1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_readpage(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 char *kaddr; 215 struct udf_inode_info *iinfo = UDF_I(inode); 216 loff_t isize = i_size_read(inode); 217 218 kaddr = kmap_local_page(page); 219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 220 memset(kaddr + isize, 0, PAGE_SIZE - isize); 221 flush_dcache_page(page); 222 SetPageUptodate(page); 223 kunmap_local(kaddr); 224 } 225 226 static int udf_read_folio(struct file *file, struct folio *folio) 227 { 228 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 229 230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 231 udf_adinicb_readpage(&folio->page); 232 folio_unlock(folio); 233 return 0; 234 } 235 return mpage_read_folio(folio, udf_get_block); 236 } 237 238 static void udf_readahead(struct readahead_control *rac) 239 { 240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 241 242 /* 243 * No readahead needed for in-ICB files and udf_get_block() would get 244 * confused for such file anyway. 245 */ 246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 247 return; 248 249 mpage_readahead(rac, udf_get_block); 250 } 251 252 static int udf_write_begin(struct file *file, struct address_space *mapping, 253 loff_t pos, unsigned len, 254 struct page **pagep, void **fsdata) 255 { 256 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 257 struct page *page; 258 int ret; 259 260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 261 ret = block_write_begin(mapping, pos, len, pagep, 262 udf_get_block); 263 if (unlikely(ret)) 264 udf_write_failed(mapping, pos + len); 265 return ret; 266 } 267 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 268 return -EIO; 269 page = grab_cache_page_write_begin(mapping, 0); 270 if (!page) 271 return -ENOMEM; 272 *pagep = page; 273 if (!PageUptodate(page)) 274 udf_adinicb_readpage(page); 275 return 0; 276 } 277 278 static int udf_write_end(struct file *file, struct address_space *mapping, 279 loff_t pos, unsigned len, unsigned copied, 280 struct page *page, void *fsdata) 281 { 282 struct inode *inode = file_inode(file); 283 loff_t last_pos; 284 285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 286 return generic_write_end(file, mapping, pos, len, copied, page, 287 fsdata); 288 last_pos = pos + copied; 289 if (last_pos > inode->i_size) 290 i_size_write(inode, last_pos); 291 set_page_dirty(page); 292 unlock_page(page); 293 put_page(page); 294 295 return copied; 296 } 297 298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 299 { 300 struct file *file = iocb->ki_filp; 301 struct address_space *mapping = file->f_mapping; 302 struct inode *inode = mapping->host; 303 size_t count = iov_iter_count(iter); 304 ssize_t ret; 305 306 /* Fallback to buffered IO for in-ICB files */ 307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 308 return 0; 309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 311 udf_write_failed(mapping, iocb->ki_pos + count); 312 return ret; 313 } 314 315 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 316 { 317 struct udf_inode_info *iinfo = UDF_I(mapping->host); 318 319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 320 return -EINVAL; 321 return generic_block_bmap(mapping, block, udf_get_block); 322 } 323 324 const struct address_space_operations udf_aops = { 325 .dirty_folio = block_dirty_folio, 326 .invalidate_folio = block_invalidate_folio, 327 .read_folio = udf_read_folio, 328 .readahead = udf_readahead, 329 .writepages = udf_writepages, 330 .write_begin = udf_write_begin, 331 .write_end = udf_write_end, 332 .direct_IO = udf_direct_IO, 333 .bmap = udf_bmap, 334 .migrate_folio = buffer_migrate_folio, 335 }; 336 337 /* 338 * Expand file stored in ICB to a normal one-block-file 339 * 340 * This function requires i_mutex held 341 */ 342 int udf_expand_file_adinicb(struct inode *inode) 343 { 344 struct folio *folio; 345 struct udf_inode_info *iinfo = UDF_I(inode); 346 int err; 347 348 WARN_ON_ONCE(!inode_is_locked(inode)); 349 if (!iinfo->i_lenAlloc) { 350 down_write(&iinfo->i_data_sem); 351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 353 else 354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 355 up_write(&iinfo->i_data_sem); 356 mark_inode_dirty(inode); 357 return 0; 358 } 359 360 folio = __filemap_get_folio(inode->i_mapping, 0, 361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 362 if (IS_ERR(folio)) 363 return PTR_ERR(folio); 364 365 if (!folio_test_uptodate(folio)) 366 udf_adinicb_readpage(&folio->page); 367 down_write(&iinfo->i_data_sem); 368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 369 iinfo->i_lenAlloc); 370 iinfo->i_lenAlloc = 0; 371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 373 else 374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 375 folio_mark_dirty(folio); 376 folio_unlock(folio); 377 up_write(&iinfo->i_data_sem); 378 err = filemap_fdatawrite(inode->i_mapping); 379 if (err) { 380 /* Restore everything back so that we don't lose data... */ 381 folio_lock(folio); 382 down_write(&iinfo->i_data_sem); 383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 384 folio, 0, inode->i_size); 385 folio_unlock(folio); 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 iinfo->i_lenAlloc = inode->i_size; 388 up_write(&iinfo->i_data_sem); 389 } 390 folio_put(folio); 391 mark_inode_dirty(inode); 392 393 return err; 394 } 395 396 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 397 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 398 399 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 400 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 401 402 struct udf_map_rq { 403 sector_t lblk; 404 udf_pblk_t pblk; 405 int iflags; /* UDF_MAP_ flags determining behavior */ 406 int oflags; /* UDF_BLK_ flags reporting results */ 407 }; 408 409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 410 { 411 int err; 412 struct udf_inode_info *iinfo = UDF_I(inode); 413 414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 415 return -EFSCORRUPTED; 416 417 map->oflags = 0; 418 if (!(map->iflags & UDF_MAP_CREATE)) { 419 struct kernel_lb_addr eloc; 420 uint32_t elen; 421 sector_t offset; 422 struct extent_position epos = {}; 423 424 down_read(&iinfo->i_data_sem); 425 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 426 == (EXT_RECORDED_ALLOCATED >> 30)) { 427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 428 offset); 429 map->oflags |= UDF_BLK_MAPPED; 430 } 431 up_read(&iinfo->i_data_sem); 432 brelse(epos.bh); 433 434 return 0; 435 } 436 437 down_write(&iinfo->i_data_sem); 438 /* 439 * Block beyond EOF and prealloc extents? Just discard preallocation 440 * as it is not useful and complicates things. 441 */ 442 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 443 udf_discard_prealloc(inode); 444 udf_clear_extent_cache(inode); 445 err = inode_getblk(inode, map); 446 up_write(&iinfo->i_data_sem); 447 return err; 448 } 449 450 static int __udf_get_block(struct inode *inode, sector_t block, 451 struct buffer_head *bh_result, int flags) 452 { 453 int err; 454 struct udf_map_rq map = { 455 .lblk = block, 456 .iflags = flags, 457 }; 458 459 err = udf_map_block(inode, &map); 460 if (err < 0) 461 return err; 462 if (map.oflags & UDF_BLK_MAPPED) { 463 map_bh(bh_result, inode->i_sb, map.pblk); 464 if (map.oflags & UDF_BLK_NEW) 465 set_buffer_new(bh_result); 466 } 467 return 0; 468 } 469 470 int udf_get_block(struct inode *inode, sector_t block, 471 struct buffer_head *bh_result, int create) 472 { 473 int flags = create ? UDF_MAP_CREATE : 0; 474 475 /* 476 * We preallocate blocks only for regular files. It also makes sense 477 * for directories but there's a problem when to drop the 478 * preallocation. We might use some delayed work for that but I feel 479 * it's overengineering for a filesystem like UDF. 480 */ 481 if (!S_ISREG(inode->i_mode)) 482 flags |= UDF_MAP_NOPREALLOC; 483 return __udf_get_block(inode, block, bh_result, flags); 484 } 485 486 /* 487 * We shouldn't be allocating blocks on page writeback since we allocate them 488 * on page fault. We can spot dirty buffers without allocated blocks though 489 * when truncate expands file. These however don't have valid data so we can 490 * safely ignore them. So never allocate blocks from page writeback. 491 */ 492 static int udf_get_block_wb(struct inode *inode, sector_t block, 493 struct buffer_head *bh_result, int create) 494 { 495 return __udf_get_block(inode, block, bh_result, 0); 496 } 497 498 /* Extend the file with new blocks totaling 'new_block_bytes', 499 * return the number of extents added 500 */ 501 static int udf_do_extend_file(struct inode *inode, 502 struct extent_position *last_pos, 503 struct kernel_long_ad *last_ext, 504 loff_t new_block_bytes) 505 { 506 uint32_t add; 507 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 508 struct super_block *sb = inode->i_sb; 509 struct udf_inode_info *iinfo; 510 int err; 511 512 /* The previous extent is fake and we should not extend by anything 513 * - there's nothing to do... */ 514 if (!new_block_bytes && fake) 515 return 0; 516 517 iinfo = UDF_I(inode); 518 /* Round the last extent up to a multiple of block size */ 519 if (last_ext->extLength & (sb->s_blocksize - 1)) { 520 last_ext->extLength = 521 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 522 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 523 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 524 iinfo->i_lenExtents = 525 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 526 ~(sb->s_blocksize - 1); 527 } 528 529 add = 0; 530 /* Can we merge with the previous extent? */ 531 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 532 EXT_NOT_RECORDED_NOT_ALLOCATED) { 533 add = (1 << 30) - sb->s_blocksize - 534 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 535 if (add > new_block_bytes) 536 add = new_block_bytes; 537 new_block_bytes -= add; 538 last_ext->extLength += add; 539 } 540 541 if (fake) { 542 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 543 last_ext->extLength, 1); 544 if (err < 0) 545 goto out_err; 546 count++; 547 } else { 548 struct kernel_lb_addr tmploc; 549 uint32_t tmplen; 550 551 udf_write_aext(inode, last_pos, &last_ext->extLocation, 552 last_ext->extLength, 1); 553 554 /* 555 * We've rewritten the last extent. If we are going to add 556 * more extents, we may need to enter possible following 557 * empty indirect extent. 558 */ 559 if (new_block_bytes) 560 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 561 } 562 iinfo->i_lenExtents += add; 563 564 /* Managed to do everything necessary? */ 565 if (!new_block_bytes) 566 goto out; 567 568 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 569 last_ext->extLocation.logicalBlockNum = 0; 570 last_ext->extLocation.partitionReferenceNum = 0; 571 add = (1 << 30) - sb->s_blocksize; 572 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 573 574 /* Create enough extents to cover the whole hole */ 575 while (new_block_bytes > add) { 576 new_block_bytes -= add; 577 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 578 last_ext->extLength, 1); 579 if (err) 580 goto out_err; 581 iinfo->i_lenExtents += add; 582 count++; 583 } 584 if (new_block_bytes) { 585 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 586 new_block_bytes; 587 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 588 last_ext->extLength, 1); 589 if (err) 590 goto out_err; 591 iinfo->i_lenExtents += new_block_bytes; 592 count++; 593 } 594 595 out: 596 /* last_pos should point to the last written extent... */ 597 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 598 last_pos->offset -= sizeof(struct short_ad); 599 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 600 last_pos->offset -= sizeof(struct long_ad); 601 else 602 return -EIO; 603 604 return count; 605 out_err: 606 /* Remove extents we've created so far */ 607 udf_clear_extent_cache(inode); 608 udf_truncate_extents(inode); 609 return err; 610 } 611 612 /* Extend the final block of the file to final_block_len bytes */ 613 static void udf_do_extend_final_block(struct inode *inode, 614 struct extent_position *last_pos, 615 struct kernel_long_ad *last_ext, 616 uint32_t new_elen) 617 { 618 uint32_t added_bytes; 619 620 /* 621 * Extent already large enough? It may be already rounded up to block 622 * size... 623 */ 624 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 625 return; 626 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 627 last_ext->extLength += added_bytes; 628 UDF_I(inode)->i_lenExtents += added_bytes; 629 630 udf_write_aext(inode, last_pos, &last_ext->extLocation, 631 last_ext->extLength, 1); 632 } 633 634 static int udf_extend_file(struct inode *inode, loff_t newsize) 635 { 636 637 struct extent_position epos; 638 struct kernel_lb_addr eloc; 639 uint32_t elen; 640 int8_t etype; 641 struct super_block *sb = inode->i_sb; 642 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 643 loff_t new_elen; 644 int adsize; 645 struct udf_inode_info *iinfo = UDF_I(inode); 646 struct kernel_long_ad extent; 647 int err = 0; 648 bool within_last_ext; 649 650 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 651 adsize = sizeof(struct short_ad); 652 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 653 adsize = sizeof(struct long_ad); 654 else 655 BUG(); 656 657 down_write(&iinfo->i_data_sem); 658 /* 659 * When creating hole in file, just don't bother with preserving 660 * preallocation. It likely won't be very useful anyway. 661 */ 662 udf_discard_prealloc(inode); 663 664 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 665 within_last_ext = (etype != -1); 666 /* We don't expect extents past EOF... */ 667 WARN_ON_ONCE(within_last_ext && 668 elen > ((loff_t)offset + 1) << inode->i_blkbits); 669 670 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 671 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 672 /* File has no extents at all or has empty last 673 * indirect extent! Create a fake extent... */ 674 extent.extLocation.logicalBlockNum = 0; 675 extent.extLocation.partitionReferenceNum = 0; 676 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 677 } else { 678 epos.offset -= adsize; 679 etype = udf_next_aext(inode, &epos, &extent.extLocation, 680 &extent.extLength, 0); 681 extent.extLength |= etype << 30; 682 } 683 684 new_elen = ((loff_t)offset << inode->i_blkbits) | 685 (newsize & (sb->s_blocksize - 1)); 686 687 /* File has extent covering the new size (could happen when extending 688 * inside a block)? 689 */ 690 if (within_last_ext) { 691 /* Extending file within the last file block */ 692 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 693 } else { 694 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 695 } 696 697 if (err < 0) 698 goto out; 699 err = 0; 700 out: 701 brelse(epos.bh); 702 up_write(&iinfo->i_data_sem); 703 return err; 704 } 705 706 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 707 { 708 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 709 struct extent_position prev_epos, cur_epos, next_epos; 710 int count = 0, startnum = 0, endnum = 0; 711 uint32_t elen = 0, tmpelen; 712 struct kernel_lb_addr eloc, tmpeloc; 713 int c = 1; 714 loff_t lbcount = 0, b_off = 0; 715 udf_pblk_t newblocknum; 716 sector_t offset = 0; 717 int8_t etype; 718 struct udf_inode_info *iinfo = UDF_I(inode); 719 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 720 int lastblock = 0; 721 bool isBeyondEOF; 722 int ret = 0; 723 724 prev_epos.offset = udf_file_entry_alloc_offset(inode); 725 prev_epos.block = iinfo->i_location; 726 prev_epos.bh = NULL; 727 cur_epos = next_epos = prev_epos; 728 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 729 730 /* find the extent which contains the block we are looking for. 731 alternate between laarr[0] and laarr[1] for locations of the 732 current extent, and the previous extent */ 733 do { 734 if (prev_epos.bh != cur_epos.bh) { 735 brelse(prev_epos.bh); 736 get_bh(cur_epos.bh); 737 prev_epos.bh = cur_epos.bh; 738 } 739 if (cur_epos.bh != next_epos.bh) { 740 brelse(cur_epos.bh); 741 get_bh(next_epos.bh); 742 cur_epos.bh = next_epos.bh; 743 } 744 745 lbcount += elen; 746 747 prev_epos.block = cur_epos.block; 748 cur_epos.block = next_epos.block; 749 750 prev_epos.offset = cur_epos.offset; 751 cur_epos.offset = next_epos.offset; 752 753 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 754 if (etype == -1) 755 break; 756 757 c = !c; 758 759 laarr[c].extLength = (etype << 30) | elen; 760 laarr[c].extLocation = eloc; 761 762 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 763 pgoal = eloc.logicalBlockNum + 764 ((elen + inode->i_sb->s_blocksize - 1) >> 765 inode->i_sb->s_blocksize_bits); 766 767 count++; 768 } while (lbcount + elen <= b_off); 769 770 b_off -= lbcount; 771 offset = b_off >> inode->i_sb->s_blocksize_bits; 772 /* 773 * Move prev_epos and cur_epos into indirect extent if we are at 774 * the pointer to it 775 */ 776 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 777 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 778 779 /* if the extent is allocated and recorded, return the block 780 if the extent is not a multiple of the blocksize, round up */ 781 782 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 783 if (elen & (inode->i_sb->s_blocksize - 1)) { 784 elen = EXT_RECORDED_ALLOCATED | 785 ((elen + inode->i_sb->s_blocksize - 1) & 786 ~(inode->i_sb->s_blocksize - 1)); 787 iinfo->i_lenExtents = 788 ALIGN(iinfo->i_lenExtents, 789 inode->i_sb->s_blocksize); 790 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 791 } 792 map->oflags = UDF_BLK_MAPPED; 793 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 794 goto out_free; 795 } 796 797 /* Are we beyond EOF and preallocated extent? */ 798 if (etype == -1) { 799 loff_t hole_len; 800 801 isBeyondEOF = true; 802 if (count) { 803 if (c) 804 laarr[0] = laarr[1]; 805 startnum = 1; 806 } else { 807 /* Create a fake extent when there's not one */ 808 memset(&laarr[0].extLocation, 0x00, 809 sizeof(struct kernel_lb_addr)); 810 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 811 /* Will udf_do_extend_file() create real extent from 812 a fake one? */ 813 startnum = (offset > 0); 814 } 815 /* Create extents for the hole between EOF and offset */ 816 hole_len = (loff_t)offset << inode->i_blkbits; 817 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 818 if (ret < 0) 819 goto out_free; 820 c = 0; 821 offset = 0; 822 count += ret; 823 /* 824 * Is there any real extent? - otherwise we overwrite the fake 825 * one... 826 */ 827 if (count) 828 c = !c; 829 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 830 inode->i_sb->s_blocksize; 831 memset(&laarr[c].extLocation, 0x00, 832 sizeof(struct kernel_lb_addr)); 833 count++; 834 endnum = c + 1; 835 lastblock = 1; 836 } else { 837 isBeyondEOF = false; 838 endnum = startnum = ((count > 2) ? 2 : count); 839 840 /* if the current extent is in position 0, 841 swap it with the previous */ 842 if (!c && count != 1) { 843 laarr[2] = laarr[0]; 844 laarr[0] = laarr[1]; 845 laarr[1] = laarr[2]; 846 c = 1; 847 } 848 849 /* if the current block is located in an extent, 850 read the next extent */ 851 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 852 if (etype != -1) { 853 laarr[c + 1].extLength = (etype << 30) | elen; 854 laarr[c + 1].extLocation = eloc; 855 count++; 856 startnum++; 857 endnum++; 858 } else 859 lastblock = 1; 860 } 861 862 /* if the current extent is not recorded but allocated, get the 863 * block in the extent corresponding to the requested block */ 864 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 865 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 866 else { /* otherwise, allocate a new block */ 867 if (iinfo->i_next_alloc_block == map->lblk) 868 goal = iinfo->i_next_alloc_goal; 869 870 if (!goal) { 871 if (!(goal = pgoal)) /* XXX: what was intended here? */ 872 goal = iinfo->i_location.logicalBlockNum + 1; 873 } 874 875 newblocknum = udf_new_block(inode->i_sb, inode, 876 iinfo->i_location.partitionReferenceNum, 877 goal, &ret); 878 if (!newblocknum) 879 goto out_free; 880 if (isBeyondEOF) 881 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 882 } 883 884 /* if the extent the requsted block is located in contains multiple 885 * blocks, split the extent into at most three extents. blocks prior 886 * to requested block, requested block, and blocks after requested 887 * block */ 888 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 889 890 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 891 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 892 893 /* merge any continuous blocks in laarr */ 894 udf_merge_extents(inode, laarr, &endnum); 895 896 /* write back the new extents, inserting new extents if the new number 897 * of extents is greater than the old number, and deleting extents if 898 * the new number of extents is less than the old number */ 899 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 900 if (ret < 0) 901 goto out_free; 902 903 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 904 iinfo->i_location.partitionReferenceNum, 0); 905 if (!map->pblk) { 906 ret = -EFSCORRUPTED; 907 goto out_free; 908 } 909 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 910 iinfo->i_next_alloc_block = map->lblk + 1; 911 iinfo->i_next_alloc_goal = newblocknum + 1; 912 inode_set_ctime_current(inode); 913 914 if (IS_SYNC(inode)) 915 udf_sync_inode(inode); 916 else 917 mark_inode_dirty(inode); 918 ret = 0; 919 out_free: 920 brelse(prev_epos.bh); 921 brelse(cur_epos.bh); 922 brelse(next_epos.bh); 923 return ret; 924 } 925 926 static void udf_split_extents(struct inode *inode, int *c, int offset, 927 udf_pblk_t newblocknum, 928 struct kernel_long_ad *laarr, int *endnum) 929 { 930 unsigned long blocksize = inode->i_sb->s_blocksize; 931 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 932 933 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 934 (laarr[*c].extLength >> 30) == 935 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 936 int curr = *c; 937 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 938 blocksize - 1) >> blocksize_bits; 939 int8_t etype = (laarr[curr].extLength >> 30); 940 941 if (blen == 1) 942 ; 943 else if (!offset || blen == offset + 1) { 944 laarr[curr + 2] = laarr[curr + 1]; 945 laarr[curr + 1] = laarr[curr]; 946 } else { 947 laarr[curr + 3] = laarr[curr + 1]; 948 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 949 } 950 951 if (offset) { 952 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 953 udf_free_blocks(inode->i_sb, inode, 954 &laarr[curr].extLocation, 955 0, offset); 956 laarr[curr].extLength = 957 EXT_NOT_RECORDED_NOT_ALLOCATED | 958 (offset << blocksize_bits); 959 laarr[curr].extLocation.logicalBlockNum = 0; 960 laarr[curr].extLocation. 961 partitionReferenceNum = 0; 962 } else 963 laarr[curr].extLength = (etype << 30) | 964 (offset << blocksize_bits); 965 curr++; 966 (*c)++; 967 (*endnum)++; 968 } 969 970 laarr[curr].extLocation.logicalBlockNum = newblocknum; 971 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 972 laarr[curr].extLocation.partitionReferenceNum = 973 UDF_I(inode)->i_location.partitionReferenceNum; 974 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 975 blocksize; 976 curr++; 977 978 if (blen != offset + 1) { 979 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 980 laarr[curr].extLocation.logicalBlockNum += 981 offset + 1; 982 laarr[curr].extLength = (etype << 30) | 983 ((blen - (offset + 1)) << blocksize_bits); 984 curr++; 985 (*endnum)++; 986 } 987 } 988 } 989 990 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 991 struct kernel_long_ad *laarr, 992 int *endnum) 993 { 994 int start, length = 0, currlength = 0, i; 995 996 if (*endnum >= (c + 1)) { 997 if (!lastblock) 998 return; 999 else 1000 start = c; 1001 } else { 1002 if ((laarr[c + 1].extLength >> 30) == 1003 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1004 start = c + 1; 1005 length = currlength = 1006 (((laarr[c + 1].extLength & 1007 UDF_EXTENT_LENGTH_MASK) + 1008 inode->i_sb->s_blocksize - 1) >> 1009 inode->i_sb->s_blocksize_bits); 1010 } else 1011 start = c; 1012 } 1013 1014 for (i = start + 1; i <= *endnum; i++) { 1015 if (i == *endnum) { 1016 if (lastblock) 1017 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1018 } else if ((laarr[i].extLength >> 30) == 1019 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1020 length += (((laarr[i].extLength & 1021 UDF_EXTENT_LENGTH_MASK) + 1022 inode->i_sb->s_blocksize - 1) >> 1023 inode->i_sb->s_blocksize_bits); 1024 } else 1025 break; 1026 } 1027 1028 if (length) { 1029 int next = laarr[start].extLocation.logicalBlockNum + 1030 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1031 inode->i_sb->s_blocksize - 1) >> 1032 inode->i_sb->s_blocksize_bits); 1033 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1034 laarr[start].extLocation.partitionReferenceNum, 1035 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1036 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1037 currlength); 1038 if (numalloc) { 1039 if (start == (c + 1)) 1040 laarr[start].extLength += 1041 (numalloc << 1042 inode->i_sb->s_blocksize_bits); 1043 else { 1044 memmove(&laarr[c + 2], &laarr[c + 1], 1045 sizeof(struct long_ad) * (*endnum - (c + 1))); 1046 (*endnum)++; 1047 laarr[c + 1].extLocation.logicalBlockNum = next; 1048 laarr[c + 1].extLocation.partitionReferenceNum = 1049 laarr[c].extLocation. 1050 partitionReferenceNum; 1051 laarr[c + 1].extLength = 1052 EXT_NOT_RECORDED_ALLOCATED | 1053 (numalloc << 1054 inode->i_sb->s_blocksize_bits); 1055 start = c + 1; 1056 } 1057 1058 for (i = start + 1; numalloc && i < *endnum; i++) { 1059 int elen = ((laarr[i].extLength & 1060 UDF_EXTENT_LENGTH_MASK) + 1061 inode->i_sb->s_blocksize - 1) >> 1062 inode->i_sb->s_blocksize_bits; 1063 1064 if (elen > numalloc) { 1065 laarr[i].extLength -= 1066 (numalloc << 1067 inode->i_sb->s_blocksize_bits); 1068 numalloc = 0; 1069 } else { 1070 numalloc -= elen; 1071 if (*endnum > (i + 1)) 1072 memmove(&laarr[i], 1073 &laarr[i + 1], 1074 sizeof(struct long_ad) * 1075 (*endnum - (i + 1))); 1076 i--; 1077 (*endnum)--; 1078 } 1079 } 1080 UDF_I(inode)->i_lenExtents += 1081 numalloc << inode->i_sb->s_blocksize_bits; 1082 } 1083 } 1084 } 1085 1086 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1087 int *endnum) 1088 { 1089 int i; 1090 unsigned long blocksize = inode->i_sb->s_blocksize; 1091 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1092 1093 for (i = 0; i < (*endnum - 1); i++) { 1094 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1095 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1096 1097 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1098 (((li->extLength >> 30) == 1099 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1100 ((lip1->extLocation.logicalBlockNum - 1101 li->extLocation.logicalBlockNum) == 1102 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1103 blocksize - 1) >> blocksize_bits)))) { 1104 1105 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1106 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1107 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1108 li->extLength = lip1->extLength + 1109 (((li->extLength & 1110 UDF_EXTENT_LENGTH_MASK) + 1111 blocksize - 1) & ~(blocksize - 1)); 1112 if (*endnum > (i + 2)) 1113 memmove(&laarr[i + 1], &laarr[i + 2], 1114 sizeof(struct long_ad) * 1115 (*endnum - (i + 2))); 1116 i--; 1117 (*endnum)--; 1118 } 1119 } else if (((li->extLength >> 30) == 1120 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1121 ((lip1->extLength >> 30) == 1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1123 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1124 ((li->extLength & 1125 UDF_EXTENT_LENGTH_MASK) + 1126 blocksize - 1) >> blocksize_bits); 1127 li->extLocation.logicalBlockNum = 0; 1128 li->extLocation.partitionReferenceNum = 0; 1129 1130 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1131 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1132 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1133 lip1->extLength = (lip1->extLength - 1134 (li->extLength & 1135 UDF_EXTENT_LENGTH_MASK) + 1136 UDF_EXTENT_LENGTH_MASK) & 1137 ~(blocksize - 1); 1138 li->extLength = (li->extLength & 1139 UDF_EXTENT_FLAG_MASK) + 1140 (UDF_EXTENT_LENGTH_MASK + 1) - 1141 blocksize; 1142 } else { 1143 li->extLength = lip1->extLength + 1144 (((li->extLength & 1145 UDF_EXTENT_LENGTH_MASK) + 1146 blocksize - 1) & ~(blocksize - 1)); 1147 if (*endnum > (i + 2)) 1148 memmove(&laarr[i + 1], &laarr[i + 2], 1149 sizeof(struct long_ad) * 1150 (*endnum - (i + 2))); 1151 i--; 1152 (*endnum)--; 1153 } 1154 } else if ((li->extLength >> 30) == 1155 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1156 udf_free_blocks(inode->i_sb, inode, 1157 &li->extLocation, 0, 1158 ((li->extLength & 1159 UDF_EXTENT_LENGTH_MASK) + 1160 blocksize - 1) >> blocksize_bits); 1161 li->extLocation.logicalBlockNum = 0; 1162 li->extLocation.partitionReferenceNum = 0; 1163 li->extLength = (li->extLength & 1164 UDF_EXTENT_LENGTH_MASK) | 1165 EXT_NOT_RECORDED_NOT_ALLOCATED; 1166 } 1167 } 1168 } 1169 1170 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1171 int startnum, int endnum, 1172 struct extent_position *epos) 1173 { 1174 int start = 0, i; 1175 struct kernel_lb_addr tmploc; 1176 uint32_t tmplen; 1177 int err; 1178 1179 if (startnum > endnum) { 1180 for (i = 0; i < (startnum - endnum); i++) 1181 udf_delete_aext(inode, *epos); 1182 } else if (startnum < endnum) { 1183 for (i = 0; i < (endnum - startnum); i++) { 1184 err = udf_insert_aext(inode, *epos, 1185 laarr[i].extLocation, 1186 laarr[i].extLength); 1187 /* 1188 * If we fail here, we are likely corrupting the extent 1189 * list and leaking blocks. At least stop early to 1190 * limit the damage. 1191 */ 1192 if (err < 0) 1193 return err; 1194 udf_next_aext(inode, epos, &laarr[i].extLocation, 1195 &laarr[i].extLength, 1); 1196 start++; 1197 } 1198 } 1199 1200 for (i = start; i < endnum; i++) { 1201 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1202 udf_write_aext(inode, epos, &laarr[i].extLocation, 1203 laarr[i].extLength, 1); 1204 } 1205 return 0; 1206 } 1207 1208 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1209 int create, int *err) 1210 { 1211 struct buffer_head *bh = NULL; 1212 struct udf_map_rq map = { 1213 .lblk = block, 1214 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1215 }; 1216 1217 *err = udf_map_block(inode, &map); 1218 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1219 return NULL; 1220 1221 bh = sb_getblk(inode->i_sb, map.pblk); 1222 if (!bh) { 1223 *err = -ENOMEM; 1224 return NULL; 1225 } 1226 if (map.oflags & UDF_BLK_NEW) { 1227 lock_buffer(bh); 1228 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1229 set_buffer_uptodate(bh); 1230 unlock_buffer(bh); 1231 mark_buffer_dirty_inode(bh, inode); 1232 return bh; 1233 } 1234 1235 if (bh_read(bh, 0) >= 0) 1236 return bh; 1237 1238 brelse(bh); 1239 *err = -EIO; 1240 return NULL; 1241 } 1242 1243 int udf_setsize(struct inode *inode, loff_t newsize) 1244 { 1245 int err = 0; 1246 struct udf_inode_info *iinfo; 1247 unsigned int bsize = i_blocksize(inode); 1248 1249 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1250 S_ISLNK(inode->i_mode))) 1251 return -EINVAL; 1252 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1253 return -EPERM; 1254 1255 filemap_invalidate_lock(inode->i_mapping); 1256 iinfo = UDF_I(inode); 1257 if (newsize > inode->i_size) { 1258 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1259 if (bsize >= 1260 (udf_file_entry_alloc_offset(inode) + newsize)) { 1261 down_write(&iinfo->i_data_sem); 1262 iinfo->i_lenAlloc = newsize; 1263 up_write(&iinfo->i_data_sem); 1264 goto set_size; 1265 } 1266 err = udf_expand_file_adinicb(inode); 1267 if (err) 1268 goto out_unlock; 1269 } 1270 err = udf_extend_file(inode, newsize); 1271 if (err) 1272 goto out_unlock; 1273 set_size: 1274 truncate_setsize(inode, newsize); 1275 } else { 1276 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1277 down_write(&iinfo->i_data_sem); 1278 udf_clear_extent_cache(inode); 1279 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1280 0x00, bsize - newsize - 1281 udf_file_entry_alloc_offset(inode)); 1282 iinfo->i_lenAlloc = newsize; 1283 truncate_setsize(inode, newsize); 1284 up_write(&iinfo->i_data_sem); 1285 goto update_time; 1286 } 1287 err = block_truncate_page(inode->i_mapping, newsize, 1288 udf_get_block); 1289 if (err) 1290 goto out_unlock; 1291 truncate_setsize(inode, newsize); 1292 down_write(&iinfo->i_data_sem); 1293 udf_clear_extent_cache(inode); 1294 err = udf_truncate_extents(inode); 1295 up_write(&iinfo->i_data_sem); 1296 if (err) 1297 goto out_unlock; 1298 } 1299 update_time: 1300 inode->i_mtime = inode_set_ctime_current(inode); 1301 if (IS_SYNC(inode)) 1302 udf_sync_inode(inode); 1303 else 1304 mark_inode_dirty(inode); 1305 out_unlock: 1306 filemap_invalidate_unlock(inode->i_mapping); 1307 return err; 1308 } 1309 1310 /* 1311 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1312 * arbitrary - just that we hopefully don't limit any real use of rewritten 1313 * inode on write-once media but avoid looping for too long on corrupted media. 1314 */ 1315 #define UDF_MAX_ICB_NESTING 1024 1316 1317 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1318 { 1319 struct buffer_head *bh = NULL; 1320 struct fileEntry *fe; 1321 struct extendedFileEntry *efe; 1322 uint16_t ident; 1323 struct udf_inode_info *iinfo = UDF_I(inode); 1324 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1325 struct kernel_lb_addr *iloc = &iinfo->i_location; 1326 unsigned int link_count; 1327 unsigned int indirections = 0; 1328 int bs = inode->i_sb->s_blocksize; 1329 int ret = -EIO; 1330 uint32_t uid, gid; 1331 struct timespec64 ctime; 1332 1333 reread: 1334 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1335 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1336 iloc->partitionReferenceNum, sbi->s_partitions); 1337 return -EIO; 1338 } 1339 1340 if (iloc->logicalBlockNum >= 1341 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1342 udf_debug("block=%u, partition=%u out of range\n", 1343 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1344 return -EIO; 1345 } 1346 1347 /* 1348 * Set defaults, but the inode is still incomplete! 1349 * Note: get_new_inode() sets the following on a new inode: 1350 * i_sb = sb 1351 * i_no = ino 1352 * i_flags = sb->s_flags 1353 * i_state = 0 1354 * clean_inode(): zero fills and sets 1355 * i_count = 1 1356 * i_nlink = 1 1357 * i_op = NULL; 1358 */ 1359 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1360 if (!bh) { 1361 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1362 return -EIO; 1363 } 1364 1365 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1366 ident != TAG_IDENT_USE) { 1367 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1368 inode->i_ino, ident); 1369 goto out; 1370 } 1371 1372 fe = (struct fileEntry *)bh->b_data; 1373 efe = (struct extendedFileEntry *)bh->b_data; 1374 1375 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1376 struct buffer_head *ibh; 1377 1378 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1379 if (ident == TAG_IDENT_IE && ibh) { 1380 struct kernel_lb_addr loc; 1381 struct indirectEntry *ie; 1382 1383 ie = (struct indirectEntry *)ibh->b_data; 1384 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1385 1386 if (ie->indirectICB.extLength) { 1387 brelse(ibh); 1388 memcpy(&iinfo->i_location, &loc, 1389 sizeof(struct kernel_lb_addr)); 1390 if (++indirections > UDF_MAX_ICB_NESTING) { 1391 udf_err(inode->i_sb, 1392 "too many ICBs in ICB hierarchy" 1393 " (max %d supported)\n", 1394 UDF_MAX_ICB_NESTING); 1395 goto out; 1396 } 1397 brelse(bh); 1398 goto reread; 1399 } 1400 } 1401 brelse(ibh); 1402 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1403 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1404 le16_to_cpu(fe->icbTag.strategyType)); 1405 goto out; 1406 } 1407 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1408 iinfo->i_strat4096 = 0; 1409 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1410 iinfo->i_strat4096 = 1; 1411 1412 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1413 ICBTAG_FLAG_AD_MASK; 1414 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1415 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1416 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1417 ret = -EIO; 1418 goto out; 1419 } 1420 iinfo->i_hidden = hidden_inode; 1421 iinfo->i_unique = 0; 1422 iinfo->i_lenEAttr = 0; 1423 iinfo->i_lenExtents = 0; 1424 iinfo->i_lenAlloc = 0; 1425 iinfo->i_next_alloc_block = 0; 1426 iinfo->i_next_alloc_goal = 0; 1427 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1428 iinfo->i_efe = 1; 1429 iinfo->i_use = 0; 1430 ret = udf_alloc_i_data(inode, bs - 1431 sizeof(struct extendedFileEntry)); 1432 if (ret) 1433 goto out; 1434 memcpy(iinfo->i_data, 1435 bh->b_data + sizeof(struct extendedFileEntry), 1436 bs - sizeof(struct extendedFileEntry)); 1437 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1438 iinfo->i_efe = 0; 1439 iinfo->i_use = 0; 1440 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1441 if (ret) 1442 goto out; 1443 memcpy(iinfo->i_data, 1444 bh->b_data + sizeof(struct fileEntry), 1445 bs - sizeof(struct fileEntry)); 1446 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1447 iinfo->i_efe = 0; 1448 iinfo->i_use = 1; 1449 iinfo->i_lenAlloc = le32_to_cpu( 1450 ((struct unallocSpaceEntry *)bh->b_data)-> 1451 lengthAllocDescs); 1452 ret = udf_alloc_i_data(inode, bs - 1453 sizeof(struct unallocSpaceEntry)); 1454 if (ret) 1455 goto out; 1456 memcpy(iinfo->i_data, 1457 bh->b_data + sizeof(struct unallocSpaceEntry), 1458 bs - sizeof(struct unallocSpaceEntry)); 1459 return 0; 1460 } 1461 1462 ret = -EIO; 1463 read_lock(&sbi->s_cred_lock); 1464 uid = le32_to_cpu(fe->uid); 1465 if (uid == UDF_INVALID_ID || 1466 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1467 inode->i_uid = sbi->s_uid; 1468 else 1469 i_uid_write(inode, uid); 1470 1471 gid = le32_to_cpu(fe->gid); 1472 if (gid == UDF_INVALID_ID || 1473 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1474 inode->i_gid = sbi->s_gid; 1475 else 1476 i_gid_write(inode, gid); 1477 1478 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1479 sbi->s_fmode != UDF_INVALID_MODE) 1480 inode->i_mode = sbi->s_fmode; 1481 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1482 sbi->s_dmode != UDF_INVALID_MODE) 1483 inode->i_mode = sbi->s_dmode; 1484 else 1485 inode->i_mode = udf_convert_permissions(fe); 1486 inode->i_mode &= ~sbi->s_umask; 1487 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1488 1489 read_unlock(&sbi->s_cred_lock); 1490 1491 link_count = le16_to_cpu(fe->fileLinkCount); 1492 if (!link_count) { 1493 if (!hidden_inode) { 1494 ret = -ESTALE; 1495 goto out; 1496 } 1497 link_count = 1; 1498 } 1499 set_nlink(inode, link_count); 1500 1501 inode->i_size = le64_to_cpu(fe->informationLength); 1502 iinfo->i_lenExtents = inode->i_size; 1503 1504 if (iinfo->i_efe == 0) { 1505 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1506 (inode->i_sb->s_blocksize_bits - 9); 1507 1508 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1509 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1510 udf_disk_stamp_to_time(&ctime, fe->attrTime); 1511 inode_set_ctime_to_ts(inode, ctime); 1512 1513 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1514 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1515 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1516 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1517 iinfo->i_streamdir = 0; 1518 iinfo->i_lenStreams = 0; 1519 } else { 1520 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1521 (inode->i_sb->s_blocksize_bits - 9); 1522 1523 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1524 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1525 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1526 udf_disk_stamp_to_time(&ctime, efe->attrTime); 1527 inode_set_ctime_to_ts(inode, ctime); 1528 1529 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1530 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1531 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1532 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1533 1534 /* Named streams */ 1535 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1536 iinfo->i_locStreamdir = 1537 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1538 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1539 if (iinfo->i_lenStreams >= inode->i_size) 1540 iinfo->i_lenStreams -= inode->i_size; 1541 else 1542 iinfo->i_lenStreams = 0; 1543 } 1544 inode->i_generation = iinfo->i_unique; 1545 1546 /* 1547 * Sanity check length of allocation descriptors and extended attrs to 1548 * avoid integer overflows 1549 */ 1550 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1551 goto out; 1552 /* Now do exact checks */ 1553 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1554 goto out; 1555 /* Sanity checks for files in ICB so that we don't get confused later */ 1556 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1557 /* 1558 * For file in ICB data is stored in allocation descriptor 1559 * so sizes should match 1560 */ 1561 if (iinfo->i_lenAlloc != inode->i_size) 1562 goto out; 1563 /* File in ICB has to fit in there... */ 1564 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1565 goto out; 1566 } 1567 1568 switch (fe->icbTag.fileType) { 1569 case ICBTAG_FILE_TYPE_DIRECTORY: 1570 inode->i_op = &udf_dir_inode_operations; 1571 inode->i_fop = &udf_dir_operations; 1572 inode->i_mode |= S_IFDIR; 1573 inc_nlink(inode); 1574 break; 1575 case ICBTAG_FILE_TYPE_REALTIME: 1576 case ICBTAG_FILE_TYPE_REGULAR: 1577 case ICBTAG_FILE_TYPE_UNDEF: 1578 case ICBTAG_FILE_TYPE_VAT20: 1579 inode->i_data.a_ops = &udf_aops; 1580 inode->i_op = &udf_file_inode_operations; 1581 inode->i_fop = &udf_file_operations; 1582 inode->i_mode |= S_IFREG; 1583 break; 1584 case ICBTAG_FILE_TYPE_BLOCK: 1585 inode->i_mode |= S_IFBLK; 1586 break; 1587 case ICBTAG_FILE_TYPE_CHAR: 1588 inode->i_mode |= S_IFCHR; 1589 break; 1590 case ICBTAG_FILE_TYPE_FIFO: 1591 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1592 break; 1593 case ICBTAG_FILE_TYPE_SOCKET: 1594 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1595 break; 1596 case ICBTAG_FILE_TYPE_SYMLINK: 1597 inode->i_data.a_ops = &udf_symlink_aops; 1598 inode->i_op = &udf_symlink_inode_operations; 1599 inode_nohighmem(inode); 1600 inode->i_mode = S_IFLNK | 0777; 1601 break; 1602 case ICBTAG_FILE_TYPE_MAIN: 1603 udf_debug("METADATA FILE-----\n"); 1604 break; 1605 case ICBTAG_FILE_TYPE_MIRROR: 1606 udf_debug("METADATA MIRROR FILE-----\n"); 1607 break; 1608 case ICBTAG_FILE_TYPE_BITMAP: 1609 udf_debug("METADATA BITMAP FILE-----\n"); 1610 break; 1611 default: 1612 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1613 inode->i_ino, fe->icbTag.fileType); 1614 goto out; 1615 } 1616 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1617 struct deviceSpec *dsea = 1618 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1619 if (dsea) { 1620 init_special_inode(inode, inode->i_mode, 1621 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1622 le32_to_cpu(dsea->minorDeviceIdent))); 1623 /* Developer ID ??? */ 1624 } else 1625 goto out; 1626 } 1627 ret = 0; 1628 out: 1629 brelse(bh); 1630 return ret; 1631 } 1632 1633 static int udf_alloc_i_data(struct inode *inode, size_t size) 1634 { 1635 struct udf_inode_info *iinfo = UDF_I(inode); 1636 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1637 if (!iinfo->i_data) 1638 return -ENOMEM; 1639 return 0; 1640 } 1641 1642 static umode_t udf_convert_permissions(struct fileEntry *fe) 1643 { 1644 umode_t mode; 1645 uint32_t permissions; 1646 uint32_t flags; 1647 1648 permissions = le32_to_cpu(fe->permissions); 1649 flags = le16_to_cpu(fe->icbTag.flags); 1650 1651 mode = ((permissions) & 0007) | 1652 ((permissions >> 2) & 0070) | 1653 ((permissions >> 4) & 0700) | 1654 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1655 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1656 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1657 1658 return mode; 1659 } 1660 1661 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1662 { 1663 struct udf_inode_info *iinfo = UDF_I(inode); 1664 1665 /* 1666 * UDF 2.01 sec. 3.3.3.3 Note 2: 1667 * In Unix, delete permission tracks write 1668 */ 1669 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1670 if (mode & 0200) 1671 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1672 if (mode & 0020) 1673 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1674 if (mode & 0002) 1675 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1676 } 1677 1678 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1679 { 1680 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1681 } 1682 1683 static int udf_sync_inode(struct inode *inode) 1684 { 1685 return udf_update_inode(inode, 1); 1686 } 1687 1688 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1689 { 1690 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1691 (iinfo->i_crtime.tv_sec == time.tv_sec && 1692 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1693 iinfo->i_crtime = time; 1694 } 1695 1696 static int udf_update_inode(struct inode *inode, int do_sync) 1697 { 1698 struct buffer_head *bh = NULL; 1699 struct fileEntry *fe; 1700 struct extendedFileEntry *efe; 1701 uint64_t lb_recorded; 1702 uint32_t udfperms; 1703 uint16_t icbflags; 1704 uint16_t crclen; 1705 int err = 0; 1706 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1707 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1708 struct udf_inode_info *iinfo = UDF_I(inode); 1709 1710 bh = sb_getblk(inode->i_sb, 1711 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1712 if (!bh) { 1713 udf_debug("getblk failure\n"); 1714 return -EIO; 1715 } 1716 1717 lock_buffer(bh); 1718 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1719 fe = (struct fileEntry *)bh->b_data; 1720 efe = (struct extendedFileEntry *)bh->b_data; 1721 1722 if (iinfo->i_use) { 1723 struct unallocSpaceEntry *use = 1724 (struct unallocSpaceEntry *)bh->b_data; 1725 1726 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1727 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1728 iinfo->i_data, inode->i_sb->s_blocksize - 1729 sizeof(struct unallocSpaceEntry)); 1730 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1731 crclen = sizeof(struct unallocSpaceEntry); 1732 1733 goto finish; 1734 } 1735 1736 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1737 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1738 else 1739 fe->uid = cpu_to_le32(i_uid_read(inode)); 1740 1741 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1742 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1743 else 1744 fe->gid = cpu_to_le32(i_gid_read(inode)); 1745 1746 udfperms = ((inode->i_mode & 0007)) | 1747 ((inode->i_mode & 0070) << 2) | 1748 ((inode->i_mode & 0700) << 4); 1749 1750 udfperms |= iinfo->i_extraPerms; 1751 fe->permissions = cpu_to_le32(udfperms); 1752 1753 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1754 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1755 else { 1756 if (iinfo->i_hidden) 1757 fe->fileLinkCount = cpu_to_le16(0); 1758 else 1759 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1760 } 1761 1762 fe->informationLength = cpu_to_le64(inode->i_size); 1763 1764 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1765 struct regid *eid; 1766 struct deviceSpec *dsea = 1767 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1768 if (!dsea) { 1769 dsea = (struct deviceSpec *) 1770 udf_add_extendedattr(inode, 1771 sizeof(struct deviceSpec) + 1772 sizeof(struct regid), 12, 0x3); 1773 dsea->attrType = cpu_to_le32(12); 1774 dsea->attrSubtype = 1; 1775 dsea->attrLength = cpu_to_le32( 1776 sizeof(struct deviceSpec) + 1777 sizeof(struct regid)); 1778 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1779 } 1780 eid = (struct regid *)dsea->impUse; 1781 memset(eid, 0, sizeof(*eid)); 1782 strcpy(eid->ident, UDF_ID_DEVELOPER); 1783 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1784 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1785 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1786 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1787 } 1788 1789 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1790 lb_recorded = 0; /* No extents => no blocks! */ 1791 else 1792 lb_recorded = 1793 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1794 (blocksize_bits - 9); 1795 1796 if (iinfo->i_efe == 0) { 1797 memcpy(bh->b_data + sizeof(struct fileEntry), 1798 iinfo->i_data, 1799 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1800 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1801 1802 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1803 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1804 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1805 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1806 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1807 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1808 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1809 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1810 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1811 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1812 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1813 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1814 crclen = sizeof(struct fileEntry); 1815 } else { 1816 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1817 iinfo->i_data, 1818 inode->i_sb->s_blocksize - 1819 sizeof(struct extendedFileEntry)); 1820 efe->objectSize = 1821 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1822 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1823 1824 if (iinfo->i_streamdir) { 1825 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1826 1827 icb_lad->extLocation = 1828 cpu_to_lelb(iinfo->i_locStreamdir); 1829 icb_lad->extLength = 1830 cpu_to_le32(inode->i_sb->s_blocksize); 1831 } 1832 1833 udf_adjust_time(iinfo, inode->i_atime); 1834 udf_adjust_time(iinfo, inode->i_mtime); 1835 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1836 1837 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1838 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1839 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1840 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1841 1842 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1843 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1844 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1845 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1846 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1847 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1848 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1849 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1850 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1851 crclen = sizeof(struct extendedFileEntry); 1852 } 1853 1854 finish: 1855 if (iinfo->i_strat4096) { 1856 fe->icbTag.strategyType = cpu_to_le16(4096); 1857 fe->icbTag.strategyParameter = cpu_to_le16(1); 1858 fe->icbTag.numEntries = cpu_to_le16(2); 1859 } else { 1860 fe->icbTag.strategyType = cpu_to_le16(4); 1861 fe->icbTag.numEntries = cpu_to_le16(1); 1862 } 1863 1864 if (iinfo->i_use) 1865 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1866 else if (S_ISDIR(inode->i_mode)) 1867 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1868 else if (S_ISREG(inode->i_mode)) 1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1870 else if (S_ISLNK(inode->i_mode)) 1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1872 else if (S_ISBLK(inode->i_mode)) 1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1874 else if (S_ISCHR(inode->i_mode)) 1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1876 else if (S_ISFIFO(inode->i_mode)) 1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1878 else if (S_ISSOCK(inode->i_mode)) 1879 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1880 1881 icbflags = iinfo->i_alloc_type | 1882 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1883 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1884 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1885 (le16_to_cpu(fe->icbTag.flags) & 1886 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1887 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1888 1889 fe->icbTag.flags = cpu_to_le16(icbflags); 1890 if (sbi->s_udfrev >= 0x0200) 1891 fe->descTag.descVersion = cpu_to_le16(3); 1892 else 1893 fe->descTag.descVersion = cpu_to_le16(2); 1894 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1895 fe->descTag.tagLocation = cpu_to_le32( 1896 iinfo->i_location.logicalBlockNum); 1897 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1898 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1899 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1900 crclen)); 1901 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1902 1903 set_buffer_uptodate(bh); 1904 unlock_buffer(bh); 1905 1906 /* write the data blocks */ 1907 mark_buffer_dirty(bh); 1908 if (do_sync) { 1909 sync_dirty_buffer(bh); 1910 if (buffer_write_io_error(bh)) { 1911 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1912 inode->i_ino); 1913 err = -EIO; 1914 } 1915 } 1916 brelse(bh); 1917 1918 return err; 1919 } 1920 1921 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1922 bool hidden_inode) 1923 { 1924 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1925 struct inode *inode = iget_locked(sb, block); 1926 int err; 1927 1928 if (!inode) 1929 return ERR_PTR(-ENOMEM); 1930 1931 if (!(inode->i_state & I_NEW)) { 1932 if (UDF_I(inode)->i_hidden != hidden_inode) { 1933 iput(inode); 1934 return ERR_PTR(-EFSCORRUPTED); 1935 } 1936 return inode; 1937 } 1938 1939 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1940 err = udf_read_inode(inode, hidden_inode); 1941 if (err < 0) { 1942 iget_failed(inode); 1943 return ERR_PTR(err); 1944 } 1945 unlock_new_inode(inode); 1946 1947 return inode; 1948 } 1949 1950 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1951 struct extent_position *epos) 1952 { 1953 struct super_block *sb = inode->i_sb; 1954 struct buffer_head *bh; 1955 struct allocExtDesc *aed; 1956 struct extent_position nepos; 1957 struct kernel_lb_addr neloc; 1958 int ver, adsize; 1959 1960 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1961 adsize = sizeof(struct short_ad); 1962 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1963 adsize = sizeof(struct long_ad); 1964 else 1965 return -EIO; 1966 1967 neloc.logicalBlockNum = block; 1968 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1969 1970 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1971 if (!bh) 1972 return -EIO; 1973 lock_buffer(bh); 1974 memset(bh->b_data, 0x00, sb->s_blocksize); 1975 set_buffer_uptodate(bh); 1976 unlock_buffer(bh); 1977 mark_buffer_dirty_inode(bh, inode); 1978 1979 aed = (struct allocExtDesc *)(bh->b_data); 1980 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1981 aed->previousAllocExtLocation = 1982 cpu_to_le32(epos->block.logicalBlockNum); 1983 } 1984 aed->lengthAllocDescs = cpu_to_le32(0); 1985 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1986 ver = 3; 1987 else 1988 ver = 2; 1989 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1990 sizeof(struct tag)); 1991 1992 nepos.block = neloc; 1993 nepos.offset = sizeof(struct allocExtDesc); 1994 nepos.bh = bh; 1995 1996 /* 1997 * Do we have to copy current last extent to make space for indirect 1998 * one? 1999 */ 2000 if (epos->offset + adsize > sb->s_blocksize) { 2001 struct kernel_lb_addr cp_loc; 2002 uint32_t cp_len; 2003 int cp_type; 2004 2005 epos->offset -= adsize; 2006 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2007 cp_len |= ((uint32_t)cp_type) << 30; 2008 2009 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2010 udf_write_aext(inode, epos, &nepos.block, 2011 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2012 } else { 2013 __udf_add_aext(inode, epos, &nepos.block, 2014 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2015 } 2016 2017 brelse(epos->bh); 2018 *epos = nepos; 2019 2020 return 0; 2021 } 2022 2023 /* 2024 * Append extent at the given position - should be the first free one in inode 2025 * / indirect extent. This function assumes there is enough space in the inode 2026 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2027 */ 2028 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2029 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2030 { 2031 struct udf_inode_info *iinfo = UDF_I(inode); 2032 struct allocExtDesc *aed; 2033 int adsize; 2034 2035 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2036 adsize = sizeof(struct short_ad); 2037 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2038 adsize = sizeof(struct long_ad); 2039 else 2040 return -EIO; 2041 2042 if (!epos->bh) { 2043 WARN_ON(iinfo->i_lenAlloc != 2044 epos->offset - udf_file_entry_alloc_offset(inode)); 2045 } else { 2046 aed = (struct allocExtDesc *)epos->bh->b_data; 2047 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2048 epos->offset - sizeof(struct allocExtDesc)); 2049 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2050 } 2051 2052 udf_write_aext(inode, epos, eloc, elen, inc); 2053 2054 if (!epos->bh) { 2055 iinfo->i_lenAlloc += adsize; 2056 mark_inode_dirty(inode); 2057 } else { 2058 aed = (struct allocExtDesc *)epos->bh->b_data; 2059 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2060 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2061 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2062 udf_update_tag(epos->bh->b_data, 2063 epos->offset + (inc ? 0 : adsize)); 2064 else 2065 udf_update_tag(epos->bh->b_data, 2066 sizeof(struct allocExtDesc)); 2067 mark_buffer_dirty_inode(epos->bh, inode); 2068 } 2069 2070 return 0; 2071 } 2072 2073 /* 2074 * Append extent at given position - should be the first free one in inode 2075 * / indirect extent. Takes care of allocating and linking indirect blocks. 2076 */ 2077 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2078 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2079 { 2080 int adsize; 2081 struct super_block *sb = inode->i_sb; 2082 2083 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2084 adsize = sizeof(struct short_ad); 2085 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2086 adsize = sizeof(struct long_ad); 2087 else 2088 return -EIO; 2089 2090 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2091 int err; 2092 udf_pblk_t new_block; 2093 2094 new_block = udf_new_block(sb, NULL, 2095 epos->block.partitionReferenceNum, 2096 epos->block.logicalBlockNum, &err); 2097 if (!new_block) 2098 return -ENOSPC; 2099 2100 err = udf_setup_indirect_aext(inode, new_block, epos); 2101 if (err) 2102 return err; 2103 } 2104 2105 return __udf_add_aext(inode, epos, eloc, elen, inc); 2106 } 2107 2108 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2109 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2110 { 2111 int adsize; 2112 uint8_t *ptr; 2113 struct short_ad *sad; 2114 struct long_ad *lad; 2115 struct udf_inode_info *iinfo = UDF_I(inode); 2116 2117 if (!epos->bh) 2118 ptr = iinfo->i_data + epos->offset - 2119 udf_file_entry_alloc_offset(inode) + 2120 iinfo->i_lenEAttr; 2121 else 2122 ptr = epos->bh->b_data + epos->offset; 2123 2124 switch (iinfo->i_alloc_type) { 2125 case ICBTAG_FLAG_AD_SHORT: 2126 sad = (struct short_ad *)ptr; 2127 sad->extLength = cpu_to_le32(elen); 2128 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2129 adsize = sizeof(struct short_ad); 2130 break; 2131 case ICBTAG_FLAG_AD_LONG: 2132 lad = (struct long_ad *)ptr; 2133 lad->extLength = cpu_to_le32(elen); 2134 lad->extLocation = cpu_to_lelb(*eloc); 2135 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2136 adsize = sizeof(struct long_ad); 2137 break; 2138 default: 2139 return; 2140 } 2141 2142 if (epos->bh) { 2143 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2144 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2145 struct allocExtDesc *aed = 2146 (struct allocExtDesc *)epos->bh->b_data; 2147 udf_update_tag(epos->bh->b_data, 2148 le32_to_cpu(aed->lengthAllocDescs) + 2149 sizeof(struct allocExtDesc)); 2150 } 2151 mark_buffer_dirty_inode(epos->bh, inode); 2152 } else { 2153 mark_inode_dirty(inode); 2154 } 2155 2156 if (inc) 2157 epos->offset += adsize; 2158 } 2159 2160 /* 2161 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2162 * someone does some weird stuff. 2163 */ 2164 #define UDF_MAX_INDIR_EXTS 16 2165 2166 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2167 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2168 { 2169 int8_t etype; 2170 unsigned int indirections = 0; 2171 2172 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2173 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2174 udf_pblk_t block; 2175 2176 if (++indirections > UDF_MAX_INDIR_EXTS) { 2177 udf_err(inode->i_sb, 2178 "too many indirect extents in inode %lu\n", 2179 inode->i_ino); 2180 return -1; 2181 } 2182 2183 epos->block = *eloc; 2184 epos->offset = sizeof(struct allocExtDesc); 2185 brelse(epos->bh); 2186 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2187 epos->bh = sb_bread(inode->i_sb, block); 2188 if (!epos->bh) { 2189 udf_debug("reading block %u failed!\n", block); 2190 return -1; 2191 } 2192 } 2193 2194 return etype; 2195 } 2196 2197 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2198 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2199 { 2200 int alen; 2201 int8_t etype; 2202 uint8_t *ptr; 2203 struct short_ad *sad; 2204 struct long_ad *lad; 2205 struct udf_inode_info *iinfo = UDF_I(inode); 2206 2207 if (!epos->bh) { 2208 if (!epos->offset) 2209 epos->offset = udf_file_entry_alloc_offset(inode); 2210 ptr = iinfo->i_data + epos->offset - 2211 udf_file_entry_alloc_offset(inode) + 2212 iinfo->i_lenEAttr; 2213 alen = udf_file_entry_alloc_offset(inode) + 2214 iinfo->i_lenAlloc; 2215 } else { 2216 if (!epos->offset) 2217 epos->offset = sizeof(struct allocExtDesc); 2218 ptr = epos->bh->b_data + epos->offset; 2219 alen = sizeof(struct allocExtDesc) + 2220 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2221 lengthAllocDescs); 2222 } 2223 2224 switch (iinfo->i_alloc_type) { 2225 case ICBTAG_FLAG_AD_SHORT: 2226 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2227 if (!sad) 2228 return -1; 2229 etype = le32_to_cpu(sad->extLength) >> 30; 2230 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2231 eloc->partitionReferenceNum = 2232 iinfo->i_location.partitionReferenceNum; 2233 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2234 break; 2235 case ICBTAG_FLAG_AD_LONG: 2236 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2237 if (!lad) 2238 return -1; 2239 etype = le32_to_cpu(lad->extLength) >> 30; 2240 *eloc = lelb_to_cpu(lad->extLocation); 2241 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2242 break; 2243 default: 2244 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2245 return -1; 2246 } 2247 2248 return etype; 2249 } 2250 2251 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2252 struct kernel_lb_addr neloc, uint32_t nelen) 2253 { 2254 struct kernel_lb_addr oeloc; 2255 uint32_t oelen; 2256 int8_t etype; 2257 int err; 2258 2259 if (epos.bh) 2260 get_bh(epos.bh); 2261 2262 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2263 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2264 neloc = oeloc; 2265 nelen = (etype << 30) | oelen; 2266 } 2267 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2268 brelse(epos.bh); 2269 2270 return err; 2271 } 2272 2273 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2274 { 2275 struct extent_position oepos; 2276 int adsize; 2277 int8_t etype; 2278 struct allocExtDesc *aed; 2279 struct udf_inode_info *iinfo; 2280 struct kernel_lb_addr eloc; 2281 uint32_t elen; 2282 2283 if (epos.bh) { 2284 get_bh(epos.bh); 2285 get_bh(epos.bh); 2286 } 2287 2288 iinfo = UDF_I(inode); 2289 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2290 adsize = sizeof(struct short_ad); 2291 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2292 adsize = sizeof(struct long_ad); 2293 else 2294 adsize = 0; 2295 2296 oepos = epos; 2297 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2298 return -1; 2299 2300 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2301 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2302 if (oepos.bh != epos.bh) { 2303 oepos.block = epos.block; 2304 brelse(oepos.bh); 2305 get_bh(epos.bh); 2306 oepos.bh = epos.bh; 2307 oepos.offset = epos.offset - adsize; 2308 } 2309 } 2310 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2311 elen = 0; 2312 2313 if (epos.bh != oepos.bh) { 2314 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2315 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2316 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2317 if (!oepos.bh) { 2318 iinfo->i_lenAlloc -= (adsize * 2); 2319 mark_inode_dirty(inode); 2320 } else { 2321 aed = (struct allocExtDesc *)oepos.bh->b_data; 2322 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2323 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2324 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2325 udf_update_tag(oepos.bh->b_data, 2326 oepos.offset - (2 * adsize)); 2327 else 2328 udf_update_tag(oepos.bh->b_data, 2329 sizeof(struct allocExtDesc)); 2330 mark_buffer_dirty_inode(oepos.bh, inode); 2331 } 2332 } else { 2333 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2334 if (!oepos.bh) { 2335 iinfo->i_lenAlloc -= adsize; 2336 mark_inode_dirty(inode); 2337 } else { 2338 aed = (struct allocExtDesc *)oepos.bh->b_data; 2339 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2340 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2341 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2342 udf_update_tag(oepos.bh->b_data, 2343 epos.offset - adsize); 2344 else 2345 udf_update_tag(oepos.bh->b_data, 2346 sizeof(struct allocExtDesc)); 2347 mark_buffer_dirty_inode(oepos.bh, inode); 2348 } 2349 } 2350 2351 brelse(epos.bh); 2352 brelse(oepos.bh); 2353 2354 return (elen >> 30); 2355 } 2356 2357 int8_t inode_bmap(struct inode *inode, sector_t block, 2358 struct extent_position *pos, struct kernel_lb_addr *eloc, 2359 uint32_t *elen, sector_t *offset) 2360 { 2361 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2362 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2363 int8_t etype; 2364 struct udf_inode_info *iinfo; 2365 2366 iinfo = UDF_I(inode); 2367 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2368 pos->offset = 0; 2369 pos->block = iinfo->i_location; 2370 pos->bh = NULL; 2371 } 2372 *elen = 0; 2373 do { 2374 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2375 if (etype == -1) { 2376 *offset = (bcount - lbcount) >> blocksize_bits; 2377 iinfo->i_lenExtents = lbcount; 2378 return -1; 2379 } 2380 lbcount += *elen; 2381 } while (lbcount <= bcount); 2382 /* update extent cache */ 2383 udf_update_extent_cache(inode, lbcount - *elen, pos); 2384 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2385 2386 return etype; 2387 } 2388