1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 41 #include "udf_i.h" 42 #include "udf_sb.h" 43 44 MODULE_AUTHOR("Ben Fennema"); 45 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 46 MODULE_LICENSE("GPL"); 47 48 #define EXTENT_MERGE_SIZE 5 49 50 static mode_t udf_convert_permissions(struct fileEntry *); 51 static int udf_update_inode(struct inode *, int); 52 static void udf_fill_inode(struct inode *, struct buffer_head *); 53 static int udf_sync_inode(struct inode *inode); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_evict_inode(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 int want_delete = 0; 75 76 if (!inode->i_nlink && !is_bad_inode(inode)) { 77 want_delete = 1; 78 udf_setsize(inode, 0); 79 udf_update_inode(inode, IS_SYNC(inode)); 80 } else 81 truncate_inode_pages(&inode->i_data, 0); 82 invalidate_inode_buffers(inode); 83 end_writeback(inode); 84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 85 inode->i_size != iinfo->i_lenExtents) { 86 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 87 "inode size %llu different from extent length %llu. " 88 "Filesystem need not be standards compliant.\n", 89 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 90 (unsigned long long)inode->i_size, 91 (unsigned long long)iinfo->i_lenExtents); 92 } 93 kfree(iinfo->i_ext.i_data); 94 iinfo->i_ext.i_data = NULL; 95 if (want_delete) { 96 udf_free_inode(inode); 97 } 98 } 99 100 static int udf_writepage(struct page *page, struct writeback_control *wbc) 101 { 102 return block_write_full_page(page, udf_get_block, wbc); 103 } 104 105 static int udf_readpage(struct file *file, struct page *page) 106 { 107 return block_read_full_page(page, udf_get_block); 108 } 109 110 static int udf_write_begin(struct file *file, struct address_space *mapping, 111 loff_t pos, unsigned len, unsigned flags, 112 struct page **pagep, void **fsdata) 113 { 114 int ret; 115 116 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 117 if (unlikely(ret)) { 118 struct inode *inode = mapping->host; 119 struct udf_inode_info *iinfo = UDF_I(inode); 120 loff_t isize = inode->i_size; 121 122 if (pos + len > isize) { 123 truncate_pagecache(inode, pos + len, isize); 124 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 125 down_write(&iinfo->i_data_sem); 126 udf_truncate_extents(inode); 127 up_write(&iinfo->i_data_sem); 128 } 129 } 130 } 131 132 return ret; 133 } 134 135 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 136 { 137 return generic_block_bmap(mapping, block, udf_get_block); 138 } 139 140 const struct address_space_operations udf_aops = { 141 .readpage = udf_readpage, 142 .writepage = udf_writepage, 143 .sync_page = block_sync_page, 144 .write_begin = udf_write_begin, 145 .write_end = generic_write_end, 146 .bmap = udf_bmap, 147 }; 148 149 int udf_expand_file_adinicb(struct inode *inode) 150 { 151 struct page *page; 152 char *kaddr; 153 struct udf_inode_info *iinfo = UDF_I(inode); 154 int err; 155 struct writeback_control udf_wbc = { 156 .sync_mode = WB_SYNC_NONE, 157 .nr_to_write = 1, 158 }; 159 160 if (!iinfo->i_lenAlloc) { 161 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 162 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 163 else 164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 165 /* from now on we have normal address_space methods */ 166 inode->i_data.a_ops = &udf_aops; 167 mark_inode_dirty(inode); 168 return 0; 169 } 170 171 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 172 if (!page) 173 return -ENOMEM; 174 175 if (!PageUptodate(page)) { 176 kaddr = kmap(page); 177 memset(kaddr + iinfo->i_lenAlloc, 0x00, 178 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 179 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 180 iinfo->i_lenAlloc); 181 flush_dcache_page(page); 182 SetPageUptodate(page); 183 kunmap(page); 184 } 185 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 186 iinfo->i_lenAlloc); 187 iinfo->i_lenAlloc = 0; 188 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 189 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 190 else 191 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 192 /* from now on we have normal address_space methods */ 193 inode->i_data.a_ops = &udf_aops; 194 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 195 if (err) { 196 /* Restore everything back so that we don't lose data... */ 197 lock_page(page); 198 kaddr = kmap(page); 199 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 200 inode->i_size); 201 kunmap(page); 202 unlock_page(page); 203 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 204 inode->i_data.a_ops = &udf_adinicb_aops; 205 } 206 page_cache_release(page); 207 mark_inode_dirty(inode); 208 209 return err; 210 } 211 212 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 213 int *err) 214 { 215 int newblock; 216 struct buffer_head *dbh = NULL; 217 struct kernel_lb_addr eloc; 218 uint8_t alloctype; 219 struct extent_position epos; 220 221 struct udf_fileident_bh sfibh, dfibh; 222 loff_t f_pos = udf_ext0_offset(inode); 223 int size = udf_ext0_offset(inode) + inode->i_size; 224 struct fileIdentDesc cfi, *sfi, *dfi; 225 struct udf_inode_info *iinfo = UDF_I(inode); 226 227 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 228 alloctype = ICBTAG_FLAG_AD_SHORT; 229 else 230 alloctype = ICBTAG_FLAG_AD_LONG; 231 232 if (!inode->i_size) { 233 iinfo->i_alloc_type = alloctype; 234 mark_inode_dirty(inode); 235 return NULL; 236 } 237 238 /* alloc block, and copy data to it */ 239 *block = udf_new_block(inode->i_sb, inode, 240 iinfo->i_location.partitionReferenceNum, 241 iinfo->i_location.logicalBlockNum, err); 242 if (!(*block)) 243 return NULL; 244 newblock = udf_get_pblock(inode->i_sb, *block, 245 iinfo->i_location.partitionReferenceNum, 246 0); 247 if (!newblock) 248 return NULL; 249 dbh = udf_tgetblk(inode->i_sb, newblock); 250 if (!dbh) 251 return NULL; 252 lock_buffer(dbh); 253 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 254 set_buffer_uptodate(dbh); 255 unlock_buffer(dbh); 256 mark_buffer_dirty_inode(dbh, inode); 257 258 sfibh.soffset = sfibh.eoffset = 259 f_pos & (inode->i_sb->s_blocksize - 1); 260 sfibh.sbh = sfibh.ebh = NULL; 261 dfibh.soffset = dfibh.eoffset = 0; 262 dfibh.sbh = dfibh.ebh = dbh; 263 while (f_pos < size) { 264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 265 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 266 NULL, NULL, NULL); 267 if (!sfi) { 268 brelse(dbh); 269 return NULL; 270 } 271 iinfo->i_alloc_type = alloctype; 272 sfi->descTag.tagLocation = cpu_to_le32(*block); 273 dfibh.soffset = dfibh.eoffset; 274 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 275 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 276 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 277 sfi->fileIdent + 278 le16_to_cpu(sfi->lengthOfImpUse))) { 279 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 280 brelse(dbh); 281 return NULL; 282 } 283 } 284 mark_buffer_dirty_inode(dbh, inode); 285 286 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 287 iinfo->i_lenAlloc); 288 iinfo->i_lenAlloc = 0; 289 eloc.logicalBlockNum = *block; 290 eloc.partitionReferenceNum = 291 iinfo->i_location.partitionReferenceNum; 292 iinfo->i_lenExtents = inode->i_size; 293 epos.bh = NULL; 294 epos.block = iinfo->i_location; 295 epos.offset = udf_file_entry_alloc_offset(inode); 296 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 297 /* UniqueID stuff */ 298 299 brelse(epos.bh); 300 mark_inode_dirty(inode); 301 return dbh; 302 } 303 304 static int udf_get_block(struct inode *inode, sector_t block, 305 struct buffer_head *bh_result, int create) 306 { 307 int err, new; 308 struct buffer_head *bh; 309 sector_t phys = 0; 310 struct udf_inode_info *iinfo; 311 312 if (!create) { 313 phys = udf_block_map(inode, block); 314 if (phys) 315 map_bh(bh_result, inode->i_sb, phys); 316 return 0; 317 } 318 319 err = -EIO; 320 new = 0; 321 bh = NULL; 322 iinfo = UDF_I(inode); 323 324 down_write(&iinfo->i_data_sem); 325 if (block == iinfo->i_next_alloc_block + 1) { 326 iinfo->i_next_alloc_block++; 327 iinfo->i_next_alloc_goal++; 328 } 329 330 err = 0; 331 332 bh = inode_getblk(inode, block, &err, &phys, &new); 333 BUG_ON(bh); 334 if (err) 335 goto abort; 336 BUG_ON(!phys); 337 338 if (new) 339 set_buffer_new(bh_result); 340 map_bh(bh_result, inode->i_sb, phys); 341 342 abort: 343 up_write(&iinfo->i_data_sem); 344 return err; 345 } 346 347 static struct buffer_head *udf_getblk(struct inode *inode, long block, 348 int create, int *err) 349 { 350 struct buffer_head *bh; 351 struct buffer_head dummy; 352 353 dummy.b_state = 0; 354 dummy.b_blocknr = -1000; 355 *err = udf_get_block(inode, block, &dummy, create); 356 if (!*err && buffer_mapped(&dummy)) { 357 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 358 if (buffer_new(&dummy)) { 359 lock_buffer(bh); 360 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 361 set_buffer_uptodate(bh); 362 unlock_buffer(bh); 363 mark_buffer_dirty_inode(bh, inode); 364 } 365 return bh; 366 } 367 368 return NULL; 369 } 370 371 /* Extend the file by 'blocks' blocks, return the number of extents added */ 372 static int udf_do_extend_file(struct inode *inode, 373 struct extent_position *last_pos, 374 struct kernel_long_ad *last_ext, 375 sector_t blocks) 376 { 377 sector_t add; 378 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 379 struct super_block *sb = inode->i_sb; 380 struct kernel_lb_addr prealloc_loc = {}; 381 int prealloc_len = 0; 382 struct udf_inode_info *iinfo; 383 int err; 384 385 /* The previous extent is fake and we should not extend by anything 386 * - there's nothing to do... */ 387 if (!blocks && fake) 388 return 0; 389 390 iinfo = UDF_I(inode); 391 /* Round the last extent up to a multiple of block size */ 392 if (last_ext->extLength & (sb->s_blocksize - 1)) { 393 last_ext->extLength = 394 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 395 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 396 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 397 iinfo->i_lenExtents = 398 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 399 ~(sb->s_blocksize - 1); 400 } 401 402 /* Last extent are just preallocated blocks? */ 403 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 404 EXT_NOT_RECORDED_ALLOCATED) { 405 /* Save the extent so that we can reattach it to the end */ 406 prealloc_loc = last_ext->extLocation; 407 prealloc_len = last_ext->extLength; 408 /* Mark the extent as a hole */ 409 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 410 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 411 last_ext->extLocation.logicalBlockNum = 0; 412 last_ext->extLocation.partitionReferenceNum = 0; 413 } 414 415 /* Can we merge with the previous extent? */ 416 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 417 EXT_NOT_RECORDED_NOT_ALLOCATED) { 418 add = ((1 << 30) - sb->s_blocksize - 419 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 420 sb->s_blocksize_bits; 421 if (add > blocks) 422 add = blocks; 423 blocks -= add; 424 last_ext->extLength += add << sb->s_blocksize_bits; 425 } 426 427 if (fake) { 428 udf_add_aext(inode, last_pos, &last_ext->extLocation, 429 last_ext->extLength, 1); 430 count++; 431 } else 432 udf_write_aext(inode, last_pos, &last_ext->extLocation, 433 last_ext->extLength, 1); 434 435 /* Managed to do everything necessary? */ 436 if (!blocks) 437 goto out; 438 439 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 440 last_ext->extLocation.logicalBlockNum = 0; 441 last_ext->extLocation.partitionReferenceNum = 0; 442 add = (1 << (30-sb->s_blocksize_bits)) - 1; 443 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 444 (add << sb->s_blocksize_bits); 445 446 /* Create enough extents to cover the whole hole */ 447 while (blocks > add) { 448 blocks -= add; 449 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 450 last_ext->extLength, 1); 451 if (err) 452 return err; 453 count++; 454 } 455 if (blocks) { 456 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 457 (blocks << sb->s_blocksize_bits); 458 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 459 last_ext->extLength, 1); 460 if (err) 461 return err; 462 count++; 463 } 464 465 out: 466 /* Do we have some preallocated blocks saved? */ 467 if (prealloc_len) { 468 err = udf_add_aext(inode, last_pos, &prealloc_loc, 469 prealloc_len, 1); 470 if (err) 471 return err; 472 last_ext->extLocation = prealloc_loc; 473 last_ext->extLength = prealloc_len; 474 count++; 475 } 476 477 /* last_pos should point to the last written extent... */ 478 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 479 last_pos->offset -= sizeof(struct short_ad); 480 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 481 last_pos->offset -= sizeof(struct long_ad); 482 else 483 return -EIO; 484 485 return count; 486 } 487 488 static int udf_extend_file(struct inode *inode, loff_t newsize) 489 { 490 491 struct extent_position epos; 492 struct kernel_lb_addr eloc; 493 uint32_t elen; 494 int8_t etype; 495 struct super_block *sb = inode->i_sb; 496 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 497 int adsize; 498 struct udf_inode_info *iinfo = UDF_I(inode); 499 struct kernel_long_ad extent; 500 int err; 501 502 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 503 adsize = sizeof(struct short_ad); 504 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 505 adsize = sizeof(struct long_ad); 506 else 507 BUG(); 508 509 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 510 511 /* File has extent covering the new size (could happen when extending 512 * inside a block)? */ 513 if (etype != -1) 514 return 0; 515 if (newsize & (sb->s_blocksize - 1)) 516 offset++; 517 /* Extended file just to the boundary of the last file block? */ 518 if (offset == 0) 519 return 0; 520 521 /* Truncate is extending the file by 'offset' blocks */ 522 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 523 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 524 /* File has no extents at all or has empty last 525 * indirect extent! Create a fake extent... */ 526 extent.extLocation.logicalBlockNum = 0; 527 extent.extLocation.partitionReferenceNum = 0; 528 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 529 } else { 530 epos.offset -= adsize; 531 etype = udf_next_aext(inode, &epos, &extent.extLocation, 532 &extent.extLength, 0); 533 extent.extLength |= etype << 30; 534 } 535 err = udf_do_extend_file(inode, &epos, &extent, offset); 536 if (err < 0) 537 goto out; 538 err = 0; 539 iinfo->i_lenExtents = newsize; 540 out: 541 brelse(epos.bh); 542 return err; 543 } 544 545 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 546 int *err, sector_t *phys, int *new) 547 { 548 static sector_t last_block; 549 struct buffer_head *result = NULL; 550 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 551 struct extent_position prev_epos, cur_epos, next_epos; 552 int count = 0, startnum = 0, endnum = 0; 553 uint32_t elen = 0, tmpelen; 554 struct kernel_lb_addr eloc, tmpeloc; 555 int c = 1; 556 loff_t lbcount = 0, b_off = 0; 557 uint32_t newblocknum, newblock; 558 sector_t offset = 0; 559 int8_t etype; 560 struct udf_inode_info *iinfo = UDF_I(inode); 561 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 562 int lastblock = 0; 563 564 prev_epos.offset = udf_file_entry_alloc_offset(inode); 565 prev_epos.block = iinfo->i_location; 566 prev_epos.bh = NULL; 567 cur_epos = next_epos = prev_epos; 568 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 569 570 /* find the extent which contains the block we are looking for. 571 alternate between laarr[0] and laarr[1] for locations of the 572 current extent, and the previous extent */ 573 do { 574 if (prev_epos.bh != cur_epos.bh) { 575 brelse(prev_epos.bh); 576 get_bh(cur_epos.bh); 577 prev_epos.bh = cur_epos.bh; 578 } 579 if (cur_epos.bh != next_epos.bh) { 580 brelse(cur_epos.bh); 581 get_bh(next_epos.bh); 582 cur_epos.bh = next_epos.bh; 583 } 584 585 lbcount += elen; 586 587 prev_epos.block = cur_epos.block; 588 cur_epos.block = next_epos.block; 589 590 prev_epos.offset = cur_epos.offset; 591 cur_epos.offset = next_epos.offset; 592 593 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 594 if (etype == -1) 595 break; 596 597 c = !c; 598 599 laarr[c].extLength = (etype << 30) | elen; 600 laarr[c].extLocation = eloc; 601 602 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 603 pgoal = eloc.logicalBlockNum + 604 ((elen + inode->i_sb->s_blocksize - 1) >> 605 inode->i_sb->s_blocksize_bits); 606 607 count++; 608 } while (lbcount + elen <= b_off); 609 610 b_off -= lbcount; 611 offset = b_off >> inode->i_sb->s_blocksize_bits; 612 /* 613 * Move prev_epos and cur_epos into indirect extent if we are at 614 * the pointer to it 615 */ 616 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 617 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 618 619 /* if the extent is allocated and recorded, return the block 620 if the extent is not a multiple of the blocksize, round up */ 621 622 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 623 if (elen & (inode->i_sb->s_blocksize - 1)) { 624 elen = EXT_RECORDED_ALLOCATED | 625 ((elen + inode->i_sb->s_blocksize - 1) & 626 ~(inode->i_sb->s_blocksize - 1)); 627 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 628 } 629 brelse(prev_epos.bh); 630 brelse(cur_epos.bh); 631 brelse(next_epos.bh); 632 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 633 *phys = newblock; 634 return NULL; 635 } 636 637 last_block = block; 638 /* Are we beyond EOF? */ 639 if (etype == -1) { 640 int ret; 641 642 if (count) { 643 if (c) 644 laarr[0] = laarr[1]; 645 startnum = 1; 646 } else { 647 /* Create a fake extent when there's not one */ 648 memset(&laarr[0].extLocation, 0x00, 649 sizeof(struct kernel_lb_addr)); 650 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 651 /* Will udf_do_extend_file() create real extent from 652 a fake one? */ 653 startnum = (offset > 0); 654 } 655 /* Create extents for the hole between EOF and offset */ 656 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 657 if (ret < 0) { 658 brelse(prev_epos.bh); 659 brelse(cur_epos.bh); 660 brelse(next_epos.bh); 661 *err = ret; 662 return NULL; 663 } 664 c = 0; 665 offset = 0; 666 count += ret; 667 /* We are not covered by a preallocated extent? */ 668 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 669 EXT_NOT_RECORDED_ALLOCATED) { 670 /* Is there any real extent? - otherwise we overwrite 671 * the fake one... */ 672 if (count) 673 c = !c; 674 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 675 inode->i_sb->s_blocksize; 676 memset(&laarr[c].extLocation, 0x00, 677 sizeof(struct kernel_lb_addr)); 678 count++; 679 endnum++; 680 } 681 endnum = c + 1; 682 lastblock = 1; 683 } else { 684 endnum = startnum = ((count > 2) ? 2 : count); 685 686 /* if the current extent is in position 0, 687 swap it with the previous */ 688 if (!c && count != 1) { 689 laarr[2] = laarr[0]; 690 laarr[0] = laarr[1]; 691 laarr[1] = laarr[2]; 692 c = 1; 693 } 694 695 /* if the current block is located in an extent, 696 read the next extent */ 697 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 698 if (etype != -1) { 699 laarr[c + 1].extLength = (etype << 30) | elen; 700 laarr[c + 1].extLocation = eloc; 701 count++; 702 startnum++; 703 endnum++; 704 } else 705 lastblock = 1; 706 } 707 708 /* if the current extent is not recorded but allocated, get the 709 * block in the extent corresponding to the requested block */ 710 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 711 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 712 else { /* otherwise, allocate a new block */ 713 if (iinfo->i_next_alloc_block == block) 714 goal = iinfo->i_next_alloc_goal; 715 716 if (!goal) { 717 if (!(goal = pgoal)) /* XXX: what was intended here? */ 718 goal = iinfo->i_location.logicalBlockNum + 1; 719 } 720 721 newblocknum = udf_new_block(inode->i_sb, inode, 722 iinfo->i_location.partitionReferenceNum, 723 goal, err); 724 if (!newblocknum) { 725 brelse(prev_epos.bh); 726 *err = -ENOSPC; 727 return NULL; 728 } 729 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 730 } 731 732 /* if the extent the requsted block is located in contains multiple 733 * blocks, split the extent into at most three extents. blocks prior 734 * to requested block, requested block, and blocks after requested 735 * block */ 736 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 737 738 #ifdef UDF_PREALLOCATE 739 /* We preallocate blocks only for regular files. It also makes sense 740 * for directories but there's a problem when to drop the 741 * preallocation. We might use some delayed work for that but I feel 742 * it's overengineering for a filesystem like UDF. */ 743 if (S_ISREG(inode->i_mode)) 744 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 745 #endif 746 747 /* merge any continuous blocks in laarr */ 748 udf_merge_extents(inode, laarr, &endnum); 749 750 /* write back the new extents, inserting new extents if the new number 751 * of extents is greater than the old number, and deleting extents if 752 * the new number of extents is less than the old number */ 753 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 754 755 brelse(prev_epos.bh); 756 757 newblock = udf_get_pblock(inode->i_sb, newblocknum, 758 iinfo->i_location.partitionReferenceNum, 0); 759 if (!newblock) 760 return NULL; 761 *phys = newblock; 762 *err = 0; 763 *new = 1; 764 iinfo->i_next_alloc_block = block; 765 iinfo->i_next_alloc_goal = newblocknum; 766 inode->i_ctime = current_fs_time(inode->i_sb); 767 768 if (IS_SYNC(inode)) 769 udf_sync_inode(inode); 770 else 771 mark_inode_dirty(inode); 772 773 return result; 774 } 775 776 static void udf_split_extents(struct inode *inode, int *c, int offset, 777 int newblocknum, 778 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 779 int *endnum) 780 { 781 unsigned long blocksize = inode->i_sb->s_blocksize; 782 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 783 784 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 785 (laarr[*c].extLength >> 30) == 786 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 787 int curr = *c; 788 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 789 blocksize - 1) >> blocksize_bits; 790 int8_t etype = (laarr[curr].extLength >> 30); 791 792 if (blen == 1) 793 ; 794 else if (!offset || blen == offset + 1) { 795 laarr[curr + 2] = laarr[curr + 1]; 796 laarr[curr + 1] = laarr[curr]; 797 } else { 798 laarr[curr + 3] = laarr[curr + 1]; 799 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 800 } 801 802 if (offset) { 803 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 804 udf_free_blocks(inode->i_sb, inode, 805 &laarr[curr].extLocation, 806 0, offset); 807 laarr[curr].extLength = 808 EXT_NOT_RECORDED_NOT_ALLOCATED | 809 (offset << blocksize_bits); 810 laarr[curr].extLocation.logicalBlockNum = 0; 811 laarr[curr].extLocation. 812 partitionReferenceNum = 0; 813 } else 814 laarr[curr].extLength = (etype << 30) | 815 (offset << blocksize_bits); 816 curr++; 817 (*c)++; 818 (*endnum)++; 819 } 820 821 laarr[curr].extLocation.logicalBlockNum = newblocknum; 822 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 823 laarr[curr].extLocation.partitionReferenceNum = 824 UDF_I(inode)->i_location.partitionReferenceNum; 825 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 826 blocksize; 827 curr++; 828 829 if (blen != offset + 1) { 830 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 831 laarr[curr].extLocation.logicalBlockNum += 832 offset + 1; 833 laarr[curr].extLength = (etype << 30) | 834 ((blen - (offset + 1)) << blocksize_bits); 835 curr++; 836 (*endnum)++; 837 } 838 } 839 } 840 841 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 842 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 843 int *endnum) 844 { 845 int start, length = 0, currlength = 0, i; 846 847 if (*endnum >= (c + 1)) { 848 if (!lastblock) 849 return; 850 else 851 start = c; 852 } else { 853 if ((laarr[c + 1].extLength >> 30) == 854 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 855 start = c + 1; 856 length = currlength = 857 (((laarr[c + 1].extLength & 858 UDF_EXTENT_LENGTH_MASK) + 859 inode->i_sb->s_blocksize - 1) >> 860 inode->i_sb->s_blocksize_bits); 861 } else 862 start = c; 863 } 864 865 for (i = start + 1; i <= *endnum; i++) { 866 if (i == *endnum) { 867 if (lastblock) 868 length += UDF_DEFAULT_PREALLOC_BLOCKS; 869 } else if ((laarr[i].extLength >> 30) == 870 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 871 length += (((laarr[i].extLength & 872 UDF_EXTENT_LENGTH_MASK) + 873 inode->i_sb->s_blocksize - 1) >> 874 inode->i_sb->s_blocksize_bits); 875 } else 876 break; 877 } 878 879 if (length) { 880 int next = laarr[start].extLocation.logicalBlockNum + 881 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 882 inode->i_sb->s_blocksize - 1) >> 883 inode->i_sb->s_blocksize_bits); 884 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 885 laarr[start].extLocation.partitionReferenceNum, 886 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 887 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 888 currlength); 889 if (numalloc) { 890 if (start == (c + 1)) 891 laarr[start].extLength += 892 (numalloc << 893 inode->i_sb->s_blocksize_bits); 894 else { 895 memmove(&laarr[c + 2], &laarr[c + 1], 896 sizeof(struct long_ad) * (*endnum - (c + 1))); 897 (*endnum)++; 898 laarr[c + 1].extLocation.logicalBlockNum = next; 899 laarr[c + 1].extLocation.partitionReferenceNum = 900 laarr[c].extLocation. 901 partitionReferenceNum; 902 laarr[c + 1].extLength = 903 EXT_NOT_RECORDED_ALLOCATED | 904 (numalloc << 905 inode->i_sb->s_blocksize_bits); 906 start = c + 1; 907 } 908 909 for (i = start + 1; numalloc && i < *endnum; i++) { 910 int elen = ((laarr[i].extLength & 911 UDF_EXTENT_LENGTH_MASK) + 912 inode->i_sb->s_blocksize - 1) >> 913 inode->i_sb->s_blocksize_bits; 914 915 if (elen > numalloc) { 916 laarr[i].extLength -= 917 (numalloc << 918 inode->i_sb->s_blocksize_bits); 919 numalloc = 0; 920 } else { 921 numalloc -= elen; 922 if (*endnum > (i + 1)) 923 memmove(&laarr[i], 924 &laarr[i + 1], 925 sizeof(struct long_ad) * 926 (*endnum - (i + 1))); 927 i--; 928 (*endnum)--; 929 } 930 } 931 UDF_I(inode)->i_lenExtents += 932 numalloc << inode->i_sb->s_blocksize_bits; 933 } 934 } 935 } 936 937 static void udf_merge_extents(struct inode *inode, 938 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 939 int *endnum) 940 { 941 int i; 942 unsigned long blocksize = inode->i_sb->s_blocksize; 943 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 944 945 for (i = 0; i < (*endnum - 1); i++) { 946 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 947 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 948 949 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 950 (((li->extLength >> 30) == 951 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 952 ((lip1->extLocation.logicalBlockNum - 953 li->extLocation.logicalBlockNum) == 954 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 955 blocksize - 1) >> blocksize_bits)))) { 956 957 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 958 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 959 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 960 lip1->extLength = (lip1->extLength - 961 (li->extLength & 962 UDF_EXTENT_LENGTH_MASK) + 963 UDF_EXTENT_LENGTH_MASK) & 964 ~(blocksize - 1); 965 li->extLength = (li->extLength & 966 UDF_EXTENT_FLAG_MASK) + 967 (UDF_EXTENT_LENGTH_MASK + 1) - 968 blocksize; 969 lip1->extLocation.logicalBlockNum = 970 li->extLocation.logicalBlockNum + 971 ((li->extLength & 972 UDF_EXTENT_LENGTH_MASK) >> 973 blocksize_bits); 974 } else { 975 li->extLength = lip1->extLength + 976 (((li->extLength & 977 UDF_EXTENT_LENGTH_MASK) + 978 blocksize - 1) & ~(blocksize - 1)); 979 if (*endnum > (i + 2)) 980 memmove(&laarr[i + 1], &laarr[i + 2], 981 sizeof(struct long_ad) * 982 (*endnum - (i + 2))); 983 i--; 984 (*endnum)--; 985 } 986 } else if (((li->extLength >> 30) == 987 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 988 ((lip1->extLength >> 30) == 989 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 990 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 991 ((li->extLength & 992 UDF_EXTENT_LENGTH_MASK) + 993 blocksize - 1) >> blocksize_bits); 994 li->extLocation.logicalBlockNum = 0; 995 li->extLocation.partitionReferenceNum = 0; 996 997 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 998 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 999 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1000 lip1->extLength = (lip1->extLength - 1001 (li->extLength & 1002 UDF_EXTENT_LENGTH_MASK) + 1003 UDF_EXTENT_LENGTH_MASK) & 1004 ~(blocksize - 1); 1005 li->extLength = (li->extLength & 1006 UDF_EXTENT_FLAG_MASK) + 1007 (UDF_EXTENT_LENGTH_MASK + 1) - 1008 blocksize; 1009 } else { 1010 li->extLength = lip1->extLength + 1011 (((li->extLength & 1012 UDF_EXTENT_LENGTH_MASK) + 1013 blocksize - 1) & ~(blocksize - 1)); 1014 if (*endnum > (i + 2)) 1015 memmove(&laarr[i + 1], &laarr[i + 2], 1016 sizeof(struct long_ad) * 1017 (*endnum - (i + 2))); 1018 i--; 1019 (*endnum)--; 1020 } 1021 } else if ((li->extLength >> 30) == 1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1023 udf_free_blocks(inode->i_sb, inode, 1024 &li->extLocation, 0, 1025 ((li->extLength & 1026 UDF_EXTENT_LENGTH_MASK) + 1027 blocksize - 1) >> blocksize_bits); 1028 li->extLocation.logicalBlockNum = 0; 1029 li->extLocation.partitionReferenceNum = 0; 1030 li->extLength = (li->extLength & 1031 UDF_EXTENT_LENGTH_MASK) | 1032 EXT_NOT_RECORDED_NOT_ALLOCATED; 1033 } 1034 } 1035 } 1036 1037 static void udf_update_extents(struct inode *inode, 1038 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1039 int startnum, int endnum, 1040 struct extent_position *epos) 1041 { 1042 int start = 0, i; 1043 struct kernel_lb_addr tmploc; 1044 uint32_t tmplen; 1045 1046 if (startnum > endnum) { 1047 for (i = 0; i < (startnum - endnum); i++) 1048 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1049 laarr[i].extLength); 1050 } else if (startnum < endnum) { 1051 for (i = 0; i < (endnum - startnum); i++) { 1052 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1053 laarr[i].extLength); 1054 udf_next_aext(inode, epos, &laarr[i].extLocation, 1055 &laarr[i].extLength, 1); 1056 start++; 1057 } 1058 } 1059 1060 for (i = start; i < endnum; i++) { 1061 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1062 udf_write_aext(inode, epos, &laarr[i].extLocation, 1063 laarr[i].extLength, 1); 1064 } 1065 } 1066 1067 struct buffer_head *udf_bread(struct inode *inode, int block, 1068 int create, int *err) 1069 { 1070 struct buffer_head *bh = NULL; 1071 1072 bh = udf_getblk(inode, block, create, err); 1073 if (!bh) 1074 return NULL; 1075 1076 if (buffer_uptodate(bh)) 1077 return bh; 1078 1079 ll_rw_block(READ, 1, &bh); 1080 1081 wait_on_buffer(bh); 1082 if (buffer_uptodate(bh)) 1083 return bh; 1084 1085 brelse(bh); 1086 *err = -EIO; 1087 return NULL; 1088 } 1089 1090 int udf_setsize(struct inode *inode, loff_t newsize) 1091 { 1092 int err; 1093 struct udf_inode_info *iinfo; 1094 int bsize = 1 << inode->i_blkbits; 1095 1096 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1097 S_ISLNK(inode->i_mode))) 1098 return -EINVAL; 1099 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1100 return -EPERM; 1101 1102 iinfo = UDF_I(inode); 1103 if (newsize > inode->i_size) { 1104 down_write(&iinfo->i_data_sem); 1105 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1106 if (bsize < 1107 (udf_file_entry_alloc_offset(inode) + newsize)) { 1108 err = udf_expand_file_adinicb(inode); 1109 if (err) { 1110 up_write(&iinfo->i_data_sem); 1111 return err; 1112 } 1113 } else 1114 iinfo->i_lenAlloc = newsize; 1115 } 1116 err = udf_extend_file(inode, newsize); 1117 if (err) { 1118 up_write(&iinfo->i_data_sem); 1119 return err; 1120 } 1121 truncate_setsize(inode, newsize); 1122 up_write(&iinfo->i_data_sem); 1123 } else { 1124 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1125 down_write(&iinfo->i_data_sem); 1126 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1127 0x00, bsize - newsize - 1128 udf_file_entry_alloc_offset(inode)); 1129 iinfo->i_lenAlloc = newsize; 1130 truncate_setsize(inode, newsize); 1131 up_write(&iinfo->i_data_sem); 1132 goto update_time; 1133 } 1134 err = block_truncate_page(inode->i_mapping, newsize, 1135 udf_get_block); 1136 if (err) 1137 return err; 1138 down_write(&iinfo->i_data_sem); 1139 truncate_setsize(inode, newsize); 1140 udf_truncate_extents(inode); 1141 up_write(&iinfo->i_data_sem); 1142 } 1143 update_time: 1144 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1145 if (IS_SYNC(inode)) 1146 udf_sync_inode(inode); 1147 else 1148 mark_inode_dirty(inode); 1149 return 0; 1150 } 1151 1152 static void __udf_read_inode(struct inode *inode) 1153 { 1154 struct buffer_head *bh = NULL; 1155 struct fileEntry *fe; 1156 uint16_t ident; 1157 struct udf_inode_info *iinfo = UDF_I(inode); 1158 1159 /* 1160 * Set defaults, but the inode is still incomplete! 1161 * Note: get_new_inode() sets the following on a new inode: 1162 * i_sb = sb 1163 * i_no = ino 1164 * i_flags = sb->s_flags 1165 * i_state = 0 1166 * clean_inode(): zero fills and sets 1167 * i_count = 1 1168 * i_nlink = 1 1169 * i_op = NULL; 1170 */ 1171 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1172 if (!bh) { 1173 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1174 inode->i_ino); 1175 make_bad_inode(inode); 1176 return; 1177 } 1178 1179 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1180 ident != TAG_IDENT_USE) { 1181 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1182 "failed ident=%d\n", inode->i_ino, ident); 1183 brelse(bh); 1184 make_bad_inode(inode); 1185 return; 1186 } 1187 1188 fe = (struct fileEntry *)bh->b_data; 1189 1190 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1191 struct buffer_head *ibh; 1192 1193 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1194 &ident); 1195 if (ident == TAG_IDENT_IE && ibh) { 1196 struct buffer_head *nbh = NULL; 1197 struct kernel_lb_addr loc; 1198 struct indirectEntry *ie; 1199 1200 ie = (struct indirectEntry *)ibh->b_data; 1201 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1202 1203 if (ie->indirectICB.extLength && 1204 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1205 &ident))) { 1206 if (ident == TAG_IDENT_FE || 1207 ident == TAG_IDENT_EFE) { 1208 memcpy(&iinfo->i_location, 1209 &loc, 1210 sizeof(struct kernel_lb_addr)); 1211 brelse(bh); 1212 brelse(ibh); 1213 brelse(nbh); 1214 __udf_read_inode(inode); 1215 return; 1216 } 1217 brelse(nbh); 1218 } 1219 } 1220 brelse(ibh); 1221 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1222 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1223 le16_to_cpu(fe->icbTag.strategyType)); 1224 brelse(bh); 1225 make_bad_inode(inode); 1226 return; 1227 } 1228 udf_fill_inode(inode, bh); 1229 1230 brelse(bh); 1231 } 1232 1233 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1234 { 1235 struct fileEntry *fe; 1236 struct extendedFileEntry *efe; 1237 int offset; 1238 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1239 struct udf_inode_info *iinfo = UDF_I(inode); 1240 1241 fe = (struct fileEntry *)bh->b_data; 1242 efe = (struct extendedFileEntry *)bh->b_data; 1243 1244 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1245 iinfo->i_strat4096 = 0; 1246 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1247 iinfo->i_strat4096 = 1; 1248 1249 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1250 ICBTAG_FLAG_AD_MASK; 1251 iinfo->i_unique = 0; 1252 iinfo->i_lenEAttr = 0; 1253 iinfo->i_lenExtents = 0; 1254 iinfo->i_lenAlloc = 0; 1255 iinfo->i_next_alloc_block = 0; 1256 iinfo->i_next_alloc_goal = 0; 1257 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1258 iinfo->i_efe = 1; 1259 iinfo->i_use = 0; 1260 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1261 sizeof(struct extendedFileEntry))) { 1262 make_bad_inode(inode); 1263 return; 1264 } 1265 memcpy(iinfo->i_ext.i_data, 1266 bh->b_data + sizeof(struct extendedFileEntry), 1267 inode->i_sb->s_blocksize - 1268 sizeof(struct extendedFileEntry)); 1269 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1270 iinfo->i_efe = 0; 1271 iinfo->i_use = 0; 1272 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1273 sizeof(struct fileEntry))) { 1274 make_bad_inode(inode); 1275 return; 1276 } 1277 memcpy(iinfo->i_ext.i_data, 1278 bh->b_data + sizeof(struct fileEntry), 1279 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1280 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1281 iinfo->i_efe = 0; 1282 iinfo->i_use = 1; 1283 iinfo->i_lenAlloc = le32_to_cpu( 1284 ((struct unallocSpaceEntry *)bh->b_data)-> 1285 lengthAllocDescs); 1286 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1287 sizeof(struct unallocSpaceEntry))) { 1288 make_bad_inode(inode); 1289 return; 1290 } 1291 memcpy(iinfo->i_ext.i_data, 1292 bh->b_data + sizeof(struct unallocSpaceEntry), 1293 inode->i_sb->s_blocksize - 1294 sizeof(struct unallocSpaceEntry)); 1295 return; 1296 } 1297 1298 read_lock(&sbi->s_cred_lock); 1299 inode->i_uid = le32_to_cpu(fe->uid); 1300 if (inode->i_uid == -1 || 1301 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1302 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1303 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1304 1305 inode->i_gid = le32_to_cpu(fe->gid); 1306 if (inode->i_gid == -1 || 1307 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1308 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1309 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1310 1311 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1312 sbi->s_fmode != UDF_INVALID_MODE) 1313 inode->i_mode = sbi->s_fmode; 1314 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1315 sbi->s_dmode != UDF_INVALID_MODE) 1316 inode->i_mode = sbi->s_dmode; 1317 else 1318 inode->i_mode = udf_convert_permissions(fe); 1319 inode->i_mode &= ~sbi->s_umask; 1320 read_unlock(&sbi->s_cred_lock); 1321 1322 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1323 if (!inode->i_nlink) 1324 inode->i_nlink = 1; 1325 1326 inode->i_size = le64_to_cpu(fe->informationLength); 1327 iinfo->i_lenExtents = inode->i_size; 1328 1329 if (iinfo->i_efe == 0) { 1330 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1331 (inode->i_sb->s_blocksize_bits - 9); 1332 1333 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1334 inode->i_atime = sbi->s_record_time; 1335 1336 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1337 fe->modificationTime)) 1338 inode->i_mtime = sbi->s_record_time; 1339 1340 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1341 inode->i_ctime = sbi->s_record_time; 1342 1343 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1344 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1345 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1346 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1347 } else { 1348 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1349 (inode->i_sb->s_blocksize_bits - 9); 1350 1351 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1352 inode->i_atime = sbi->s_record_time; 1353 1354 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1355 efe->modificationTime)) 1356 inode->i_mtime = sbi->s_record_time; 1357 1358 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1359 iinfo->i_crtime = sbi->s_record_time; 1360 1361 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1362 inode->i_ctime = sbi->s_record_time; 1363 1364 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1365 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1366 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1367 offset = sizeof(struct extendedFileEntry) + 1368 iinfo->i_lenEAttr; 1369 } 1370 1371 switch (fe->icbTag.fileType) { 1372 case ICBTAG_FILE_TYPE_DIRECTORY: 1373 inode->i_op = &udf_dir_inode_operations; 1374 inode->i_fop = &udf_dir_operations; 1375 inode->i_mode |= S_IFDIR; 1376 inc_nlink(inode); 1377 break; 1378 case ICBTAG_FILE_TYPE_REALTIME: 1379 case ICBTAG_FILE_TYPE_REGULAR: 1380 case ICBTAG_FILE_TYPE_UNDEF: 1381 case ICBTAG_FILE_TYPE_VAT20: 1382 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1383 inode->i_data.a_ops = &udf_adinicb_aops; 1384 else 1385 inode->i_data.a_ops = &udf_aops; 1386 inode->i_op = &udf_file_inode_operations; 1387 inode->i_fop = &udf_file_operations; 1388 inode->i_mode |= S_IFREG; 1389 break; 1390 case ICBTAG_FILE_TYPE_BLOCK: 1391 inode->i_mode |= S_IFBLK; 1392 break; 1393 case ICBTAG_FILE_TYPE_CHAR: 1394 inode->i_mode |= S_IFCHR; 1395 break; 1396 case ICBTAG_FILE_TYPE_FIFO: 1397 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1398 break; 1399 case ICBTAG_FILE_TYPE_SOCKET: 1400 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1401 break; 1402 case ICBTAG_FILE_TYPE_SYMLINK: 1403 inode->i_data.a_ops = &udf_symlink_aops; 1404 inode->i_op = &udf_symlink_inode_operations; 1405 inode->i_mode = S_IFLNK | S_IRWXUGO; 1406 break; 1407 case ICBTAG_FILE_TYPE_MAIN: 1408 udf_debug("METADATA FILE-----\n"); 1409 break; 1410 case ICBTAG_FILE_TYPE_MIRROR: 1411 udf_debug("METADATA MIRROR FILE-----\n"); 1412 break; 1413 case ICBTAG_FILE_TYPE_BITMAP: 1414 udf_debug("METADATA BITMAP FILE-----\n"); 1415 break; 1416 default: 1417 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1418 "file type=%d\n", inode->i_ino, 1419 fe->icbTag.fileType); 1420 make_bad_inode(inode); 1421 return; 1422 } 1423 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1424 struct deviceSpec *dsea = 1425 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1426 if (dsea) { 1427 init_special_inode(inode, inode->i_mode, 1428 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1429 le32_to_cpu(dsea->minorDeviceIdent))); 1430 /* Developer ID ??? */ 1431 } else 1432 make_bad_inode(inode); 1433 } 1434 } 1435 1436 static int udf_alloc_i_data(struct inode *inode, size_t size) 1437 { 1438 struct udf_inode_info *iinfo = UDF_I(inode); 1439 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1440 1441 if (!iinfo->i_ext.i_data) { 1442 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1443 "no free memory\n", inode->i_ino); 1444 return -ENOMEM; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static mode_t udf_convert_permissions(struct fileEntry *fe) 1451 { 1452 mode_t mode; 1453 uint32_t permissions; 1454 uint32_t flags; 1455 1456 permissions = le32_to_cpu(fe->permissions); 1457 flags = le16_to_cpu(fe->icbTag.flags); 1458 1459 mode = ((permissions) & S_IRWXO) | 1460 ((permissions >> 2) & S_IRWXG) | 1461 ((permissions >> 4) & S_IRWXU) | 1462 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1463 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1464 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1465 1466 return mode; 1467 } 1468 1469 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1470 { 1471 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1472 } 1473 1474 static int udf_sync_inode(struct inode *inode) 1475 { 1476 return udf_update_inode(inode, 1); 1477 } 1478 1479 static int udf_update_inode(struct inode *inode, int do_sync) 1480 { 1481 struct buffer_head *bh = NULL; 1482 struct fileEntry *fe; 1483 struct extendedFileEntry *efe; 1484 uint32_t udfperms; 1485 uint16_t icbflags; 1486 uint16_t crclen; 1487 int err = 0; 1488 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1489 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1490 struct udf_inode_info *iinfo = UDF_I(inode); 1491 1492 bh = udf_tgetblk(inode->i_sb, 1493 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1494 if (!bh) { 1495 udf_debug("getblk failure\n"); 1496 return -ENOMEM; 1497 } 1498 1499 lock_buffer(bh); 1500 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1501 fe = (struct fileEntry *)bh->b_data; 1502 efe = (struct extendedFileEntry *)bh->b_data; 1503 1504 if (iinfo->i_use) { 1505 struct unallocSpaceEntry *use = 1506 (struct unallocSpaceEntry *)bh->b_data; 1507 1508 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1509 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1510 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1511 sizeof(struct unallocSpaceEntry)); 1512 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1513 use->descTag.tagLocation = 1514 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1515 crclen = sizeof(struct unallocSpaceEntry) + 1516 iinfo->i_lenAlloc - sizeof(struct tag); 1517 use->descTag.descCRCLength = cpu_to_le16(crclen); 1518 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1519 sizeof(struct tag), 1520 crclen)); 1521 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1522 1523 goto out; 1524 } 1525 1526 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1527 fe->uid = cpu_to_le32(-1); 1528 else 1529 fe->uid = cpu_to_le32(inode->i_uid); 1530 1531 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1532 fe->gid = cpu_to_le32(-1); 1533 else 1534 fe->gid = cpu_to_le32(inode->i_gid); 1535 1536 udfperms = ((inode->i_mode & S_IRWXO)) | 1537 ((inode->i_mode & S_IRWXG) << 2) | 1538 ((inode->i_mode & S_IRWXU) << 4); 1539 1540 udfperms |= (le32_to_cpu(fe->permissions) & 1541 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1542 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1543 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1544 fe->permissions = cpu_to_le32(udfperms); 1545 1546 if (S_ISDIR(inode->i_mode)) 1547 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1548 else 1549 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1550 1551 fe->informationLength = cpu_to_le64(inode->i_size); 1552 1553 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1554 struct regid *eid; 1555 struct deviceSpec *dsea = 1556 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1557 if (!dsea) { 1558 dsea = (struct deviceSpec *) 1559 udf_add_extendedattr(inode, 1560 sizeof(struct deviceSpec) + 1561 sizeof(struct regid), 12, 0x3); 1562 dsea->attrType = cpu_to_le32(12); 1563 dsea->attrSubtype = 1; 1564 dsea->attrLength = cpu_to_le32( 1565 sizeof(struct deviceSpec) + 1566 sizeof(struct regid)); 1567 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1568 } 1569 eid = (struct regid *)dsea->impUse; 1570 memset(eid, 0, sizeof(struct regid)); 1571 strcpy(eid->ident, UDF_ID_DEVELOPER); 1572 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1573 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1574 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1575 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1576 } 1577 1578 if (iinfo->i_efe == 0) { 1579 memcpy(bh->b_data + sizeof(struct fileEntry), 1580 iinfo->i_ext.i_data, 1581 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1582 fe->logicalBlocksRecorded = cpu_to_le64( 1583 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1584 (blocksize_bits - 9)); 1585 1586 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1587 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1588 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1589 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1590 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1591 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1592 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1593 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1594 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1595 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1596 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1597 crclen = sizeof(struct fileEntry); 1598 } else { 1599 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1600 iinfo->i_ext.i_data, 1601 inode->i_sb->s_blocksize - 1602 sizeof(struct extendedFileEntry)); 1603 efe->objectSize = cpu_to_le64(inode->i_size); 1604 efe->logicalBlocksRecorded = cpu_to_le64( 1605 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1606 (blocksize_bits - 9)); 1607 1608 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1609 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1610 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1611 iinfo->i_crtime = inode->i_atime; 1612 1613 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1614 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1615 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1616 iinfo->i_crtime = inode->i_mtime; 1617 1618 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1619 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1620 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1621 iinfo->i_crtime = inode->i_ctime; 1622 1623 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1624 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1625 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1626 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1627 1628 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1629 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1630 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1631 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1632 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1633 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1634 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1635 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1636 crclen = sizeof(struct extendedFileEntry); 1637 } 1638 if (iinfo->i_strat4096) { 1639 fe->icbTag.strategyType = cpu_to_le16(4096); 1640 fe->icbTag.strategyParameter = cpu_to_le16(1); 1641 fe->icbTag.numEntries = cpu_to_le16(2); 1642 } else { 1643 fe->icbTag.strategyType = cpu_to_le16(4); 1644 fe->icbTag.numEntries = cpu_to_le16(1); 1645 } 1646 1647 if (S_ISDIR(inode->i_mode)) 1648 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1649 else if (S_ISREG(inode->i_mode)) 1650 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1651 else if (S_ISLNK(inode->i_mode)) 1652 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1653 else if (S_ISBLK(inode->i_mode)) 1654 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1655 else if (S_ISCHR(inode->i_mode)) 1656 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1657 else if (S_ISFIFO(inode->i_mode)) 1658 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1659 else if (S_ISSOCK(inode->i_mode)) 1660 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1661 1662 icbflags = iinfo->i_alloc_type | 1663 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1664 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1665 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1666 (le16_to_cpu(fe->icbTag.flags) & 1667 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1668 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1669 1670 fe->icbTag.flags = cpu_to_le16(icbflags); 1671 if (sbi->s_udfrev >= 0x0200) 1672 fe->descTag.descVersion = cpu_to_le16(3); 1673 else 1674 fe->descTag.descVersion = cpu_to_le16(2); 1675 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1676 fe->descTag.tagLocation = cpu_to_le32( 1677 iinfo->i_location.logicalBlockNum); 1678 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1679 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1680 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1681 crclen)); 1682 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1683 1684 out: 1685 set_buffer_uptodate(bh); 1686 unlock_buffer(bh); 1687 1688 /* write the data blocks */ 1689 mark_buffer_dirty(bh); 1690 if (do_sync) { 1691 sync_dirty_buffer(bh); 1692 if (buffer_write_io_error(bh)) { 1693 printk(KERN_WARNING "IO error syncing udf inode " 1694 "[%s:%08lx]\n", inode->i_sb->s_id, 1695 inode->i_ino); 1696 err = -EIO; 1697 } 1698 } 1699 brelse(bh); 1700 1701 return err; 1702 } 1703 1704 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1705 { 1706 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1707 struct inode *inode = iget_locked(sb, block); 1708 1709 if (!inode) 1710 return NULL; 1711 1712 if (inode->i_state & I_NEW) { 1713 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1714 __udf_read_inode(inode); 1715 unlock_new_inode(inode); 1716 } 1717 1718 if (is_bad_inode(inode)) 1719 goto out_iput; 1720 1721 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1722 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1723 udf_debug("block=%d, partition=%d out of range\n", 1724 ino->logicalBlockNum, ino->partitionReferenceNum); 1725 make_bad_inode(inode); 1726 goto out_iput; 1727 } 1728 1729 return inode; 1730 1731 out_iput: 1732 iput(inode); 1733 return NULL; 1734 } 1735 1736 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1737 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1738 { 1739 int adsize; 1740 struct short_ad *sad = NULL; 1741 struct long_ad *lad = NULL; 1742 struct allocExtDesc *aed; 1743 uint8_t *ptr; 1744 struct udf_inode_info *iinfo = UDF_I(inode); 1745 1746 if (!epos->bh) 1747 ptr = iinfo->i_ext.i_data + epos->offset - 1748 udf_file_entry_alloc_offset(inode) + 1749 iinfo->i_lenEAttr; 1750 else 1751 ptr = epos->bh->b_data + epos->offset; 1752 1753 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1754 adsize = sizeof(struct short_ad); 1755 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1756 adsize = sizeof(struct long_ad); 1757 else 1758 return -EIO; 1759 1760 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1761 unsigned char *sptr, *dptr; 1762 struct buffer_head *nbh; 1763 int err, loffset; 1764 struct kernel_lb_addr obloc = epos->block; 1765 1766 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1767 obloc.partitionReferenceNum, 1768 obloc.logicalBlockNum, &err); 1769 if (!epos->block.logicalBlockNum) 1770 return -ENOSPC; 1771 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1772 &epos->block, 1773 0)); 1774 if (!nbh) 1775 return -EIO; 1776 lock_buffer(nbh); 1777 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1778 set_buffer_uptodate(nbh); 1779 unlock_buffer(nbh); 1780 mark_buffer_dirty_inode(nbh, inode); 1781 1782 aed = (struct allocExtDesc *)(nbh->b_data); 1783 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1784 aed->previousAllocExtLocation = 1785 cpu_to_le32(obloc.logicalBlockNum); 1786 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1787 loffset = epos->offset; 1788 aed->lengthAllocDescs = cpu_to_le32(adsize); 1789 sptr = ptr - adsize; 1790 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1791 memcpy(dptr, sptr, adsize); 1792 epos->offset = sizeof(struct allocExtDesc) + adsize; 1793 } else { 1794 loffset = epos->offset + adsize; 1795 aed->lengthAllocDescs = cpu_to_le32(0); 1796 sptr = ptr; 1797 epos->offset = sizeof(struct allocExtDesc); 1798 1799 if (epos->bh) { 1800 aed = (struct allocExtDesc *)epos->bh->b_data; 1801 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1802 } else { 1803 iinfo->i_lenAlloc += adsize; 1804 mark_inode_dirty(inode); 1805 } 1806 } 1807 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1808 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1809 epos->block.logicalBlockNum, sizeof(struct tag)); 1810 else 1811 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1812 epos->block.logicalBlockNum, sizeof(struct tag)); 1813 switch (iinfo->i_alloc_type) { 1814 case ICBTAG_FLAG_AD_SHORT: 1815 sad = (struct short_ad *)sptr; 1816 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1817 inode->i_sb->s_blocksize); 1818 sad->extPosition = 1819 cpu_to_le32(epos->block.logicalBlockNum); 1820 break; 1821 case ICBTAG_FLAG_AD_LONG: 1822 lad = (struct long_ad *)sptr; 1823 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1824 inode->i_sb->s_blocksize); 1825 lad->extLocation = cpu_to_lelb(epos->block); 1826 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1827 break; 1828 } 1829 if (epos->bh) { 1830 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1831 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1832 udf_update_tag(epos->bh->b_data, loffset); 1833 else 1834 udf_update_tag(epos->bh->b_data, 1835 sizeof(struct allocExtDesc)); 1836 mark_buffer_dirty_inode(epos->bh, inode); 1837 brelse(epos->bh); 1838 } else { 1839 mark_inode_dirty(inode); 1840 } 1841 epos->bh = nbh; 1842 } 1843 1844 udf_write_aext(inode, epos, eloc, elen, inc); 1845 1846 if (!epos->bh) { 1847 iinfo->i_lenAlloc += adsize; 1848 mark_inode_dirty(inode); 1849 } else { 1850 aed = (struct allocExtDesc *)epos->bh->b_data; 1851 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1852 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1853 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1854 udf_update_tag(epos->bh->b_data, 1855 epos->offset + (inc ? 0 : adsize)); 1856 else 1857 udf_update_tag(epos->bh->b_data, 1858 sizeof(struct allocExtDesc)); 1859 mark_buffer_dirty_inode(epos->bh, inode); 1860 } 1861 1862 return 0; 1863 } 1864 1865 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1866 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1867 { 1868 int adsize; 1869 uint8_t *ptr; 1870 struct short_ad *sad; 1871 struct long_ad *lad; 1872 struct udf_inode_info *iinfo = UDF_I(inode); 1873 1874 if (!epos->bh) 1875 ptr = iinfo->i_ext.i_data + epos->offset - 1876 udf_file_entry_alloc_offset(inode) + 1877 iinfo->i_lenEAttr; 1878 else 1879 ptr = epos->bh->b_data + epos->offset; 1880 1881 switch (iinfo->i_alloc_type) { 1882 case ICBTAG_FLAG_AD_SHORT: 1883 sad = (struct short_ad *)ptr; 1884 sad->extLength = cpu_to_le32(elen); 1885 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1886 adsize = sizeof(struct short_ad); 1887 break; 1888 case ICBTAG_FLAG_AD_LONG: 1889 lad = (struct long_ad *)ptr; 1890 lad->extLength = cpu_to_le32(elen); 1891 lad->extLocation = cpu_to_lelb(*eloc); 1892 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1893 adsize = sizeof(struct long_ad); 1894 break; 1895 default: 1896 return; 1897 } 1898 1899 if (epos->bh) { 1900 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1901 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1902 struct allocExtDesc *aed = 1903 (struct allocExtDesc *)epos->bh->b_data; 1904 udf_update_tag(epos->bh->b_data, 1905 le32_to_cpu(aed->lengthAllocDescs) + 1906 sizeof(struct allocExtDesc)); 1907 } 1908 mark_buffer_dirty_inode(epos->bh, inode); 1909 } else { 1910 mark_inode_dirty(inode); 1911 } 1912 1913 if (inc) 1914 epos->offset += adsize; 1915 } 1916 1917 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1918 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1919 { 1920 int8_t etype; 1921 1922 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1923 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1924 int block; 1925 epos->block = *eloc; 1926 epos->offset = sizeof(struct allocExtDesc); 1927 brelse(epos->bh); 1928 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1929 epos->bh = udf_tread(inode->i_sb, block); 1930 if (!epos->bh) { 1931 udf_debug("reading block %d failed!\n", block); 1932 return -1; 1933 } 1934 } 1935 1936 return etype; 1937 } 1938 1939 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1940 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1941 { 1942 int alen; 1943 int8_t etype; 1944 uint8_t *ptr; 1945 struct short_ad *sad; 1946 struct long_ad *lad; 1947 struct udf_inode_info *iinfo = UDF_I(inode); 1948 1949 if (!epos->bh) { 1950 if (!epos->offset) 1951 epos->offset = udf_file_entry_alloc_offset(inode); 1952 ptr = iinfo->i_ext.i_data + epos->offset - 1953 udf_file_entry_alloc_offset(inode) + 1954 iinfo->i_lenEAttr; 1955 alen = udf_file_entry_alloc_offset(inode) + 1956 iinfo->i_lenAlloc; 1957 } else { 1958 if (!epos->offset) 1959 epos->offset = sizeof(struct allocExtDesc); 1960 ptr = epos->bh->b_data + epos->offset; 1961 alen = sizeof(struct allocExtDesc) + 1962 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1963 lengthAllocDescs); 1964 } 1965 1966 switch (iinfo->i_alloc_type) { 1967 case ICBTAG_FLAG_AD_SHORT: 1968 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1969 if (!sad) 1970 return -1; 1971 etype = le32_to_cpu(sad->extLength) >> 30; 1972 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1973 eloc->partitionReferenceNum = 1974 iinfo->i_location.partitionReferenceNum; 1975 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1976 break; 1977 case ICBTAG_FLAG_AD_LONG: 1978 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1979 if (!lad) 1980 return -1; 1981 etype = le32_to_cpu(lad->extLength) >> 30; 1982 *eloc = lelb_to_cpu(lad->extLocation); 1983 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1984 break; 1985 default: 1986 udf_debug("alloc_type = %d unsupported\n", 1987 iinfo->i_alloc_type); 1988 return -1; 1989 } 1990 1991 return etype; 1992 } 1993 1994 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1995 struct kernel_lb_addr neloc, uint32_t nelen) 1996 { 1997 struct kernel_lb_addr oeloc; 1998 uint32_t oelen; 1999 int8_t etype; 2000 2001 if (epos.bh) 2002 get_bh(epos.bh); 2003 2004 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2005 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2006 neloc = oeloc; 2007 nelen = (etype << 30) | oelen; 2008 } 2009 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2010 brelse(epos.bh); 2011 2012 return (nelen >> 30); 2013 } 2014 2015 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2016 struct kernel_lb_addr eloc, uint32_t elen) 2017 { 2018 struct extent_position oepos; 2019 int adsize; 2020 int8_t etype; 2021 struct allocExtDesc *aed; 2022 struct udf_inode_info *iinfo; 2023 2024 if (epos.bh) { 2025 get_bh(epos.bh); 2026 get_bh(epos.bh); 2027 } 2028 2029 iinfo = UDF_I(inode); 2030 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2031 adsize = sizeof(struct short_ad); 2032 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2033 adsize = sizeof(struct long_ad); 2034 else 2035 adsize = 0; 2036 2037 oepos = epos; 2038 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2039 return -1; 2040 2041 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2042 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2043 if (oepos.bh != epos.bh) { 2044 oepos.block = epos.block; 2045 brelse(oepos.bh); 2046 get_bh(epos.bh); 2047 oepos.bh = epos.bh; 2048 oepos.offset = epos.offset - adsize; 2049 } 2050 } 2051 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2052 elen = 0; 2053 2054 if (epos.bh != oepos.bh) { 2055 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2056 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2057 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2058 if (!oepos.bh) { 2059 iinfo->i_lenAlloc -= (adsize * 2); 2060 mark_inode_dirty(inode); 2061 } else { 2062 aed = (struct allocExtDesc *)oepos.bh->b_data; 2063 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2064 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2065 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2066 udf_update_tag(oepos.bh->b_data, 2067 oepos.offset - (2 * adsize)); 2068 else 2069 udf_update_tag(oepos.bh->b_data, 2070 sizeof(struct allocExtDesc)); 2071 mark_buffer_dirty_inode(oepos.bh, inode); 2072 } 2073 } else { 2074 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2075 if (!oepos.bh) { 2076 iinfo->i_lenAlloc -= adsize; 2077 mark_inode_dirty(inode); 2078 } else { 2079 aed = (struct allocExtDesc *)oepos.bh->b_data; 2080 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2081 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2082 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2083 udf_update_tag(oepos.bh->b_data, 2084 epos.offset - adsize); 2085 else 2086 udf_update_tag(oepos.bh->b_data, 2087 sizeof(struct allocExtDesc)); 2088 mark_buffer_dirty_inode(oepos.bh, inode); 2089 } 2090 } 2091 2092 brelse(epos.bh); 2093 brelse(oepos.bh); 2094 2095 return (elen >> 30); 2096 } 2097 2098 int8_t inode_bmap(struct inode *inode, sector_t block, 2099 struct extent_position *pos, struct kernel_lb_addr *eloc, 2100 uint32_t *elen, sector_t *offset) 2101 { 2102 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2103 loff_t lbcount = 0, bcount = 2104 (loff_t) block << blocksize_bits; 2105 int8_t etype; 2106 struct udf_inode_info *iinfo; 2107 2108 iinfo = UDF_I(inode); 2109 pos->offset = 0; 2110 pos->block = iinfo->i_location; 2111 pos->bh = NULL; 2112 *elen = 0; 2113 2114 do { 2115 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2116 if (etype == -1) { 2117 *offset = (bcount - lbcount) >> blocksize_bits; 2118 iinfo->i_lenExtents = lbcount; 2119 return -1; 2120 } 2121 lbcount += *elen; 2122 } while (lbcount <= bcount); 2123 2124 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2125 2126 return etype; 2127 } 2128 2129 long udf_block_map(struct inode *inode, sector_t block) 2130 { 2131 struct kernel_lb_addr eloc; 2132 uint32_t elen; 2133 sector_t offset; 2134 struct extent_position epos = {}; 2135 int ret; 2136 2137 down_read(&UDF_I(inode)->i_data_sem); 2138 2139 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2140 (EXT_RECORDED_ALLOCATED >> 30)) 2141 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2142 else 2143 ret = 0; 2144 2145 up_read(&UDF_I(inode)->i_data_sem); 2146 brelse(epos.bh); 2147 2148 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2149 return udf_fixed_to_variable(ret); 2150 else 2151 return ret; 2152 } 2153