xref: /openbmc/linux/fs/udf/inode.c (revision 59ad88f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_adinicb_writepage(struct folio *folio,
185 				 struct writeback_control *wbc, void *data)
186 {
187 	struct inode *inode = folio->mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 
190 	BUG_ON(!folio_test_locked(folio));
191 	BUG_ON(folio->index != 0);
192 	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 		       i_size_read(inode));
194 	folio_unlock(folio);
195 	mark_inode_dirty(inode);
196 
197 	return 0;
198 }
199 
200 static int udf_writepages(struct address_space *mapping,
201 			  struct writeback_control *wbc)
202 {
203 	struct inode *inode = mapping->host;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210 
211 static void udf_adinicb_readpage(struct page *page)
212 {
213 	struct inode *inode = page->mapping->host;
214 	char *kaddr;
215 	struct udf_inode_info *iinfo = UDF_I(inode);
216 	loff_t isize = i_size_read(inode);
217 
218 	kaddr = kmap_local_page(page);
219 	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 	memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 	flush_dcache_page(page);
222 	SetPageUptodate(page);
223 	kunmap_local(kaddr);
224 }
225 
226 static int udf_read_folio(struct file *file, struct folio *folio)
227 {
228 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229 
230 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 		udf_adinicb_readpage(&folio->page);
232 		folio_unlock(folio);
233 		return 0;
234 	}
235 	return mpage_read_folio(folio, udf_get_block);
236 }
237 
238 static void udf_readahead(struct readahead_control *rac)
239 {
240 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241 
242 	/*
243 	 * No readahead needed for in-ICB files and udf_get_block() would get
244 	 * confused for such file anyway.
245 	 */
246 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 		return;
248 
249 	mpage_readahead(rac, udf_get_block);
250 }
251 
252 static int udf_write_begin(struct file *file, struct address_space *mapping,
253 			   loff_t pos, unsigned len,
254 			   struct page **pagep, void **fsdata)
255 {
256 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 	struct page *page;
258 	int ret;
259 
260 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 		ret = block_write_begin(mapping, pos, len, pagep,
262 					udf_get_block);
263 		if (unlikely(ret))
264 			udf_write_failed(mapping, pos + len);
265 		return ret;
266 	}
267 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 		return -EIO;
269 	page = grab_cache_page_write_begin(mapping, 0);
270 	if (!page)
271 		return -ENOMEM;
272 	*pagep = page;
273 	if (!PageUptodate(page))
274 		udf_adinicb_readpage(page);
275 	return 0;
276 }
277 
278 static int udf_write_end(struct file *file, struct address_space *mapping,
279 			 loff_t pos, unsigned len, unsigned copied,
280 			 struct page *page, void *fsdata)
281 {
282 	struct inode *inode = file_inode(file);
283 	loff_t last_pos;
284 
285 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 		return generic_write_end(file, mapping, pos, len, copied, page,
287 					 fsdata);
288 	last_pos = pos + copied;
289 	if (last_pos > inode->i_size)
290 		i_size_write(inode, last_pos);
291 	set_page_dirty(page);
292 	unlock_page(page);
293 	put_page(page);
294 
295 	return copied;
296 }
297 
298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299 {
300 	struct file *file = iocb->ki_filp;
301 	struct address_space *mapping = file->f_mapping;
302 	struct inode *inode = mapping->host;
303 	size_t count = iov_iter_count(iter);
304 	ssize_t ret;
305 
306 	/* Fallback to buffered IO for in-ICB files */
307 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 		return 0;
309 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 		udf_write_failed(mapping, iocb->ki_pos + count);
312 	return ret;
313 }
314 
315 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316 {
317 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
318 
319 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 		return -EINVAL;
321 	return generic_block_bmap(mapping, block, udf_get_block);
322 }
323 
324 const struct address_space_operations udf_aops = {
325 	.dirty_folio	= block_dirty_folio,
326 	.invalidate_folio = block_invalidate_folio,
327 	.read_folio	= udf_read_folio,
328 	.readahead	= udf_readahead,
329 	.writepages	= udf_writepages,
330 	.write_begin	= udf_write_begin,
331 	.write_end	= udf_write_end,
332 	.direct_IO	= udf_direct_IO,
333 	.bmap		= udf_bmap,
334 	.migrate_folio	= buffer_migrate_folio,
335 };
336 
337 /*
338  * Expand file stored in ICB to a normal one-block-file
339  *
340  * This function requires i_mutex held
341  */
342 int udf_expand_file_adinicb(struct inode *inode)
343 {
344 	struct page *page;
345 	struct udf_inode_info *iinfo = UDF_I(inode);
346 	int err;
347 
348 	WARN_ON_ONCE(!inode_is_locked(inode));
349 	if (!iinfo->i_lenAlloc) {
350 		down_write(&iinfo->i_data_sem);
351 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 		else
354 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 		/* from now on we have normal address_space methods */
356 		inode->i_data.a_ops = &udf_aops;
357 		up_write(&iinfo->i_data_sem);
358 		mark_inode_dirty(inode);
359 		return 0;
360 	}
361 
362 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
363 	if (!page)
364 		return -ENOMEM;
365 
366 	if (!PageUptodate(page))
367 		udf_adinicb_readpage(page);
368 	down_write(&iinfo->i_data_sem);
369 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
370 	       iinfo->i_lenAlloc);
371 	iinfo->i_lenAlloc = 0;
372 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
373 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
374 	else
375 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
376 	set_page_dirty(page);
377 	unlock_page(page);
378 	up_write(&iinfo->i_data_sem);
379 	err = filemap_fdatawrite(inode->i_mapping);
380 	if (err) {
381 		/* Restore everything back so that we don't lose data... */
382 		lock_page(page);
383 		down_write(&iinfo->i_data_sem);
384 		memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
385 			       inode->i_size);
386 		unlock_page(page);
387 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
388 		iinfo->i_lenAlloc = inode->i_size;
389 		up_write(&iinfo->i_data_sem);
390 	}
391 	put_page(page);
392 	mark_inode_dirty(inode);
393 
394 	return err;
395 }
396 
397 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
398 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
399 
400 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
401 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
402 
403 struct udf_map_rq {
404 	sector_t lblk;
405 	udf_pblk_t pblk;
406 	int iflags;		/* UDF_MAP_ flags determining behavior */
407 	int oflags;		/* UDF_BLK_ flags reporting results */
408 };
409 
410 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
411 {
412 	int err;
413 	struct udf_inode_info *iinfo = UDF_I(inode);
414 
415 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
416 		return -EFSCORRUPTED;
417 
418 	map->oflags = 0;
419 	if (!(map->iflags & UDF_MAP_CREATE)) {
420 		struct kernel_lb_addr eloc;
421 		uint32_t elen;
422 		sector_t offset;
423 		struct extent_position epos = {};
424 
425 		down_read(&iinfo->i_data_sem);
426 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
427 				== (EXT_RECORDED_ALLOCATED >> 30)) {
428 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
429 							offset);
430 			map->oflags |= UDF_BLK_MAPPED;
431 		}
432 		up_read(&iinfo->i_data_sem);
433 		brelse(epos.bh);
434 
435 		return 0;
436 	}
437 
438 	down_write(&iinfo->i_data_sem);
439 	/*
440 	 * Block beyond EOF and prealloc extents? Just discard preallocation
441 	 * as it is not useful and complicates things.
442 	 */
443 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
444 		udf_discard_prealloc(inode);
445 	udf_clear_extent_cache(inode);
446 	err = inode_getblk(inode, map);
447 	up_write(&iinfo->i_data_sem);
448 	return err;
449 }
450 
451 static int __udf_get_block(struct inode *inode, sector_t block,
452 			   struct buffer_head *bh_result, int flags)
453 {
454 	int err;
455 	struct udf_map_rq map = {
456 		.lblk = block,
457 		.iflags = flags,
458 	};
459 
460 	err = udf_map_block(inode, &map);
461 	if (err < 0)
462 		return err;
463 	if (map.oflags & UDF_BLK_MAPPED) {
464 		map_bh(bh_result, inode->i_sb, map.pblk);
465 		if (map.oflags & UDF_BLK_NEW)
466 			set_buffer_new(bh_result);
467 	}
468 	return 0;
469 }
470 
471 int udf_get_block(struct inode *inode, sector_t block,
472 		  struct buffer_head *bh_result, int create)
473 {
474 	int flags = create ? UDF_MAP_CREATE : 0;
475 
476 	/*
477 	 * We preallocate blocks only for regular files. It also makes sense
478 	 * for directories but there's a problem when to drop the
479 	 * preallocation. We might use some delayed work for that but I feel
480 	 * it's overengineering for a filesystem like UDF.
481 	 */
482 	if (!S_ISREG(inode->i_mode))
483 		flags |= UDF_MAP_NOPREALLOC;
484 	return __udf_get_block(inode, block, bh_result, flags);
485 }
486 
487 /*
488  * We shouldn't be allocating blocks on page writeback since we allocate them
489  * on page fault. We can spot dirty buffers without allocated blocks though
490  * when truncate expands file. These however don't have valid data so we can
491  * safely ignore them. So never allocate blocks from page writeback.
492  */
493 static int udf_get_block_wb(struct inode *inode, sector_t block,
494 			    struct buffer_head *bh_result, int create)
495 {
496 	return __udf_get_block(inode, block, bh_result, 0);
497 }
498 
499 /* Extend the file with new blocks totaling 'new_block_bytes',
500  * return the number of extents added
501  */
502 static int udf_do_extend_file(struct inode *inode,
503 			      struct extent_position *last_pos,
504 			      struct kernel_long_ad *last_ext,
505 			      loff_t new_block_bytes)
506 {
507 	uint32_t add;
508 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
509 	struct super_block *sb = inode->i_sb;
510 	struct udf_inode_info *iinfo;
511 	int err;
512 
513 	/* The previous extent is fake and we should not extend by anything
514 	 * - there's nothing to do... */
515 	if (!new_block_bytes && fake)
516 		return 0;
517 
518 	iinfo = UDF_I(inode);
519 	/* Round the last extent up to a multiple of block size */
520 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
521 		last_ext->extLength =
522 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
523 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
524 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
525 		iinfo->i_lenExtents =
526 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
527 			~(sb->s_blocksize - 1);
528 	}
529 
530 	add = 0;
531 	/* Can we merge with the previous extent? */
532 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
533 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
534 		add = (1 << 30) - sb->s_blocksize -
535 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
536 		if (add > new_block_bytes)
537 			add = new_block_bytes;
538 		new_block_bytes -= add;
539 		last_ext->extLength += add;
540 	}
541 
542 	if (fake) {
543 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
544 				   last_ext->extLength, 1);
545 		if (err < 0)
546 			goto out_err;
547 		count++;
548 	} else {
549 		struct kernel_lb_addr tmploc;
550 		uint32_t tmplen;
551 
552 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
553 				last_ext->extLength, 1);
554 
555 		/*
556 		 * We've rewritten the last extent. If we are going to add
557 		 * more extents, we may need to enter possible following
558 		 * empty indirect extent.
559 		 */
560 		if (new_block_bytes)
561 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
562 	}
563 	iinfo->i_lenExtents += add;
564 
565 	/* Managed to do everything necessary? */
566 	if (!new_block_bytes)
567 		goto out;
568 
569 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
570 	last_ext->extLocation.logicalBlockNum = 0;
571 	last_ext->extLocation.partitionReferenceNum = 0;
572 	add = (1 << 30) - sb->s_blocksize;
573 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
574 
575 	/* Create enough extents to cover the whole hole */
576 	while (new_block_bytes > add) {
577 		new_block_bytes -= add;
578 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 				   last_ext->extLength, 1);
580 		if (err)
581 			goto out_err;
582 		iinfo->i_lenExtents += add;
583 		count++;
584 	}
585 	if (new_block_bytes) {
586 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
587 			new_block_bytes;
588 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
589 				   last_ext->extLength, 1);
590 		if (err)
591 			goto out_err;
592 		iinfo->i_lenExtents += new_block_bytes;
593 		count++;
594 	}
595 
596 out:
597 	/* last_pos should point to the last written extent... */
598 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 		last_pos->offset -= sizeof(struct short_ad);
600 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 		last_pos->offset -= sizeof(struct long_ad);
602 	else
603 		return -EIO;
604 
605 	return count;
606 out_err:
607 	/* Remove extents we've created so far */
608 	udf_clear_extent_cache(inode);
609 	udf_truncate_extents(inode);
610 	return err;
611 }
612 
613 /* Extend the final block of the file to final_block_len bytes */
614 static void udf_do_extend_final_block(struct inode *inode,
615 				      struct extent_position *last_pos,
616 				      struct kernel_long_ad *last_ext,
617 				      uint32_t new_elen)
618 {
619 	uint32_t added_bytes;
620 
621 	/*
622 	 * Extent already large enough? It may be already rounded up to block
623 	 * size...
624 	 */
625 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
626 		return;
627 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
628 	last_ext->extLength += added_bytes;
629 	UDF_I(inode)->i_lenExtents += added_bytes;
630 
631 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
632 			last_ext->extLength, 1);
633 }
634 
635 static int udf_extend_file(struct inode *inode, loff_t newsize)
636 {
637 
638 	struct extent_position epos;
639 	struct kernel_lb_addr eloc;
640 	uint32_t elen;
641 	int8_t etype;
642 	struct super_block *sb = inode->i_sb;
643 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
644 	loff_t new_elen;
645 	int adsize;
646 	struct udf_inode_info *iinfo = UDF_I(inode);
647 	struct kernel_long_ad extent;
648 	int err = 0;
649 	bool within_last_ext;
650 
651 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
652 		adsize = sizeof(struct short_ad);
653 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
654 		adsize = sizeof(struct long_ad);
655 	else
656 		BUG();
657 
658 	down_write(&iinfo->i_data_sem);
659 	/*
660 	 * When creating hole in file, just don't bother with preserving
661 	 * preallocation. It likely won't be very useful anyway.
662 	 */
663 	udf_discard_prealloc(inode);
664 
665 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
666 	within_last_ext = (etype != -1);
667 	/* We don't expect extents past EOF... */
668 	WARN_ON_ONCE(within_last_ext &&
669 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
670 
671 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
672 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
673 		/* File has no extents at all or has empty last
674 		 * indirect extent! Create a fake extent... */
675 		extent.extLocation.logicalBlockNum = 0;
676 		extent.extLocation.partitionReferenceNum = 0;
677 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
678 	} else {
679 		epos.offset -= adsize;
680 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
681 				      &extent.extLength, 0);
682 		extent.extLength |= etype << 30;
683 	}
684 
685 	new_elen = ((loff_t)offset << inode->i_blkbits) |
686 					(newsize & (sb->s_blocksize - 1));
687 
688 	/* File has extent covering the new size (could happen when extending
689 	 * inside a block)?
690 	 */
691 	if (within_last_ext) {
692 		/* Extending file within the last file block */
693 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
694 	} else {
695 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
696 	}
697 
698 	if (err < 0)
699 		goto out;
700 	err = 0;
701 out:
702 	brelse(epos.bh);
703 	up_write(&iinfo->i_data_sem);
704 	return err;
705 }
706 
707 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
708 {
709 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
710 	struct extent_position prev_epos, cur_epos, next_epos;
711 	int count = 0, startnum = 0, endnum = 0;
712 	uint32_t elen = 0, tmpelen;
713 	struct kernel_lb_addr eloc, tmpeloc;
714 	int c = 1;
715 	loff_t lbcount = 0, b_off = 0;
716 	udf_pblk_t newblocknum;
717 	sector_t offset = 0;
718 	int8_t etype;
719 	struct udf_inode_info *iinfo = UDF_I(inode);
720 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
721 	int lastblock = 0;
722 	bool isBeyondEOF;
723 	int ret = 0;
724 
725 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
726 	prev_epos.block = iinfo->i_location;
727 	prev_epos.bh = NULL;
728 	cur_epos = next_epos = prev_epos;
729 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
730 
731 	/* find the extent which contains the block we are looking for.
732 	   alternate between laarr[0] and laarr[1] for locations of the
733 	   current extent, and the previous extent */
734 	do {
735 		if (prev_epos.bh != cur_epos.bh) {
736 			brelse(prev_epos.bh);
737 			get_bh(cur_epos.bh);
738 			prev_epos.bh = cur_epos.bh;
739 		}
740 		if (cur_epos.bh != next_epos.bh) {
741 			brelse(cur_epos.bh);
742 			get_bh(next_epos.bh);
743 			cur_epos.bh = next_epos.bh;
744 		}
745 
746 		lbcount += elen;
747 
748 		prev_epos.block = cur_epos.block;
749 		cur_epos.block = next_epos.block;
750 
751 		prev_epos.offset = cur_epos.offset;
752 		cur_epos.offset = next_epos.offset;
753 
754 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
755 		if (etype == -1)
756 			break;
757 
758 		c = !c;
759 
760 		laarr[c].extLength = (etype << 30) | elen;
761 		laarr[c].extLocation = eloc;
762 
763 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
764 			pgoal = eloc.logicalBlockNum +
765 				((elen + inode->i_sb->s_blocksize - 1) >>
766 				 inode->i_sb->s_blocksize_bits);
767 
768 		count++;
769 	} while (lbcount + elen <= b_off);
770 
771 	b_off -= lbcount;
772 	offset = b_off >> inode->i_sb->s_blocksize_bits;
773 	/*
774 	 * Move prev_epos and cur_epos into indirect extent if we are at
775 	 * the pointer to it
776 	 */
777 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
778 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
779 
780 	/* if the extent is allocated and recorded, return the block
781 	   if the extent is not a multiple of the blocksize, round up */
782 
783 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
784 		if (elen & (inode->i_sb->s_blocksize - 1)) {
785 			elen = EXT_RECORDED_ALLOCATED |
786 				((elen + inode->i_sb->s_blocksize - 1) &
787 				 ~(inode->i_sb->s_blocksize - 1));
788 			iinfo->i_lenExtents =
789 				ALIGN(iinfo->i_lenExtents,
790 				      inode->i_sb->s_blocksize);
791 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
792 		}
793 		map->oflags = UDF_BLK_MAPPED;
794 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
795 		goto out_free;
796 	}
797 
798 	/* Are we beyond EOF and preallocated extent? */
799 	if (etype == -1) {
800 		loff_t hole_len;
801 
802 		isBeyondEOF = true;
803 		if (count) {
804 			if (c)
805 				laarr[0] = laarr[1];
806 			startnum = 1;
807 		} else {
808 			/* Create a fake extent when there's not one */
809 			memset(&laarr[0].extLocation, 0x00,
810 				sizeof(struct kernel_lb_addr));
811 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
812 			/* Will udf_do_extend_file() create real extent from
813 			   a fake one? */
814 			startnum = (offset > 0);
815 		}
816 		/* Create extents for the hole between EOF and offset */
817 		hole_len = (loff_t)offset << inode->i_blkbits;
818 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
819 		if (ret < 0)
820 			goto out_free;
821 		c = 0;
822 		offset = 0;
823 		count += ret;
824 		/*
825 		 * Is there any real extent? - otherwise we overwrite the fake
826 		 * one...
827 		 */
828 		if (count)
829 			c = !c;
830 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
831 			inode->i_sb->s_blocksize;
832 		memset(&laarr[c].extLocation, 0x00,
833 			sizeof(struct kernel_lb_addr));
834 		count++;
835 		endnum = c + 1;
836 		lastblock = 1;
837 	} else {
838 		isBeyondEOF = false;
839 		endnum = startnum = ((count > 2) ? 2 : count);
840 
841 		/* if the current extent is in position 0,
842 		   swap it with the previous */
843 		if (!c && count != 1) {
844 			laarr[2] = laarr[0];
845 			laarr[0] = laarr[1];
846 			laarr[1] = laarr[2];
847 			c = 1;
848 		}
849 
850 		/* if the current block is located in an extent,
851 		   read the next extent */
852 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
853 		if (etype != -1) {
854 			laarr[c + 1].extLength = (etype << 30) | elen;
855 			laarr[c + 1].extLocation = eloc;
856 			count++;
857 			startnum++;
858 			endnum++;
859 		} else
860 			lastblock = 1;
861 	}
862 
863 	/* if the current extent is not recorded but allocated, get the
864 	 * block in the extent corresponding to the requested block */
865 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
866 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
867 	else { /* otherwise, allocate a new block */
868 		if (iinfo->i_next_alloc_block == map->lblk)
869 			goal = iinfo->i_next_alloc_goal;
870 
871 		if (!goal) {
872 			if (!(goal = pgoal)) /* XXX: what was intended here? */
873 				goal = iinfo->i_location.logicalBlockNum + 1;
874 		}
875 
876 		newblocknum = udf_new_block(inode->i_sb, inode,
877 				iinfo->i_location.partitionReferenceNum,
878 				goal, &ret);
879 		if (!newblocknum)
880 			goto out_free;
881 		if (isBeyondEOF)
882 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
883 	}
884 
885 	/* if the extent the requsted block is located in contains multiple
886 	 * blocks, split the extent into at most three extents. blocks prior
887 	 * to requested block, requested block, and blocks after requested
888 	 * block */
889 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
890 
891 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
892 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
893 
894 	/* merge any continuous blocks in laarr */
895 	udf_merge_extents(inode, laarr, &endnum);
896 
897 	/* write back the new extents, inserting new extents if the new number
898 	 * of extents is greater than the old number, and deleting extents if
899 	 * the new number of extents is less than the old number */
900 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
901 	if (ret < 0)
902 		goto out_free;
903 
904 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
905 				iinfo->i_location.partitionReferenceNum, 0);
906 	if (!map->pblk) {
907 		ret = -EFSCORRUPTED;
908 		goto out_free;
909 	}
910 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
911 	iinfo->i_next_alloc_block = map->lblk + 1;
912 	iinfo->i_next_alloc_goal = newblocknum + 1;
913 	inode_set_ctime_current(inode);
914 
915 	if (IS_SYNC(inode))
916 		udf_sync_inode(inode);
917 	else
918 		mark_inode_dirty(inode);
919 	ret = 0;
920 out_free:
921 	brelse(prev_epos.bh);
922 	brelse(cur_epos.bh);
923 	brelse(next_epos.bh);
924 	return ret;
925 }
926 
927 static void udf_split_extents(struct inode *inode, int *c, int offset,
928 			       udf_pblk_t newblocknum,
929 			       struct kernel_long_ad *laarr, int *endnum)
930 {
931 	unsigned long blocksize = inode->i_sb->s_blocksize;
932 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
933 
934 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
935 	    (laarr[*c].extLength >> 30) ==
936 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
937 		int curr = *c;
938 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
939 			    blocksize - 1) >> blocksize_bits;
940 		int8_t etype = (laarr[curr].extLength >> 30);
941 
942 		if (blen == 1)
943 			;
944 		else if (!offset || blen == offset + 1) {
945 			laarr[curr + 2] = laarr[curr + 1];
946 			laarr[curr + 1] = laarr[curr];
947 		} else {
948 			laarr[curr + 3] = laarr[curr + 1];
949 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
950 		}
951 
952 		if (offset) {
953 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
954 				udf_free_blocks(inode->i_sb, inode,
955 						&laarr[curr].extLocation,
956 						0, offset);
957 				laarr[curr].extLength =
958 					EXT_NOT_RECORDED_NOT_ALLOCATED |
959 					(offset << blocksize_bits);
960 				laarr[curr].extLocation.logicalBlockNum = 0;
961 				laarr[curr].extLocation.
962 						partitionReferenceNum = 0;
963 			} else
964 				laarr[curr].extLength = (etype << 30) |
965 					(offset << blocksize_bits);
966 			curr++;
967 			(*c)++;
968 			(*endnum)++;
969 		}
970 
971 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
972 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
973 			laarr[curr].extLocation.partitionReferenceNum =
974 				UDF_I(inode)->i_location.partitionReferenceNum;
975 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
976 			blocksize;
977 		curr++;
978 
979 		if (blen != offset + 1) {
980 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
981 				laarr[curr].extLocation.logicalBlockNum +=
982 								offset + 1;
983 			laarr[curr].extLength = (etype << 30) |
984 				((blen - (offset + 1)) << blocksize_bits);
985 			curr++;
986 			(*endnum)++;
987 		}
988 	}
989 }
990 
991 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
992 				 struct kernel_long_ad *laarr,
993 				 int *endnum)
994 {
995 	int start, length = 0, currlength = 0, i;
996 
997 	if (*endnum >= (c + 1)) {
998 		if (!lastblock)
999 			return;
1000 		else
1001 			start = c;
1002 	} else {
1003 		if ((laarr[c + 1].extLength >> 30) ==
1004 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1005 			start = c + 1;
1006 			length = currlength =
1007 				(((laarr[c + 1].extLength &
1008 					UDF_EXTENT_LENGTH_MASK) +
1009 				inode->i_sb->s_blocksize - 1) >>
1010 				inode->i_sb->s_blocksize_bits);
1011 		} else
1012 			start = c;
1013 	}
1014 
1015 	for (i = start + 1; i <= *endnum; i++) {
1016 		if (i == *endnum) {
1017 			if (lastblock)
1018 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1019 		} else if ((laarr[i].extLength >> 30) ==
1020 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1021 			length += (((laarr[i].extLength &
1022 						UDF_EXTENT_LENGTH_MASK) +
1023 				    inode->i_sb->s_blocksize - 1) >>
1024 				    inode->i_sb->s_blocksize_bits);
1025 		} else
1026 			break;
1027 	}
1028 
1029 	if (length) {
1030 		int next = laarr[start].extLocation.logicalBlockNum +
1031 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1032 			  inode->i_sb->s_blocksize - 1) >>
1033 			  inode->i_sb->s_blocksize_bits);
1034 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1035 				laarr[start].extLocation.partitionReferenceNum,
1036 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1037 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1038 				currlength);
1039 		if (numalloc) 	{
1040 			if (start == (c + 1))
1041 				laarr[start].extLength +=
1042 					(numalloc <<
1043 					 inode->i_sb->s_blocksize_bits);
1044 			else {
1045 				memmove(&laarr[c + 2], &laarr[c + 1],
1046 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1047 				(*endnum)++;
1048 				laarr[c + 1].extLocation.logicalBlockNum = next;
1049 				laarr[c + 1].extLocation.partitionReferenceNum =
1050 					laarr[c].extLocation.
1051 							partitionReferenceNum;
1052 				laarr[c + 1].extLength =
1053 					EXT_NOT_RECORDED_ALLOCATED |
1054 					(numalloc <<
1055 					 inode->i_sb->s_blocksize_bits);
1056 				start = c + 1;
1057 			}
1058 
1059 			for (i = start + 1; numalloc && i < *endnum; i++) {
1060 				int elen = ((laarr[i].extLength &
1061 						UDF_EXTENT_LENGTH_MASK) +
1062 					    inode->i_sb->s_blocksize - 1) >>
1063 					    inode->i_sb->s_blocksize_bits;
1064 
1065 				if (elen > numalloc) {
1066 					laarr[i].extLength -=
1067 						(numalloc <<
1068 						 inode->i_sb->s_blocksize_bits);
1069 					numalloc = 0;
1070 				} else {
1071 					numalloc -= elen;
1072 					if (*endnum > (i + 1))
1073 						memmove(&laarr[i],
1074 							&laarr[i + 1],
1075 							sizeof(struct long_ad) *
1076 							(*endnum - (i + 1)));
1077 					i--;
1078 					(*endnum)--;
1079 				}
1080 			}
1081 			UDF_I(inode)->i_lenExtents +=
1082 				numalloc << inode->i_sb->s_blocksize_bits;
1083 		}
1084 	}
1085 }
1086 
1087 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1088 			      int *endnum)
1089 {
1090 	int i;
1091 	unsigned long blocksize = inode->i_sb->s_blocksize;
1092 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1093 
1094 	for (i = 0; i < (*endnum - 1); i++) {
1095 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1096 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1097 
1098 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1099 			(((li->extLength >> 30) ==
1100 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1101 			((lip1->extLocation.logicalBlockNum -
1102 			  li->extLocation.logicalBlockNum) ==
1103 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1104 			blocksize - 1) >> blocksize_bits)))) {
1105 
1106 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1107 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1108 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1109 				li->extLength = lip1->extLength +
1110 					(((li->extLength &
1111 						UDF_EXTENT_LENGTH_MASK) +
1112 					 blocksize - 1) & ~(blocksize - 1));
1113 				if (*endnum > (i + 2))
1114 					memmove(&laarr[i + 1], &laarr[i + 2],
1115 						sizeof(struct long_ad) *
1116 						(*endnum - (i + 2)));
1117 				i--;
1118 				(*endnum)--;
1119 			}
1120 		} else if (((li->extLength >> 30) ==
1121 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1122 			   ((lip1->extLength >> 30) ==
1123 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1124 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1125 					((li->extLength &
1126 					  UDF_EXTENT_LENGTH_MASK) +
1127 					 blocksize - 1) >> blocksize_bits);
1128 			li->extLocation.logicalBlockNum = 0;
1129 			li->extLocation.partitionReferenceNum = 0;
1130 
1131 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1132 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1133 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1134 				lip1->extLength = (lip1->extLength -
1135 						   (li->extLength &
1136 						   UDF_EXTENT_LENGTH_MASK) +
1137 						   UDF_EXTENT_LENGTH_MASK) &
1138 						   ~(blocksize - 1);
1139 				li->extLength = (li->extLength &
1140 						 UDF_EXTENT_FLAG_MASK) +
1141 						(UDF_EXTENT_LENGTH_MASK + 1) -
1142 						blocksize;
1143 			} else {
1144 				li->extLength = lip1->extLength +
1145 					(((li->extLength &
1146 						UDF_EXTENT_LENGTH_MASK) +
1147 					  blocksize - 1) & ~(blocksize - 1));
1148 				if (*endnum > (i + 2))
1149 					memmove(&laarr[i + 1], &laarr[i + 2],
1150 						sizeof(struct long_ad) *
1151 						(*endnum - (i + 2)));
1152 				i--;
1153 				(*endnum)--;
1154 			}
1155 		} else if ((li->extLength >> 30) ==
1156 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1157 			udf_free_blocks(inode->i_sb, inode,
1158 					&li->extLocation, 0,
1159 					((li->extLength &
1160 						UDF_EXTENT_LENGTH_MASK) +
1161 					 blocksize - 1) >> blocksize_bits);
1162 			li->extLocation.logicalBlockNum = 0;
1163 			li->extLocation.partitionReferenceNum = 0;
1164 			li->extLength = (li->extLength &
1165 						UDF_EXTENT_LENGTH_MASK) |
1166 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1167 		}
1168 	}
1169 }
1170 
1171 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1172 			      int startnum, int endnum,
1173 			      struct extent_position *epos)
1174 {
1175 	int start = 0, i;
1176 	struct kernel_lb_addr tmploc;
1177 	uint32_t tmplen;
1178 	int err;
1179 
1180 	if (startnum > endnum) {
1181 		for (i = 0; i < (startnum - endnum); i++)
1182 			udf_delete_aext(inode, *epos);
1183 	} else if (startnum < endnum) {
1184 		for (i = 0; i < (endnum - startnum); i++) {
1185 			err = udf_insert_aext(inode, *epos,
1186 					      laarr[i].extLocation,
1187 					      laarr[i].extLength);
1188 			/*
1189 			 * If we fail here, we are likely corrupting the extent
1190 			 * list and leaking blocks. At least stop early to
1191 			 * limit the damage.
1192 			 */
1193 			if (err < 0)
1194 				return err;
1195 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1196 				      &laarr[i].extLength, 1);
1197 			start++;
1198 		}
1199 	}
1200 
1201 	for (i = start; i < endnum; i++) {
1202 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1203 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1204 			       laarr[i].extLength, 1);
1205 	}
1206 	return 0;
1207 }
1208 
1209 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1210 			      int create, int *err)
1211 {
1212 	struct buffer_head *bh = NULL;
1213 	struct udf_map_rq map = {
1214 		.lblk = block,
1215 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1216 	};
1217 
1218 	*err = udf_map_block(inode, &map);
1219 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1220 		return NULL;
1221 
1222 	bh = sb_getblk(inode->i_sb, map.pblk);
1223 	if (!bh) {
1224 		*err = -ENOMEM;
1225 		return NULL;
1226 	}
1227 	if (map.oflags & UDF_BLK_NEW) {
1228 		lock_buffer(bh);
1229 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1230 		set_buffer_uptodate(bh);
1231 		unlock_buffer(bh);
1232 		mark_buffer_dirty_inode(bh, inode);
1233 		return bh;
1234 	}
1235 
1236 	if (bh_read(bh, 0) >= 0)
1237 		return bh;
1238 
1239 	brelse(bh);
1240 	*err = -EIO;
1241 	return NULL;
1242 }
1243 
1244 int udf_setsize(struct inode *inode, loff_t newsize)
1245 {
1246 	int err = 0;
1247 	struct udf_inode_info *iinfo;
1248 	unsigned int bsize = i_blocksize(inode);
1249 
1250 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1251 	      S_ISLNK(inode->i_mode)))
1252 		return -EINVAL;
1253 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1254 		return -EPERM;
1255 
1256 	filemap_invalidate_lock(inode->i_mapping);
1257 	iinfo = UDF_I(inode);
1258 	if (newsize > inode->i_size) {
1259 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1260 			if (bsize >=
1261 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1262 				down_write(&iinfo->i_data_sem);
1263 				iinfo->i_lenAlloc = newsize;
1264 				up_write(&iinfo->i_data_sem);
1265 				goto set_size;
1266 			}
1267 			err = udf_expand_file_adinicb(inode);
1268 			if (err)
1269 				goto out_unlock;
1270 		}
1271 		err = udf_extend_file(inode, newsize);
1272 		if (err)
1273 			goto out_unlock;
1274 set_size:
1275 		truncate_setsize(inode, newsize);
1276 	} else {
1277 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1278 			down_write(&iinfo->i_data_sem);
1279 			udf_clear_extent_cache(inode);
1280 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1281 			       0x00, bsize - newsize -
1282 			       udf_file_entry_alloc_offset(inode));
1283 			iinfo->i_lenAlloc = newsize;
1284 			truncate_setsize(inode, newsize);
1285 			up_write(&iinfo->i_data_sem);
1286 			goto update_time;
1287 		}
1288 		err = block_truncate_page(inode->i_mapping, newsize,
1289 					  udf_get_block);
1290 		if (err)
1291 			goto out_unlock;
1292 		truncate_setsize(inode, newsize);
1293 		down_write(&iinfo->i_data_sem);
1294 		udf_clear_extent_cache(inode);
1295 		err = udf_truncate_extents(inode);
1296 		up_write(&iinfo->i_data_sem);
1297 		if (err)
1298 			goto out_unlock;
1299 	}
1300 update_time:
1301 	inode->i_mtime = inode_set_ctime_current(inode);
1302 	if (IS_SYNC(inode))
1303 		udf_sync_inode(inode);
1304 	else
1305 		mark_inode_dirty(inode);
1306 out_unlock:
1307 	filemap_invalidate_unlock(inode->i_mapping);
1308 	return err;
1309 }
1310 
1311 /*
1312  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1313  * arbitrary - just that we hopefully don't limit any real use of rewritten
1314  * inode on write-once media but avoid looping for too long on corrupted media.
1315  */
1316 #define UDF_MAX_ICB_NESTING 1024
1317 
1318 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1319 {
1320 	struct buffer_head *bh = NULL;
1321 	struct fileEntry *fe;
1322 	struct extendedFileEntry *efe;
1323 	uint16_t ident;
1324 	struct udf_inode_info *iinfo = UDF_I(inode);
1325 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1326 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1327 	unsigned int link_count;
1328 	unsigned int indirections = 0;
1329 	int bs = inode->i_sb->s_blocksize;
1330 	int ret = -EIO;
1331 	uint32_t uid, gid;
1332 	struct timespec64 ctime;
1333 
1334 reread:
1335 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1336 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1337 			  iloc->partitionReferenceNum, sbi->s_partitions);
1338 		return -EIO;
1339 	}
1340 
1341 	if (iloc->logicalBlockNum >=
1342 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1343 		udf_debug("block=%u, partition=%u out of range\n",
1344 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1345 		return -EIO;
1346 	}
1347 
1348 	/*
1349 	 * Set defaults, but the inode is still incomplete!
1350 	 * Note: get_new_inode() sets the following on a new inode:
1351 	 *      i_sb = sb
1352 	 *      i_no = ino
1353 	 *      i_flags = sb->s_flags
1354 	 *      i_state = 0
1355 	 * clean_inode(): zero fills and sets
1356 	 *      i_count = 1
1357 	 *      i_nlink = 1
1358 	 *      i_op = NULL;
1359 	 */
1360 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1361 	if (!bh) {
1362 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1363 		return -EIO;
1364 	}
1365 
1366 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1367 	    ident != TAG_IDENT_USE) {
1368 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1369 			inode->i_ino, ident);
1370 		goto out;
1371 	}
1372 
1373 	fe = (struct fileEntry *)bh->b_data;
1374 	efe = (struct extendedFileEntry *)bh->b_data;
1375 
1376 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1377 		struct buffer_head *ibh;
1378 
1379 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1380 		if (ident == TAG_IDENT_IE && ibh) {
1381 			struct kernel_lb_addr loc;
1382 			struct indirectEntry *ie;
1383 
1384 			ie = (struct indirectEntry *)ibh->b_data;
1385 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1386 
1387 			if (ie->indirectICB.extLength) {
1388 				brelse(ibh);
1389 				memcpy(&iinfo->i_location, &loc,
1390 				       sizeof(struct kernel_lb_addr));
1391 				if (++indirections > UDF_MAX_ICB_NESTING) {
1392 					udf_err(inode->i_sb,
1393 						"too many ICBs in ICB hierarchy"
1394 						" (max %d supported)\n",
1395 						UDF_MAX_ICB_NESTING);
1396 					goto out;
1397 				}
1398 				brelse(bh);
1399 				goto reread;
1400 			}
1401 		}
1402 		brelse(ibh);
1403 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1404 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1405 			le16_to_cpu(fe->icbTag.strategyType));
1406 		goto out;
1407 	}
1408 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1409 		iinfo->i_strat4096 = 0;
1410 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1411 		iinfo->i_strat4096 = 1;
1412 
1413 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1414 							ICBTAG_FLAG_AD_MASK;
1415 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1416 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1417 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1418 		ret = -EIO;
1419 		goto out;
1420 	}
1421 	iinfo->i_hidden = hidden_inode;
1422 	iinfo->i_unique = 0;
1423 	iinfo->i_lenEAttr = 0;
1424 	iinfo->i_lenExtents = 0;
1425 	iinfo->i_lenAlloc = 0;
1426 	iinfo->i_next_alloc_block = 0;
1427 	iinfo->i_next_alloc_goal = 0;
1428 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1429 		iinfo->i_efe = 1;
1430 		iinfo->i_use = 0;
1431 		ret = udf_alloc_i_data(inode, bs -
1432 					sizeof(struct extendedFileEntry));
1433 		if (ret)
1434 			goto out;
1435 		memcpy(iinfo->i_data,
1436 		       bh->b_data + sizeof(struct extendedFileEntry),
1437 		       bs - sizeof(struct extendedFileEntry));
1438 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1439 		iinfo->i_efe = 0;
1440 		iinfo->i_use = 0;
1441 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1442 		if (ret)
1443 			goto out;
1444 		memcpy(iinfo->i_data,
1445 		       bh->b_data + sizeof(struct fileEntry),
1446 		       bs - sizeof(struct fileEntry));
1447 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1448 		iinfo->i_efe = 0;
1449 		iinfo->i_use = 1;
1450 		iinfo->i_lenAlloc = le32_to_cpu(
1451 				((struct unallocSpaceEntry *)bh->b_data)->
1452 				 lengthAllocDescs);
1453 		ret = udf_alloc_i_data(inode, bs -
1454 					sizeof(struct unallocSpaceEntry));
1455 		if (ret)
1456 			goto out;
1457 		memcpy(iinfo->i_data,
1458 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1459 		       bs - sizeof(struct unallocSpaceEntry));
1460 		return 0;
1461 	}
1462 
1463 	ret = -EIO;
1464 	read_lock(&sbi->s_cred_lock);
1465 	uid = le32_to_cpu(fe->uid);
1466 	if (uid == UDF_INVALID_ID ||
1467 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1468 		inode->i_uid = sbi->s_uid;
1469 	else
1470 		i_uid_write(inode, uid);
1471 
1472 	gid = le32_to_cpu(fe->gid);
1473 	if (gid == UDF_INVALID_ID ||
1474 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1475 		inode->i_gid = sbi->s_gid;
1476 	else
1477 		i_gid_write(inode, gid);
1478 
1479 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1480 			sbi->s_fmode != UDF_INVALID_MODE)
1481 		inode->i_mode = sbi->s_fmode;
1482 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1483 			sbi->s_dmode != UDF_INVALID_MODE)
1484 		inode->i_mode = sbi->s_dmode;
1485 	else
1486 		inode->i_mode = udf_convert_permissions(fe);
1487 	inode->i_mode &= ~sbi->s_umask;
1488 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1489 
1490 	read_unlock(&sbi->s_cred_lock);
1491 
1492 	link_count = le16_to_cpu(fe->fileLinkCount);
1493 	if (!link_count) {
1494 		if (!hidden_inode) {
1495 			ret = -ESTALE;
1496 			goto out;
1497 		}
1498 		link_count = 1;
1499 	}
1500 	set_nlink(inode, link_count);
1501 
1502 	inode->i_size = le64_to_cpu(fe->informationLength);
1503 	iinfo->i_lenExtents = inode->i_size;
1504 
1505 	if (iinfo->i_efe == 0) {
1506 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1507 			(inode->i_sb->s_blocksize_bits - 9);
1508 
1509 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1510 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1511 		udf_disk_stamp_to_time(&ctime, fe->attrTime);
1512 		inode_set_ctime_to_ts(inode, ctime);
1513 
1514 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1515 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1516 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1517 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1518 		iinfo->i_streamdir = 0;
1519 		iinfo->i_lenStreams = 0;
1520 	} else {
1521 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1522 		    (inode->i_sb->s_blocksize_bits - 9);
1523 
1524 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1525 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1526 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1527 		udf_disk_stamp_to_time(&ctime, efe->attrTime);
1528 		inode_set_ctime_to_ts(inode, ctime);
1529 
1530 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1531 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1532 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1533 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1534 
1535 		/* Named streams */
1536 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1537 		iinfo->i_locStreamdir =
1538 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1539 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1540 		if (iinfo->i_lenStreams >= inode->i_size)
1541 			iinfo->i_lenStreams -= inode->i_size;
1542 		else
1543 			iinfo->i_lenStreams = 0;
1544 	}
1545 	inode->i_generation = iinfo->i_unique;
1546 
1547 	/*
1548 	 * Sanity check length of allocation descriptors and extended attrs to
1549 	 * avoid integer overflows
1550 	 */
1551 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1552 		goto out;
1553 	/* Now do exact checks */
1554 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1555 		goto out;
1556 	/* Sanity checks for files in ICB so that we don't get confused later */
1557 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1558 		/*
1559 		 * For file in ICB data is stored in allocation descriptor
1560 		 * so sizes should match
1561 		 */
1562 		if (iinfo->i_lenAlloc != inode->i_size)
1563 			goto out;
1564 		/* File in ICB has to fit in there... */
1565 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1566 			goto out;
1567 	}
1568 
1569 	switch (fe->icbTag.fileType) {
1570 	case ICBTAG_FILE_TYPE_DIRECTORY:
1571 		inode->i_op = &udf_dir_inode_operations;
1572 		inode->i_fop = &udf_dir_operations;
1573 		inode->i_mode |= S_IFDIR;
1574 		inc_nlink(inode);
1575 		break;
1576 	case ICBTAG_FILE_TYPE_REALTIME:
1577 	case ICBTAG_FILE_TYPE_REGULAR:
1578 	case ICBTAG_FILE_TYPE_UNDEF:
1579 	case ICBTAG_FILE_TYPE_VAT20:
1580 		inode->i_data.a_ops = &udf_aops;
1581 		inode->i_op = &udf_file_inode_operations;
1582 		inode->i_fop = &udf_file_operations;
1583 		inode->i_mode |= S_IFREG;
1584 		break;
1585 	case ICBTAG_FILE_TYPE_BLOCK:
1586 		inode->i_mode |= S_IFBLK;
1587 		break;
1588 	case ICBTAG_FILE_TYPE_CHAR:
1589 		inode->i_mode |= S_IFCHR;
1590 		break;
1591 	case ICBTAG_FILE_TYPE_FIFO:
1592 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1593 		break;
1594 	case ICBTAG_FILE_TYPE_SOCKET:
1595 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1596 		break;
1597 	case ICBTAG_FILE_TYPE_SYMLINK:
1598 		inode->i_data.a_ops = &udf_symlink_aops;
1599 		inode->i_op = &udf_symlink_inode_operations;
1600 		inode_nohighmem(inode);
1601 		inode->i_mode = S_IFLNK | 0777;
1602 		break;
1603 	case ICBTAG_FILE_TYPE_MAIN:
1604 		udf_debug("METADATA FILE-----\n");
1605 		break;
1606 	case ICBTAG_FILE_TYPE_MIRROR:
1607 		udf_debug("METADATA MIRROR FILE-----\n");
1608 		break;
1609 	case ICBTAG_FILE_TYPE_BITMAP:
1610 		udf_debug("METADATA BITMAP FILE-----\n");
1611 		break;
1612 	default:
1613 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1614 			inode->i_ino, fe->icbTag.fileType);
1615 		goto out;
1616 	}
1617 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1618 		struct deviceSpec *dsea =
1619 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1620 		if (dsea) {
1621 			init_special_inode(inode, inode->i_mode,
1622 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1623 				      le32_to_cpu(dsea->minorDeviceIdent)));
1624 			/* Developer ID ??? */
1625 		} else
1626 			goto out;
1627 	}
1628 	ret = 0;
1629 out:
1630 	brelse(bh);
1631 	return ret;
1632 }
1633 
1634 static int udf_alloc_i_data(struct inode *inode, size_t size)
1635 {
1636 	struct udf_inode_info *iinfo = UDF_I(inode);
1637 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1638 	if (!iinfo->i_data)
1639 		return -ENOMEM;
1640 	return 0;
1641 }
1642 
1643 static umode_t udf_convert_permissions(struct fileEntry *fe)
1644 {
1645 	umode_t mode;
1646 	uint32_t permissions;
1647 	uint32_t flags;
1648 
1649 	permissions = le32_to_cpu(fe->permissions);
1650 	flags = le16_to_cpu(fe->icbTag.flags);
1651 
1652 	mode =	((permissions) & 0007) |
1653 		((permissions >> 2) & 0070) |
1654 		((permissions >> 4) & 0700) |
1655 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1656 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1657 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1658 
1659 	return mode;
1660 }
1661 
1662 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1663 {
1664 	struct udf_inode_info *iinfo = UDF_I(inode);
1665 
1666 	/*
1667 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1668 	 * In Unix, delete permission tracks write
1669 	 */
1670 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1671 	if (mode & 0200)
1672 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1673 	if (mode & 0020)
1674 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1675 	if (mode & 0002)
1676 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1677 }
1678 
1679 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1680 {
1681 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1682 }
1683 
1684 static int udf_sync_inode(struct inode *inode)
1685 {
1686 	return udf_update_inode(inode, 1);
1687 }
1688 
1689 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1690 {
1691 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1692 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1693 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1694 		iinfo->i_crtime = time;
1695 }
1696 
1697 static int udf_update_inode(struct inode *inode, int do_sync)
1698 {
1699 	struct buffer_head *bh = NULL;
1700 	struct fileEntry *fe;
1701 	struct extendedFileEntry *efe;
1702 	uint64_t lb_recorded;
1703 	uint32_t udfperms;
1704 	uint16_t icbflags;
1705 	uint16_t crclen;
1706 	int err = 0;
1707 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1708 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1709 	struct udf_inode_info *iinfo = UDF_I(inode);
1710 
1711 	bh = sb_getblk(inode->i_sb,
1712 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1713 	if (!bh) {
1714 		udf_debug("getblk failure\n");
1715 		return -EIO;
1716 	}
1717 
1718 	lock_buffer(bh);
1719 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1720 	fe = (struct fileEntry *)bh->b_data;
1721 	efe = (struct extendedFileEntry *)bh->b_data;
1722 
1723 	if (iinfo->i_use) {
1724 		struct unallocSpaceEntry *use =
1725 			(struct unallocSpaceEntry *)bh->b_data;
1726 
1727 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1728 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1729 		       iinfo->i_data, inode->i_sb->s_blocksize -
1730 					sizeof(struct unallocSpaceEntry));
1731 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1732 		crclen = sizeof(struct unallocSpaceEntry);
1733 
1734 		goto finish;
1735 	}
1736 
1737 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1738 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1739 	else
1740 		fe->uid = cpu_to_le32(i_uid_read(inode));
1741 
1742 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1743 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1744 	else
1745 		fe->gid = cpu_to_le32(i_gid_read(inode));
1746 
1747 	udfperms = ((inode->i_mode & 0007)) |
1748 		   ((inode->i_mode & 0070) << 2) |
1749 		   ((inode->i_mode & 0700) << 4);
1750 
1751 	udfperms |= iinfo->i_extraPerms;
1752 	fe->permissions = cpu_to_le32(udfperms);
1753 
1754 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1755 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1756 	else {
1757 		if (iinfo->i_hidden)
1758 			fe->fileLinkCount = cpu_to_le16(0);
1759 		else
1760 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1761 	}
1762 
1763 	fe->informationLength = cpu_to_le64(inode->i_size);
1764 
1765 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1766 		struct regid *eid;
1767 		struct deviceSpec *dsea =
1768 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1769 		if (!dsea) {
1770 			dsea = (struct deviceSpec *)
1771 				udf_add_extendedattr(inode,
1772 						     sizeof(struct deviceSpec) +
1773 						     sizeof(struct regid), 12, 0x3);
1774 			dsea->attrType = cpu_to_le32(12);
1775 			dsea->attrSubtype = 1;
1776 			dsea->attrLength = cpu_to_le32(
1777 						sizeof(struct deviceSpec) +
1778 						sizeof(struct regid));
1779 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1780 		}
1781 		eid = (struct regid *)dsea->impUse;
1782 		memset(eid, 0, sizeof(*eid));
1783 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1784 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1786 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1787 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1788 	}
1789 
1790 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1791 		lb_recorded = 0; /* No extents => no blocks! */
1792 	else
1793 		lb_recorded =
1794 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1795 			(blocksize_bits - 9);
1796 
1797 	if (iinfo->i_efe == 0) {
1798 		memcpy(bh->b_data + sizeof(struct fileEntry),
1799 		       iinfo->i_data,
1800 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1801 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1802 
1803 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1804 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1805 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1806 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1807 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1808 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1809 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1810 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1811 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1812 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1813 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1814 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1815 		crclen = sizeof(struct fileEntry);
1816 	} else {
1817 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1818 		       iinfo->i_data,
1819 		       inode->i_sb->s_blocksize -
1820 					sizeof(struct extendedFileEntry));
1821 		efe->objectSize =
1822 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1823 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1824 
1825 		if (iinfo->i_streamdir) {
1826 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1827 
1828 			icb_lad->extLocation =
1829 				cpu_to_lelb(iinfo->i_locStreamdir);
1830 			icb_lad->extLength =
1831 				cpu_to_le32(inode->i_sb->s_blocksize);
1832 		}
1833 
1834 		udf_adjust_time(iinfo, inode->i_atime);
1835 		udf_adjust_time(iinfo, inode->i_mtime);
1836 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1837 
1838 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1839 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1840 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1841 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1842 
1843 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1844 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1845 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1846 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1847 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1848 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1849 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1850 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1851 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1852 		crclen = sizeof(struct extendedFileEntry);
1853 	}
1854 
1855 finish:
1856 	if (iinfo->i_strat4096) {
1857 		fe->icbTag.strategyType = cpu_to_le16(4096);
1858 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1859 		fe->icbTag.numEntries = cpu_to_le16(2);
1860 	} else {
1861 		fe->icbTag.strategyType = cpu_to_le16(4);
1862 		fe->icbTag.numEntries = cpu_to_le16(1);
1863 	}
1864 
1865 	if (iinfo->i_use)
1866 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1867 	else if (S_ISDIR(inode->i_mode))
1868 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1869 	else if (S_ISREG(inode->i_mode))
1870 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1871 	else if (S_ISLNK(inode->i_mode))
1872 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1873 	else if (S_ISBLK(inode->i_mode))
1874 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1875 	else if (S_ISCHR(inode->i_mode))
1876 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1877 	else if (S_ISFIFO(inode->i_mode))
1878 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1879 	else if (S_ISSOCK(inode->i_mode))
1880 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1881 
1882 	icbflags =	iinfo->i_alloc_type |
1883 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1884 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1885 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1886 			(le16_to_cpu(fe->icbTag.flags) &
1887 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1888 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1889 
1890 	fe->icbTag.flags = cpu_to_le16(icbflags);
1891 	if (sbi->s_udfrev >= 0x0200)
1892 		fe->descTag.descVersion = cpu_to_le16(3);
1893 	else
1894 		fe->descTag.descVersion = cpu_to_le16(2);
1895 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1896 	fe->descTag.tagLocation = cpu_to_le32(
1897 					iinfo->i_location.logicalBlockNum);
1898 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1899 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1900 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1901 						  crclen));
1902 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1903 
1904 	set_buffer_uptodate(bh);
1905 	unlock_buffer(bh);
1906 
1907 	/* write the data blocks */
1908 	mark_buffer_dirty(bh);
1909 	if (do_sync) {
1910 		sync_dirty_buffer(bh);
1911 		if (buffer_write_io_error(bh)) {
1912 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1913 				 inode->i_ino);
1914 			err = -EIO;
1915 		}
1916 	}
1917 	brelse(bh);
1918 
1919 	return err;
1920 }
1921 
1922 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1923 			 bool hidden_inode)
1924 {
1925 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1926 	struct inode *inode = iget_locked(sb, block);
1927 	int err;
1928 
1929 	if (!inode)
1930 		return ERR_PTR(-ENOMEM);
1931 
1932 	if (!(inode->i_state & I_NEW)) {
1933 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1934 			iput(inode);
1935 			return ERR_PTR(-EFSCORRUPTED);
1936 		}
1937 		return inode;
1938 	}
1939 
1940 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1941 	err = udf_read_inode(inode, hidden_inode);
1942 	if (err < 0) {
1943 		iget_failed(inode);
1944 		return ERR_PTR(err);
1945 	}
1946 	unlock_new_inode(inode);
1947 
1948 	return inode;
1949 }
1950 
1951 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1952 			    struct extent_position *epos)
1953 {
1954 	struct super_block *sb = inode->i_sb;
1955 	struct buffer_head *bh;
1956 	struct allocExtDesc *aed;
1957 	struct extent_position nepos;
1958 	struct kernel_lb_addr neloc;
1959 	int ver, adsize;
1960 
1961 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1962 		adsize = sizeof(struct short_ad);
1963 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1964 		adsize = sizeof(struct long_ad);
1965 	else
1966 		return -EIO;
1967 
1968 	neloc.logicalBlockNum = block;
1969 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1970 
1971 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1972 	if (!bh)
1973 		return -EIO;
1974 	lock_buffer(bh);
1975 	memset(bh->b_data, 0x00, sb->s_blocksize);
1976 	set_buffer_uptodate(bh);
1977 	unlock_buffer(bh);
1978 	mark_buffer_dirty_inode(bh, inode);
1979 
1980 	aed = (struct allocExtDesc *)(bh->b_data);
1981 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1982 		aed->previousAllocExtLocation =
1983 				cpu_to_le32(epos->block.logicalBlockNum);
1984 	}
1985 	aed->lengthAllocDescs = cpu_to_le32(0);
1986 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1987 		ver = 3;
1988 	else
1989 		ver = 2;
1990 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1991 		    sizeof(struct tag));
1992 
1993 	nepos.block = neloc;
1994 	nepos.offset = sizeof(struct allocExtDesc);
1995 	nepos.bh = bh;
1996 
1997 	/*
1998 	 * Do we have to copy current last extent to make space for indirect
1999 	 * one?
2000 	 */
2001 	if (epos->offset + adsize > sb->s_blocksize) {
2002 		struct kernel_lb_addr cp_loc;
2003 		uint32_t cp_len;
2004 		int cp_type;
2005 
2006 		epos->offset -= adsize;
2007 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2008 		cp_len |= ((uint32_t)cp_type) << 30;
2009 
2010 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2011 		udf_write_aext(inode, epos, &nepos.block,
2012 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2013 	} else {
2014 		__udf_add_aext(inode, epos, &nepos.block,
2015 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2016 	}
2017 
2018 	brelse(epos->bh);
2019 	*epos = nepos;
2020 
2021 	return 0;
2022 }
2023 
2024 /*
2025  * Append extent at the given position - should be the first free one in inode
2026  * / indirect extent. This function assumes there is enough space in the inode
2027  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2028  */
2029 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2030 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2031 {
2032 	struct udf_inode_info *iinfo = UDF_I(inode);
2033 	struct allocExtDesc *aed;
2034 	int adsize;
2035 
2036 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2037 		adsize = sizeof(struct short_ad);
2038 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2039 		adsize = sizeof(struct long_ad);
2040 	else
2041 		return -EIO;
2042 
2043 	if (!epos->bh) {
2044 		WARN_ON(iinfo->i_lenAlloc !=
2045 			epos->offset - udf_file_entry_alloc_offset(inode));
2046 	} else {
2047 		aed = (struct allocExtDesc *)epos->bh->b_data;
2048 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2049 			epos->offset - sizeof(struct allocExtDesc));
2050 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2051 	}
2052 
2053 	udf_write_aext(inode, epos, eloc, elen, inc);
2054 
2055 	if (!epos->bh) {
2056 		iinfo->i_lenAlloc += adsize;
2057 		mark_inode_dirty(inode);
2058 	} else {
2059 		aed = (struct allocExtDesc *)epos->bh->b_data;
2060 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2061 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2062 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2063 			udf_update_tag(epos->bh->b_data,
2064 					epos->offset + (inc ? 0 : adsize));
2065 		else
2066 			udf_update_tag(epos->bh->b_data,
2067 					sizeof(struct allocExtDesc));
2068 		mark_buffer_dirty_inode(epos->bh, inode);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Append extent at given position - should be the first free one in inode
2076  * / indirect extent. Takes care of allocating and linking indirect blocks.
2077  */
2078 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2079 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2080 {
2081 	int adsize;
2082 	struct super_block *sb = inode->i_sb;
2083 
2084 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2085 		adsize = sizeof(struct short_ad);
2086 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2087 		adsize = sizeof(struct long_ad);
2088 	else
2089 		return -EIO;
2090 
2091 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2092 		int err;
2093 		udf_pblk_t new_block;
2094 
2095 		new_block = udf_new_block(sb, NULL,
2096 					  epos->block.partitionReferenceNum,
2097 					  epos->block.logicalBlockNum, &err);
2098 		if (!new_block)
2099 			return -ENOSPC;
2100 
2101 		err = udf_setup_indirect_aext(inode, new_block, epos);
2102 		if (err)
2103 			return err;
2104 	}
2105 
2106 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2107 }
2108 
2109 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2110 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111 {
2112 	int adsize;
2113 	uint8_t *ptr;
2114 	struct short_ad *sad;
2115 	struct long_ad *lad;
2116 	struct udf_inode_info *iinfo = UDF_I(inode);
2117 
2118 	if (!epos->bh)
2119 		ptr = iinfo->i_data + epos->offset -
2120 			udf_file_entry_alloc_offset(inode) +
2121 			iinfo->i_lenEAttr;
2122 	else
2123 		ptr = epos->bh->b_data + epos->offset;
2124 
2125 	switch (iinfo->i_alloc_type) {
2126 	case ICBTAG_FLAG_AD_SHORT:
2127 		sad = (struct short_ad *)ptr;
2128 		sad->extLength = cpu_to_le32(elen);
2129 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2130 		adsize = sizeof(struct short_ad);
2131 		break;
2132 	case ICBTAG_FLAG_AD_LONG:
2133 		lad = (struct long_ad *)ptr;
2134 		lad->extLength = cpu_to_le32(elen);
2135 		lad->extLocation = cpu_to_lelb(*eloc);
2136 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2137 		adsize = sizeof(struct long_ad);
2138 		break;
2139 	default:
2140 		return;
2141 	}
2142 
2143 	if (epos->bh) {
2144 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2145 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2146 			struct allocExtDesc *aed =
2147 				(struct allocExtDesc *)epos->bh->b_data;
2148 			udf_update_tag(epos->bh->b_data,
2149 				       le32_to_cpu(aed->lengthAllocDescs) +
2150 				       sizeof(struct allocExtDesc));
2151 		}
2152 		mark_buffer_dirty_inode(epos->bh, inode);
2153 	} else {
2154 		mark_inode_dirty(inode);
2155 	}
2156 
2157 	if (inc)
2158 		epos->offset += adsize;
2159 }
2160 
2161 /*
2162  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2163  * someone does some weird stuff.
2164  */
2165 #define UDF_MAX_INDIR_EXTS 16
2166 
2167 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2168 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2169 {
2170 	int8_t etype;
2171 	unsigned int indirections = 0;
2172 
2173 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2174 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2175 		udf_pblk_t block;
2176 
2177 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2178 			udf_err(inode->i_sb,
2179 				"too many indirect extents in inode %lu\n",
2180 				inode->i_ino);
2181 			return -1;
2182 		}
2183 
2184 		epos->block = *eloc;
2185 		epos->offset = sizeof(struct allocExtDesc);
2186 		brelse(epos->bh);
2187 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2188 		epos->bh = sb_bread(inode->i_sb, block);
2189 		if (!epos->bh) {
2190 			udf_debug("reading block %u failed!\n", block);
2191 			return -1;
2192 		}
2193 	}
2194 
2195 	return etype;
2196 }
2197 
2198 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2199 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2200 {
2201 	int alen;
2202 	int8_t etype;
2203 	uint8_t *ptr;
2204 	struct short_ad *sad;
2205 	struct long_ad *lad;
2206 	struct udf_inode_info *iinfo = UDF_I(inode);
2207 
2208 	if (!epos->bh) {
2209 		if (!epos->offset)
2210 			epos->offset = udf_file_entry_alloc_offset(inode);
2211 		ptr = iinfo->i_data + epos->offset -
2212 			udf_file_entry_alloc_offset(inode) +
2213 			iinfo->i_lenEAttr;
2214 		alen = udf_file_entry_alloc_offset(inode) +
2215 							iinfo->i_lenAlloc;
2216 	} else {
2217 		if (!epos->offset)
2218 			epos->offset = sizeof(struct allocExtDesc);
2219 		ptr = epos->bh->b_data + epos->offset;
2220 		alen = sizeof(struct allocExtDesc) +
2221 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2222 							lengthAllocDescs);
2223 	}
2224 
2225 	switch (iinfo->i_alloc_type) {
2226 	case ICBTAG_FLAG_AD_SHORT:
2227 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2228 		if (!sad)
2229 			return -1;
2230 		etype = le32_to_cpu(sad->extLength) >> 30;
2231 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2232 		eloc->partitionReferenceNum =
2233 				iinfo->i_location.partitionReferenceNum;
2234 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2235 		break;
2236 	case ICBTAG_FLAG_AD_LONG:
2237 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2238 		if (!lad)
2239 			return -1;
2240 		etype = le32_to_cpu(lad->extLength) >> 30;
2241 		*eloc = lelb_to_cpu(lad->extLocation);
2242 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2243 		break;
2244 	default:
2245 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2246 		return -1;
2247 	}
2248 
2249 	return etype;
2250 }
2251 
2252 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2253 			   struct kernel_lb_addr neloc, uint32_t nelen)
2254 {
2255 	struct kernel_lb_addr oeloc;
2256 	uint32_t oelen;
2257 	int8_t etype;
2258 	int err;
2259 
2260 	if (epos.bh)
2261 		get_bh(epos.bh);
2262 
2263 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2264 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2265 		neloc = oeloc;
2266 		nelen = (etype << 30) | oelen;
2267 	}
2268 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2269 	brelse(epos.bh);
2270 
2271 	return err;
2272 }
2273 
2274 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2275 {
2276 	struct extent_position oepos;
2277 	int adsize;
2278 	int8_t etype;
2279 	struct allocExtDesc *aed;
2280 	struct udf_inode_info *iinfo;
2281 	struct kernel_lb_addr eloc;
2282 	uint32_t elen;
2283 
2284 	if (epos.bh) {
2285 		get_bh(epos.bh);
2286 		get_bh(epos.bh);
2287 	}
2288 
2289 	iinfo = UDF_I(inode);
2290 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2291 		adsize = sizeof(struct short_ad);
2292 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2293 		adsize = sizeof(struct long_ad);
2294 	else
2295 		adsize = 0;
2296 
2297 	oepos = epos;
2298 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2299 		return -1;
2300 
2301 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2302 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2303 		if (oepos.bh != epos.bh) {
2304 			oepos.block = epos.block;
2305 			brelse(oepos.bh);
2306 			get_bh(epos.bh);
2307 			oepos.bh = epos.bh;
2308 			oepos.offset = epos.offset - adsize;
2309 		}
2310 	}
2311 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2312 	elen = 0;
2313 
2314 	if (epos.bh != oepos.bh) {
2315 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2316 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2317 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2318 		if (!oepos.bh) {
2319 			iinfo->i_lenAlloc -= (adsize * 2);
2320 			mark_inode_dirty(inode);
2321 		} else {
2322 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2323 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2324 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2325 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2326 				udf_update_tag(oepos.bh->b_data,
2327 						oepos.offset - (2 * adsize));
2328 			else
2329 				udf_update_tag(oepos.bh->b_data,
2330 						sizeof(struct allocExtDesc));
2331 			mark_buffer_dirty_inode(oepos.bh, inode);
2332 		}
2333 	} else {
2334 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2335 		if (!oepos.bh) {
2336 			iinfo->i_lenAlloc -= adsize;
2337 			mark_inode_dirty(inode);
2338 		} else {
2339 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2340 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2341 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2342 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2343 				udf_update_tag(oepos.bh->b_data,
2344 						epos.offset - adsize);
2345 			else
2346 				udf_update_tag(oepos.bh->b_data,
2347 						sizeof(struct allocExtDesc));
2348 			mark_buffer_dirty_inode(oepos.bh, inode);
2349 		}
2350 	}
2351 
2352 	brelse(epos.bh);
2353 	brelse(oepos.bh);
2354 
2355 	return (elen >> 30);
2356 }
2357 
2358 int8_t inode_bmap(struct inode *inode, sector_t block,
2359 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2360 		  uint32_t *elen, sector_t *offset)
2361 {
2362 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2363 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2364 	int8_t etype;
2365 	struct udf_inode_info *iinfo;
2366 
2367 	iinfo = UDF_I(inode);
2368 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2369 		pos->offset = 0;
2370 		pos->block = iinfo->i_location;
2371 		pos->bh = NULL;
2372 	}
2373 	*elen = 0;
2374 	do {
2375 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2376 		if (etype == -1) {
2377 			*offset = (bcount - lbcount) >> blocksize_bits;
2378 			iinfo->i_lenExtents = lbcount;
2379 			return -1;
2380 		}
2381 		lbcount += *elen;
2382 	} while (lbcount <= bcount);
2383 	/* update extent cache */
2384 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2385 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2386 
2387 	return etype;
2388 }
2389