = prev_epos; 705 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 706 707 /* find the extent which contains the block we are looking for. 708 alternate between laarr[0] and laarr[1] for locations of the 709 current extent, and the previous extent */ 710 do { 711 if (prev_epos.bh != cur_epos.bh) { 712 brelse(prev_epos.bh); 713 get_bh(cur_epos.bh); 714 prev_epos.bh = cur_epos.bh; 715 } 716 if (cur_epos.bh != next_epos.bh) { 717 brelse(cur_epos.bh); 718 get_bh(next_epos.bh); 719 cur_epos.bh = next_epos.bh; 720 } 721 722 lbcount += elen; 723 724 prev_epos.block = cur_epos.block; 725 cur_epos.block = next_epos.block; 726 727 prev_epos.offset = cur_epos.offset; 728 cur_epos.offset = next_epos.offset; 729 730 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 731 if (etype == -1) 732 break; 733 734 c = !c; 735 736 laarr[c].extLength = (etype << 30) | elen; 737 laarr[c].extLocation = eloc; 738 739 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 740 pgoal = eloc.logicalBlockNum + 741 ((elen + inode->i_sb->s_blocksize - 1) >> 742 inode->i_sb->s_blocksize_bits); 743 744 count++; 745 } while (lbcount + elen <= b_off); 746 747 b_off -= lbcount; 748 offset = b_off >> inode->i_sb->s_blocksize_bits; 749 /* 750 * Move prev_epos and cur_epos into indirect extent if we are at 751 * the pointer to it 752 */ 753 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 754 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 755 756 /* if the extent is allocated and recorded, return the block 757 if the extent is not a multiple of the blocksize, round up */ 758 759 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 760 if (elen & (inode->i_sb->s_blocksize - 1)) { 761 elen = EXT_RECORDED_ALLOCATED | 762 ((elen + inode->i_sb->s_blocksize - 1) & 763 ~(inode->i_sb->s_blocksize - 1)); 764 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 765 } 766 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 767 goto out_free; 768 } 769 770 /* Are we beyond EOF? */ 771 if (etype == -1) { 772 int ret; 773 loff_t hole_len; 774 isBeyondEOF = true; 775 if (count) { 776 if (c) 777 laarr[0] = laarr[1]; 778 startnum = 1; 779 } else { 780 /* Create a fake extent when there's not one */ 781 memset(&laarr[0].extLocation, 0x00, 782 sizeof(struct kernel_lb_addr)); 783 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 784 /* Will udf_do_extend_file() create real extent from 785 a fake one? */ 786 startnum = (offset > 0); 787 } 788 /* Create extents for the hole between EOF and offset */ 789 hole_len = (loff_t)offset << inode->i_blkbits; 790 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 791 if (ret < 0) { 792 *err = ret; 793 newblock = 0; 794 goto out_free; 795 } 796 c = 0; 797 offset = 0; 798 count += ret; 799 /* We are not covered by a preallocated extent? */ 800 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 801 EXT_NOT_RECORDED_ALLOCATED) { 802 /* Is there any real extent? - otherwise we overwrite 803 * the fake one... */ 804 if (count) 805 c = !c; 806 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 807 inode->i_sb->s_blocksize; 808 memset(&laarr[c].extLocation, 0x00, 809 sizeof(struct kernel_lb_addr)); 810 count++; 811 } 812 endnum = c + 1; 813 lastblock = 1; 814 } else { 815 isBeyondEOF = false; 816 endnum = startnum = ((count > 2) ? 2 : count); 817 818 /* if the current extent is in position 0, 819 swap it with the previous */ 820 if (!c && count != 1) { 821 laarr[2] = laarr[0]; 822 laarr[0] = laarr[1]; 823 laarr[1] = laarr[2]; 824 c = 1; 825 } 826 827 /* if the current block is located in an extent, 828 read the next extent */ 829 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 830 if (etype != -1) { 831 laarr[c + 1].extLength = (etype << 30) | elen; 832 laarr[c + 1].extLocation = eloc; 833 count++; 834 startnum++; 835 endnum++; 836 } else 837 lastblock = 1; 838 } 839 840 /* if the current extent is not recorded but allocated, get the 841 * block in the extent corresponding to the requested block */ 842 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 843 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 844 else { /* otherwise, allocate a new block */ 845 if (iinfo->i_next_alloc_block == block) 846 goal = iinfo->i_next_alloc_goal; 847 848 if (!goal) { 849 if (!(goal = pgoal)) /* XXX: what was intended here? */ 850 goal = iinfo->i_location.logicalBlockNum + 1; 851 } 852 853 newblocknum = udf_new_block(inode->i_sb, inode, 854 iinfo->i_location.partitionReferenceNum, 855 goal, err); 856 if (!newblocknum) { 857 *err = -ENOSPC; 858 newblock = 0; 859 goto out_free; 860 } 861 if (isBeyondEOF) 862 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 863 } 864 865 /* if the extent the requsted block is located in contains multiple 866 * blocks, split the extent into at most three extents. blocks prior 867 * to requested block, requested block, and blocks after requested 868 * block */ 869 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 870 871 /* We preallocate blocks only for regular files. It also makes sense 872 * for directories but there's a problem when to drop the 873 * preallocation. We might use some delayed work for that but I feel 874 * it's overengineering for a filesystem like UDF. */ 875 if (S_ISREG(inode->i_mode)) 876 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 877 878 /* merge any continuous blocks in laarr */ 879 udf_merge_extents(inode, laarr, &endnum); 880 881 /* write back the new extents, inserting new extents if the new number 882 * of extents is greater than the old number, and deleting extents if 883 * the new number of extents is less than the old number */ 884 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 885 886 newblock = udf_get_pblock(inode->i_sb, newblocknum, 887 iinfo->i_location.partitionReferenceNum, 0); 888 if (!newblock) { 889 *err = -EIO; 890 goto out_free; 891 } 892 *new = 1; 893 iinfo->i_next_alloc_block = block; 894 iinfo->i_next_alloc_goal = newblocknum; 895 inode->i_ctime = current_time(inode); 896 897 if (IS_SYNC(inode)) 898 udf_sync_inode(inode); 899 else 900 mark_inode_dirty(inode); 901 out_free: 902 brelse(prev_epos.bh); 903 brelse(cur_epos.bh); 904 brelse(next_epos.bh); 905 return newblock; 906 } 907 908 static void udf_split_extents(struct inode *inode, int *c, int offset, 909 udf_pblk_t newblocknum, 910 struct kernel_long_ad *laarr, int *endnum) 911 { 912 unsigned long blocksize = inode->i_sb->s_blocksize; 913 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 914 915 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 916 (laarr[*c].extLength >> 30) == 917 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 918 int curr = *c; 919 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 920 blocksize - 1) >> blocksize_bits; 921 int8_t etype = (laarr[curr].extLength >> 30); 922 923 if (blen == 1) 924 ; 925 else if (!offset || blen == offset + 1) { 926 laarr[curr + 2] = laarr[curr + 1]; 927 laarr[curr + 1] = laarr[curr]; 928 } else { 929 laarr[curr + 3] = laarr[curr + 1]; 930 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 931 } 932 933 if (offset) { 934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 935 udf_free_blocks(inode->i_sb, inode, 936 &laarr[curr].extLocation, 937 0, offset); 938 laarr[curr].extLength = 939 EXT_NOT_RECORDED_NOT_ALLOCATED | 940 (offset << blocksize_bits); 941 laarr[curr].extLocation.logicalBlockNum = 0; 942 laarr[curr].extLocation. 943 partitionReferenceNum = 0; 944 } else 945 laarr[curr].extLength = (etype << 30) | 946 (offset << blocksize_bits); 947 curr++; 948 (*c)++; 949 (*endnum)++; 950 } 951 952 laarr[curr].extLocation.logicalBlockNum = newblocknum; 953 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 954 laarr[curr].extLocation.partitionReferenceNum = 955 UDF_I(inode)->i_location.partitionReferenceNum; 956 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 957 blocksize; 958 curr++; 959 960 if (blen != offset + 1) { 961 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 962 laarr[curr].extLocation.logicalBlockNum += 963 offset + 1; 964 laarr[curr].extLength = (etype << 30) | 965 ((blen - (offset + 1)) << blocksize_bits); 966 curr++; 967 (*endnum)++; 968 } 969 } 970 } 971 972 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 973 struct kernel_long_ad *laarr, 974 int *endnum) 975 { 976 int start, length = 0, currlength = 0, i; 977 978 if (*endnum >= (c + 1)) { 979 if (!lastblock) 980 return; 981 else 982 start = c; 983 } else { 984 if ((laarr[c + 1].extLength >> 30) == 985 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 986 start = c + 1; 987 length = currlength = 988 (((laarr[c + 1].extLength & 989 UDF_EXTENT_LENGTH_MASK) + 990 inode->i_sb->s_blocksize - 1) >> 991 inode->i_sb->s_blocksize_bits); 992 } else 993 start = c; 994 } 995 996 for (i = start + 1; i <= *endnum; i++) { 997 if (i == *endnum) { 998 if (lastblock) 999 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1000 } else if ((laarr[i].extLength >> 30) == 1001 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1002 length += (((laarr[i].extLength & 1003 UDF_EXTENT_LENGTH_MASK) + 1004 inode->i_sb->s_blocksize - 1) >> 1005 inode->i_sb->s_blocksize_bits); 1006 } else 1007 break; 1008 } 1009 1010 if (length) { 1011 int next = laarr[start].extLocation.logicalBlockNum + 1012 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1013 inode->i_sb->s_blocksize - 1) >> 1014 inode->i_sb->s_blocksize_bits); 1015 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1016 laarr[start].extLocation.partitionReferenceNum, 1017 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1018 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1019 currlength); 1020 if (numalloc) { 1021 if (start == (c + 1)) 1022 laarr[start].extLength += 1023 (numalloc << 1024 inode->i_sb->s_blocksize_bits); 1025 else { 1026 memmove(&laarr[c + 2], &laarr[c + 1], 1027 sizeof(struct long_ad) * (*endnum - (c + 1))); 1028 (*endnum)++; 1029 laarr[c + 1].extLocation.logicalBlockNum = next; 1030 laarr[c + 1].extLocation.partitionReferenceNum = 1031 laarr[c].extLocation. 1032 partitionReferenceNum; 1033 laarr[c + 1].extLength = 1034 EXT_NOT_RECORDED_ALLOCATED | 1035 (numalloc << 1036 inode->i_sb->s_blocksize_bits); 1037 start = c + 1; 1038 } 1039 1040 for (i = start + 1; numalloc && i < *endnum; i++) { 1041 int elen = ((laarr[i].extLength & 1042 UDF_EXTENT_LENGTH_MASK) + 1043 inode->i_sb->s_blocksize - 1) >> 1044 inode->i_sb->s_blocksize_bits; 1045 1046 if (elen > numalloc) { 1047 laarr[i].extLength -= 1048 (numalloc << 1049 inode->i_sb->s_blocksize_bits); 1050 numalloc = 0; 1051 } else { 1052 numalloc -= elen; 1053 if (*endnum > (i + 1)) 1054 memmove(&laarr[i], 1055 &laarr[i + 1], 1056 sizeof(struct long_ad) * 1057 (*endnum - (i + 1))); 1058 i--; 1059 (*endnum)--; 1060 } 1061 } 1062 UDF_I(inode)->i_lenExtents += 1063 numalloc << inode->i_sb->s_blocksize_bits; 1064 } 1065 } 1066 } 1067 1068 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1069 int *endnum) 1070 { 1071 int i; 1072 unsigned long blocksize = inode->i_sb->s_blocksize; 1073 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1074 1075 for (i = 0; i < (*endnum - 1); i++) { 1076 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1077 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1078 1079 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1080 (((li->extLength >> 30) == 1081 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1082 ((lip1->extLocation.logicalBlockNum - 1083 li->extLocation.logicalBlockNum) == 1084 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1085 blocksize - 1) >> blocksize_bits)))) { 1086 1087 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1088 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1089 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1090 lip1->extLength = (lip1->extLength - 1091 (li->extLength & 1092 UDF_EXTENT_LENGTH_MASK) + 1093 UDF_EXTENT_LENGTH_MASK) & 1094 ~(blocksize - 1); 1095 li->extLength = (li->extLength & 1096 UDF_EXTENT_FLAG_MASK) + 1097 (UDF_EXTENT_LENGTH_MASK + 1) - 1098 blocksize; 1099 lip1->extLocation.logicalBlockNum = 1100 li->extLocation.logicalBlockNum + 1101 ((li->extLength & 1102 UDF_EXTENT_LENGTH_MASK) >> 1103 blocksize_bits); 1104 } else { 1105 li->extLength = lip1->extLength + 1106 (((li->extLength & 1107 UDF_EXTENT_LENGTH_MASK) + 1108 blocksize - 1) & ~(blocksize - 1)); 1109 if (*endnum > (i + 2)) 1110 memmove(&laarr[i + 1], &laarr[i + 2], 1111 sizeof(struct long_ad) * 1112 (*endnum - (i + 2))); 1113 i--; 1114 (*endnum)--; 1115 } 1116 } else if (((li->extLength >> 30) == 1117 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1118 ((lip1->extLength >> 30) == 1119 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1120 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1121 ((li->extLength & 1122 UDF_EXTENT_LENGTH_MASK) + 1123 blocksize - 1) >> blocksize_bits); 1124 li->extLocation.logicalBlockNum = 0; 1125 li->extLocation.partitionReferenceNum = 0; 1126 1127 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1128 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1129 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1130 lip1->extLength = (lip1->extLength - 1131 (li->extLength & 1132 UDF_EXTENT_LENGTH_MASK) + 1133 UDF_EXTENT_LENGTH_MASK) & 1134 ~(blocksize - 1); 1135 li->extLength = (li->extLength & 1136 UDF_EXTENT_FLAG_MASK) + 1137 (UDF_EXTENT_LENGTH_MASK + 1) - 1138 blocksize; 1139 } else { 1140 li->extLength = lip1->extLength + 1141 (((li->extLength & 1142 UDF_EXTENT_LENGTH_MASK) + 1143 blocksize - 1) & ~(blocksize - 1)); 1144 if (*endnum > (i + 2)) 1145 memmove(&laarr[i + 1], &laarr[i + 2], 1146 sizeof(struct long_ad) * 1147 (*endnum - (i + 2))); 1148 i--; 1149 (*endnum)--; 1150 } 1151 } else if ((li->extLength >> 30) == 1152 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1153 udf_free_blocks(inode->i_sb, inode, 1154 &li->extLocation, 0, 1155 ((li->extLength & 1156 UDF_EXTENT_LENGTH_MASK) + 1157 blocksize - 1) >> blocksize_bits); 1158 li->extLocation.logicalBlockNum = 0; 1159 li->extLocation.partitionReferenceNum = 0; 1160 li->extLength = (li->extLength & 1161 UDF_EXTENT_LENGTH_MASK) | 1162 EXT_NOT_RECORDED_NOT_ALLOCATED; 1163 } 1164 } 1165 } 1166 1167 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1168 int startnum, int endnum, 1169 struct extent_position *epos) 1170 { 1171 int start = 0, i; 1172 struct kernel_lb_addr tmploc; 1173 uint32_t tmplen; 1174 1175 if (startnum > endnum) { 1176 for (i = 0; i < (startnum - endnum); i++) 1177 udf_delete_aext(inode, *epos); 1178 } else if (startnum < endnum) { 1179 for (i = 0; i < (endnum - startnum); i++) { 1180 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1181 laarr[i].extLength); 1182 udf_next_aext(inode, epos, &laarr[i].extLocation, 1183 &laarr[i].extLength, 1); 1184 start++; 1185 } 1186 } 1187 1188 for (i = start; i < endnum; i++) { 1189 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1190 udf_write_aext(inode, epos, &laarr[i].extLocation, 1191 laarr[i].extLength, 1); 1192 } 1193 } 1194 1195 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1196 int create, int *err) 1197 { 1198 struct buffer_head *bh = NULL; 1199 1200 bh = udf_getblk(inode, block, create, err); 1201 if (!bh) 1202 return NULL; 1203 1204 if (buffer_uptodate(bh)) 1205 return bh; 1206 1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1208 1209 wait_on_buffer(bh); 1210 if (buffer_uptodate(bh)) 1211 return bh; 1212 1213 brelse(bh); 1214 *err = -EIO; 1215 return NULL; 1216 } 1217 1218 int udf_setsize(struct inode *inode, loff_t newsize) 1219 { 1220 int err; 1221 struct udf_inode_info *iinfo; 1222 unsigned int bsize = i_blocksize(inode); 1223 1224 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1225 S_ISLNK(inode->i_mode))) 1226 return -EINVAL; 1227 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1228 return -EPERM; 1229 1230 iinfo = UDF_I(inode); 1231 if (newsize > inode->i_size) { 1232 down_write(&iinfo->i_data_sem); 1233 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1234 if (bsize < 1235 (udf_file_entry_alloc_offset(inode) + newsize)) { 1236 err = udf_expand_file_adinicb(inode); 1237 if (err) 1238 return err; 1239 down_write(&iinfo->i_data_sem); 1240 } else { 1241 iinfo->i_lenAlloc = newsize; 1242 goto set_size; 1243 } 1244 } 1245 err = udf_extend_file(inode, newsize); 1246 if (err) { 1247 up_write(&iinfo->i_data_sem); 1248 return err; 1249 } 1250 set_size: 1251 up_write(&iinfo->i_data_sem); 1252 truncate_setsize(inode, newsize); 1253 } else { 1254 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1255 down_write(&iinfo->i_data_sem); 1256 udf_clear_extent_cache(inode); 1257 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1258 0x00, bsize - newsize - 1259 udf_file_entry_alloc_offset(inode)); 1260 iinfo->i_lenAlloc = newsize; 1261 truncate_setsize(inode, newsize); 1262 up_write(&iinfo->i_data_sem); 1263 goto update_time; 1264 } 1265 err = block_truncate_page(inode->i_mapping, newsize, 1266 udf_get_block); 1267 if (err) 1268 return err; 1269 truncate_setsize(inode, newsize); 1270 down_write(&iinfo->i_data_sem); 1271 udf_clear_extent_cache(inode); 1272 err = udf_truncate_extents(inode); 1273 up_write(&iinfo->i_data_sem); 1274 if (err) 1275 return err; 1276 } 1277 update_time: 1278 inode->i_mtime = inode->i_ctime = current_time(inode); 1279 if (IS_SYNC(inode)) 1280 udf_sync_inode(inode); 1281 else 1282 mark_inode_dirty(inode); 1283 return 0; 1284 } 1285 1286 /* 1287 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1288 * arbitrary - just that we hopefully don't limit any real use of rewritten 1289 * inode on write-once media but avoid looping for too long on corrupted media. 1290 */ 1291 #define UDF_MAX_ICB_NESTING 1024 1292 1293 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1294 { 1295 struct buffer_head *bh = NULL; 1296 struct fileEntry *fe; 1297 struct extendedFileEntry *efe; 1298 uint16_t ident; 1299 struct udf_inode_info *iinfo = UDF_I(inode); 1300 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1301 struct kernel_lb_addr *iloc = &iinfo->i_location; 1302 unsigned int link_count; 1303 unsigned int indirections = 0; 1304 int bs = inode->i_sb->s_blocksize; 1305 int ret = -EIO; 1306 uint32_t uid, gid; 1307 1308 reread: 1309 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1310 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1311 iloc->partitionReferenceNum, sbi->s_partitions); 1312 return -EIO; 1313 } 1314 1315 if (iloc->logicalBlockNum >= 1316 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1317 udf_debug("block=%u, partition=%u out of range\n", 1318 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1319 return -EIO; 1320 } 1321 1322 /* 1323 * Set defaults, but the inode is still incomplete! 1324 * Note: get_new_inode() sets the following on a new inode: 1325 * i_sb = sb 1326 * i_no = ino 1327 * i_flags = sb->s_flags 1328 * i_state = 0 1329 * clean_inode(): zero fills and sets 1330 * i_count = 1 1331 * i_nlink = 1 1332 * i_op = NULL; 1333 */ 1334 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1335 if (!bh) { 1336 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1337 return -EIO; 1338 } 1339 1340 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1341 ident != TAG_IDENT_USE) { 1342 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1343 inode->i_ino, ident); 1344 goto out; 1345 } 1346 1347 fe = (struct fileEntry *)bh->b_data; 1348 efe = (struct extendedFileEntry *)bh->b_data; 1349 1350 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1351 struct buffer_head *ibh; 1352 1353 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1354 if (ident == TAG_IDENT_IE && ibh) { 1355 struct kernel_lb_addr loc; 1356 struct indirectEntry *ie; 1357 1358 ie = (struct indirectEntry *)ibh->b_data; 1359 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1360 1361 if (ie->indirectICB.extLength) { 1362 brelse(ibh); 1363 memcpy(&iinfo->i_location, &loc, 1364 sizeof(struct kernel_lb_addr)); 1365 if (++indirections > UDF_MAX_ICB_NESTING) { 1366 udf_err(inode->i_sb, 1367 "too many ICBs in ICB hierarchy" 1368 " (max %d supported)\n", 1369 UDF_MAX_ICB_NESTING); 1370 goto out; 1371 } 1372 brelse(bh); 1373 goto reread; 1374 } 1375 } 1376 brelse(ibh); 1377 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1378 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1379 le16_to_cpu(fe->icbTag.strategyType)); 1380 goto out; 1381 } 1382 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1383 iinfo->i_strat4096 = 0; 1384 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1385 iinfo->i_strat4096 = 1; 1386 1387 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1388 ICBTAG_FLAG_AD_MASK; 1389 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1390 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1391 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1392 ret = -EIO; 1393 goto out; 1394 } 1395 iinfo->i_unique = 0; 1396 iinfo->i_lenEAttr = 0; 1397 iinfo->i_lenExtents = 0; 1398 iinfo->i_lenAlloc = 0; 1399 iinfo->i_next_alloc_block = 0; 1400 iinfo->i_next_alloc_goal = 0; 1401 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1402 iinfo->i_efe = 1; 1403 iinfo->i_use = 0; 1404 ret = udf_alloc_i_data(inode, bs - 1405 sizeof(struct extendedFileEntry)); 1406 if (ret) 1407 goto out; 1408 memcpy(iinfo->i_ext.i_data, 1409 bh->b_data + sizeof(struct extendedFileEntry), 1410 bs - sizeof(struct extendedFileEntry)); 1411 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1412 iinfo->i_efe = 0; 1413 iinfo->i_use = 0; 1414 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1415 if (ret) 1416 goto out; 1417 memcpy(iinfo->i_ext.i_data, 1418 bh->b_data + sizeof(struct fileEntry), 1419 bs - sizeof(struct fileEntry)); 1420 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1421 iinfo->i_efe = 0; 1422 iinfo->i_use = 1; 1423 iinfo->i_lenAlloc = le32_to_cpu( 1424 ((struct unallocSpaceEntry *)bh->b_data)-> 1425 lengthAllocDescs); 1426 ret = udf_alloc_i_data(inode, bs - 1427 sizeof(struct unallocSpaceEntry)); 1428 if (ret) 1429 goto out; 1430 memcpy(iinfo->i_ext.i_data, 1431 bh->b_data + sizeof(struct unallocSpaceEntry), 1432 bs - sizeof(struct unallocSpaceEntry)); 1433 return 0; 1434 } 1435 1436 ret = -EIO; 1437 read_lock(&sbi->s_cred_lock); 1438 uid = le32_to_cpu(fe->uid); 1439 if (uid == UDF_INVALID_ID || 1440 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1441 inode->i_uid = sbi->s_uid; 1442 else 1443 i_uid_write(inode, uid); 1444 1445 gid = le32_to_cpu(fe->gid); 1446 if (gid == UDF_INVALID_ID || 1447 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1448 inode->i_gid = sbi->s_gid; 1449 else 1450 i_gid_write(inode, gid); 1451 1452 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1453 sbi->s_fmode != UDF_INVALID_MODE) 1454 inode->i_mode = sbi->s_fmode; 1455 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1456 sbi->s_dmode != UDF_INVALID_MODE) 1457 inode->i_mode = sbi->s_dmode; 1458 else 1459 inode->i_mode = udf_convert_permissions(fe); 1460 inode->i_mode &= ~sbi->s_umask; 1461 read_unlock(&sbi->s_cred_lock); 1462 1463 link_count = le16_to_cpu(fe->fileLinkCount); 1464 if (!link_count) { 1465 if (!hidden_inode) { 1466 ret = -ESTALE; 1467 goto out; 1468 } 1469 link_count = 1; 1470 } 1471 set_nlink(inode, link_count); 1472 1473 inode->i_size = le64_to_cpu(fe->informationLength); 1474 iinfo->i_lenExtents = inode->i_size; 1475 1476 if (iinfo->i_efe == 0) { 1477 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1478 (inode->i_sb->s_blocksize_bits - 9); 1479 1480 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1481 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1482 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1483 1484 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1485 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1486 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1487 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1488 } else { 1489 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1490 (inode->i_sb->s_blocksize_bits - 9); 1491 1492 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1493 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1494 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1495 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1496 1497 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1498 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1499 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1500 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1501 } 1502 inode->i_generation = iinfo->i_unique; 1503 1504 /* 1505 * Sanity check length of allocation descriptors and extended attrs to 1506 * avoid integer overflows 1507 */ 1508 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1509 goto out; 1510 /* Now do exact checks */ 1511 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1512 goto out; 1513 /* Sanity checks for files in ICB so that we don't get confused later */ 1514 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1515 /* 1516 * For file in ICB data is stored in allocation descriptor 1517 * so sizes should match 1518 */ 1519 if (iinfo->i_lenAlloc != inode->i_size) 1520 goto out; 1521 /* File in ICB has to fit in there... */ 1522 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1523 goto out; 1524 } 1525 1526 switch (fe->icbTag.fileType) { 1527 case ICBTAG_FILE_TYPE_DIRECTORY: 1528 inode->i_op = &udf_dir_inode_operations; 1529 inode->i_fop = &udf_dir_operations; 1530 inode->i_mode |= S_IFDIR; 1531 inc_nlink(inode); 1532 break; 1533 case ICBTAG_FILE_TYPE_REALTIME: 1534 case ICBTAG_FILE_TYPE_REGULAR: 1535 case ICBTAG_FILE_TYPE_UNDEF: 1536 case ICBTAG_FILE_TYPE_VAT20: 1537 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1538 inode->i_data.a_ops = &udf_adinicb_aops; 1539 else 1540 inode->i_data.a_ops = &udf_aops; 1541 inode->i_op = &udf_file_inode_operations; 1542 inode->i_fop = &udf_file_operations; 1543 inode->i_mode |= S_IFREG; 1544 break; 1545 case ICBTAG_FILE_TYPE_BLOCK: 1546 inode->i_mode |= S_IFBLK; 1547 break; 1548 case ICBTAG_FILE_TYPE_CHAR: 1549 inode->i_mode |= S_IFCHR; 1550 break; 1551 case ICBTAG_FILE_TYPE_FIFO: 1552 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1553 break; 1554 case ICBTAG_FILE_TYPE_SOCKET: 1555 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1556 break; 1557 case ICBTAG_FILE_TYPE_SYMLINK: 1558 inode->i_data.a_ops = &udf_symlink_aops; 1559 inode->i_op = &udf_symlink_inode_operations; 1560 inode_nohighmem(inode); 1561 inode->i_mode = S_IFLNK | 0777; 1562 break; 1563 case ICBTAG_FILE_TYPE_MAIN: 1564 udf_debug("METADATA FILE-----\n"); 1565 break; 1566 case ICBTAG_FILE_TYPE_MIRROR: 1567 udf_debug("METADATA MIRROR FILE-----\n"); 1568 break; 1569 case ICBTAG_FILE_TYPE_BITMAP: 1570 udf_debug("METADATA BITMAP FILE-----\n"); 1571 break; 1572 default: 1573 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1574 inode->i_ino, fe->icbTag.fileType); 1575 goto out; 1576 } 1577 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1578 struct deviceSpec *dsea = 1579 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1580 if (dsea) { 1581 init_special_inode(inode, inode->i_mode, 1582 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1583 le32_to_cpu(dsea->minorDeviceIdent))); 1584 /* Developer ID ??? */ 1585 } else 1586 goto out; 1587 } 1588 ret = 0; 1589 out: 1590 brelse(bh); 1591 return ret; 1592 } 1593 1594 static int udf_alloc_i_data(struct inode *inode, size_t size) 1595 { 1596 struct udf_inode_info *iinfo = UDF_I(inode); 1597 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1598 if (!iinfo->i_ext.i_data) 1599 return -ENOMEM; 1600 return 0; 1601 } 1602 1603 static umode_t udf_convert_permissions(struct fileEntry *fe) 1604 { 1605 umode_t mode; 1606 uint32_t permissions; 1607 uint32_t flags; 1608 1609 permissions = le32_to_cpu(fe->permissions); 1610 flags = le16_to_cpu(fe->icbTag.flags); 1611 1612 mode = ((permissions) & 0007) | 1613 ((permissions >> 2) & 0070) | 1614 ((permissions >> 4) & 0700) | 1615 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1616 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1617 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1618 1619 return mode; 1620 } 1621 1622 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1623 { 1624 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1625 } 1626 1627 static int udf_sync_inode(struct inode *inode) 1628 { 1629 return udf_update_inode(inode, 1); 1630 } 1631 1632 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1633 { 1634 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1635 (iinfo->i_crtime.tv_sec == time.tv_sec && 1636 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1637 iinfo->i_crtime = time; 1638 } 1639 1640 static int udf_update_inode(struct inode *inode, int do_sync) 1641 { 1642 struct buffer_head *bh = NULL; 1643 struct fileEntry *fe; 1644 struct extendedFileEntry *efe; 1645 uint64_t lb_recorded; 1646 uint32_t udfperms; 1647 uint16_t icbflags; 1648 uint16_t crclen; 1649 int err = 0; 1650 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1651 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1652 struct udf_inode_info *iinfo = UDF_I(inode); 1653 1654 bh = udf_tgetblk(inode->i_sb, 1655 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1656 if (!bh) { 1657 udf_debug("getblk failure\n"); 1658 return -EIO; 1659 } 1660 1661 lock_buffer(bh); 1662 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1663 fe = (struct fileEntry *)bh->b_data; 1664 efe = (struct extendedFileEntry *)bh->b_data; 1665 1666 if (iinfo->i_use) { 1667 struct unallocSpaceEntry *use = 1668 (struct unallocSpaceEntry *)bh->b_data; 1669 1670 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1671 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1672 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1673 sizeof(struct unallocSpaceEntry)); 1674 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1675 crclen = sizeof(struct unallocSpaceEntry); 1676 1677 goto finish; 1678 } 1679 1680 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1681 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1682 else 1683 fe->uid = cpu_to_le32(i_uid_read(inode)); 1684 1685 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1686 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1687 else 1688 fe->gid = cpu_to_le32(i_gid_read(inode)); 1689 1690 udfperms = ((inode->i_mode & 0007)) | 1691 ((inode->i_mode & 0070) << 2) | 1692 ((inode->i_mode & 0700) << 4); 1693 1694 udfperms |= (le32_to_cpu(fe->permissions) & 1695 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1696 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1697 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1698 fe->permissions = cpu_to_le32(udfperms); 1699 1700 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1701 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1702 else 1703 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1704 1705 fe->informationLength = cpu_to_le64(inode->i_size); 1706 1707 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1708 struct regid *eid; 1709 struct deviceSpec *dsea = 1710 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1711 if (!dsea) { 1712 dsea = (struct deviceSpec *) 1713 udf_add_extendedattr(inode, 1714 sizeof(struct deviceSpec) + 1715 sizeof(struct regid), 12, 0x3); 1716 dsea->attrType = cpu_to_le32(12); 1717 dsea->attrSubtype = 1; 1718 dsea->attrLength = cpu_to_le32( 1719 sizeof(struct deviceSpec) + 1720 sizeof(struct regid)); 1721 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1722 } 1723 eid = (struct regid *)dsea->impUse; 1724 memset(eid, 0, sizeof(*eid)); 1725 strcpy(eid->ident, UDF_ID_DEVELOPER); 1726 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1727 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1728 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1729 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1730 } 1731 1732 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1733 lb_recorded = 0; /* No extents => no blocks! */ 1734 else 1735 lb_recorded = 1736 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1737 (blocksize_bits - 9); 1738 1739 if (iinfo->i_efe == 0) { 1740 memcpy(bh->b_data + sizeof(struct fileEntry), 1741 iinfo->i_ext.i_data, 1742 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1743 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1744 1745 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1746 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1747 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1748 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1749 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1750 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1751 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1752 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1753 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1754 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1755 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1756 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1757 crclen = sizeof(struct fileEntry); 1758 } else { 1759 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1760 iinfo->i_ext.i_data, 1761 inode->i_sb->s_blocksize - 1762 sizeof(struct extendedFileEntry)); 1763 efe->objectSize = cpu_to_le64(inode->i_size); 1764 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1765 1766 udf_adjust_time(iinfo, inode->i_atime); 1767 udf_adjust_time(iinfo, inode->i_mtime); 1768 udf_adjust_time(iinfo, inode->i_ctime); 1769 1770 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1771 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1772 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1773 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1774 1775 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1776 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1777 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1778 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1779 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1780 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1781 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1782 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1783 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1784 crclen = sizeof(struct extendedFileEntry); 1785 } 1786 1787 finish: 1788 if (iinfo->i_strat4096) { 1789 fe->icbTag.strategyType = cpu_to_le16(4096); 1790 fe->icbTag.strategyParameter = cpu_to_le16(1); 1791 fe->icbTag.numEntries = cpu_to_le16(2); 1792 } else { 1793 fe->icbTag.strategyType = cpu_to_le16(4); 1794 fe->icbTag.numEntries = cpu_to_le16(1); 1795 } 1796 1797 if (iinfo->i_use) 1798 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1799 else if (S_ISDIR(inode->i_mode)) 1800 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1801 else if (S_ISREG(inode->i_mode)) 1802 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1803 else if (S_ISLNK(inode->i_mode)) 1804 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1805 else if (S_ISBLK(inode->i_mode)) 1806 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1807 else if (S_ISCHR(inode->i_mode)) 1808 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1809 else if (S_ISFIFO(inode->i_mode)) 1810 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1811 else if (S_ISSOCK(inode->i_mode)) 1812 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1813 1814 icbflags = iinfo->i_alloc_type | 1815 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1816 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1817 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1818 (le16_to_cpu(fe->icbTag.flags) & 1819 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1820 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1821 1822 fe->icbTag.flags = cpu_to_le16(icbflags); 1823 if (sbi->s_udfrev >= 0x0200) 1824 fe->descTag.descVersion = cpu_to_le16(3); 1825 else 1826 fe->descTag.descVersion = cpu_to_le16(2); 1827 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1828 fe->descTag.tagLocation = cpu_to_le32( 1829 iinfo->i_location.logicalBlockNum); 1830 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1831 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1832 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1833 crclen)); 1834 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1835 1836 set_buffer_uptodate(bh); 1837 unlock_buffer(bh); 1838 1839 /* write the data blocks */ 1840 mark_buffer_dirty(bh); 1841 if (do_sync) { 1842 sync_dirty_buffer(bh); 1843 if (buffer_write_io_error(bh)) { 1844 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1845 inode->i_ino); 1846 err = -EIO; 1847 } 1848 } 1849 brelse(bh); 1850 1851 return err; 1852 } 1853 1854 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1855 bool hidden_inode) 1856 { 1857 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1858 struct inode *inode = iget_locked(sb, block); 1859 int err; 1860 1861 if (!inode) 1862 return ERR_PTR(-ENOMEM); 1863 1864 if (!(inode->i_state & I_NEW)) 1865 return inode; 1866 1867 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1868 err = udf_read_inode(inode, hidden_inode); 1869 if (err < 0) { 1870 iget_failed(inode); 1871 return ERR_PTR(err); 1872 } 1873 unlock_new_inode(inode); 1874 1875 return inode; 1876 } 1877 1878 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1879 struct extent_position *epos) 1880 { 1881 struct super_block *sb = inode->i_sb; 1882 struct buffer_head *bh; 1883 struct allocExtDesc *aed; 1884 struct extent_position nepos; 1885 struct kernel_lb_addr neloc; 1886 int ver, adsize; 1887 1888 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1889 adsize = sizeof(struct short_ad); 1890 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1891 adsize = sizeof(struct long_ad); 1892 else 1893 return -EIO; 1894 1895 neloc.logicalBlockNum = block; 1896 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1897 1898 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1899 if (!bh) 1900 return -EIO; 1901 lock_buffer(bh); 1902 memset(bh->b_data, 0x00, sb->s_blocksize); 1903 set_buffer_uptodate(bh); 1904 unlock_buffer(bh); 1905 mark_buffer_dirty_inode(bh, inode); 1906 1907 aed = (struct allocExtDesc *)(bh->b_data); 1908 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1909 aed->previousAllocExtLocation = 1910 cpu_to_le32(epos->block.logicalBlockNum); 1911 } 1912 aed->lengthAllocDescs = cpu_to_le32(0); 1913 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1914 ver = 3; 1915 else 1916 ver = 2; 1917 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1918 sizeof(struct tag)); 1919 1920 nepos.block = neloc; 1921 nepos.offset = sizeof(struct allocExtDesc); 1922 nepos.bh = bh; 1923 1924 /* 1925 * Do we have to copy current last extent to make space for indirect 1926 * one? 1927 */ 1928 if (epos->offset + adsize > sb->s_blocksize) { 1929 struct kernel_lb_addr cp_loc; 1930 uint32_t cp_len; 1931 int cp_type; 1932 1933 epos->offset -= adsize; 1934 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1935 cp_len |= ((uint32_t)cp_type) << 30; 1936 1937 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1938 udf_write_aext(inode, epos, &nepos.block, 1939 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1940 } else { 1941 __udf_add_aext(inode, epos, &nepos.block, 1942 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0); 1943 } 1944 1945 brelse(epos->bh); 1946 *epos = nepos; 1947 1948 return 0; 1949 } 1950 1951 /* 1952 * Append extent at the given position - should be the first free one in inode 1953 * / indirect extent. This function assumes there is enough space in the inode 1954 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1955 */ 1956 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1957 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1958 { 1959 struct udf_inode_info *iinfo = UDF_I(inode); 1960 struct allocExtDesc *aed; 1961 int adsize; 1962 1963 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1964 adsize = sizeof(struct short_ad); 1965 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1966 adsize = sizeof(struct long_ad); 1967 else 1968 return -EIO; 1969 1970 if (!epos->bh) { 1971 WARN_ON(iinfo->i_lenAlloc != 1972 epos->offset - udf_file_entry_alloc_offset(inode)); 1973 } else { 1974 aed = (struct allocExtDesc *)epos->bh->b_data; 1975 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 1976 epos->offset - sizeof(struct allocExtDesc)); 1977 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 1978 } 1979 1980 udf_write_aext(inode, epos, eloc, elen, inc); 1981 1982 if (!epos->bh) { 1983 iinfo->i_lenAlloc += adsize; 1984 mark_inode_dirty(inode); 1985 } else { 1986 aed = (struct allocExtDesc *)epos->bh->b_data; 1987 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1988 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1989 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1990 udf_update_tag(epos->bh->b_data, 1991 epos->offset + (inc ? 0 : adsize)); 1992 else 1993 udf_update_tag(epos->bh->b_data, 1994 sizeof(struct allocExtDesc)); 1995 mark_buffer_dirty_inode(epos->bh, inode); 1996 } 1997 1998 return 0; 1999 } 2000 2001 /* 2002 * Append extent at given position - should be the first free one in inode 2003 * / indirect extent. Takes care of allocating and linking indirect blocks. 2004 */ 2005 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2007 { 2008 int adsize; 2009 struct super_block *sb = inode->i_sb; 2010 2011 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2012 adsize = sizeof(struct short_ad); 2013 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2014 adsize = sizeof(struct long_ad); 2015 else 2016 return -EIO; 2017 2018 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2019 int err; 2020 udf_pblk_t new_block; 2021 2022 new_block = udf_new_block(sb, NULL, 2023 epos->block.partitionReferenceNum, 2024 epos->block.logicalBlockNum, &err); 2025 if (!new_block) 2026 return -ENOSPC; 2027 2028 err = udf_setup_indirect_aext(inode, new_block, epos); 2029 if (err) 2030 return err; 2031 } 2032 2033 return __udf_add_aext(inode, epos, eloc, elen, inc); 2034 } 2035 2036 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2037 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2038 { 2039 int adsize; 2040 uint8_t *ptr; 2041 struct short_ad *sad; 2042 struct long_ad *lad; 2043 struct udf_inode_info *iinfo = UDF_I(inode); 2044 2045 if (!epos->bh) 2046 ptr = iinfo->i_ext.i_data + epos->offset - 2047 udf_file_entry_alloc_offset(inode) + 2048 iinfo->i_lenEAttr; 2049 else 2050 ptr = epos->bh->b_data + epos->offset; 2051 2052 switch (iinfo->i_alloc_type) { 2053 case ICBTAG_FLAG_AD_SHORT: 2054 sad = (struct short_ad *)ptr; 2055 sad->extLength = cpu_to_le32(elen); 2056 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2057 adsize = sizeof(struct short_ad); 2058 break; 2059 case ICBTAG_FLAG_AD_LONG: 2060 lad = (struct long_ad *)ptr; 2061 lad->extLength = cpu_to_le32(elen); 2062 lad->extLocation = cpu_to_lelb(*eloc); 2063 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2064 adsize = sizeof(struct long_ad); 2065 break; 2066 default: 2067 return; 2068 } 2069 2070 if (epos->bh) { 2071 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2072 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2073 struct allocExtDesc *aed = 2074 (struct allocExtDesc *)epos->bh->b_data; 2075 udf_update_tag(epos->bh->b_data, 2076 le32_to_cpu(aed->lengthAllocDescs) + 2077 sizeof(struct allocExtDesc)); 2078 } 2079 mark_buffer_dirty_inode(epos->bh, inode); 2080 } else { 2081 mark_inode_dirty(inode); 2082 } 2083 2084 if (inc) 2085 epos->offset += adsize; 2086 } 2087 2088 /* 2089 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2090 * someone does some weird stuff. 2091 */ 2092 #define UDF_MAX_INDIR_EXTS 16 2093 2094 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2095 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2096 { 2097 int8_t etype; 2098 unsigned int indirections = 0; 2099 2100 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2101 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2102 udf_pblk_t block; 2103 2104 if (++indirections > UDF_MAX_INDIR_EXTS) { 2105 udf_err(inode->i_sb, 2106 "too many indirect extents in inode %lu\n", 2107 inode->i_ino); 2108 return -1; 2109 } 2110 2111 epos->block = *eloc; 2112 epos->offset = sizeof(struct allocExtDesc); 2113 brelse(epos->bh); 2114 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2115 epos->bh = udf_tread(inode->i_sb, block); 2116 if (!epos->bh) { 2117 udf_debug("reading block %u failed!\n", block); 2118 return -1; 2119 } 2120 } 2121 2122 return etype; 2123 } 2124 2125 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2126 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2127 { 2128 int alen; 2129 int8_t etype; 2130 uint8_t *ptr; 2131 struct short_ad *sad; 2132 struct long_ad *lad; 2133 struct udf_inode_info *iinfo = UDF_I(inode); 2134 2135 if (!epos->bh) { 2136 if (!epos->offset) 2137 epos->offset = udf_file_entry_alloc_offset(inode); 2138 ptr = iinfo->i_ext.i_data + epos->offset - 2139 udf_file_entry_alloc_offset(inode) + 2140 iinfo->i_lenEAttr; 2141 alen = udf_file_entry_alloc_offset(inode) + 2142 iinfo->i_lenAlloc; 2143 } else { 2144 if (!epos->offset) 2145 epos->offset = sizeof(struct allocExtDesc); 2146 ptr = epos->bh->b_data + epos->offset; 2147 alen = sizeof(struct allocExtDesc) + 2148 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2149 lengthAllocDescs); 2150 } 2151 2152 switch (iinfo->i_alloc_type) { 2153 case ICBTAG_FLAG_AD_SHORT: 2154 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2155 if (!sad) 2156 return -1; 2157 etype = le32_to_cpu(sad->extLength) >> 30; 2158 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2159 eloc->partitionReferenceNum = 2160 iinfo->i_location.partitionReferenceNum; 2161 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2162 break; 2163 case ICBTAG_FLAG_AD_LONG: 2164 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2165 if (!lad) 2166 return -1; 2167 etype = le32_to_cpu(lad->extLength) >> 30; 2168 *eloc = lelb_to_cpu(lad->extLocation); 2169 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2170 break; 2171 default: 2172 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2173 return -1; 2174 } 2175 2176 return etype; 2177 } 2178 2179 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2180 struct kernel_lb_addr neloc, uint32_t nelen) 2181 { 2182 struct kernel_lb_addr oeloc; 2183 uint32_t oelen; 2184 int8_t etype; 2185 2186 if (epos.bh) 2187 get_bh(epos.bh); 2188 2189 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2190 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2191 neloc = oeloc; 2192 nelen = (etype << 30) | oelen; 2193 } 2194 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2195 brelse(epos.bh); 2196 2197 return (nelen >> 30); 2198 } 2199 2200 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2201 { 2202 struct extent_position oepos; 2203 int adsize; 2204 int8_t etype; 2205 struct allocExtDesc *aed; 2206 struct udf_inode_info *iinfo; 2207 struct kernel_lb_addr eloc; 2208 uint32_t elen; 2209 2210 if (epos.bh) { 2211 get_bh(epos.bh); 2212 get_bh(epos.bh); 2213 } 2214 2215 iinfo = UDF_I(inode); 2216 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2217 adsize = sizeof(struct short_ad); 2218 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2219 adsize = sizeof(struct long_ad); 2220 else 2221 adsize = 0; 2222 2223 oepos = epos; 2224 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2225 return -1; 2226 2227 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2228 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2229 if (oepos.bh != epos.bh) { 2230 oepos.block = epos.block; 2231 brelse(oepos.bh); 2232 get_bh(epos.bh); 2233 oepos.bh = epos.bh; 2234 oepos.offset = epos.offset - adsize; 2235 } 2236 } 2237 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2238 elen = 0; 2239 2240 if (epos.bh != oepos.bh) { 2241 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2242 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2243 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2244 if (!oepos.bh) { 2245 iinfo->i_lenAlloc -= (adsize * 2); 2246 mark_inode_dirty(inode); 2247 } else { 2248 aed = (struct allocExtDesc *)oepos.bh->b_data; 2249 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2250 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2251 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2252 udf_update_tag(oepos.bh->b_data, 2253 oepos.offset - (2 * adsize)); 2254 else 2255 udf_update_tag(oepos.bh->b_data, 2256 sizeof(struct allocExtDesc)); 2257 mark_buffer_dirty_inode(oepos.bh, inode); 2258 } 2259 } else { 2260 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2261 if (!oepos.bh) { 2262 iinfo->i_lenAlloc -= adsize; 2263 mark_inode_dirty(inode); 2264 } else { 2265 aed = (struct allocExtDesc *)oepos.bh->b_data; 2266 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2267 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2268 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2269 udf_update_tag(oepos.bh->b_data, 2270 epos.offset - adsize); 2271 else 2272 udf_update_tag(oepos.bh->b_data, 2273 sizeof(struct allocExtDesc)); 2274 mark_buffer_dirty_inode(oepos.bh, inode); 2275 } 2276 } 2277 2278 brelse(epos.bh); 2279 brelse(oepos.bh); 2280 2281 return (elen >> 30); 2282 } 2283 2284 int8_t inode_bmap(struct inode *inode, sector_t block, 2285 struct extent_position *pos, struct kernel_lb_addr *eloc, 2286 uint32_t *elen, sector_t *offset) 2287 { 2288 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2289 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2290 int8_t etype; 2291 struct udf_inode_info *iinfo; 2292 2293 iinfo = UDF_I(inode); 2294 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2295 pos->offset = 0; 2296 pos->block = iinfo->i_location; 2297 pos->bh = NULL; 2298 } 2299 *elen = 0; 2300 do { 2301 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2302 if (etype == -1) { 2303 *offset = (bcount - lbcount) >> blocksize_bits; 2304 iinfo->i_lenExtents = lbcount; 2305 return -1; 2306 } 2307 lbcount += *elen; 2308 } while (lbcount <= bcount); 2309 /* update extent cache */ 2310 udf_update_extent_cache(inode, lbcount - *elen, pos); 2311 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2312 2313 return etype; 2314 } 2315 2316 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2317 { 2318 struct kernel_lb_addr eloc; 2319 uint32_t elen; 2320 sector_t offset; 2321 struct extent_position epos = {}; 2322 udf_pblk_t ret; 2323 2324 down_read(&UDF_I(inode)->i_data_sem); 2325 2326 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2327 (EXT_RECORDED_ALLOCATED >> 30)) 2328 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2329 else 2330 ret = 0; 2331 2332 up_read(&UDF_I(inode)->i_data_sem); 2333 brelse(epos.bh); 2334 2335 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2336 return udf_fixed_to_variable(ret); 2337 else 2338 return ret; 2339 } 2340