xref: /openbmc/linux/fs/udf/inode.c (revision 49c23519)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_adinicb_writepage(struct folio *folio,
185 				 struct writeback_control *wbc, void *data)
186 {
187 	struct inode *inode = folio->mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 
190 	BUG_ON(!folio_test_locked(folio));
191 	BUG_ON(folio->index != 0);
192 	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 		       i_size_read(inode));
194 	folio_unlock(folio);
195 	mark_inode_dirty(inode);
196 
197 	return 0;
198 }
199 
200 static int udf_writepages(struct address_space *mapping,
201 			  struct writeback_control *wbc)
202 {
203 	struct inode *inode = mapping->host;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210 
211 static void udf_adinicb_readpage(struct page *page)
212 {
213 	struct inode *inode = page->mapping->host;
214 	char *kaddr;
215 	struct udf_inode_info *iinfo = UDF_I(inode);
216 	loff_t isize = i_size_read(inode);
217 
218 	kaddr = kmap_local_page(page);
219 	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 	memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 	flush_dcache_page(page);
222 	SetPageUptodate(page);
223 	kunmap_local(kaddr);
224 }
225 
226 static int udf_read_folio(struct file *file, struct folio *folio)
227 {
228 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229 
230 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 		udf_adinicb_readpage(&folio->page);
232 		folio_unlock(folio);
233 		return 0;
234 	}
235 	return mpage_read_folio(folio, udf_get_block);
236 }
237 
238 static void udf_readahead(struct readahead_control *rac)
239 {
240 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241 
242 	/*
243 	 * No readahead needed for in-ICB files and udf_get_block() would get
244 	 * confused for such file anyway.
245 	 */
246 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 		return;
248 
249 	mpage_readahead(rac, udf_get_block);
250 }
251 
252 static int udf_write_begin(struct file *file, struct address_space *mapping,
253 			   loff_t pos, unsigned len,
254 			   struct page **pagep, void **fsdata)
255 {
256 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 	struct page *page;
258 	int ret;
259 
260 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 		ret = block_write_begin(mapping, pos, len, pagep,
262 					udf_get_block);
263 		if (unlikely(ret))
264 			udf_write_failed(mapping, pos + len);
265 		return ret;
266 	}
267 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 		return -EIO;
269 	page = grab_cache_page_write_begin(mapping, 0);
270 	if (!page)
271 		return -ENOMEM;
272 	*pagep = page;
273 	if (!PageUptodate(page))
274 		udf_adinicb_readpage(page);
275 	return 0;
276 }
277 
278 static int udf_write_end(struct file *file, struct address_space *mapping,
279 			 loff_t pos, unsigned len, unsigned copied,
280 			 struct page *page, void *fsdata)
281 {
282 	struct inode *inode = file_inode(file);
283 	loff_t last_pos;
284 
285 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 		return generic_write_end(file, mapping, pos, len, copied, page,
287 					 fsdata);
288 	last_pos = pos + copied;
289 	if (last_pos > inode->i_size)
290 		i_size_write(inode, last_pos);
291 	set_page_dirty(page);
292 	unlock_page(page);
293 	put_page(page);
294 
295 	return copied;
296 }
297 
298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299 {
300 	struct file *file = iocb->ki_filp;
301 	struct address_space *mapping = file->f_mapping;
302 	struct inode *inode = mapping->host;
303 	size_t count = iov_iter_count(iter);
304 	ssize_t ret;
305 
306 	/* Fallback to buffered IO for in-ICB files */
307 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 		return 0;
309 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 		udf_write_failed(mapping, iocb->ki_pos + count);
312 	return ret;
313 }
314 
315 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316 {
317 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
318 
319 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 		return -EINVAL;
321 	return generic_block_bmap(mapping, block, udf_get_block);
322 }
323 
324 const struct address_space_operations udf_aops = {
325 	.dirty_folio	= block_dirty_folio,
326 	.invalidate_folio = block_invalidate_folio,
327 	.read_folio	= udf_read_folio,
328 	.readahead	= udf_readahead,
329 	.writepages	= udf_writepages,
330 	.write_begin	= udf_write_begin,
331 	.write_end	= udf_write_end,
332 	.direct_IO	= udf_direct_IO,
333 	.bmap		= udf_bmap,
334 	.migrate_folio	= buffer_migrate_folio,
335 };
336 
337 /*
338  * Expand file stored in ICB to a normal one-block-file
339  *
340  * This function requires i_mutex held
341  */
342 int udf_expand_file_adinicb(struct inode *inode)
343 {
344 	struct folio *folio;
345 	struct udf_inode_info *iinfo = UDF_I(inode);
346 	int err;
347 
348 	WARN_ON_ONCE(!inode_is_locked(inode));
349 	if (!iinfo->i_lenAlloc) {
350 		down_write(&iinfo->i_data_sem);
351 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 		else
354 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 		up_write(&iinfo->i_data_sem);
356 		mark_inode_dirty(inode);
357 		return 0;
358 	}
359 
360 	folio = __filemap_get_folio(inode->i_mapping, 0,
361 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
362 	if (IS_ERR(folio))
363 		return PTR_ERR(folio);
364 
365 	if (!folio_test_uptodate(folio))
366 		udf_adinicb_readpage(&folio->page);
367 	down_write(&iinfo->i_data_sem);
368 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
369 	       iinfo->i_lenAlloc);
370 	iinfo->i_lenAlloc = 0;
371 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
372 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
373 	else
374 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
375 	folio_mark_dirty(folio);
376 	folio_unlock(folio);
377 	up_write(&iinfo->i_data_sem);
378 	err = filemap_fdatawrite(inode->i_mapping);
379 	if (err) {
380 		/* Restore everything back so that we don't lose data... */
381 		folio_lock(folio);
382 		down_write(&iinfo->i_data_sem);
383 		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
384 				folio, 0, inode->i_size);
385 		folio_unlock(folio);
386 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 		iinfo->i_lenAlloc = inode->i_size;
388 		up_write(&iinfo->i_data_sem);
389 	}
390 	folio_put(folio);
391 	mark_inode_dirty(inode);
392 
393 	return err;
394 }
395 
396 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
397 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
398 
399 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
400 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
401 
402 struct udf_map_rq {
403 	sector_t lblk;
404 	udf_pblk_t pblk;
405 	int iflags;		/* UDF_MAP_ flags determining behavior */
406 	int oflags;		/* UDF_BLK_ flags reporting results */
407 };
408 
409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
410 {
411 	int err;
412 	struct udf_inode_info *iinfo = UDF_I(inode);
413 
414 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
415 		return -EFSCORRUPTED;
416 
417 	map->oflags = 0;
418 	if (!(map->iflags & UDF_MAP_CREATE)) {
419 		struct kernel_lb_addr eloc;
420 		uint32_t elen;
421 		sector_t offset;
422 		struct extent_position epos = {};
423 
424 		down_read(&iinfo->i_data_sem);
425 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
426 				== (EXT_RECORDED_ALLOCATED >> 30)) {
427 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 							offset);
429 			map->oflags |= UDF_BLK_MAPPED;
430 		}
431 		up_read(&iinfo->i_data_sem);
432 		brelse(epos.bh);
433 
434 		return 0;
435 	}
436 
437 	down_write(&iinfo->i_data_sem);
438 	/*
439 	 * Block beyond EOF and prealloc extents? Just discard preallocation
440 	 * as it is not useful and complicates things.
441 	 */
442 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
443 		udf_discard_prealloc(inode);
444 	udf_clear_extent_cache(inode);
445 	err = inode_getblk(inode, map);
446 	up_write(&iinfo->i_data_sem);
447 	return err;
448 }
449 
450 static int __udf_get_block(struct inode *inode, sector_t block,
451 			   struct buffer_head *bh_result, int flags)
452 {
453 	int err;
454 	struct udf_map_rq map = {
455 		.lblk = block,
456 		.iflags = flags,
457 	};
458 
459 	err = udf_map_block(inode, &map);
460 	if (err < 0)
461 		return err;
462 	if (map.oflags & UDF_BLK_MAPPED) {
463 		map_bh(bh_result, inode->i_sb, map.pblk);
464 		if (map.oflags & UDF_BLK_NEW)
465 			set_buffer_new(bh_result);
466 	}
467 	return 0;
468 }
469 
470 int udf_get_block(struct inode *inode, sector_t block,
471 		  struct buffer_head *bh_result, int create)
472 {
473 	int flags = create ? UDF_MAP_CREATE : 0;
474 
475 	/*
476 	 * We preallocate blocks only for regular files. It also makes sense
477 	 * for directories but there's a problem when to drop the
478 	 * preallocation. We might use some delayed work for that but I feel
479 	 * it's overengineering for a filesystem like UDF.
480 	 */
481 	if (!S_ISREG(inode->i_mode))
482 		flags |= UDF_MAP_NOPREALLOC;
483 	return __udf_get_block(inode, block, bh_result, flags);
484 }
485 
486 /*
487  * We shouldn't be allocating blocks on page writeback since we allocate them
488  * on page fault. We can spot dirty buffers without allocated blocks though
489  * when truncate expands file. These however don't have valid data so we can
490  * safely ignore them. So never allocate blocks from page writeback.
491  */
492 static int udf_get_block_wb(struct inode *inode, sector_t block,
493 			    struct buffer_head *bh_result, int create)
494 {
495 	return __udf_get_block(inode, block, bh_result, 0);
496 }
497 
498 /* Extend the file with new blocks totaling 'new_block_bytes',
499  * return the number of extents added
500  */
501 static int udf_do_extend_file(struct inode *inode,
502 			      struct extent_position *last_pos,
503 			      struct kernel_long_ad *last_ext,
504 			      loff_t new_block_bytes)
505 {
506 	uint32_t add;
507 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
508 	struct super_block *sb = inode->i_sb;
509 	struct udf_inode_info *iinfo;
510 	int err;
511 
512 	/* The previous extent is fake and we should not extend by anything
513 	 * - there's nothing to do... */
514 	if (!new_block_bytes && fake)
515 		return 0;
516 
517 	iinfo = UDF_I(inode);
518 	/* Round the last extent up to a multiple of block size */
519 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
520 		last_ext->extLength =
521 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
522 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
523 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
524 		iinfo->i_lenExtents =
525 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
526 			~(sb->s_blocksize - 1);
527 	}
528 
529 	add = 0;
530 	/* Can we merge with the previous extent? */
531 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
532 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
533 		add = (1 << 30) - sb->s_blocksize -
534 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
535 		if (add > new_block_bytes)
536 			add = new_block_bytes;
537 		new_block_bytes -= add;
538 		last_ext->extLength += add;
539 	}
540 
541 	if (fake) {
542 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
543 				   last_ext->extLength, 1);
544 		if (err < 0)
545 			goto out_err;
546 		count++;
547 	} else {
548 		struct kernel_lb_addr tmploc;
549 		uint32_t tmplen;
550 
551 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
552 				last_ext->extLength, 1);
553 
554 		/*
555 		 * We've rewritten the last extent. If we are going to add
556 		 * more extents, we may need to enter possible following
557 		 * empty indirect extent.
558 		 */
559 		if (new_block_bytes)
560 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
561 	}
562 	iinfo->i_lenExtents += add;
563 
564 	/* Managed to do everything necessary? */
565 	if (!new_block_bytes)
566 		goto out;
567 
568 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
569 	last_ext->extLocation.logicalBlockNum = 0;
570 	last_ext->extLocation.partitionReferenceNum = 0;
571 	add = (1 << 30) - sb->s_blocksize;
572 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
573 
574 	/* Create enough extents to cover the whole hole */
575 	while (new_block_bytes > add) {
576 		new_block_bytes -= add;
577 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
578 				   last_ext->extLength, 1);
579 		if (err)
580 			goto out_err;
581 		iinfo->i_lenExtents += add;
582 		count++;
583 	}
584 	if (new_block_bytes) {
585 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
586 			new_block_bytes;
587 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
588 				   last_ext->extLength, 1);
589 		if (err)
590 			goto out_err;
591 		iinfo->i_lenExtents += new_block_bytes;
592 		count++;
593 	}
594 
595 out:
596 	/* last_pos should point to the last written extent... */
597 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
598 		last_pos->offset -= sizeof(struct short_ad);
599 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
600 		last_pos->offset -= sizeof(struct long_ad);
601 	else
602 		return -EIO;
603 
604 	return count;
605 out_err:
606 	/* Remove extents we've created so far */
607 	udf_clear_extent_cache(inode);
608 	udf_truncate_extents(inode);
609 	return err;
610 }
611 
612 /* Extend the final block of the file to final_block_len bytes */
613 static void udf_do_extend_final_block(struct inode *inode,
614 				      struct extent_position *last_pos,
615 				      struct kernel_long_ad *last_ext,
616 				      uint32_t new_elen)
617 {
618 	uint32_t added_bytes;
619 
620 	/*
621 	 * Extent already large enough? It may be already rounded up to block
622 	 * size...
623 	 */
624 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
625 		return;
626 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
627 	last_ext->extLength += added_bytes;
628 	UDF_I(inode)->i_lenExtents += added_bytes;
629 
630 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
631 			last_ext->extLength, 1);
632 }
633 
634 static int udf_extend_file(struct inode *inode, loff_t newsize)
635 {
636 
637 	struct extent_position epos;
638 	struct kernel_lb_addr eloc;
639 	uint32_t elen;
640 	int8_t etype;
641 	struct super_block *sb = inode->i_sb;
642 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
643 	loff_t new_elen;
644 	int adsize;
645 	struct udf_inode_info *iinfo = UDF_I(inode);
646 	struct kernel_long_ad extent;
647 	int err = 0;
648 	bool within_last_ext;
649 
650 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
651 		adsize = sizeof(struct short_ad);
652 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
653 		adsize = sizeof(struct long_ad);
654 	else
655 		BUG();
656 
657 	down_write(&iinfo->i_data_sem);
658 	/*
659 	 * When creating hole in file, just don't bother with preserving
660 	 * preallocation. It likely won't be very useful anyway.
661 	 */
662 	udf_discard_prealloc(inode);
663 
664 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
665 	within_last_ext = (etype != -1);
666 	/* We don't expect extents past EOF... */
667 	WARN_ON_ONCE(within_last_ext &&
668 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
669 
670 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
671 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
672 		/* File has no extents at all or has empty last
673 		 * indirect extent! Create a fake extent... */
674 		extent.extLocation.logicalBlockNum = 0;
675 		extent.extLocation.partitionReferenceNum = 0;
676 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
677 	} else {
678 		epos.offset -= adsize;
679 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
680 				      &extent.extLength, 0);
681 		extent.extLength |= etype << 30;
682 	}
683 
684 	new_elen = ((loff_t)offset << inode->i_blkbits) |
685 					(newsize & (sb->s_blocksize - 1));
686 
687 	/* File has extent covering the new size (could happen when extending
688 	 * inside a block)?
689 	 */
690 	if (within_last_ext) {
691 		/* Extending file within the last file block */
692 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
693 	} else {
694 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
695 	}
696 
697 	if (err < 0)
698 		goto out;
699 	err = 0;
700 out:
701 	brelse(epos.bh);
702 	up_write(&iinfo->i_data_sem);
703 	return err;
704 }
705 
706 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
707 {
708 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
709 	struct extent_position prev_epos, cur_epos, next_epos;
710 	int count = 0, startnum = 0, endnum = 0;
711 	uint32_t elen = 0, tmpelen;
712 	struct kernel_lb_addr eloc, tmpeloc;
713 	int c = 1;
714 	loff_t lbcount = 0, b_off = 0;
715 	udf_pblk_t newblocknum;
716 	sector_t offset = 0;
717 	int8_t etype;
718 	struct udf_inode_info *iinfo = UDF_I(inode);
719 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
720 	int lastblock = 0;
721 	bool isBeyondEOF;
722 	int ret = 0;
723 
724 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
725 	prev_epos.block = iinfo->i_location;
726 	prev_epos.bh = NULL;
727 	cur_epos = next_epos = prev_epos;
728 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
729 
730 	/* find the extent which contains the block we are looking for.
731 	   alternate between laarr[0] and laarr[1] for locations of the
732 	   current extent, and the previous extent */
733 	do {
734 		if (prev_epos.bh != cur_epos.bh) {
735 			brelse(prev_epos.bh);
736 			get_bh(cur_epos.bh);
737 			prev_epos.bh = cur_epos.bh;
738 		}
739 		if (cur_epos.bh != next_epos.bh) {
740 			brelse(cur_epos.bh);
741 			get_bh(next_epos.bh);
742 			cur_epos.bh = next_epos.bh;
743 		}
744 
745 		lbcount += elen;
746 
747 		prev_epos.block = cur_epos.block;
748 		cur_epos.block = next_epos.block;
749 
750 		prev_epos.offset = cur_epos.offset;
751 		cur_epos.offset = next_epos.offset;
752 
753 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
754 		if (etype == -1)
755 			break;
756 
757 		c = !c;
758 
759 		laarr[c].extLength = (etype << 30) | elen;
760 		laarr[c].extLocation = eloc;
761 
762 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
763 			pgoal = eloc.logicalBlockNum +
764 				((elen + inode->i_sb->s_blocksize - 1) >>
765 				 inode->i_sb->s_blocksize_bits);
766 
767 		count++;
768 	} while (lbcount + elen <= b_off);
769 
770 	b_off -= lbcount;
771 	offset = b_off >> inode->i_sb->s_blocksize_bits;
772 	/*
773 	 * Move prev_epos and cur_epos into indirect extent if we are at
774 	 * the pointer to it
775 	 */
776 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
777 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
778 
779 	/* if the extent is allocated and recorded, return the block
780 	   if the extent is not a multiple of the blocksize, round up */
781 
782 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
783 		if (elen & (inode->i_sb->s_blocksize - 1)) {
784 			elen = EXT_RECORDED_ALLOCATED |
785 				((elen + inode->i_sb->s_blocksize - 1) &
786 				 ~(inode->i_sb->s_blocksize - 1));
787 			iinfo->i_lenExtents =
788 				ALIGN(iinfo->i_lenExtents,
789 				      inode->i_sb->s_blocksize);
790 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
791 		}
792 		map->oflags = UDF_BLK_MAPPED;
793 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
794 		goto out_free;
795 	}
796 
797 	/* Are we beyond EOF and preallocated extent? */
798 	if (etype == -1) {
799 		loff_t hole_len;
800 
801 		isBeyondEOF = true;
802 		if (count) {
803 			if (c)
804 				laarr[0] = laarr[1];
805 			startnum = 1;
806 		} else {
807 			/* Create a fake extent when there's not one */
808 			memset(&laarr[0].extLocation, 0x00,
809 				sizeof(struct kernel_lb_addr));
810 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
811 			/* Will udf_do_extend_file() create real extent from
812 			   a fake one? */
813 			startnum = (offset > 0);
814 		}
815 		/* Create extents for the hole between EOF and offset */
816 		hole_len = (loff_t)offset << inode->i_blkbits;
817 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
818 		if (ret < 0)
819 			goto out_free;
820 		c = 0;
821 		offset = 0;
822 		count += ret;
823 		/*
824 		 * Is there any real extent? - otherwise we overwrite the fake
825 		 * one...
826 		 */
827 		if (count)
828 			c = !c;
829 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
830 			inode->i_sb->s_blocksize;
831 		memset(&laarr[c].extLocation, 0x00,
832 			sizeof(struct kernel_lb_addr));
833 		count++;
834 		endnum = c + 1;
835 		lastblock = 1;
836 	} else {
837 		isBeyondEOF = false;
838 		endnum = startnum = ((count > 2) ? 2 : count);
839 
840 		/* if the current extent is in position 0,
841 		   swap it with the previous */
842 		if (!c && count != 1) {
843 			laarr[2] = laarr[0];
844 			laarr[0] = laarr[1];
845 			laarr[1] = laarr[2];
846 			c = 1;
847 		}
848 
849 		/* if the current block is located in an extent,
850 		   read the next extent */
851 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
852 		if (etype != -1) {
853 			laarr[c + 1].extLength = (etype << 30) | elen;
854 			laarr[c + 1].extLocation = eloc;
855 			count++;
856 			startnum++;
857 			endnum++;
858 		} else
859 			lastblock = 1;
860 	}
861 
862 	/* if the current extent is not recorded but allocated, get the
863 	 * block in the extent corresponding to the requested block */
864 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
865 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
866 	else { /* otherwise, allocate a new block */
867 		if (iinfo->i_next_alloc_block == map->lblk)
868 			goal = iinfo->i_next_alloc_goal;
869 
870 		if (!goal) {
871 			if (!(goal = pgoal)) /* XXX: what was intended here? */
872 				goal = iinfo->i_location.logicalBlockNum + 1;
873 		}
874 
875 		newblocknum = udf_new_block(inode->i_sb, inode,
876 				iinfo->i_location.partitionReferenceNum,
877 				goal, &ret);
878 		if (!newblocknum)
879 			goto out_free;
880 		if (isBeyondEOF)
881 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
882 	}
883 
884 	/* if the extent the requsted block is located in contains multiple
885 	 * blocks, split the extent into at most three extents. blocks prior
886 	 * to requested block, requested block, and blocks after requested
887 	 * block */
888 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
889 
890 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
891 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
892 
893 	/* merge any continuous blocks in laarr */
894 	udf_merge_extents(inode, laarr, &endnum);
895 
896 	/* write back the new extents, inserting new extents if the new number
897 	 * of extents is greater than the old number, and deleting extents if
898 	 * the new number of extents is less than the old number */
899 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
900 	if (ret < 0)
901 		goto out_free;
902 
903 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
904 				iinfo->i_location.partitionReferenceNum, 0);
905 	if (!map->pblk) {
906 		ret = -EFSCORRUPTED;
907 		goto out_free;
908 	}
909 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
910 	iinfo->i_next_alloc_block = map->lblk + 1;
911 	iinfo->i_next_alloc_goal = newblocknum + 1;
912 	inode_set_ctime_current(inode);
913 
914 	if (IS_SYNC(inode))
915 		udf_sync_inode(inode);
916 	else
917 		mark_inode_dirty(inode);
918 	ret = 0;
919 out_free:
920 	brelse(prev_epos.bh);
921 	brelse(cur_epos.bh);
922 	brelse(next_epos.bh);
923 	return ret;
924 }
925 
926 static void udf_split_extents(struct inode *inode, int *c, int offset,
927 			       udf_pblk_t newblocknum,
928 			       struct kernel_long_ad *laarr, int *endnum)
929 {
930 	unsigned long blocksize = inode->i_sb->s_blocksize;
931 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
932 
933 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
934 	    (laarr[*c].extLength >> 30) ==
935 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
936 		int curr = *c;
937 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
938 			    blocksize - 1) >> blocksize_bits;
939 		int8_t etype = (laarr[curr].extLength >> 30);
940 
941 		if (blen == 1)
942 			;
943 		else if (!offset || blen == offset + 1) {
944 			laarr[curr + 2] = laarr[curr + 1];
945 			laarr[curr + 1] = laarr[curr];
946 		} else {
947 			laarr[curr + 3] = laarr[curr + 1];
948 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
949 		}
950 
951 		if (offset) {
952 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
953 				udf_free_blocks(inode->i_sb, inode,
954 						&laarr[curr].extLocation,
955 						0, offset);
956 				laarr[curr].extLength =
957 					EXT_NOT_RECORDED_NOT_ALLOCATED |
958 					(offset << blocksize_bits);
959 				laarr[curr].extLocation.logicalBlockNum = 0;
960 				laarr[curr].extLocation.
961 						partitionReferenceNum = 0;
962 			} else
963 				laarr[curr].extLength = (etype << 30) |
964 					(offset << blocksize_bits);
965 			curr++;
966 			(*c)++;
967 			(*endnum)++;
968 		}
969 
970 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
971 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
972 			laarr[curr].extLocation.partitionReferenceNum =
973 				UDF_I(inode)->i_location.partitionReferenceNum;
974 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
975 			blocksize;
976 		curr++;
977 
978 		if (blen != offset + 1) {
979 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
980 				laarr[curr].extLocation.logicalBlockNum +=
981 								offset + 1;
982 			laarr[curr].extLength = (etype << 30) |
983 				((blen - (offset + 1)) << blocksize_bits);
984 			curr++;
985 			(*endnum)++;
986 		}
987 	}
988 }
989 
990 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
991 				 struct kernel_long_ad *laarr,
992 				 int *endnum)
993 {
994 	int start, length = 0, currlength = 0, i;
995 
996 	if (*endnum >= (c + 1)) {
997 		if (!lastblock)
998 			return;
999 		else
1000 			start = c;
1001 	} else {
1002 		if ((laarr[c + 1].extLength >> 30) ==
1003 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1004 			start = c + 1;
1005 			length = currlength =
1006 				(((laarr[c + 1].extLength &
1007 					UDF_EXTENT_LENGTH_MASK) +
1008 				inode->i_sb->s_blocksize - 1) >>
1009 				inode->i_sb->s_blocksize_bits);
1010 		} else
1011 			start = c;
1012 	}
1013 
1014 	for (i = start + 1; i <= *endnum; i++) {
1015 		if (i == *endnum) {
1016 			if (lastblock)
1017 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1018 		} else if ((laarr[i].extLength >> 30) ==
1019 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1020 			length += (((laarr[i].extLength &
1021 						UDF_EXTENT_LENGTH_MASK) +
1022 				    inode->i_sb->s_blocksize - 1) >>
1023 				    inode->i_sb->s_blocksize_bits);
1024 		} else
1025 			break;
1026 	}
1027 
1028 	if (length) {
1029 		int next = laarr[start].extLocation.logicalBlockNum +
1030 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1031 			  inode->i_sb->s_blocksize - 1) >>
1032 			  inode->i_sb->s_blocksize_bits);
1033 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1034 				laarr[start].extLocation.partitionReferenceNum,
1035 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1036 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1037 				currlength);
1038 		if (numalloc) 	{
1039 			if (start == (c + 1))
1040 				laarr[start].extLength +=
1041 					(numalloc <<
1042 					 inode->i_sb->s_blocksize_bits);
1043 			else {
1044 				memmove(&laarr[c + 2], &laarr[c + 1],
1045 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1046 				(*endnum)++;
1047 				laarr[c + 1].extLocation.logicalBlockNum = next;
1048 				laarr[c + 1].extLocation.partitionReferenceNum =
1049 					laarr[c].extLocation.
1050 							partitionReferenceNum;
1051 				laarr[c + 1].extLength =
1052 					EXT_NOT_RECORDED_ALLOCATED |
1053 					(numalloc <<
1054 					 inode->i_sb->s_blocksize_bits);
1055 				start = c + 1;
1056 			}
1057 
1058 			for (i = start + 1; numalloc && i < *endnum; i++) {
1059 				int elen = ((laarr[i].extLength &
1060 						UDF_EXTENT_LENGTH_MASK) +
1061 					    inode->i_sb->s_blocksize - 1) >>
1062 					    inode->i_sb->s_blocksize_bits;
1063 
1064 				if (elen > numalloc) {
1065 					laarr[i].extLength -=
1066 						(numalloc <<
1067 						 inode->i_sb->s_blocksize_bits);
1068 					numalloc = 0;
1069 				} else {
1070 					numalloc -= elen;
1071 					if (*endnum > (i + 1))
1072 						memmove(&laarr[i],
1073 							&laarr[i + 1],
1074 							sizeof(struct long_ad) *
1075 							(*endnum - (i + 1)));
1076 					i--;
1077 					(*endnum)--;
1078 				}
1079 			}
1080 			UDF_I(inode)->i_lenExtents +=
1081 				numalloc << inode->i_sb->s_blocksize_bits;
1082 		}
1083 	}
1084 }
1085 
1086 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1087 			      int *endnum)
1088 {
1089 	int i;
1090 	unsigned long blocksize = inode->i_sb->s_blocksize;
1091 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1092 
1093 	for (i = 0; i < (*endnum - 1); i++) {
1094 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1095 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1096 
1097 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1098 			(((li->extLength >> 30) ==
1099 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1100 			((lip1->extLocation.logicalBlockNum -
1101 			  li->extLocation.logicalBlockNum) ==
1102 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1103 			blocksize - 1) >> blocksize_bits)))) {
1104 
1105 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1106 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1107 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1108 				li->extLength = lip1->extLength +
1109 					(((li->extLength &
1110 						UDF_EXTENT_LENGTH_MASK) +
1111 					 blocksize - 1) & ~(blocksize - 1));
1112 				if (*endnum > (i + 2))
1113 					memmove(&laarr[i + 1], &laarr[i + 2],
1114 						sizeof(struct long_ad) *
1115 						(*endnum - (i + 2)));
1116 				i--;
1117 				(*endnum)--;
1118 			}
1119 		} else if (((li->extLength >> 30) ==
1120 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1121 			   ((lip1->extLength >> 30) ==
1122 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1123 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1124 					((li->extLength &
1125 					  UDF_EXTENT_LENGTH_MASK) +
1126 					 blocksize - 1) >> blocksize_bits);
1127 			li->extLocation.logicalBlockNum = 0;
1128 			li->extLocation.partitionReferenceNum = 0;
1129 
1130 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1132 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1133 				lip1->extLength = (lip1->extLength -
1134 						   (li->extLength &
1135 						   UDF_EXTENT_LENGTH_MASK) +
1136 						   UDF_EXTENT_LENGTH_MASK) &
1137 						   ~(blocksize - 1);
1138 				li->extLength = (li->extLength &
1139 						 UDF_EXTENT_FLAG_MASK) +
1140 						(UDF_EXTENT_LENGTH_MASK + 1) -
1141 						blocksize;
1142 			} else {
1143 				li->extLength = lip1->extLength +
1144 					(((li->extLength &
1145 						UDF_EXTENT_LENGTH_MASK) +
1146 					  blocksize - 1) & ~(blocksize - 1));
1147 				if (*endnum > (i + 2))
1148 					memmove(&laarr[i + 1], &laarr[i + 2],
1149 						sizeof(struct long_ad) *
1150 						(*endnum - (i + 2)));
1151 				i--;
1152 				(*endnum)--;
1153 			}
1154 		} else if ((li->extLength >> 30) ==
1155 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1156 			udf_free_blocks(inode->i_sb, inode,
1157 					&li->extLocation, 0,
1158 					((li->extLength &
1159 						UDF_EXTENT_LENGTH_MASK) +
1160 					 blocksize - 1) >> blocksize_bits);
1161 			li->extLocation.logicalBlockNum = 0;
1162 			li->extLocation.partitionReferenceNum = 0;
1163 			li->extLength = (li->extLength &
1164 						UDF_EXTENT_LENGTH_MASK) |
1165 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1166 		}
1167 	}
1168 }
1169 
1170 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1171 			      int startnum, int endnum,
1172 			      struct extent_position *epos)
1173 {
1174 	int start = 0, i;
1175 	struct kernel_lb_addr tmploc;
1176 	uint32_t tmplen;
1177 	int err;
1178 
1179 	if (startnum > endnum) {
1180 		for (i = 0; i < (startnum - endnum); i++)
1181 			udf_delete_aext(inode, *epos);
1182 	} else if (startnum < endnum) {
1183 		for (i = 0; i < (endnum - startnum); i++) {
1184 			err = udf_insert_aext(inode, *epos,
1185 					      laarr[i].extLocation,
1186 					      laarr[i].extLength);
1187 			/*
1188 			 * If we fail here, we are likely corrupting the extent
1189 			 * list and leaking blocks. At least stop early to
1190 			 * limit the damage.
1191 			 */
1192 			if (err < 0)
1193 				return err;
1194 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1195 				      &laarr[i].extLength, 1);
1196 			start++;
1197 		}
1198 	}
1199 
1200 	for (i = start; i < endnum; i++) {
1201 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1202 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1203 			       laarr[i].extLength, 1);
1204 	}
1205 	return 0;
1206 }
1207 
1208 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1209 			      int create, int *err)
1210 {
1211 	struct buffer_head *bh = NULL;
1212 	struct udf_map_rq map = {
1213 		.lblk = block,
1214 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1215 	};
1216 
1217 	*err = udf_map_block(inode, &map);
1218 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1219 		return NULL;
1220 
1221 	bh = sb_getblk(inode->i_sb, map.pblk);
1222 	if (!bh) {
1223 		*err = -ENOMEM;
1224 		return NULL;
1225 	}
1226 	if (map.oflags & UDF_BLK_NEW) {
1227 		lock_buffer(bh);
1228 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1229 		set_buffer_uptodate(bh);
1230 		unlock_buffer(bh);
1231 		mark_buffer_dirty_inode(bh, inode);
1232 		return bh;
1233 	}
1234 
1235 	if (bh_read(bh, 0) >= 0)
1236 		return bh;
1237 
1238 	brelse(bh);
1239 	*err = -EIO;
1240 	return NULL;
1241 }
1242 
1243 int udf_setsize(struct inode *inode, loff_t newsize)
1244 {
1245 	int err = 0;
1246 	struct udf_inode_info *iinfo;
1247 	unsigned int bsize = i_blocksize(inode);
1248 
1249 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1250 	      S_ISLNK(inode->i_mode)))
1251 		return -EINVAL;
1252 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1253 		return -EPERM;
1254 
1255 	filemap_invalidate_lock(inode->i_mapping);
1256 	iinfo = UDF_I(inode);
1257 	if (newsize > inode->i_size) {
1258 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1259 			if (bsize >=
1260 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1261 				down_write(&iinfo->i_data_sem);
1262 				iinfo->i_lenAlloc = newsize;
1263 				up_write(&iinfo->i_data_sem);
1264 				goto set_size;
1265 			}
1266 			err = udf_expand_file_adinicb(inode);
1267 			if (err)
1268 				goto out_unlock;
1269 		}
1270 		err = udf_extend_file(inode, newsize);
1271 		if (err)
1272 			goto out_unlock;
1273 set_size:
1274 		truncate_setsize(inode, newsize);
1275 	} else {
1276 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1277 			down_write(&iinfo->i_data_sem);
1278 			udf_clear_extent_cache(inode);
1279 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1280 			       0x00, bsize - newsize -
1281 			       udf_file_entry_alloc_offset(inode));
1282 			iinfo->i_lenAlloc = newsize;
1283 			truncate_setsize(inode, newsize);
1284 			up_write(&iinfo->i_data_sem);
1285 			goto update_time;
1286 		}
1287 		err = block_truncate_page(inode->i_mapping, newsize,
1288 					  udf_get_block);
1289 		if (err)
1290 			goto out_unlock;
1291 		truncate_setsize(inode, newsize);
1292 		down_write(&iinfo->i_data_sem);
1293 		udf_clear_extent_cache(inode);
1294 		err = udf_truncate_extents(inode);
1295 		up_write(&iinfo->i_data_sem);
1296 		if (err)
1297 			goto out_unlock;
1298 	}
1299 update_time:
1300 	inode->i_mtime = inode_set_ctime_current(inode);
1301 	if (IS_SYNC(inode))
1302 		udf_sync_inode(inode);
1303 	else
1304 		mark_inode_dirty(inode);
1305 out_unlock:
1306 	filemap_invalidate_unlock(inode->i_mapping);
1307 	return err;
1308 }
1309 
1310 /*
1311  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1312  * arbitrary - just that we hopefully don't limit any real use of rewritten
1313  * inode on write-once media but avoid looping for too long on corrupted media.
1314  */
1315 #define UDF_MAX_ICB_NESTING 1024
1316 
1317 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1318 {
1319 	struct buffer_head *bh = NULL;
1320 	struct fileEntry *fe;
1321 	struct extendedFileEntry *efe;
1322 	uint16_t ident;
1323 	struct udf_inode_info *iinfo = UDF_I(inode);
1324 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1325 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1326 	unsigned int link_count;
1327 	unsigned int indirections = 0;
1328 	int bs = inode->i_sb->s_blocksize;
1329 	int ret = -EIO;
1330 	uint32_t uid, gid;
1331 	struct timespec64 ctime;
1332 
1333 reread:
1334 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1335 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1336 			  iloc->partitionReferenceNum, sbi->s_partitions);
1337 		return -EIO;
1338 	}
1339 
1340 	if (iloc->logicalBlockNum >=
1341 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1342 		udf_debug("block=%u, partition=%u out of range\n",
1343 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1344 		return -EIO;
1345 	}
1346 
1347 	/*
1348 	 * Set defaults, but the inode is still incomplete!
1349 	 * Note: get_new_inode() sets the following on a new inode:
1350 	 *      i_sb = sb
1351 	 *      i_no = ino
1352 	 *      i_flags = sb->s_flags
1353 	 *      i_state = 0
1354 	 * clean_inode(): zero fills and sets
1355 	 *      i_count = 1
1356 	 *      i_nlink = 1
1357 	 *      i_op = NULL;
1358 	 */
1359 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1360 	if (!bh) {
1361 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1362 		return -EIO;
1363 	}
1364 
1365 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1366 	    ident != TAG_IDENT_USE) {
1367 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1368 			inode->i_ino, ident);
1369 		goto out;
1370 	}
1371 
1372 	fe = (struct fileEntry *)bh->b_data;
1373 	efe = (struct extendedFileEntry *)bh->b_data;
1374 
1375 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1376 		struct buffer_head *ibh;
1377 
1378 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1379 		if (ident == TAG_IDENT_IE && ibh) {
1380 			struct kernel_lb_addr loc;
1381 			struct indirectEntry *ie;
1382 
1383 			ie = (struct indirectEntry *)ibh->b_data;
1384 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1385 
1386 			if (ie->indirectICB.extLength) {
1387 				brelse(ibh);
1388 				memcpy(&iinfo->i_location, &loc,
1389 				       sizeof(struct kernel_lb_addr));
1390 				if (++indirections > UDF_MAX_ICB_NESTING) {
1391 					udf_err(inode->i_sb,
1392 						"too many ICBs in ICB hierarchy"
1393 						" (max %d supported)\n",
1394 						UDF_MAX_ICB_NESTING);
1395 					goto out;
1396 				}
1397 				brelse(bh);
1398 				goto reread;
1399 			}
1400 		}
1401 		brelse(ibh);
1402 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1403 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1404 			le16_to_cpu(fe->icbTag.strategyType));
1405 		goto out;
1406 	}
1407 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1408 		iinfo->i_strat4096 = 0;
1409 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1410 		iinfo->i_strat4096 = 1;
1411 
1412 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1413 							ICBTAG_FLAG_AD_MASK;
1414 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1415 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1416 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1417 		ret = -EIO;
1418 		goto out;
1419 	}
1420 	iinfo->i_hidden = hidden_inode;
1421 	iinfo->i_unique = 0;
1422 	iinfo->i_lenEAttr = 0;
1423 	iinfo->i_lenExtents = 0;
1424 	iinfo->i_lenAlloc = 0;
1425 	iinfo->i_next_alloc_block = 0;
1426 	iinfo->i_next_alloc_goal = 0;
1427 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1428 		iinfo->i_efe = 1;
1429 		iinfo->i_use = 0;
1430 		ret = udf_alloc_i_data(inode, bs -
1431 					sizeof(struct extendedFileEntry));
1432 		if (ret)
1433 			goto out;
1434 		memcpy(iinfo->i_data,
1435 		       bh->b_data + sizeof(struct extendedFileEntry),
1436 		       bs - sizeof(struct extendedFileEntry));
1437 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1438 		iinfo->i_efe = 0;
1439 		iinfo->i_use = 0;
1440 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1441 		if (ret)
1442 			goto out;
1443 		memcpy(iinfo->i_data,
1444 		       bh->b_data + sizeof(struct fileEntry),
1445 		       bs - sizeof(struct fileEntry));
1446 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1447 		iinfo->i_efe = 0;
1448 		iinfo->i_use = 1;
1449 		iinfo->i_lenAlloc = le32_to_cpu(
1450 				((struct unallocSpaceEntry *)bh->b_data)->
1451 				 lengthAllocDescs);
1452 		ret = udf_alloc_i_data(inode, bs -
1453 					sizeof(struct unallocSpaceEntry));
1454 		if (ret)
1455 			goto out;
1456 		memcpy(iinfo->i_data,
1457 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1458 		       bs - sizeof(struct unallocSpaceEntry));
1459 		return 0;
1460 	}
1461 
1462 	ret = -EIO;
1463 	read_lock(&sbi->s_cred_lock);
1464 	uid = le32_to_cpu(fe->uid);
1465 	if (uid == UDF_INVALID_ID ||
1466 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1467 		inode->i_uid = sbi->s_uid;
1468 	else
1469 		i_uid_write(inode, uid);
1470 
1471 	gid = le32_to_cpu(fe->gid);
1472 	if (gid == UDF_INVALID_ID ||
1473 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1474 		inode->i_gid = sbi->s_gid;
1475 	else
1476 		i_gid_write(inode, gid);
1477 
1478 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1479 			sbi->s_fmode != UDF_INVALID_MODE)
1480 		inode->i_mode = sbi->s_fmode;
1481 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1482 			sbi->s_dmode != UDF_INVALID_MODE)
1483 		inode->i_mode = sbi->s_dmode;
1484 	else
1485 		inode->i_mode = udf_convert_permissions(fe);
1486 	inode->i_mode &= ~sbi->s_umask;
1487 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1488 
1489 	read_unlock(&sbi->s_cred_lock);
1490 
1491 	link_count = le16_to_cpu(fe->fileLinkCount);
1492 	if (!link_count) {
1493 		if (!hidden_inode) {
1494 			ret = -ESTALE;
1495 			goto out;
1496 		}
1497 		link_count = 1;
1498 	}
1499 	set_nlink(inode, link_count);
1500 
1501 	inode->i_size = le64_to_cpu(fe->informationLength);
1502 	iinfo->i_lenExtents = inode->i_size;
1503 
1504 	if (iinfo->i_efe == 0) {
1505 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1506 			(inode->i_sb->s_blocksize_bits - 9);
1507 
1508 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1509 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1510 		udf_disk_stamp_to_time(&ctime, fe->attrTime);
1511 		inode_set_ctime_to_ts(inode, ctime);
1512 
1513 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1514 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1515 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1516 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1517 		iinfo->i_streamdir = 0;
1518 		iinfo->i_lenStreams = 0;
1519 	} else {
1520 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1521 		    (inode->i_sb->s_blocksize_bits - 9);
1522 
1523 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1524 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1525 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1526 		udf_disk_stamp_to_time(&ctime, efe->attrTime);
1527 		inode_set_ctime_to_ts(inode, ctime);
1528 
1529 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1530 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1531 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1532 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1533 
1534 		/* Named streams */
1535 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1536 		iinfo->i_locStreamdir =
1537 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1538 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1539 		if (iinfo->i_lenStreams >= inode->i_size)
1540 			iinfo->i_lenStreams -= inode->i_size;
1541 		else
1542 			iinfo->i_lenStreams = 0;
1543 	}
1544 	inode->i_generation = iinfo->i_unique;
1545 
1546 	/*
1547 	 * Sanity check length of allocation descriptors and extended attrs to
1548 	 * avoid integer overflows
1549 	 */
1550 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1551 		goto out;
1552 	/* Now do exact checks */
1553 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1554 		goto out;
1555 	/* Sanity checks for files in ICB so that we don't get confused later */
1556 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1557 		/*
1558 		 * For file in ICB data is stored in allocation descriptor
1559 		 * so sizes should match
1560 		 */
1561 		if (iinfo->i_lenAlloc != inode->i_size)
1562 			goto out;
1563 		/* File in ICB has to fit in there... */
1564 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1565 			goto out;
1566 	}
1567 
1568 	switch (fe->icbTag.fileType) {
1569 	case ICBTAG_FILE_TYPE_DIRECTORY:
1570 		inode->i_op = &udf_dir_inode_operations;
1571 		inode->i_fop = &udf_dir_operations;
1572 		inode->i_mode |= S_IFDIR;
1573 		inc_nlink(inode);
1574 		break;
1575 	case ICBTAG_FILE_TYPE_REALTIME:
1576 	case ICBTAG_FILE_TYPE_REGULAR:
1577 	case ICBTAG_FILE_TYPE_UNDEF:
1578 	case ICBTAG_FILE_TYPE_VAT20:
1579 		inode->i_data.a_ops = &udf_aops;
1580 		inode->i_op = &udf_file_inode_operations;
1581 		inode->i_fop = &udf_file_operations;
1582 		inode->i_mode |= S_IFREG;
1583 		break;
1584 	case ICBTAG_FILE_TYPE_BLOCK:
1585 		inode->i_mode |= S_IFBLK;
1586 		break;
1587 	case ICBTAG_FILE_TYPE_CHAR:
1588 		inode->i_mode |= S_IFCHR;
1589 		break;
1590 	case ICBTAG_FILE_TYPE_FIFO:
1591 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1592 		break;
1593 	case ICBTAG_FILE_TYPE_SOCKET:
1594 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1595 		break;
1596 	case ICBTAG_FILE_TYPE_SYMLINK:
1597 		inode->i_data.a_ops = &udf_symlink_aops;
1598 		inode->i_op = &udf_symlink_inode_operations;
1599 		inode_nohighmem(inode);
1600 		inode->i_mode = S_IFLNK | 0777;
1601 		break;
1602 	case ICBTAG_FILE_TYPE_MAIN:
1603 		udf_debug("METADATA FILE-----\n");
1604 		break;
1605 	case ICBTAG_FILE_TYPE_MIRROR:
1606 		udf_debug("METADATA MIRROR FILE-----\n");
1607 		break;
1608 	case ICBTAG_FILE_TYPE_BITMAP:
1609 		udf_debug("METADATA BITMAP FILE-----\n");
1610 		break;
1611 	default:
1612 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1613 			inode->i_ino, fe->icbTag.fileType);
1614 		goto out;
1615 	}
1616 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1617 		struct deviceSpec *dsea =
1618 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1619 		if (dsea) {
1620 			init_special_inode(inode, inode->i_mode,
1621 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1622 				      le32_to_cpu(dsea->minorDeviceIdent)));
1623 			/* Developer ID ??? */
1624 		} else
1625 			goto out;
1626 	}
1627 	ret = 0;
1628 out:
1629 	brelse(bh);
1630 	return ret;
1631 }
1632 
1633 static int udf_alloc_i_data(struct inode *inode, size_t size)
1634 {
1635 	struct udf_inode_info *iinfo = UDF_I(inode);
1636 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1637 	if (!iinfo->i_data)
1638 		return -ENOMEM;
1639 	return 0;
1640 }
1641 
1642 static umode_t udf_convert_permissions(struct fileEntry *fe)
1643 {
1644 	umode_t mode;
1645 	uint32_t permissions;
1646 	uint32_t flags;
1647 
1648 	permissions = le32_to_cpu(fe->permissions);
1649 	flags = le16_to_cpu(fe->icbTag.flags);
1650 
1651 	mode =	((permissions) & 0007) |
1652 		((permissions >> 2) & 0070) |
1653 		((permissions >> 4) & 0700) |
1654 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1655 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1656 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1657 
1658 	return mode;
1659 }
1660 
1661 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1662 {
1663 	struct udf_inode_info *iinfo = UDF_I(inode);
1664 
1665 	/*
1666 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1667 	 * In Unix, delete permission tracks write
1668 	 */
1669 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1670 	if (mode & 0200)
1671 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1672 	if (mode & 0020)
1673 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1674 	if (mode & 0002)
1675 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1676 }
1677 
1678 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1679 {
1680 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1681 }
1682 
1683 static int udf_sync_inode(struct inode *inode)
1684 {
1685 	return udf_update_inode(inode, 1);
1686 }
1687 
1688 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1689 {
1690 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1691 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1692 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1693 		iinfo->i_crtime = time;
1694 }
1695 
1696 static int udf_update_inode(struct inode *inode, int do_sync)
1697 {
1698 	struct buffer_head *bh = NULL;
1699 	struct fileEntry *fe;
1700 	struct extendedFileEntry *efe;
1701 	uint64_t lb_recorded;
1702 	uint32_t udfperms;
1703 	uint16_t icbflags;
1704 	uint16_t crclen;
1705 	int err = 0;
1706 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1707 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1708 	struct udf_inode_info *iinfo = UDF_I(inode);
1709 
1710 	bh = sb_getblk(inode->i_sb,
1711 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1712 	if (!bh) {
1713 		udf_debug("getblk failure\n");
1714 		return -EIO;
1715 	}
1716 
1717 	lock_buffer(bh);
1718 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1719 	fe = (struct fileEntry *)bh->b_data;
1720 	efe = (struct extendedFileEntry *)bh->b_data;
1721 
1722 	if (iinfo->i_use) {
1723 		struct unallocSpaceEntry *use =
1724 			(struct unallocSpaceEntry *)bh->b_data;
1725 
1726 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1727 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1728 		       iinfo->i_data, inode->i_sb->s_blocksize -
1729 					sizeof(struct unallocSpaceEntry));
1730 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1731 		crclen = sizeof(struct unallocSpaceEntry);
1732 
1733 		goto finish;
1734 	}
1735 
1736 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1737 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1738 	else
1739 		fe->uid = cpu_to_le32(i_uid_read(inode));
1740 
1741 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1742 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1743 	else
1744 		fe->gid = cpu_to_le32(i_gid_read(inode));
1745 
1746 	udfperms = ((inode->i_mode & 0007)) |
1747 		   ((inode->i_mode & 0070) << 2) |
1748 		   ((inode->i_mode & 0700) << 4);
1749 
1750 	udfperms |= iinfo->i_extraPerms;
1751 	fe->permissions = cpu_to_le32(udfperms);
1752 
1753 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1754 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1755 	else {
1756 		if (iinfo->i_hidden)
1757 			fe->fileLinkCount = cpu_to_le16(0);
1758 		else
1759 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1760 	}
1761 
1762 	fe->informationLength = cpu_to_le64(inode->i_size);
1763 
1764 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1765 		struct regid *eid;
1766 		struct deviceSpec *dsea =
1767 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1768 		if (!dsea) {
1769 			dsea = (struct deviceSpec *)
1770 				udf_add_extendedattr(inode,
1771 						     sizeof(struct deviceSpec) +
1772 						     sizeof(struct regid), 12, 0x3);
1773 			dsea->attrType = cpu_to_le32(12);
1774 			dsea->attrSubtype = 1;
1775 			dsea->attrLength = cpu_to_le32(
1776 						sizeof(struct deviceSpec) +
1777 						sizeof(struct regid));
1778 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1779 		}
1780 		eid = (struct regid *)dsea->impUse;
1781 		memset(eid, 0, sizeof(*eid));
1782 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1783 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1784 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1785 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1786 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1787 	}
1788 
1789 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1790 		lb_recorded = 0; /* No extents => no blocks! */
1791 	else
1792 		lb_recorded =
1793 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1794 			(blocksize_bits - 9);
1795 
1796 	if (iinfo->i_efe == 0) {
1797 		memcpy(bh->b_data + sizeof(struct fileEntry),
1798 		       iinfo->i_data,
1799 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1800 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801 
1802 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1803 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1804 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1805 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1806 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1807 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1808 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1809 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1810 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1811 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1812 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1813 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1814 		crclen = sizeof(struct fileEntry);
1815 	} else {
1816 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1817 		       iinfo->i_data,
1818 		       inode->i_sb->s_blocksize -
1819 					sizeof(struct extendedFileEntry));
1820 		efe->objectSize =
1821 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1822 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1823 
1824 		if (iinfo->i_streamdir) {
1825 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1826 
1827 			icb_lad->extLocation =
1828 				cpu_to_lelb(iinfo->i_locStreamdir);
1829 			icb_lad->extLength =
1830 				cpu_to_le32(inode->i_sb->s_blocksize);
1831 		}
1832 
1833 		udf_adjust_time(iinfo, inode->i_atime);
1834 		udf_adjust_time(iinfo, inode->i_mtime);
1835 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1836 
1837 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1838 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1839 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1840 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1841 
1842 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1843 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1844 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1845 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1846 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1847 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1848 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1849 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1850 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1851 		crclen = sizeof(struct extendedFileEntry);
1852 	}
1853 
1854 finish:
1855 	if (iinfo->i_strat4096) {
1856 		fe->icbTag.strategyType = cpu_to_le16(4096);
1857 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1858 		fe->icbTag.numEntries = cpu_to_le16(2);
1859 	} else {
1860 		fe->icbTag.strategyType = cpu_to_le16(4);
1861 		fe->icbTag.numEntries = cpu_to_le16(1);
1862 	}
1863 
1864 	if (iinfo->i_use)
1865 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1866 	else if (S_ISDIR(inode->i_mode))
1867 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1868 	else if (S_ISREG(inode->i_mode))
1869 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1870 	else if (S_ISLNK(inode->i_mode))
1871 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1872 	else if (S_ISBLK(inode->i_mode))
1873 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1874 	else if (S_ISCHR(inode->i_mode))
1875 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1876 	else if (S_ISFIFO(inode->i_mode))
1877 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1878 	else if (S_ISSOCK(inode->i_mode))
1879 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1880 
1881 	icbflags =	iinfo->i_alloc_type |
1882 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1883 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1884 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1885 			(le16_to_cpu(fe->icbTag.flags) &
1886 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1887 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1888 
1889 	fe->icbTag.flags = cpu_to_le16(icbflags);
1890 	if (sbi->s_udfrev >= 0x0200)
1891 		fe->descTag.descVersion = cpu_to_le16(3);
1892 	else
1893 		fe->descTag.descVersion = cpu_to_le16(2);
1894 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1895 	fe->descTag.tagLocation = cpu_to_le32(
1896 					iinfo->i_location.logicalBlockNum);
1897 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1898 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1899 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1900 						  crclen));
1901 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1902 
1903 	set_buffer_uptodate(bh);
1904 	unlock_buffer(bh);
1905 
1906 	/* write the data blocks */
1907 	mark_buffer_dirty(bh);
1908 	if (do_sync) {
1909 		sync_dirty_buffer(bh);
1910 		if (buffer_write_io_error(bh)) {
1911 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1912 				 inode->i_ino);
1913 			err = -EIO;
1914 		}
1915 	}
1916 	brelse(bh);
1917 
1918 	return err;
1919 }
1920 
1921 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1922 			 bool hidden_inode)
1923 {
1924 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1925 	struct inode *inode = iget_locked(sb, block);
1926 	int err;
1927 
1928 	if (!inode)
1929 		return ERR_PTR(-ENOMEM);
1930 
1931 	if (!(inode->i_state & I_NEW)) {
1932 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1933 			iput(inode);
1934 			return ERR_PTR(-EFSCORRUPTED);
1935 		}
1936 		return inode;
1937 	}
1938 
1939 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1940 	err = udf_read_inode(inode, hidden_inode);
1941 	if (err < 0) {
1942 		iget_failed(inode);
1943 		return ERR_PTR(err);
1944 	}
1945 	unlock_new_inode(inode);
1946 
1947 	return inode;
1948 }
1949 
1950 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1951 			    struct extent_position *epos)
1952 {
1953 	struct super_block *sb = inode->i_sb;
1954 	struct buffer_head *bh;
1955 	struct allocExtDesc *aed;
1956 	struct extent_position nepos;
1957 	struct kernel_lb_addr neloc;
1958 	int ver, adsize;
1959 
1960 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1961 		adsize = sizeof(struct short_ad);
1962 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1963 		adsize = sizeof(struct long_ad);
1964 	else
1965 		return -EIO;
1966 
1967 	neloc.logicalBlockNum = block;
1968 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1969 
1970 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1971 	if (!bh)
1972 		return -EIO;
1973 	lock_buffer(bh);
1974 	memset(bh->b_data, 0x00, sb->s_blocksize);
1975 	set_buffer_uptodate(bh);
1976 	unlock_buffer(bh);
1977 	mark_buffer_dirty_inode(bh, inode);
1978 
1979 	aed = (struct allocExtDesc *)(bh->b_data);
1980 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1981 		aed->previousAllocExtLocation =
1982 				cpu_to_le32(epos->block.logicalBlockNum);
1983 	}
1984 	aed->lengthAllocDescs = cpu_to_le32(0);
1985 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1986 		ver = 3;
1987 	else
1988 		ver = 2;
1989 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1990 		    sizeof(struct tag));
1991 
1992 	nepos.block = neloc;
1993 	nepos.offset = sizeof(struct allocExtDesc);
1994 	nepos.bh = bh;
1995 
1996 	/*
1997 	 * Do we have to copy current last extent to make space for indirect
1998 	 * one?
1999 	 */
2000 	if (epos->offset + adsize > sb->s_blocksize) {
2001 		struct kernel_lb_addr cp_loc;
2002 		uint32_t cp_len;
2003 		int cp_type;
2004 
2005 		epos->offset -= adsize;
2006 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2007 		cp_len |= ((uint32_t)cp_type) << 30;
2008 
2009 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2010 		udf_write_aext(inode, epos, &nepos.block,
2011 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2012 	} else {
2013 		__udf_add_aext(inode, epos, &nepos.block,
2014 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2015 	}
2016 
2017 	brelse(epos->bh);
2018 	*epos = nepos;
2019 
2020 	return 0;
2021 }
2022 
2023 /*
2024  * Append extent at the given position - should be the first free one in inode
2025  * / indirect extent. This function assumes there is enough space in the inode
2026  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2027  */
2028 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2029 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2030 {
2031 	struct udf_inode_info *iinfo = UDF_I(inode);
2032 	struct allocExtDesc *aed;
2033 	int adsize;
2034 
2035 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2036 		adsize = sizeof(struct short_ad);
2037 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2038 		adsize = sizeof(struct long_ad);
2039 	else
2040 		return -EIO;
2041 
2042 	if (!epos->bh) {
2043 		WARN_ON(iinfo->i_lenAlloc !=
2044 			epos->offset - udf_file_entry_alloc_offset(inode));
2045 	} else {
2046 		aed = (struct allocExtDesc *)epos->bh->b_data;
2047 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2048 			epos->offset - sizeof(struct allocExtDesc));
2049 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2050 	}
2051 
2052 	udf_write_aext(inode, epos, eloc, elen, inc);
2053 
2054 	if (!epos->bh) {
2055 		iinfo->i_lenAlloc += adsize;
2056 		mark_inode_dirty(inode);
2057 	} else {
2058 		aed = (struct allocExtDesc *)epos->bh->b_data;
2059 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2060 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2061 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2062 			udf_update_tag(epos->bh->b_data,
2063 					epos->offset + (inc ? 0 : adsize));
2064 		else
2065 			udf_update_tag(epos->bh->b_data,
2066 					sizeof(struct allocExtDesc));
2067 		mark_buffer_dirty_inode(epos->bh, inode);
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /*
2074  * Append extent at given position - should be the first free one in inode
2075  * / indirect extent. Takes care of allocating and linking indirect blocks.
2076  */
2077 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2078 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2079 {
2080 	int adsize;
2081 	struct super_block *sb = inode->i_sb;
2082 
2083 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2084 		adsize = sizeof(struct short_ad);
2085 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2086 		adsize = sizeof(struct long_ad);
2087 	else
2088 		return -EIO;
2089 
2090 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2091 		int err;
2092 		udf_pblk_t new_block;
2093 
2094 		new_block = udf_new_block(sb, NULL,
2095 					  epos->block.partitionReferenceNum,
2096 					  epos->block.logicalBlockNum, &err);
2097 		if (!new_block)
2098 			return -ENOSPC;
2099 
2100 		err = udf_setup_indirect_aext(inode, new_block, epos);
2101 		if (err)
2102 			return err;
2103 	}
2104 
2105 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2106 }
2107 
2108 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2109 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2110 {
2111 	int adsize;
2112 	uint8_t *ptr;
2113 	struct short_ad *sad;
2114 	struct long_ad *lad;
2115 	struct udf_inode_info *iinfo = UDF_I(inode);
2116 
2117 	if (!epos->bh)
2118 		ptr = iinfo->i_data + epos->offset -
2119 			udf_file_entry_alloc_offset(inode) +
2120 			iinfo->i_lenEAttr;
2121 	else
2122 		ptr = epos->bh->b_data + epos->offset;
2123 
2124 	switch (iinfo->i_alloc_type) {
2125 	case ICBTAG_FLAG_AD_SHORT:
2126 		sad = (struct short_ad *)ptr;
2127 		sad->extLength = cpu_to_le32(elen);
2128 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2129 		adsize = sizeof(struct short_ad);
2130 		break;
2131 	case ICBTAG_FLAG_AD_LONG:
2132 		lad = (struct long_ad *)ptr;
2133 		lad->extLength = cpu_to_le32(elen);
2134 		lad->extLocation = cpu_to_lelb(*eloc);
2135 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2136 		adsize = sizeof(struct long_ad);
2137 		break;
2138 	default:
2139 		return;
2140 	}
2141 
2142 	if (epos->bh) {
2143 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2144 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2145 			struct allocExtDesc *aed =
2146 				(struct allocExtDesc *)epos->bh->b_data;
2147 			udf_update_tag(epos->bh->b_data,
2148 				       le32_to_cpu(aed->lengthAllocDescs) +
2149 				       sizeof(struct allocExtDesc));
2150 		}
2151 		mark_buffer_dirty_inode(epos->bh, inode);
2152 	} else {
2153 		mark_inode_dirty(inode);
2154 	}
2155 
2156 	if (inc)
2157 		epos->offset += adsize;
2158 }
2159 
2160 /*
2161  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2162  * someone does some weird stuff.
2163  */
2164 #define UDF_MAX_INDIR_EXTS 16
2165 
2166 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2167 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2168 {
2169 	int8_t etype;
2170 	unsigned int indirections = 0;
2171 
2172 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2173 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2174 		udf_pblk_t block;
2175 
2176 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2177 			udf_err(inode->i_sb,
2178 				"too many indirect extents in inode %lu\n",
2179 				inode->i_ino);
2180 			return -1;
2181 		}
2182 
2183 		epos->block = *eloc;
2184 		epos->offset = sizeof(struct allocExtDesc);
2185 		brelse(epos->bh);
2186 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2187 		epos->bh = sb_bread(inode->i_sb, block);
2188 		if (!epos->bh) {
2189 			udf_debug("reading block %u failed!\n", block);
2190 			return -1;
2191 		}
2192 	}
2193 
2194 	return etype;
2195 }
2196 
2197 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2198 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2199 {
2200 	int alen;
2201 	int8_t etype;
2202 	uint8_t *ptr;
2203 	struct short_ad *sad;
2204 	struct long_ad *lad;
2205 	struct udf_inode_info *iinfo = UDF_I(inode);
2206 
2207 	if (!epos->bh) {
2208 		if (!epos->offset)
2209 			epos->offset = udf_file_entry_alloc_offset(inode);
2210 		ptr = iinfo->i_data + epos->offset -
2211 			udf_file_entry_alloc_offset(inode) +
2212 			iinfo->i_lenEAttr;
2213 		alen = udf_file_entry_alloc_offset(inode) +
2214 							iinfo->i_lenAlloc;
2215 	} else {
2216 		if (!epos->offset)
2217 			epos->offset = sizeof(struct allocExtDesc);
2218 		ptr = epos->bh->b_data + epos->offset;
2219 		alen = sizeof(struct allocExtDesc) +
2220 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2221 							lengthAllocDescs);
2222 	}
2223 
2224 	switch (iinfo->i_alloc_type) {
2225 	case ICBTAG_FLAG_AD_SHORT:
2226 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2227 		if (!sad)
2228 			return -1;
2229 		etype = le32_to_cpu(sad->extLength) >> 30;
2230 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2231 		eloc->partitionReferenceNum =
2232 				iinfo->i_location.partitionReferenceNum;
2233 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2234 		break;
2235 	case ICBTAG_FLAG_AD_LONG:
2236 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2237 		if (!lad)
2238 			return -1;
2239 		etype = le32_to_cpu(lad->extLength) >> 30;
2240 		*eloc = lelb_to_cpu(lad->extLocation);
2241 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2242 		break;
2243 	default:
2244 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2245 		return -1;
2246 	}
2247 
2248 	return etype;
2249 }
2250 
2251 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2252 			   struct kernel_lb_addr neloc, uint32_t nelen)
2253 {
2254 	struct kernel_lb_addr oeloc;
2255 	uint32_t oelen;
2256 	int8_t etype;
2257 	int err;
2258 
2259 	if (epos.bh)
2260 		get_bh(epos.bh);
2261 
2262 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2263 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2264 		neloc = oeloc;
2265 		nelen = (etype << 30) | oelen;
2266 	}
2267 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2268 	brelse(epos.bh);
2269 
2270 	return err;
2271 }
2272 
2273 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2274 {
2275 	struct extent_position oepos;
2276 	int adsize;
2277 	int8_t etype;
2278 	struct allocExtDesc *aed;
2279 	struct udf_inode_info *iinfo;
2280 	struct kernel_lb_addr eloc;
2281 	uint32_t elen;
2282 
2283 	if (epos.bh) {
2284 		get_bh(epos.bh);
2285 		get_bh(epos.bh);
2286 	}
2287 
2288 	iinfo = UDF_I(inode);
2289 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2290 		adsize = sizeof(struct short_ad);
2291 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2292 		adsize = sizeof(struct long_ad);
2293 	else
2294 		adsize = 0;
2295 
2296 	oepos = epos;
2297 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2298 		return -1;
2299 
2300 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2301 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2302 		if (oepos.bh != epos.bh) {
2303 			oepos.block = epos.block;
2304 			brelse(oepos.bh);
2305 			get_bh(epos.bh);
2306 			oepos.bh = epos.bh;
2307 			oepos.offset = epos.offset - adsize;
2308 		}
2309 	}
2310 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2311 	elen = 0;
2312 
2313 	if (epos.bh != oepos.bh) {
2314 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2315 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2316 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2317 		if (!oepos.bh) {
2318 			iinfo->i_lenAlloc -= (adsize * 2);
2319 			mark_inode_dirty(inode);
2320 		} else {
2321 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2322 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2323 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2324 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2325 				udf_update_tag(oepos.bh->b_data,
2326 						oepos.offset - (2 * adsize));
2327 			else
2328 				udf_update_tag(oepos.bh->b_data,
2329 						sizeof(struct allocExtDesc));
2330 			mark_buffer_dirty_inode(oepos.bh, inode);
2331 		}
2332 	} else {
2333 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2334 		if (!oepos.bh) {
2335 			iinfo->i_lenAlloc -= adsize;
2336 			mark_inode_dirty(inode);
2337 		} else {
2338 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2339 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2340 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2341 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2342 				udf_update_tag(oepos.bh->b_data,
2343 						epos.offset - adsize);
2344 			else
2345 				udf_update_tag(oepos.bh->b_data,
2346 						sizeof(struct allocExtDesc));
2347 			mark_buffer_dirty_inode(oepos.bh, inode);
2348 		}
2349 	}
2350 
2351 	brelse(epos.bh);
2352 	brelse(oepos.bh);
2353 
2354 	return (elen >> 30);
2355 }
2356 
2357 int8_t inode_bmap(struct inode *inode, sector_t block,
2358 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2359 		  uint32_t *elen, sector_t *offset)
2360 {
2361 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2362 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2363 	int8_t etype;
2364 	struct udf_inode_info *iinfo;
2365 
2366 	iinfo = UDF_I(inode);
2367 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2368 		pos->offset = 0;
2369 		pos->block = iinfo->i_location;
2370 		pos->bh = NULL;
2371 	}
2372 	*elen = 0;
2373 	do {
2374 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2375 		if (etype == -1) {
2376 			*offset = (bcount - lbcount) >> blocksize_bits;
2377 			iinfo->i_lenExtents = lbcount;
2378 			return -1;
2379 		}
2380 		lbcount += *elen;
2381 	} while (lbcount <= bcount);
2382 	/* update extent cache */
2383 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2384 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2385 
2386 	return etype;
2387 }
2388