1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_readpage(struct file *file, struct page *page) 197 { 198 return mpage_readpage(page, udf_get_block); 199 } 200 201 static void udf_readahead(struct readahead_control *rac) 202 { 203 mpage_readahead(rac, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .readpage = udf_readpage, 239 .readahead = udf_readahead, 240 .writepage = udf_writepage, 241 .writepages = udf_writepages, 242 .write_begin = udf_write_begin, 243 .write_end = generic_write_end, 244 .direct_IO = udf_direct_IO, 245 .bmap = udf_bmap, 246 }; 247 248 /* 249 * Expand file stored in ICB to a normal one-block-file 250 * 251 * This function requires i_data_sem for writing and releases it. 252 * This function requires i_mutex held 253 */ 254 int udf_expand_file_adinicb(struct inode *inode) 255 { 256 struct page *page; 257 char *kaddr; 258 struct udf_inode_info *iinfo = UDF_I(inode); 259 int err; 260 struct writeback_control udf_wbc = { 261 .sync_mode = WB_SYNC_NONE, 262 .nr_to_write = 1, 263 }; 264 265 WARN_ON_ONCE(!inode_is_locked(inode)); 266 if (!iinfo->i_lenAlloc) { 267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 269 else 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 271 /* from now on we have normal address_space methods */ 272 inode->i_data.a_ops = &udf_aops; 273 up_write(&iinfo->i_data_sem); 274 mark_inode_dirty(inode); 275 return 0; 276 } 277 /* 278 * Release i_data_sem so that we can lock a page - page lock ranks 279 * above i_data_sem. i_mutex still protects us against file changes. 280 */ 281 up_write(&iinfo->i_data_sem); 282 283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 284 if (!page) 285 return -ENOMEM; 286 287 if (!PageUptodate(page)) { 288 kaddr = kmap_atomic(page); 289 memset(kaddr + iinfo->i_lenAlloc, 0x00, 290 PAGE_SIZE - iinfo->i_lenAlloc); 291 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 292 iinfo->i_lenAlloc); 293 flush_dcache_page(page); 294 SetPageUptodate(page); 295 kunmap_atomic(kaddr); 296 } 297 down_write(&iinfo->i_data_sem); 298 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 299 iinfo->i_lenAlloc); 300 iinfo->i_lenAlloc = 0; 301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 303 else 304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 305 /* from now on we have normal address_space methods */ 306 inode->i_data.a_ops = &udf_aops; 307 up_write(&iinfo->i_data_sem); 308 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 309 if (err) { 310 /* Restore everything back so that we don't lose data... */ 311 lock_page(page); 312 down_write(&iinfo->i_data_sem); 313 kaddr = kmap_atomic(page); 314 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 315 kunmap_atomic(kaddr); 316 unlock_page(page); 317 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 318 inode->i_data.a_ops = &udf_adinicb_aops; 319 up_write(&iinfo->i_data_sem); 320 } 321 put_page(page); 322 mark_inode_dirty(inode); 323 324 return err; 325 } 326 327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 328 udf_pblk_t *block, int *err) 329 { 330 udf_pblk_t newblock; 331 struct buffer_head *dbh = NULL; 332 struct kernel_lb_addr eloc; 333 uint8_t alloctype; 334 struct extent_position epos; 335 336 struct udf_fileident_bh sfibh, dfibh; 337 loff_t f_pos = udf_ext0_offset(inode); 338 int size = udf_ext0_offset(inode) + inode->i_size; 339 struct fileIdentDesc cfi, *sfi, *dfi; 340 struct udf_inode_info *iinfo = UDF_I(inode); 341 342 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 343 alloctype = ICBTAG_FLAG_AD_SHORT; 344 else 345 alloctype = ICBTAG_FLAG_AD_LONG; 346 347 if (!inode->i_size) { 348 iinfo->i_alloc_type = alloctype; 349 mark_inode_dirty(inode); 350 return NULL; 351 } 352 353 /* alloc block, and copy data to it */ 354 *block = udf_new_block(inode->i_sb, inode, 355 iinfo->i_location.partitionReferenceNum, 356 iinfo->i_location.logicalBlockNum, err); 357 if (!(*block)) 358 return NULL; 359 newblock = udf_get_pblock(inode->i_sb, *block, 360 iinfo->i_location.partitionReferenceNum, 361 0); 362 if (!newblock) 363 return NULL; 364 dbh = udf_tgetblk(inode->i_sb, newblock); 365 if (!dbh) 366 return NULL; 367 lock_buffer(dbh); 368 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 369 set_buffer_uptodate(dbh); 370 unlock_buffer(dbh); 371 mark_buffer_dirty_inode(dbh, inode); 372 373 sfibh.soffset = sfibh.eoffset = 374 f_pos & (inode->i_sb->s_blocksize - 1); 375 sfibh.sbh = sfibh.ebh = NULL; 376 dfibh.soffset = dfibh.eoffset = 0; 377 dfibh.sbh = dfibh.ebh = dbh; 378 while (f_pos < size) { 379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 380 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 381 NULL, NULL, NULL); 382 if (!sfi) { 383 brelse(dbh); 384 return NULL; 385 } 386 iinfo->i_alloc_type = alloctype; 387 sfi->descTag.tagLocation = cpu_to_le32(*block); 388 dfibh.soffset = dfibh.eoffset; 389 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 390 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 391 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 392 sfi->fileIdent + 393 le16_to_cpu(sfi->lengthOfImpUse))) { 394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 395 brelse(dbh); 396 return NULL; 397 } 398 } 399 mark_buffer_dirty_inode(dbh, inode); 400 401 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 402 iinfo->i_lenAlloc = 0; 403 eloc.logicalBlockNum = *block; 404 eloc.partitionReferenceNum = 405 iinfo->i_location.partitionReferenceNum; 406 iinfo->i_lenExtents = inode->i_size; 407 epos.bh = NULL; 408 epos.block = iinfo->i_location; 409 epos.offset = udf_file_entry_alloc_offset(inode); 410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 411 /* UniqueID stuff */ 412 413 brelse(epos.bh); 414 mark_inode_dirty(inode); 415 return dbh; 416 } 417 418 static int udf_get_block(struct inode *inode, sector_t block, 419 struct buffer_head *bh_result, int create) 420 { 421 int err, new; 422 sector_t phys = 0; 423 struct udf_inode_info *iinfo; 424 425 if (!create) { 426 phys = udf_block_map(inode, block); 427 if (phys) 428 map_bh(bh_result, inode->i_sb, phys); 429 return 0; 430 } 431 432 err = -EIO; 433 new = 0; 434 iinfo = UDF_I(inode); 435 436 down_write(&iinfo->i_data_sem); 437 if (block == iinfo->i_next_alloc_block + 1) { 438 iinfo->i_next_alloc_block++; 439 iinfo->i_next_alloc_goal++; 440 } 441 442 udf_clear_extent_cache(inode); 443 phys = inode_getblk(inode, block, &err, &new); 444 if (!phys) 445 goto abort; 446 447 if (new) 448 set_buffer_new(bh_result); 449 map_bh(bh_result, inode->i_sb, phys); 450 451 abort: 452 up_write(&iinfo->i_data_sem); 453 return err; 454 } 455 456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 457 int create, int *err) 458 { 459 struct buffer_head *bh; 460 struct buffer_head dummy; 461 462 dummy.b_state = 0; 463 dummy.b_blocknr = -1000; 464 *err = udf_get_block(inode, block, &dummy, create); 465 if (!*err && buffer_mapped(&dummy)) { 466 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 467 if (buffer_new(&dummy)) { 468 lock_buffer(bh); 469 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 470 set_buffer_uptodate(bh); 471 unlock_buffer(bh); 472 mark_buffer_dirty_inode(bh, inode); 473 } 474 return bh; 475 } 476 477 return NULL; 478 } 479 480 /* Extend the file with new blocks totaling 'new_block_bytes', 481 * return the number of extents added 482 */ 483 static int udf_do_extend_file(struct inode *inode, 484 struct extent_position *last_pos, 485 struct kernel_long_ad *last_ext, 486 loff_t new_block_bytes) 487 { 488 uint32_t add; 489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 struct super_block *sb = inode->i_sb; 491 struct kernel_lb_addr prealloc_loc = {}; 492 uint32_t prealloc_len = 0; 493 struct udf_inode_info *iinfo; 494 int err; 495 496 /* The previous extent is fake and we should not extend by anything 497 * - there's nothing to do... */ 498 if (!new_block_bytes && fake) 499 return 0; 500 501 iinfo = UDF_I(inode); 502 /* Round the last extent up to a multiple of block size */ 503 if (last_ext->extLength & (sb->s_blocksize - 1)) { 504 last_ext->extLength = 505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 508 iinfo->i_lenExtents = 509 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 510 ~(sb->s_blocksize - 1); 511 } 512 513 /* Last extent are just preallocated blocks? */ 514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 515 EXT_NOT_RECORDED_ALLOCATED) { 516 /* Save the extent so that we can reattach it to the end */ 517 prealloc_loc = last_ext->extLocation; 518 prealloc_len = last_ext->extLength; 519 /* Mark the extent as a hole */ 520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 522 last_ext->extLocation.logicalBlockNum = 0; 523 last_ext->extLocation.partitionReferenceNum = 0; 524 } 525 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = (1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 531 if (add > new_block_bytes) 532 add = new_block_bytes; 533 new_block_bytes -= add; 534 last_ext->extLength += add; 535 } 536 537 if (fake) { 538 udf_add_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 count++; 541 } else { 542 struct kernel_lb_addr tmploc; 543 uint32_t tmplen; 544 545 udf_write_aext(inode, last_pos, &last_ext->extLocation, 546 last_ext->extLength, 1); 547 /* 548 * We've rewritten the last extent but there may be empty 549 * indirect extent after it - enter it. 550 */ 551 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 552 } 553 554 /* Managed to do everything necessary? */ 555 if (!new_block_bytes) 556 goto out; 557 558 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 559 last_ext->extLocation.logicalBlockNum = 0; 560 last_ext->extLocation.partitionReferenceNum = 0; 561 add = (1 << 30) - sb->s_blocksize; 562 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 563 564 /* Create enough extents to cover the whole hole */ 565 while (new_block_bytes > add) { 566 new_block_bytes -= add; 567 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 568 last_ext->extLength, 1); 569 if (err) 570 return err; 571 count++; 572 } 573 if (new_block_bytes) { 574 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 575 new_block_bytes; 576 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 577 last_ext->extLength, 1); 578 if (err) 579 return err; 580 count++; 581 } 582 583 out: 584 /* Do we have some preallocated blocks saved? */ 585 if (prealloc_len) { 586 err = udf_add_aext(inode, last_pos, &prealloc_loc, 587 prealloc_len, 1); 588 if (err) 589 return err; 590 last_ext->extLocation = prealloc_loc; 591 last_ext->extLength = prealloc_len; 592 count++; 593 } 594 595 /* last_pos should point to the last written extent... */ 596 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 597 last_pos->offset -= sizeof(struct short_ad); 598 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 599 last_pos->offset -= sizeof(struct long_ad); 600 else 601 return -EIO; 602 603 return count; 604 } 605 606 /* Extend the final block of the file to final_block_len bytes */ 607 static void udf_do_extend_final_block(struct inode *inode, 608 struct extent_position *last_pos, 609 struct kernel_long_ad *last_ext, 610 uint32_t final_block_len) 611 { 612 struct super_block *sb = inode->i_sb; 613 uint32_t added_bytes; 614 615 added_bytes = final_block_len - 616 (last_ext->extLength & (sb->s_blocksize - 1)); 617 last_ext->extLength += added_bytes; 618 UDF_I(inode)->i_lenExtents += added_bytes; 619 620 udf_write_aext(inode, last_pos, &last_ext->extLocation, 621 last_ext->extLength, 1); 622 } 623 624 static int udf_extend_file(struct inode *inode, loff_t newsize) 625 { 626 627 struct extent_position epos; 628 struct kernel_lb_addr eloc; 629 uint32_t elen; 630 int8_t etype; 631 struct super_block *sb = inode->i_sb; 632 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 633 unsigned long partial_final_block; 634 int adsize; 635 struct udf_inode_info *iinfo = UDF_I(inode); 636 struct kernel_long_ad extent; 637 int err = 0; 638 int within_final_block; 639 640 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 641 adsize = sizeof(struct short_ad); 642 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 643 adsize = sizeof(struct long_ad); 644 else 645 BUG(); 646 647 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 648 within_final_block = (etype != -1); 649 650 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 651 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 652 /* File has no extents at all or has empty last 653 * indirect extent! Create a fake extent... */ 654 extent.extLocation.logicalBlockNum = 0; 655 extent.extLocation.partitionReferenceNum = 0; 656 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 657 } else { 658 epos.offset -= adsize; 659 etype = udf_next_aext(inode, &epos, &extent.extLocation, 660 &extent.extLength, 0); 661 extent.extLength |= etype << 30; 662 } 663 664 partial_final_block = newsize & (sb->s_blocksize - 1); 665 666 /* File has extent covering the new size (could happen when extending 667 * inside a block)? 668 */ 669 if (within_final_block) { 670 /* Extending file within the last file block */ 671 udf_do_extend_final_block(inode, &epos, &extent, 672 partial_final_block); 673 } else { 674 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 675 partial_final_block; 676 err = udf_do_extend_file(inode, &epos, &extent, add); 677 } 678 679 if (err < 0) 680 goto out; 681 err = 0; 682 iinfo->i_lenExtents = newsize; 683 out: 684 brelse(epos.bh); 685 return err; 686 } 687 688 static sector_t inode_getblk(struct inode *inode, sector_t block, 689 int *err, int *new) 690 { 691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 692 struct extent_position prev_epos, cur_epos, next_epos; 693 int count = 0, startnum = 0, endnum = 0; 694 uint32_t elen = 0, tmpelen; 695 struct kernel_lb_addr eloc, tmpeloc; 696 int c = 1; 697 loff_t lbcount = 0, b_off = 0; 698 udf_pblk_t newblocknum, newblock; 699 sector_t offset = 0; 700 int8_t etype; 701 struct udf_inode_info *iinfo = UDF_I(inode); 702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 703 int lastblock = 0; 704 bool isBeyondEOF; 705 706 *err = 0; 707 *new = 0; 708 prev_epos.offset = udf_file_entry_alloc_offset(inode); 709 prev_epos.block = iinfo->i_location; 710 prev_epos.bh = NULL; 711 cur_epos = next_epos = prev_epos; 712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 713 714 /* find the extent which contains the block we are looking for. 715 alternate between laarr[0] and laarr[1] for locations of the 716 current extent, and the previous extent */ 717 do { 718 if (prev_epos.bh != cur_epos.bh) { 719 brelse(prev_epos.bh); 720 get_bh(cur_epos.bh); 721 prev_epos.bh = cur_epos.bh; 722 } 723 if (cur_epos.bh != next_epos.bh) { 724 brelse(cur_epos.bh); 725 get_bh(next_epos.bh); 726 cur_epos.bh = next_epos.bh; 727 } 728 729 lbcount += elen; 730 731 prev_epos.block = cur_epos.block; 732 cur_epos.block = next_epos.block; 733 734 prev_epos.offset = cur_epos.offset; 735 cur_epos.offset = next_epos.offset; 736 737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 738 if (etype == -1) 739 break; 740 741 c = !c; 742 743 laarr[c].extLength = (etype << 30) | elen; 744 laarr[c].extLocation = eloc; 745 746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 747 pgoal = eloc.logicalBlockNum + 748 ((elen + inode->i_sb->s_blocksize - 1) >> 749 inode->i_sb->s_blocksize_bits); 750 751 count++; 752 } while (lbcount + elen <= b_off); 753 754 b_off -= lbcount; 755 offset = b_off >> inode->i_sb->s_blocksize_bits; 756 /* 757 * Move prev_epos and cur_epos into indirect extent if we are at 758 * the pointer to it 759 */ 760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 762 763 /* if the extent is allocated and recorded, return the block 764 if the extent is not a multiple of the blocksize, round up */ 765 766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 767 if (elen & (inode->i_sb->s_blocksize - 1)) { 768 elen = EXT_RECORDED_ALLOCATED | 769 ((elen + inode->i_sb->s_blocksize - 1) & 770 ~(inode->i_sb->s_blocksize - 1)); 771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 772 } 773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 774 goto out_free; 775 } 776 777 /* Are we beyond EOF? */ 778 if (etype == -1) { 779 int ret; 780 loff_t hole_len; 781 isBeyondEOF = true; 782 if (count) { 783 if (c) 784 laarr[0] = laarr[1]; 785 startnum = 1; 786 } else { 787 /* Create a fake extent when there's not one */ 788 memset(&laarr[0].extLocation, 0x00, 789 sizeof(struct kernel_lb_addr)); 790 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 791 /* Will udf_do_extend_file() create real extent from 792 a fake one? */ 793 startnum = (offset > 0); 794 } 795 /* Create extents for the hole between EOF and offset */ 796 hole_len = (loff_t)offset << inode->i_blkbits; 797 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 798 if (ret < 0) { 799 *err = ret; 800 newblock = 0; 801 goto out_free; 802 } 803 c = 0; 804 offset = 0; 805 count += ret; 806 /* We are not covered by a preallocated extent? */ 807 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 808 EXT_NOT_RECORDED_ALLOCATED) { 809 /* Is there any real extent? - otherwise we overwrite 810 * the fake one... */ 811 if (count) 812 c = !c; 813 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 814 inode->i_sb->s_blocksize; 815 memset(&laarr[c].extLocation, 0x00, 816 sizeof(struct kernel_lb_addr)); 817 count++; 818 } 819 endnum = c + 1; 820 lastblock = 1; 821 } else { 822 isBeyondEOF = false; 823 endnum = startnum = ((count > 2) ? 2 : count); 824 825 /* if the current extent is in position 0, 826 swap it with the previous */ 827 if (!c && count != 1) { 828 laarr[2] = laarr[0]; 829 laarr[0] = laarr[1]; 830 laarr[1] = laarr[2]; 831 c = 1; 832 } 833 834 /* if the current block is located in an extent, 835 read the next extent */ 836 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 837 if (etype != -1) { 838 laarr[c + 1].extLength = (etype << 30) | elen; 839 laarr[c + 1].extLocation = eloc; 840 count++; 841 startnum++; 842 endnum++; 843 } else 844 lastblock = 1; 845 } 846 847 /* if the current extent is not recorded but allocated, get the 848 * block in the extent corresponding to the requested block */ 849 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 850 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 851 else { /* otherwise, allocate a new block */ 852 if (iinfo->i_next_alloc_block == block) 853 goal = iinfo->i_next_alloc_goal; 854 855 if (!goal) { 856 if (!(goal = pgoal)) /* XXX: what was intended here? */ 857 goal = iinfo->i_location.logicalBlockNum + 1; 858 } 859 860 newblocknum = udf_new_block(inode->i_sb, inode, 861 iinfo->i_location.partitionReferenceNum, 862 goal, err); 863 if (!newblocknum) { 864 *err = -ENOSPC; 865 newblock = 0; 866 goto out_free; 867 } 868 if (isBeyondEOF) 869 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 870 } 871 872 /* if the extent the requsted block is located in contains multiple 873 * blocks, split the extent into at most three extents. blocks prior 874 * to requested block, requested block, and blocks after requested 875 * block */ 876 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 877 878 /* We preallocate blocks only for regular files. It also makes sense 879 * for directories but there's a problem when to drop the 880 * preallocation. We might use some delayed work for that but I feel 881 * it's overengineering for a filesystem like UDF. */ 882 if (S_ISREG(inode->i_mode)) 883 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 884 885 /* merge any continuous blocks in laarr */ 886 udf_merge_extents(inode, laarr, &endnum); 887 888 /* write back the new extents, inserting new extents if the new number 889 * of extents is greater than the old number, and deleting extents if 890 * the new number of extents is less than the old number */ 891 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 892 893 newblock = udf_get_pblock(inode->i_sb, newblocknum, 894 iinfo->i_location.partitionReferenceNum, 0); 895 if (!newblock) { 896 *err = -EIO; 897 goto out_free; 898 } 899 *new = 1; 900 iinfo->i_next_alloc_block = block; 901 iinfo->i_next_alloc_goal = newblocknum; 902 inode->i_ctime = current_time(inode); 903 904 if (IS_SYNC(inode)) 905 udf_sync_inode(inode); 906 else 907 mark_inode_dirty(inode); 908 out_free: 909 brelse(prev_epos.bh); 910 brelse(cur_epos.bh); 911 brelse(next_epos.bh); 912 return newblock; 913 } 914 915 static void udf_split_extents(struct inode *inode, int *c, int offset, 916 udf_pblk_t newblocknum, 917 struct kernel_long_ad *laarr, int *endnum) 918 { 919 unsigned long blocksize = inode->i_sb->s_blocksize; 920 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 921 922 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 923 (laarr[*c].extLength >> 30) == 924 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 925 int curr = *c; 926 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 927 blocksize - 1) >> blocksize_bits; 928 int8_t etype = (laarr[curr].extLength >> 30); 929 930 if (blen == 1) 931 ; 932 else if (!offset || blen == offset + 1) { 933 laarr[curr + 2] = laarr[curr + 1]; 934 laarr[curr + 1] = laarr[curr]; 935 } else { 936 laarr[curr + 3] = laarr[curr + 1]; 937 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 938 } 939 940 if (offset) { 941 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 942 udf_free_blocks(inode->i_sb, inode, 943 &laarr[curr].extLocation, 944 0, offset); 945 laarr[curr].extLength = 946 EXT_NOT_RECORDED_NOT_ALLOCATED | 947 (offset << blocksize_bits); 948 laarr[curr].extLocation.logicalBlockNum = 0; 949 laarr[curr].extLocation. 950 partitionReferenceNum = 0; 951 } else 952 laarr[curr].extLength = (etype << 30) | 953 (offset << blocksize_bits); 954 curr++; 955 (*c)++; 956 (*endnum)++; 957 } 958 959 laarr[curr].extLocation.logicalBlockNum = newblocknum; 960 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 961 laarr[curr].extLocation.partitionReferenceNum = 962 UDF_I(inode)->i_location.partitionReferenceNum; 963 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 964 blocksize; 965 curr++; 966 967 if (blen != offset + 1) { 968 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 969 laarr[curr].extLocation.logicalBlockNum += 970 offset + 1; 971 laarr[curr].extLength = (etype << 30) | 972 ((blen - (offset + 1)) << blocksize_bits); 973 curr++; 974 (*endnum)++; 975 } 976 } 977 } 978 979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 980 struct kernel_long_ad *laarr, 981 int *endnum) 982 { 983 int start, length = 0, currlength = 0, i; 984 985 if (*endnum >= (c + 1)) { 986 if (!lastblock) 987 return; 988 else 989 start = c; 990 } else { 991 if ((laarr[c + 1].extLength >> 30) == 992 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 993 start = c + 1; 994 length = currlength = 995 (((laarr[c + 1].extLength & 996 UDF_EXTENT_LENGTH_MASK) + 997 inode->i_sb->s_blocksize - 1) >> 998 inode->i_sb->s_blocksize_bits); 999 } else 1000 start = c; 1001 } 1002 1003 for (i = start + 1; i <= *endnum; i++) { 1004 if (i == *endnum) { 1005 if (lastblock) 1006 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1007 } else if ((laarr[i].extLength >> 30) == 1008 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1009 length += (((laarr[i].extLength & 1010 UDF_EXTENT_LENGTH_MASK) + 1011 inode->i_sb->s_blocksize - 1) >> 1012 inode->i_sb->s_blocksize_bits); 1013 } else 1014 break; 1015 } 1016 1017 if (length) { 1018 int next = laarr[start].extLocation.logicalBlockNum + 1019 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1020 inode->i_sb->s_blocksize - 1) >> 1021 inode->i_sb->s_blocksize_bits); 1022 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1023 laarr[start].extLocation.partitionReferenceNum, 1024 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1025 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1026 currlength); 1027 if (numalloc) { 1028 if (start == (c + 1)) 1029 laarr[start].extLength += 1030 (numalloc << 1031 inode->i_sb->s_blocksize_bits); 1032 else { 1033 memmove(&laarr[c + 2], &laarr[c + 1], 1034 sizeof(struct long_ad) * (*endnum - (c + 1))); 1035 (*endnum)++; 1036 laarr[c + 1].extLocation.logicalBlockNum = next; 1037 laarr[c + 1].extLocation.partitionReferenceNum = 1038 laarr[c].extLocation. 1039 partitionReferenceNum; 1040 laarr[c + 1].extLength = 1041 EXT_NOT_RECORDED_ALLOCATED | 1042 (numalloc << 1043 inode->i_sb->s_blocksize_bits); 1044 start = c + 1; 1045 } 1046 1047 for (i = start + 1; numalloc && i < *endnum; i++) { 1048 int elen = ((laarr[i].extLength & 1049 UDF_EXTENT_LENGTH_MASK) + 1050 inode->i_sb->s_blocksize - 1) >> 1051 inode->i_sb->s_blocksize_bits; 1052 1053 if (elen > numalloc) { 1054 laarr[i].extLength -= 1055 (numalloc << 1056 inode->i_sb->s_blocksize_bits); 1057 numalloc = 0; 1058 } else { 1059 numalloc -= elen; 1060 if (*endnum > (i + 1)) 1061 memmove(&laarr[i], 1062 &laarr[i + 1], 1063 sizeof(struct long_ad) * 1064 (*endnum - (i + 1))); 1065 i--; 1066 (*endnum)--; 1067 } 1068 } 1069 UDF_I(inode)->i_lenExtents += 1070 numalloc << inode->i_sb->s_blocksize_bits; 1071 } 1072 } 1073 } 1074 1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1076 int *endnum) 1077 { 1078 int i; 1079 unsigned long blocksize = inode->i_sb->s_blocksize; 1080 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1081 1082 for (i = 0; i < (*endnum - 1); i++) { 1083 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1084 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1085 1086 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1087 (((li->extLength >> 30) == 1088 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1089 ((lip1->extLocation.logicalBlockNum - 1090 li->extLocation.logicalBlockNum) == 1091 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1092 blocksize - 1) >> blocksize_bits)))) { 1093 1094 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1095 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1097 lip1->extLength = (lip1->extLength - 1098 (li->extLength & 1099 UDF_EXTENT_LENGTH_MASK) + 1100 UDF_EXTENT_LENGTH_MASK) & 1101 ~(blocksize - 1); 1102 li->extLength = (li->extLength & 1103 UDF_EXTENT_FLAG_MASK) + 1104 (UDF_EXTENT_LENGTH_MASK + 1) - 1105 blocksize; 1106 lip1->extLocation.logicalBlockNum = 1107 li->extLocation.logicalBlockNum + 1108 ((li->extLength & 1109 UDF_EXTENT_LENGTH_MASK) >> 1110 blocksize_bits); 1111 } else { 1112 li->extLength = lip1->extLength + 1113 (((li->extLength & 1114 UDF_EXTENT_LENGTH_MASK) + 1115 blocksize - 1) & ~(blocksize - 1)); 1116 if (*endnum > (i + 2)) 1117 memmove(&laarr[i + 1], &laarr[i + 2], 1118 sizeof(struct long_ad) * 1119 (*endnum - (i + 2))); 1120 i--; 1121 (*endnum)--; 1122 } 1123 } else if (((li->extLength >> 30) == 1124 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1125 ((lip1->extLength >> 30) == 1126 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1127 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1128 ((li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) >> blocksize_bits); 1131 li->extLocation.logicalBlockNum = 0; 1132 li->extLocation.partitionReferenceNum = 0; 1133 1134 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1135 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1136 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1137 lip1->extLength = (lip1->extLength - 1138 (li->extLength & 1139 UDF_EXTENT_LENGTH_MASK) + 1140 UDF_EXTENT_LENGTH_MASK) & 1141 ~(blocksize - 1); 1142 li->extLength = (li->extLength & 1143 UDF_EXTENT_FLAG_MASK) + 1144 (UDF_EXTENT_LENGTH_MASK + 1) - 1145 blocksize; 1146 } else { 1147 li->extLength = lip1->extLength + 1148 (((li->extLength & 1149 UDF_EXTENT_LENGTH_MASK) + 1150 blocksize - 1) & ~(blocksize - 1)); 1151 if (*endnum > (i + 2)) 1152 memmove(&laarr[i + 1], &laarr[i + 2], 1153 sizeof(struct long_ad) * 1154 (*endnum - (i + 2))); 1155 i--; 1156 (*endnum)--; 1157 } 1158 } else if ((li->extLength >> 30) == 1159 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1160 udf_free_blocks(inode->i_sb, inode, 1161 &li->extLocation, 0, 1162 ((li->extLength & 1163 UDF_EXTENT_LENGTH_MASK) + 1164 blocksize - 1) >> blocksize_bits); 1165 li->extLocation.logicalBlockNum = 0; 1166 li->extLocation.partitionReferenceNum = 0; 1167 li->extLength = (li->extLength & 1168 UDF_EXTENT_LENGTH_MASK) | 1169 EXT_NOT_RECORDED_NOT_ALLOCATED; 1170 } 1171 } 1172 } 1173 1174 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1175 int startnum, int endnum, 1176 struct extent_position *epos) 1177 { 1178 int start = 0, i; 1179 struct kernel_lb_addr tmploc; 1180 uint32_t tmplen; 1181 1182 if (startnum > endnum) { 1183 for (i = 0; i < (startnum - endnum); i++) 1184 udf_delete_aext(inode, *epos); 1185 } else if (startnum < endnum) { 1186 for (i = 0; i < (endnum - startnum); i++) { 1187 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1188 laarr[i].extLength); 1189 udf_next_aext(inode, epos, &laarr[i].extLocation, 1190 &laarr[i].extLength, 1); 1191 start++; 1192 } 1193 } 1194 1195 for (i = start; i < endnum; i++) { 1196 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1197 udf_write_aext(inode, epos, &laarr[i].extLocation, 1198 laarr[i].extLength, 1); 1199 } 1200 } 1201 1202 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1203 int create, int *err) 1204 { 1205 struct buffer_head *bh = NULL; 1206 1207 bh = udf_getblk(inode, block, create, err); 1208 if (!bh) 1209 return NULL; 1210 1211 if (buffer_uptodate(bh)) 1212 return bh; 1213 1214 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1215 1216 wait_on_buffer(bh); 1217 if (buffer_uptodate(bh)) 1218 return bh; 1219 1220 brelse(bh); 1221 *err = -EIO; 1222 return NULL; 1223 } 1224 1225 int udf_setsize(struct inode *inode, loff_t newsize) 1226 { 1227 int err; 1228 struct udf_inode_info *iinfo; 1229 unsigned int bsize = i_blocksize(inode); 1230 1231 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1232 S_ISLNK(inode->i_mode))) 1233 return -EINVAL; 1234 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1235 return -EPERM; 1236 1237 iinfo = UDF_I(inode); 1238 if (newsize > inode->i_size) { 1239 down_write(&iinfo->i_data_sem); 1240 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1241 if (bsize < 1242 (udf_file_entry_alloc_offset(inode) + newsize)) { 1243 err = udf_expand_file_adinicb(inode); 1244 if (err) 1245 return err; 1246 down_write(&iinfo->i_data_sem); 1247 } else { 1248 iinfo->i_lenAlloc = newsize; 1249 goto set_size; 1250 } 1251 } 1252 err = udf_extend_file(inode, newsize); 1253 if (err) { 1254 up_write(&iinfo->i_data_sem); 1255 return err; 1256 } 1257 set_size: 1258 up_write(&iinfo->i_data_sem); 1259 truncate_setsize(inode, newsize); 1260 } else { 1261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1262 down_write(&iinfo->i_data_sem); 1263 udf_clear_extent_cache(inode); 1264 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1265 0x00, bsize - newsize - 1266 udf_file_entry_alloc_offset(inode)); 1267 iinfo->i_lenAlloc = newsize; 1268 truncate_setsize(inode, newsize); 1269 up_write(&iinfo->i_data_sem); 1270 goto update_time; 1271 } 1272 err = block_truncate_page(inode->i_mapping, newsize, 1273 udf_get_block); 1274 if (err) 1275 return err; 1276 truncate_setsize(inode, newsize); 1277 down_write(&iinfo->i_data_sem); 1278 udf_clear_extent_cache(inode); 1279 err = udf_truncate_extents(inode); 1280 up_write(&iinfo->i_data_sem); 1281 if (err) 1282 return err; 1283 } 1284 update_time: 1285 inode->i_mtime = inode->i_ctime = current_time(inode); 1286 if (IS_SYNC(inode)) 1287 udf_sync_inode(inode); 1288 else 1289 mark_inode_dirty(inode); 1290 return 0; 1291 } 1292 1293 /* 1294 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1295 * arbitrary - just that we hopefully don't limit any real use of rewritten 1296 * inode on write-once media but avoid looping for too long on corrupted media. 1297 */ 1298 #define UDF_MAX_ICB_NESTING 1024 1299 1300 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1301 { 1302 struct buffer_head *bh = NULL; 1303 struct fileEntry *fe; 1304 struct extendedFileEntry *efe; 1305 uint16_t ident; 1306 struct udf_inode_info *iinfo = UDF_I(inode); 1307 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1308 struct kernel_lb_addr *iloc = &iinfo->i_location; 1309 unsigned int link_count; 1310 unsigned int indirections = 0; 1311 int bs = inode->i_sb->s_blocksize; 1312 int ret = -EIO; 1313 uint32_t uid, gid; 1314 1315 reread: 1316 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1317 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1318 iloc->partitionReferenceNum, sbi->s_partitions); 1319 return -EIO; 1320 } 1321 1322 if (iloc->logicalBlockNum >= 1323 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1324 udf_debug("block=%u, partition=%u out of range\n", 1325 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1326 return -EIO; 1327 } 1328 1329 /* 1330 * Set defaults, but the inode is still incomplete! 1331 * Note: get_new_inode() sets the following on a new inode: 1332 * i_sb = sb 1333 * i_no = ino 1334 * i_flags = sb->s_flags 1335 * i_state = 0 1336 * clean_inode(): zero fills and sets 1337 * i_count = 1 1338 * i_nlink = 1 1339 * i_op = NULL; 1340 */ 1341 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1342 if (!bh) { 1343 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1344 return -EIO; 1345 } 1346 1347 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1348 ident != TAG_IDENT_USE) { 1349 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1350 inode->i_ino, ident); 1351 goto out; 1352 } 1353 1354 fe = (struct fileEntry *)bh->b_data; 1355 efe = (struct extendedFileEntry *)bh->b_data; 1356 1357 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1358 struct buffer_head *ibh; 1359 1360 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1361 if (ident == TAG_IDENT_IE && ibh) { 1362 struct kernel_lb_addr loc; 1363 struct indirectEntry *ie; 1364 1365 ie = (struct indirectEntry *)ibh->b_data; 1366 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1367 1368 if (ie->indirectICB.extLength) { 1369 brelse(ibh); 1370 memcpy(&iinfo->i_location, &loc, 1371 sizeof(struct kernel_lb_addr)); 1372 if (++indirections > UDF_MAX_ICB_NESTING) { 1373 udf_err(inode->i_sb, 1374 "too many ICBs in ICB hierarchy" 1375 " (max %d supported)\n", 1376 UDF_MAX_ICB_NESTING); 1377 goto out; 1378 } 1379 brelse(bh); 1380 goto reread; 1381 } 1382 } 1383 brelse(ibh); 1384 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1385 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1386 le16_to_cpu(fe->icbTag.strategyType)); 1387 goto out; 1388 } 1389 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1390 iinfo->i_strat4096 = 0; 1391 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1392 iinfo->i_strat4096 = 1; 1393 1394 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1395 ICBTAG_FLAG_AD_MASK; 1396 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1397 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1398 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1399 ret = -EIO; 1400 goto out; 1401 } 1402 iinfo->i_unique = 0; 1403 iinfo->i_lenEAttr = 0; 1404 iinfo->i_lenExtents = 0; 1405 iinfo->i_lenAlloc = 0; 1406 iinfo->i_next_alloc_block = 0; 1407 iinfo->i_next_alloc_goal = 0; 1408 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1409 iinfo->i_efe = 1; 1410 iinfo->i_use = 0; 1411 ret = udf_alloc_i_data(inode, bs - 1412 sizeof(struct extendedFileEntry)); 1413 if (ret) 1414 goto out; 1415 memcpy(iinfo->i_data, 1416 bh->b_data + sizeof(struct extendedFileEntry), 1417 bs - sizeof(struct extendedFileEntry)); 1418 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1419 iinfo->i_efe = 0; 1420 iinfo->i_use = 0; 1421 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1422 if (ret) 1423 goto out; 1424 memcpy(iinfo->i_data, 1425 bh->b_data + sizeof(struct fileEntry), 1426 bs - sizeof(struct fileEntry)); 1427 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1428 iinfo->i_efe = 0; 1429 iinfo->i_use = 1; 1430 iinfo->i_lenAlloc = le32_to_cpu( 1431 ((struct unallocSpaceEntry *)bh->b_data)-> 1432 lengthAllocDescs); 1433 ret = udf_alloc_i_data(inode, bs - 1434 sizeof(struct unallocSpaceEntry)); 1435 if (ret) 1436 goto out; 1437 memcpy(iinfo->i_data, 1438 bh->b_data + sizeof(struct unallocSpaceEntry), 1439 bs - sizeof(struct unallocSpaceEntry)); 1440 return 0; 1441 } 1442 1443 ret = -EIO; 1444 read_lock(&sbi->s_cred_lock); 1445 uid = le32_to_cpu(fe->uid); 1446 if (uid == UDF_INVALID_ID || 1447 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1448 inode->i_uid = sbi->s_uid; 1449 else 1450 i_uid_write(inode, uid); 1451 1452 gid = le32_to_cpu(fe->gid); 1453 if (gid == UDF_INVALID_ID || 1454 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1455 inode->i_gid = sbi->s_gid; 1456 else 1457 i_gid_write(inode, gid); 1458 1459 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1460 sbi->s_fmode != UDF_INVALID_MODE) 1461 inode->i_mode = sbi->s_fmode; 1462 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1463 sbi->s_dmode != UDF_INVALID_MODE) 1464 inode->i_mode = sbi->s_dmode; 1465 else 1466 inode->i_mode = udf_convert_permissions(fe); 1467 inode->i_mode &= ~sbi->s_umask; 1468 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1469 1470 read_unlock(&sbi->s_cred_lock); 1471 1472 link_count = le16_to_cpu(fe->fileLinkCount); 1473 if (!link_count) { 1474 if (!hidden_inode) { 1475 ret = -ESTALE; 1476 goto out; 1477 } 1478 link_count = 1; 1479 } 1480 set_nlink(inode, link_count); 1481 1482 inode->i_size = le64_to_cpu(fe->informationLength); 1483 iinfo->i_lenExtents = inode->i_size; 1484 1485 if (iinfo->i_efe == 0) { 1486 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1487 (inode->i_sb->s_blocksize_bits - 9); 1488 1489 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1490 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1491 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1492 1493 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1494 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1495 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1496 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1497 iinfo->i_streamdir = 0; 1498 iinfo->i_lenStreams = 0; 1499 } else { 1500 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1501 (inode->i_sb->s_blocksize_bits - 9); 1502 1503 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1504 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1505 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1506 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1507 1508 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1509 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1510 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1511 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1512 1513 /* Named streams */ 1514 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1515 iinfo->i_locStreamdir = 1516 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1517 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1518 if (iinfo->i_lenStreams >= inode->i_size) 1519 iinfo->i_lenStreams -= inode->i_size; 1520 else 1521 iinfo->i_lenStreams = 0; 1522 } 1523 inode->i_generation = iinfo->i_unique; 1524 1525 /* 1526 * Sanity check length of allocation descriptors and extended attrs to 1527 * avoid integer overflows 1528 */ 1529 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1530 goto out; 1531 /* Now do exact checks */ 1532 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1533 goto out; 1534 /* Sanity checks for files in ICB so that we don't get confused later */ 1535 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1536 /* 1537 * For file in ICB data is stored in allocation descriptor 1538 * so sizes should match 1539 */ 1540 if (iinfo->i_lenAlloc != inode->i_size) 1541 goto out; 1542 /* File in ICB has to fit in there... */ 1543 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1544 goto out; 1545 } 1546 1547 switch (fe->icbTag.fileType) { 1548 case ICBTAG_FILE_TYPE_DIRECTORY: 1549 inode->i_op = &udf_dir_inode_operations; 1550 inode->i_fop = &udf_dir_operations; 1551 inode->i_mode |= S_IFDIR; 1552 inc_nlink(inode); 1553 break; 1554 case ICBTAG_FILE_TYPE_REALTIME: 1555 case ICBTAG_FILE_TYPE_REGULAR: 1556 case ICBTAG_FILE_TYPE_UNDEF: 1557 case ICBTAG_FILE_TYPE_VAT20: 1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1559 inode->i_data.a_ops = &udf_adinicb_aops; 1560 else 1561 inode->i_data.a_ops = &udf_aops; 1562 inode->i_op = &udf_file_inode_operations; 1563 inode->i_fop = &udf_file_operations; 1564 inode->i_mode |= S_IFREG; 1565 break; 1566 case ICBTAG_FILE_TYPE_BLOCK: 1567 inode->i_mode |= S_IFBLK; 1568 break; 1569 case ICBTAG_FILE_TYPE_CHAR: 1570 inode->i_mode |= S_IFCHR; 1571 break; 1572 case ICBTAG_FILE_TYPE_FIFO: 1573 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1574 break; 1575 case ICBTAG_FILE_TYPE_SOCKET: 1576 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1577 break; 1578 case ICBTAG_FILE_TYPE_SYMLINK: 1579 inode->i_data.a_ops = &udf_symlink_aops; 1580 inode->i_op = &udf_symlink_inode_operations; 1581 inode_nohighmem(inode); 1582 inode->i_mode = S_IFLNK | 0777; 1583 break; 1584 case ICBTAG_FILE_TYPE_MAIN: 1585 udf_debug("METADATA FILE-----\n"); 1586 break; 1587 case ICBTAG_FILE_TYPE_MIRROR: 1588 udf_debug("METADATA MIRROR FILE-----\n"); 1589 break; 1590 case ICBTAG_FILE_TYPE_BITMAP: 1591 udf_debug("METADATA BITMAP FILE-----\n"); 1592 break; 1593 default: 1594 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1595 inode->i_ino, fe->icbTag.fileType); 1596 goto out; 1597 } 1598 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1599 struct deviceSpec *dsea = 1600 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1601 if (dsea) { 1602 init_special_inode(inode, inode->i_mode, 1603 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1604 le32_to_cpu(dsea->minorDeviceIdent))); 1605 /* Developer ID ??? */ 1606 } else 1607 goto out; 1608 } 1609 ret = 0; 1610 out: 1611 brelse(bh); 1612 return ret; 1613 } 1614 1615 static int udf_alloc_i_data(struct inode *inode, size_t size) 1616 { 1617 struct udf_inode_info *iinfo = UDF_I(inode); 1618 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1619 if (!iinfo->i_data) 1620 return -ENOMEM; 1621 return 0; 1622 } 1623 1624 static umode_t udf_convert_permissions(struct fileEntry *fe) 1625 { 1626 umode_t mode; 1627 uint32_t permissions; 1628 uint32_t flags; 1629 1630 permissions = le32_to_cpu(fe->permissions); 1631 flags = le16_to_cpu(fe->icbTag.flags); 1632 1633 mode = ((permissions) & 0007) | 1634 ((permissions >> 2) & 0070) | 1635 ((permissions >> 4) & 0700) | 1636 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1637 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1638 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1639 1640 return mode; 1641 } 1642 1643 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1644 { 1645 struct udf_inode_info *iinfo = UDF_I(inode); 1646 1647 /* 1648 * UDF 2.01 sec. 3.3.3.3 Note 2: 1649 * In Unix, delete permission tracks write 1650 */ 1651 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1652 if (mode & 0200) 1653 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1654 if (mode & 0020) 1655 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1656 if (mode & 0002) 1657 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1658 } 1659 1660 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1661 { 1662 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1663 } 1664 1665 static int udf_sync_inode(struct inode *inode) 1666 { 1667 return udf_update_inode(inode, 1); 1668 } 1669 1670 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1671 { 1672 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1673 (iinfo->i_crtime.tv_sec == time.tv_sec && 1674 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1675 iinfo->i_crtime = time; 1676 } 1677 1678 static int udf_update_inode(struct inode *inode, int do_sync) 1679 { 1680 struct buffer_head *bh = NULL; 1681 struct fileEntry *fe; 1682 struct extendedFileEntry *efe; 1683 uint64_t lb_recorded; 1684 uint32_t udfperms; 1685 uint16_t icbflags; 1686 uint16_t crclen; 1687 int err = 0; 1688 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1689 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1690 struct udf_inode_info *iinfo = UDF_I(inode); 1691 1692 bh = udf_tgetblk(inode->i_sb, 1693 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1694 if (!bh) { 1695 udf_debug("getblk failure\n"); 1696 return -EIO; 1697 } 1698 1699 lock_buffer(bh); 1700 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1701 fe = (struct fileEntry *)bh->b_data; 1702 efe = (struct extendedFileEntry *)bh->b_data; 1703 1704 if (iinfo->i_use) { 1705 struct unallocSpaceEntry *use = 1706 (struct unallocSpaceEntry *)bh->b_data; 1707 1708 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1709 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1710 iinfo->i_data, inode->i_sb->s_blocksize - 1711 sizeof(struct unallocSpaceEntry)); 1712 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1713 crclen = sizeof(struct unallocSpaceEntry); 1714 1715 goto finish; 1716 } 1717 1718 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1719 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1720 else 1721 fe->uid = cpu_to_le32(i_uid_read(inode)); 1722 1723 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1724 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1725 else 1726 fe->gid = cpu_to_le32(i_gid_read(inode)); 1727 1728 udfperms = ((inode->i_mode & 0007)) | 1729 ((inode->i_mode & 0070) << 2) | 1730 ((inode->i_mode & 0700) << 4); 1731 1732 udfperms |= iinfo->i_extraPerms; 1733 fe->permissions = cpu_to_le32(udfperms); 1734 1735 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1736 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1737 else 1738 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1739 1740 fe->informationLength = cpu_to_le64(inode->i_size); 1741 1742 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1743 struct regid *eid; 1744 struct deviceSpec *dsea = 1745 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1746 if (!dsea) { 1747 dsea = (struct deviceSpec *) 1748 udf_add_extendedattr(inode, 1749 sizeof(struct deviceSpec) + 1750 sizeof(struct regid), 12, 0x3); 1751 dsea->attrType = cpu_to_le32(12); 1752 dsea->attrSubtype = 1; 1753 dsea->attrLength = cpu_to_le32( 1754 sizeof(struct deviceSpec) + 1755 sizeof(struct regid)); 1756 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1757 } 1758 eid = (struct regid *)dsea->impUse; 1759 memset(eid, 0, sizeof(*eid)); 1760 strcpy(eid->ident, UDF_ID_DEVELOPER); 1761 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1762 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1763 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1764 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1765 } 1766 1767 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1768 lb_recorded = 0; /* No extents => no blocks! */ 1769 else 1770 lb_recorded = 1771 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1772 (blocksize_bits - 9); 1773 1774 if (iinfo->i_efe == 0) { 1775 memcpy(bh->b_data + sizeof(struct fileEntry), 1776 iinfo->i_data, 1777 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1778 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1779 1780 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1781 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1782 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1783 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1784 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1785 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1786 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1787 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1788 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1789 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1790 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1791 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1792 crclen = sizeof(struct fileEntry); 1793 } else { 1794 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1795 iinfo->i_data, 1796 inode->i_sb->s_blocksize - 1797 sizeof(struct extendedFileEntry)); 1798 efe->objectSize = 1799 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1800 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1801 1802 if (iinfo->i_streamdir) { 1803 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1804 1805 icb_lad->extLocation = 1806 cpu_to_lelb(iinfo->i_locStreamdir); 1807 icb_lad->extLength = 1808 cpu_to_le32(inode->i_sb->s_blocksize); 1809 } 1810 1811 udf_adjust_time(iinfo, inode->i_atime); 1812 udf_adjust_time(iinfo, inode->i_mtime); 1813 udf_adjust_time(iinfo, inode->i_ctime); 1814 1815 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1816 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1817 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1818 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1819 1820 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1821 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1822 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1823 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1824 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1825 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1826 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1827 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1828 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1829 crclen = sizeof(struct extendedFileEntry); 1830 } 1831 1832 finish: 1833 if (iinfo->i_strat4096) { 1834 fe->icbTag.strategyType = cpu_to_le16(4096); 1835 fe->icbTag.strategyParameter = cpu_to_le16(1); 1836 fe->icbTag.numEntries = cpu_to_le16(2); 1837 } else { 1838 fe->icbTag.strategyType = cpu_to_le16(4); 1839 fe->icbTag.numEntries = cpu_to_le16(1); 1840 } 1841 1842 if (iinfo->i_use) 1843 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1844 else if (S_ISDIR(inode->i_mode)) 1845 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1846 else if (S_ISREG(inode->i_mode)) 1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1848 else if (S_ISLNK(inode->i_mode)) 1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1850 else if (S_ISBLK(inode->i_mode)) 1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1852 else if (S_ISCHR(inode->i_mode)) 1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1854 else if (S_ISFIFO(inode->i_mode)) 1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1856 else if (S_ISSOCK(inode->i_mode)) 1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1858 1859 icbflags = iinfo->i_alloc_type | 1860 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1861 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1862 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1863 (le16_to_cpu(fe->icbTag.flags) & 1864 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1865 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1866 1867 fe->icbTag.flags = cpu_to_le16(icbflags); 1868 if (sbi->s_udfrev >= 0x0200) 1869 fe->descTag.descVersion = cpu_to_le16(3); 1870 else 1871 fe->descTag.descVersion = cpu_to_le16(2); 1872 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1873 fe->descTag.tagLocation = cpu_to_le32( 1874 iinfo->i_location.logicalBlockNum); 1875 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1876 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1877 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1878 crclen)); 1879 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1880 1881 set_buffer_uptodate(bh); 1882 unlock_buffer(bh); 1883 1884 /* write the data blocks */ 1885 mark_buffer_dirty(bh); 1886 if (do_sync) { 1887 sync_dirty_buffer(bh); 1888 if (buffer_write_io_error(bh)) { 1889 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1890 inode->i_ino); 1891 err = -EIO; 1892 } 1893 } 1894 brelse(bh); 1895 1896 return err; 1897 } 1898 1899 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1900 bool hidden_inode) 1901 { 1902 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1903 struct inode *inode = iget_locked(sb, block); 1904 int err; 1905 1906 if (!inode) 1907 return ERR_PTR(-ENOMEM); 1908 1909 if (!(inode->i_state & I_NEW)) 1910 return inode; 1911 1912 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1913 err = udf_read_inode(inode, hidden_inode); 1914 if (err < 0) { 1915 iget_failed(inode); 1916 return ERR_PTR(err); 1917 } 1918 unlock_new_inode(inode); 1919 1920 return inode; 1921 } 1922 1923 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1924 struct extent_position *epos) 1925 { 1926 struct super_block *sb = inode->i_sb; 1927 struct buffer_head *bh; 1928 struct allocExtDesc *aed; 1929 struct extent_position nepos; 1930 struct kernel_lb_addr neloc; 1931 int ver, adsize; 1932 1933 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1934 adsize = sizeof(struct short_ad); 1935 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1936 adsize = sizeof(struct long_ad); 1937 else 1938 return -EIO; 1939 1940 neloc.logicalBlockNum = block; 1941 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1942 1943 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1944 if (!bh) 1945 return -EIO; 1946 lock_buffer(bh); 1947 memset(bh->b_data, 0x00, sb->s_blocksize); 1948 set_buffer_uptodate(bh); 1949 unlock_buffer(bh); 1950 mark_buffer_dirty_inode(bh, inode); 1951 1952 aed = (struct allocExtDesc *)(bh->b_data); 1953 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1954 aed->previousAllocExtLocation = 1955 cpu_to_le32(epos->block.logicalBlockNum); 1956 } 1957 aed->lengthAllocDescs = cpu_to_le32(0); 1958 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1959 ver = 3; 1960 else 1961 ver = 2; 1962 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1963 sizeof(struct tag)); 1964 1965 nepos.block = neloc; 1966 nepos.offset = sizeof(struct allocExtDesc); 1967 nepos.bh = bh; 1968 1969 /* 1970 * Do we have to copy current last extent to make space for indirect 1971 * one? 1972 */ 1973 if (epos->offset + adsize > sb->s_blocksize) { 1974 struct kernel_lb_addr cp_loc; 1975 uint32_t cp_len; 1976 int cp_type; 1977 1978 epos->offset -= adsize; 1979 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1980 cp_len |= ((uint32_t)cp_type) << 30; 1981 1982 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1983 udf_write_aext(inode, epos, &nepos.block, 1984 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1985 } else { 1986 __udf_add_aext(inode, epos, &nepos.block, 1987 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1988 } 1989 1990 brelse(epos->bh); 1991 *epos = nepos; 1992 1993 return 0; 1994 } 1995 1996 /* 1997 * Append extent at the given position - should be the first free one in inode 1998 * / indirect extent. This function assumes there is enough space in the inode 1999 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2000 */ 2001 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2002 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2003 { 2004 struct udf_inode_info *iinfo = UDF_I(inode); 2005 struct allocExtDesc *aed; 2006 int adsize; 2007 2008 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2009 adsize = sizeof(struct short_ad); 2010 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2011 adsize = sizeof(struct long_ad); 2012 else 2013 return -EIO; 2014 2015 if (!epos->bh) { 2016 WARN_ON(iinfo->i_lenAlloc != 2017 epos->offset - udf_file_entry_alloc_offset(inode)); 2018 } else { 2019 aed = (struct allocExtDesc *)epos->bh->b_data; 2020 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2021 epos->offset - sizeof(struct allocExtDesc)); 2022 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2023 } 2024 2025 udf_write_aext(inode, epos, eloc, elen, inc); 2026 2027 if (!epos->bh) { 2028 iinfo->i_lenAlloc += adsize; 2029 mark_inode_dirty(inode); 2030 } else { 2031 aed = (struct allocExtDesc *)epos->bh->b_data; 2032 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2033 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2034 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2035 udf_update_tag(epos->bh->b_data, 2036 epos->offset + (inc ? 0 : adsize)); 2037 else 2038 udf_update_tag(epos->bh->b_data, 2039 sizeof(struct allocExtDesc)); 2040 mark_buffer_dirty_inode(epos->bh, inode); 2041 } 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * Append extent at given position - should be the first free one in inode 2048 * / indirect extent. Takes care of allocating and linking indirect blocks. 2049 */ 2050 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2051 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2052 { 2053 int adsize; 2054 struct super_block *sb = inode->i_sb; 2055 2056 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2057 adsize = sizeof(struct short_ad); 2058 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2059 adsize = sizeof(struct long_ad); 2060 else 2061 return -EIO; 2062 2063 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2064 int err; 2065 udf_pblk_t new_block; 2066 2067 new_block = udf_new_block(sb, NULL, 2068 epos->block.partitionReferenceNum, 2069 epos->block.logicalBlockNum, &err); 2070 if (!new_block) 2071 return -ENOSPC; 2072 2073 err = udf_setup_indirect_aext(inode, new_block, epos); 2074 if (err) 2075 return err; 2076 } 2077 2078 return __udf_add_aext(inode, epos, eloc, elen, inc); 2079 } 2080 2081 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2082 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2083 { 2084 int adsize; 2085 uint8_t *ptr; 2086 struct short_ad *sad; 2087 struct long_ad *lad; 2088 struct udf_inode_info *iinfo = UDF_I(inode); 2089 2090 if (!epos->bh) 2091 ptr = iinfo->i_data + epos->offset - 2092 udf_file_entry_alloc_offset(inode) + 2093 iinfo->i_lenEAttr; 2094 else 2095 ptr = epos->bh->b_data + epos->offset; 2096 2097 switch (iinfo->i_alloc_type) { 2098 case ICBTAG_FLAG_AD_SHORT: 2099 sad = (struct short_ad *)ptr; 2100 sad->extLength = cpu_to_le32(elen); 2101 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2102 adsize = sizeof(struct short_ad); 2103 break; 2104 case ICBTAG_FLAG_AD_LONG: 2105 lad = (struct long_ad *)ptr; 2106 lad->extLength = cpu_to_le32(elen); 2107 lad->extLocation = cpu_to_lelb(*eloc); 2108 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2109 adsize = sizeof(struct long_ad); 2110 break; 2111 default: 2112 return; 2113 } 2114 2115 if (epos->bh) { 2116 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2117 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2118 struct allocExtDesc *aed = 2119 (struct allocExtDesc *)epos->bh->b_data; 2120 udf_update_tag(epos->bh->b_data, 2121 le32_to_cpu(aed->lengthAllocDescs) + 2122 sizeof(struct allocExtDesc)); 2123 } 2124 mark_buffer_dirty_inode(epos->bh, inode); 2125 } else { 2126 mark_inode_dirty(inode); 2127 } 2128 2129 if (inc) 2130 epos->offset += adsize; 2131 } 2132 2133 /* 2134 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2135 * someone does some weird stuff. 2136 */ 2137 #define UDF_MAX_INDIR_EXTS 16 2138 2139 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2140 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2141 { 2142 int8_t etype; 2143 unsigned int indirections = 0; 2144 2145 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2146 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2147 udf_pblk_t block; 2148 2149 if (++indirections > UDF_MAX_INDIR_EXTS) { 2150 udf_err(inode->i_sb, 2151 "too many indirect extents in inode %lu\n", 2152 inode->i_ino); 2153 return -1; 2154 } 2155 2156 epos->block = *eloc; 2157 epos->offset = sizeof(struct allocExtDesc); 2158 brelse(epos->bh); 2159 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2160 epos->bh = udf_tread(inode->i_sb, block); 2161 if (!epos->bh) { 2162 udf_debug("reading block %u failed!\n", block); 2163 return -1; 2164 } 2165 } 2166 2167 return etype; 2168 } 2169 2170 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2171 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2172 { 2173 int alen; 2174 int8_t etype; 2175 uint8_t *ptr; 2176 struct short_ad *sad; 2177 struct long_ad *lad; 2178 struct udf_inode_info *iinfo = UDF_I(inode); 2179 2180 if (!epos->bh) { 2181 if (!epos->offset) 2182 epos->offset = udf_file_entry_alloc_offset(inode); 2183 ptr = iinfo->i_data + epos->offset - 2184 udf_file_entry_alloc_offset(inode) + 2185 iinfo->i_lenEAttr; 2186 alen = udf_file_entry_alloc_offset(inode) + 2187 iinfo->i_lenAlloc; 2188 } else { 2189 if (!epos->offset) 2190 epos->offset = sizeof(struct allocExtDesc); 2191 ptr = epos->bh->b_data + epos->offset; 2192 alen = sizeof(struct allocExtDesc) + 2193 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2194 lengthAllocDescs); 2195 } 2196 2197 switch (iinfo->i_alloc_type) { 2198 case ICBTAG_FLAG_AD_SHORT: 2199 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2200 if (!sad) 2201 return -1; 2202 etype = le32_to_cpu(sad->extLength) >> 30; 2203 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2204 eloc->partitionReferenceNum = 2205 iinfo->i_location.partitionReferenceNum; 2206 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2207 break; 2208 case ICBTAG_FLAG_AD_LONG: 2209 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2210 if (!lad) 2211 return -1; 2212 etype = le32_to_cpu(lad->extLength) >> 30; 2213 *eloc = lelb_to_cpu(lad->extLocation); 2214 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2215 break; 2216 default: 2217 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2218 return -1; 2219 } 2220 2221 return etype; 2222 } 2223 2224 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2225 struct kernel_lb_addr neloc, uint32_t nelen) 2226 { 2227 struct kernel_lb_addr oeloc; 2228 uint32_t oelen; 2229 int8_t etype; 2230 2231 if (epos.bh) 2232 get_bh(epos.bh); 2233 2234 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2235 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2236 neloc = oeloc; 2237 nelen = (etype << 30) | oelen; 2238 } 2239 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2240 brelse(epos.bh); 2241 2242 return (nelen >> 30); 2243 } 2244 2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2246 { 2247 struct extent_position oepos; 2248 int adsize; 2249 int8_t etype; 2250 struct allocExtDesc *aed; 2251 struct udf_inode_info *iinfo; 2252 struct kernel_lb_addr eloc; 2253 uint32_t elen; 2254 2255 if (epos.bh) { 2256 get_bh(epos.bh); 2257 get_bh(epos.bh); 2258 } 2259 2260 iinfo = UDF_I(inode); 2261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2262 adsize = sizeof(struct short_ad); 2263 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2264 adsize = sizeof(struct long_ad); 2265 else 2266 adsize = 0; 2267 2268 oepos = epos; 2269 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2270 return -1; 2271 2272 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2273 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2274 if (oepos.bh != epos.bh) { 2275 oepos.block = epos.block; 2276 brelse(oepos.bh); 2277 get_bh(epos.bh); 2278 oepos.bh = epos.bh; 2279 oepos.offset = epos.offset - adsize; 2280 } 2281 } 2282 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2283 elen = 0; 2284 2285 if (epos.bh != oepos.bh) { 2286 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2287 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2288 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2289 if (!oepos.bh) { 2290 iinfo->i_lenAlloc -= (adsize * 2); 2291 mark_inode_dirty(inode); 2292 } else { 2293 aed = (struct allocExtDesc *)oepos.bh->b_data; 2294 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2295 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2296 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2297 udf_update_tag(oepos.bh->b_data, 2298 oepos.offset - (2 * adsize)); 2299 else 2300 udf_update_tag(oepos.bh->b_data, 2301 sizeof(struct allocExtDesc)); 2302 mark_buffer_dirty_inode(oepos.bh, inode); 2303 } 2304 } else { 2305 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2306 if (!oepos.bh) { 2307 iinfo->i_lenAlloc -= adsize; 2308 mark_inode_dirty(inode); 2309 } else { 2310 aed = (struct allocExtDesc *)oepos.bh->b_data; 2311 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2312 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2313 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2314 udf_update_tag(oepos.bh->b_data, 2315 epos.offset - adsize); 2316 else 2317 udf_update_tag(oepos.bh->b_data, 2318 sizeof(struct allocExtDesc)); 2319 mark_buffer_dirty_inode(oepos.bh, inode); 2320 } 2321 } 2322 2323 brelse(epos.bh); 2324 brelse(oepos.bh); 2325 2326 return (elen >> 30); 2327 } 2328 2329 int8_t inode_bmap(struct inode *inode, sector_t block, 2330 struct extent_position *pos, struct kernel_lb_addr *eloc, 2331 uint32_t *elen, sector_t *offset) 2332 { 2333 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2334 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2335 int8_t etype; 2336 struct udf_inode_info *iinfo; 2337 2338 iinfo = UDF_I(inode); 2339 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2340 pos->offset = 0; 2341 pos->block = iinfo->i_location; 2342 pos->bh = NULL; 2343 } 2344 *elen = 0; 2345 do { 2346 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2347 if (etype == -1) { 2348 *offset = (bcount - lbcount) >> blocksize_bits; 2349 iinfo->i_lenExtents = lbcount; 2350 return -1; 2351 } 2352 lbcount += *elen; 2353 } while (lbcount <= bcount); 2354 /* update extent cache */ 2355 udf_update_extent_cache(inode, lbcount - *elen, pos); 2356 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2357 2358 return etype; 2359 } 2360 2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2362 { 2363 struct kernel_lb_addr eloc; 2364 uint32_t elen; 2365 sector_t offset; 2366 struct extent_position epos = {}; 2367 udf_pblk_t ret; 2368 2369 down_read(&UDF_I(inode)->i_data_sem); 2370 2371 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2372 (EXT_RECORDED_ALLOCATED >> 30)) 2373 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2374 else 2375 ret = 0; 2376 2377 up_read(&UDF_I(inode)->i_data_sem); 2378 brelse(epos.bh); 2379 2380 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2381 return udf_fixed_to_variable(ret); 2382 else 2383 return ret; 2384 } 2385