xref: /openbmc/linux/fs/udf/inode.c (revision 43ee1e3f)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepages(struct address_space *mapping,
186 			struct writeback_control *wbc)
187 {
188 	return mpage_writepages(mapping, wbc, udf_get_block);
189 }
190 
191 static int udf_read_folio(struct file *file, struct folio *folio)
192 {
193 	return mpage_read_folio(folio, udf_get_block);
194 }
195 
196 static void udf_readahead(struct readahead_control *rac)
197 {
198 	mpage_readahead(rac, udf_get_block);
199 }
200 
201 static int udf_write_begin(struct file *file, struct address_space *mapping,
202 			loff_t pos, unsigned len,
203 			struct page **pagep, void **fsdata)
204 {
205 	int ret;
206 
207 	ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
208 	if (unlikely(ret))
209 		udf_write_failed(mapping, pos + len);
210 	return ret;
211 }
212 
213 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214 {
215 	struct file *file = iocb->ki_filp;
216 	struct address_space *mapping = file->f_mapping;
217 	struct inode *inode = mapping->host;
218 	size_t count = iov_iter_count(iter);
219 	ssize_t ret;
220 
221 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
222 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
223 		udf_write_failed(mapping, iocb->ki_pos + count);
224 	return ret;
225 }
226 
227 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228 {
229 	return generic_block_bmap(mapping, block, udf_get_block);
230 }
231 
232 const struct address_space_operations udf_aops = {
233 	.dirty_folio	= block_dirty_folio,
234 	.invalidate_folio = block_invalidate_folio,
235 	.read_folio	= udf_read_folio,
236 	.readahead	= udf_readahead,
237 	.writepages	= udf_writepages,
238 	.write_begin	= udf_write_begin,
239 	.write_end	= generic_write_end,
240 	.direct_IO	= udf_direct_IO,
241 	.bmap		= udf_bmap,
242 	.migrate_folio	= buffer_migrate_folio,
243 };
244 
245 /*
246  * Expand file stored in ICB to a normal one-block-file
247  *
248  * This function requires i_data_sem for writing and releases it.
249  * This function requires i_mutex held
250  */
251 int udf_expand_file_adinicb(struct inode *inode)
252 {
253 	struct page *page;
254 	char *kaddr;
255 	struct udf_inode_info *iinfo = UDF_I(inode);
256 	int err;
257 
258 	WARN_ON_ONCE(!inode_is_locked(inode));
259 	if (!iinfo->i_lenAlloc) {
260 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
261 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
262 		else
263 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
264 		/* from now on we have normal address_space methods */
265 		inode->i_data.a_ops = &udf_aops;
266 		up_write(&iinfo->i_data_sem);
267 		mark_inode_dirty(inode);
268 		return 0;
269 	}
270 	/*
271 	 * Release i_data_sem so that we can lock a page - page lock ranks
272 	 * above i_data_sem. i_mutex still protects us against file changes.
273 	 */
274 	up_write(&iinfo->i_data_sem);
275 
276 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
277 	if (!page)
278 		return -ENOMEM;
279 
280 	if (!PageUptodate(page)) {
281 		kaddr = kmap_atomic(page);
282 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
283 		       PAGE_SIZE - iinfo->i_lenAlloc);
284 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
285 			iinfo->i_lenAlloc);
286 		flush_dcache_page(page);
287 		SetPageUptodate(page);
288 		kunmap_atomic(kaddr);
289 	}
290 	down_write(&iinfo->i_data_sem);
291 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
292 	       iinfo->i_lenAlloc);
293 	iinfo->i_lenAlloc = 0;
294 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
295 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
296 	else
297 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
298 	/* from now on we have normal address_space methods */
299 	inode->i_data.a_ops = &udf_aops;
300 	set_page_dirty(page);
301 	unlock_page(page);
302 	up_write(&iinfo->i_data_sem);
303 	err = filemap_fdatawrite(inode->i_mapping);
304 	if (err) {
305 		/* Restore everything back so that we don't lose data... */
306 		lock_page(page);
307 		down_write(&iinfo->i_data_sem);
308 		kaddr = kmap_atomic(page);
309 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
310 		kunmap_atomic(kaddr);
311 		unlock_page(page);
312 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 		inode->i_data.a_ops = &udf_adinicb_aops;
314 		iinfo->i_lenAlloc = inode->i_size;
315 		up_write(&iinfo->i_data_sem);
316 	}
317 	put_page(page);
318 	mark_inode_dirty(inode);
319 
320 	return err;
321 }
322 
323 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
324 					    udf_pblk_t *block, int *err)
325 {
326 	udf_pblk_t newblock;
327 	struct buffer_head *dbh = NULL;
328 	struct kernel_lb_addr eloc;
329 	uint8_t alloctype;
330 	struct extent_position epos;
331 
332 	struct udf_fileident_bh sfibh, dfibh;
333 	loff_t f_pos = udf_ext0_offset(inode);
334 	int size = udf_ext0_offset(inode) + inode->i_size;
335 	struct fileIdentDesc cfi, *sfi, *dfi;
336 	struct udf_inode_info *iinfo = UDF_I(inode);
337 
338 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
339 		alloctype = ICBTAG_FLAG_AD_SHORT;
340 	else
341 		alloctype = ICBTAG_FLAG_AD_LONG;
342 
343 	if (!inode->i_size) {
344 		iinfo->i_alloc_type = alloctype;
345 		mark_inode_dirty(inode);
346 		return NULL;
347 	}
348 
349 	/* alloc block, and copy data to it */
350 	*block = udf_new_block(inode->i_sb, inode,
351 			       iinfo->i_location.partitionReferenceNum,
352 			       iinfo->i_location.logicalBlockNum, err);
353 	if (!(*block))
354 		return NULL;
355 	newblock = udf_get_pblock(inode->i_sb, *block,
356 				  iinfo->i_location.partitionReferenceNum,
357 				0);
358 	if (!newblock)
359 		return NULL;
360 	dbh = udf_tgetblk(inode->i_sb, newblock);
361 	if (!dbh)
362 		return NULL;
363 	lock_buffer(dbh);
364 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
365 	set_buffer_uptodate(dbh);
366 	unlock_buffer(dbh);
367 	mark_buffer_dirty_inode(dbh, inode);
368 
369 	sfibh.soffset = sfibh.eoffset =
370 			f_pos & (inode->i_sb->s_blocksize - 1);
371 	sfibh.sbh = sfibh.ebh = NULL;
372 	dfibh.soffset = dfibh.eoffset = 0;
373 	dfibh.sbh = dfibh.ebh = dbh;
374 	while (f_pos < size) {
375 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
376 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
377 					 NULL, NULL, NULL);
378 		if (!sfi) {
379 			brelse(dbh);
380 			return NULL;
381 		}
382 		iinfo->i_alloc_type = alloctype;
383 		sfi->descTag.tagLocation = cpu_to_le32(*block);
384 		dfibh.soffset = dfibh.eoffset;
385 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
386 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
387 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
388 				 udf_get_fi_ident(sfi))) {
389 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 			brelse(dbh);
391 			return NULL;
392 		}
393 	}
394 	mark_buffer_dirty_inode(dbh, inode);
395 
396 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
397 	iinfo->i_lenAlloc = 0;
398 	eloc.logicalBlockNum = *block;
399 	eloc.partitionReferenceNum =
400 				iinfo->i_location.partitionReferenceNum;
401 	iinfo->i_lenExtents = inode->i_size;
402 	epos.bh = NULL;
403 	epos.block = iinfo->i_location;
404 	epos.offset = udf_file_entry_alloc_offset(inode);
405 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
406 	/* UniqueID stuff */
407 
408 	brelse(epos.bh);
409 	mark_inode_dirty(inode);
410 	return dbh;
411 }
412 
413 static int udf_get_block(struct inode *inode, sector_t block,
414 			 struct buffer_head *bh_result, int create)
415 {
416 	int err, new;
417 	sector_t phys = 0;
418 	struct udf_inode_info *iinfo;
419 
420 	if (!create) {
421 		phys = udf_block_map(inode, block);
422 		if (phys)
423 			map_bh(bh_result, inode->i_sb, phys);
424 		return 0;
425 	}
426 
427 	err = -EIO;
428 	new = 0;
429 	iinfo = UDF_I(inode);
430 
431 	down_write(&iinfo->i_data_sem);
432 	if (block == iinfo->i_next_alloc_block + 1) {
433 		iinfo->i_next_alloc_block++;
434 		iinfo->i_next_alloc_goal++;
435 	}
436 
437 	/*
438 	 * Block beyond EOF and prealloc extents? Just discard preallocation
439 	 * as it is not useful and complicates things.
440 	 */
441 	if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
442 		udf_discard_prealloc(inode);
443 	udf_clear_extent_cache(inode);
444 	phys = inode_getblk(inode, block, &err, &new);
445 	if (!phys)
446 		goto abort;
447 
448 	if (new)
449 		set_buffer_new(bh_result);
450 	map_bh(bh_result, inode->i_sb, phys);
451 
452 abort:
453 	up_write(&iinfo->i_data_sem);
454 	return err;
455 }
456 
457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 				      int create, int *err)
459 {
460 	struct buffer_head *bh;
461 	struct buffer_head dummy;
462 
463 	dummy.b_state = 0;
464 	dummy.b_blocknr = -1000;
465 	*err = udf_get_block(inode, block, &dummy, create);
466 	if (!*err && buffer_mapped(&dummy)) {
467 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 		if (buffer_new(&dummy)) {
469 			lock_buffer(bh);
470 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 			set_buffer_uptodate(bh);
472 			unlock_buffer(bh);
473 			mark_buffer_dirty_inode(bh, inode);
474 		}
475 		return bh;
476 	}
477 
478 	return NULL;
479 }
480 
481 /* Extend the file with new blocks totaling 'new_block_bytes',
482  * return the number of extents added
483  */
484 static int udf_do_extend_file(struct inode *inode,
485 			      struct extent_position *last_pos,
486 			      struct kernel_long_ad *last_ext,
487 			      loff_t new_block_bytes)
488 {
489 	uint32_t add;
490 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 	struct super_block *sb = inode->i_sb;
492 	struct udf_inode_info *iinfo;
493 	int err;
494 
495 	/* The previous extent is fake and we should not extend by anything
496 	 * - there's nothing to do... */
497 	if (!new_block_bytes && fake)
498 		return 0;
499 
500 	iinfo = UDF_I(inode);
501 	/* Round the last extent up to a multiple of block size */
502 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 		last_ext->extLength =
504 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 		iinfo->i_lenExtents =
508 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 			~(sb->s_blocksize - 1);
510 	}
511 
512 	/* Can we merge with the previous extent? */
513 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
515 		add = (1 << 30) - sb->s_blocksize -
516 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 		if (add > new_block_bytes)
518 			add = new_block_bytes;
519 		new_block_bytes -= add;
520 		last_ext->extLength += add;
521 	}
522 
523 	if (fake) {
524 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
525 			     last_ext->extLength, 1);
526 		count++;
527 	} else {
528 		struct kernel_lb_addr tmploc;
529 		uint32_t tmplen;
530 
531 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 				last_ext->extLength, 1);
533 
534 		/*
535 		 * We've rewritten the last extent. If we are going to add
536 		 * more extents, we may need to enter possible following
537 		 * empty indirect extent.
538 		 */
539 		if (new_block_bytes)
540 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 	}
542 
543 	/* Managed to do everything necessary? */
544 	if (!new_block_bytes)
545 		goto out;
546 
547 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 	last_ext->extLocation.logicalBlockNum = 0;
549 	last_ext->extLocation.partitionReferenceNum = 0;
550 	add = (1 << 30) - sb->s_blocksize;
551 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552 
553 	/* Create enough extents to cover the whole hole */
554 	while (new_block_bytes > add) {
555 		new_block_bytes -= add;
556 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 				   last_ext->extLength, 1);
558 		if (err)
559 			return err;
560 		count++;
561 	}
562 	if (new_block_bytes) {
563 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 			new_block_bytes;
565 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 				   last_ext->extLength, 1);
567 		if (err)
568 			return err;
569 		count++;
570 	}
571 
572 out:
573 	/* last_pos should point to the last written extent... */
574 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 		last_pos->offset -= sizeof(struct short_ad);
576 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 		last_pos->offset -= sizeof(struct long_ad);
578 	else
579 		return -EIO;
580 
581 	return count;
582 }
583 
584 /* Extend the final block of the file to final_block_len bytes */
585 static void udf_do_extend_final_block(struct inode *inode,
586 				      struct extent_position *last_pos,
587 				      struct kernel_long_ad *last_ext,
588 				      uint32_t new_elen)
589 {
590 	uint32_t added_bytes;
591 
592 	/*
593 	 * Extent already large enough? It may be already rounded up to block
594 	 * size...
595 	 */
596 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
597 		return;
598 	added_bytes = (last_ext->extLength & UDF_EXTENT_LENGTH_MASK) - new_elen;
599 	last_ext->extLength += added_bytes;
600 	UDF_I(inode)->i_lenExtents += added_bytes;
601 
602 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
603 			last_ext->extLength, 1);
604 }
605 
606 static int udf_extend_file(struct inode *inode, loff_t newsize)
607 {
608 
609 	struct extent_position epos;
610 	struct kernel_lb_addr eloc;
611 	uint32_t elen;
612 	int8_t etype;
613 	struct super_block *sb = inode->i_sb;
614 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
615 	loff_t new_elen;
616 	int adsize;
617 	struct udf_inode_info *iinfo = UDF_I(inode);
618 	struct kernel_long_ad extent;
619 	int err = 0;
620 	bool within_last_ext;
621 
622 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 		adsize = sizeof(struct short_ad);
624 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 		adsize = sizeof(struct long_ad);
626 	else
627 		BUG();
628 
629 	/*
630 	 * When creating hole in file, just don't bother with preserving
631 	 * preallocation. It likely won't be very useful anyway.
632 	 */
633 	udf_discard_prealloc(inode);
634 
635 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
636 	within_last_ext = (etype != -1);
637 	/* We don't expect extents past EOF... */
638 	WARN_ON_ONCE(within_last_ext &&
639 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
640 
641 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
642 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
643 		/* File has no extents at all or has empty last
644 		 * indirect extent! Create a fake extent... */
645 		extent.extLocation.logicalBlockNum = 0;
646 		extent.extLocation.partitionReferenceNum = 0;
647 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
648 	} else {
649 		epos.offset -= adsize;
650 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
651 				      &extent.extLength, 0);
652 		extent.extLength |= etype << 30;
653 	}
654 
655 	new_elen = ((loff_t)offset << inode->i_blkbits) |
656 					(newsize & (sb->s_blocksize - 1));
657 
658 	/* File has extent covering the new size (could happen when extending
659 	 * inside a block)?
660 	 */
661 	if (within_last_ext) {
662 		/* Extending file within the last file block */
663 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
664 	} else {
665 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
666 	}
667 
668 	if (err < 0)
669 		goto out;
670 	err = 0;
671 	iinfo->i_lenExtents = newsize;
672 out:
673 	brelse(epos.bh);
674 	return err;
675 }
676 
677 static sector_t inode_getblk(struct inode *inode, sector_t block,
678 			     int *err, int *new)
679 {
680 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
681 	struct extent_position prev_epos, cur_epos, next_epos;
682 	int count = 0, startnum = 0, endnum = 0;
683 	uint32_t elen = 0, tmpelen;
684 	struct kernel_lb_addr eloc, tmpeloc;
685 	int c = 1;
686 	loff_t lbcount = 0, b_off = 0;
687 	udf_pblk_t newblocknum, newblock;
688 	sector_t offset = 0;
689 	int8_t etype;
690 	struct udf_inode_info *iinfo = UDF_I(inode);
691 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
692 	int lastblock = 0;
693 	bool isBeyondEOF;
694 
695 	*err = 0;
696 	*new = 0;
697 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
698 	prev_epos.block = iinfo->i_location;
699 	prev_epos.bh = NULL;
700 	cur_epos = next_epos = prev_epos;
701 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
702 
703 	/* find the extent which contains the block we are looking for.
704 	   alternate between laarr[0] and laarr[1] for locations of the
705 	   current extent, and the previous extent */
706 	do {
707 		if (prev_epos.bh != cur_epos.bh) {
708 			brelse(prev_epos.bh);
709 			get_bh(cur_epos.bh);
710 			prev_epos.bh = cur_epos.bh;
711 		}
712 		if (cur_epos.bh != next_epos.bh) {
713 			brelse(cur_epos.bh);
714 			get_bh(next_epos.bh);
715 			cur_epos.bh = next_epos.bh;
716 		}
717 
718 		lbcount += elen;
719 
720 		prev_epos.block = cur_epos.block;
721 		cur_epos.block = next_epos.block;
722 
723 		prev_epos.offset = cur_epos.offset;
724 		cur_epos.offset = next_epos.offset;
725 
726 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
727 		if (etype == -1)
728 			break;
729 
730 		c = !c;
731 
732 		laarr[c].extLength = (etype << 30) | elen;
733 		laarr[c].extLocation = eloc;
734 
735 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
736 			pgoal = eloc.logicalBlockNum +
737 				((elen + inode->i_sb->s_blocksize - 1) >>
738 				 inode->i_sb->s_blocksize_bits);
739 
740 		count++;
741 	} while (lbcount + elen <= b_off);
742 
743 	b_off -= lbcount;
744 	offset = b_off >> inode->i_sb->s_blocksize_bits;
745 	/*
746 	 * Move prev_epos and cur_epos into indirect extent if we are at
747 	 * the pointer to it
748 	 */
749 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
750 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
751 
752 	/* if the extent is allocated and recorded, return the block
753 	   if the extent is not a multiple of the blocksize, round up */
754 
755 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
756 		if (elen & (inode->i_sb->s_blocksize - 1)) {
757 			elen = EXT_RECORDED_ALLOCATED |
758 				((elen + inode->i_sb->s_blocksize - 1) &
759 				 ~(inode->i_sb->s_blocksize - 1));
760 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
761 		}
762 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 		goto out_free;
764 	}
765 
766 	/* Are we beyond EOF and preallocated extent? */
767 	if (etype == -1) {
768 		int ret;
769 		loff_t hole_len;
770 
771 		isBeyondEOF = true;
772 		if (count) {
773 			if (c)
774 				laarr[0] = laarr[1];
775 			startnum = 1;
776 		} else {
777 			/* Create a fake extent when there's not one */
778 			memset(&laarr[0].extLocation, 0x00,
779 				sizeof(struct kernel_lb_addr));
780 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
781 			/* Will udf_do_extend_file() create real extent from
782 			   a fake one? */
783 			startnum = (offset > 0);
784 		}
785 		/* Create extents for the hole between EOF and offset */
786 		hole_len = (loff_t)offset << inode->i_blkbits;
787 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
788 		if (ret < 0) {
789 			*err = ret;
790 			newblock = 0;
791 			goto out_free;
792 		}
793 		c = 0;
794 		offset = 0;
795 		count += ret;
796 		/* We are not covered by a preallocated extent? */
797 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
798 						EXT_NOT_RECORDED_ALLOCATED) {
799 			/* Is there any real extent? - otherwise we overwrite
800 			 * the fake one... */
801 			if (count)
802 				c = !c;
803 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
804 				inode->i_sb->s_blocksize;
805 			memset(&laarr[c].extLocation, 0x00,
806 				sizeof(struct kernel_lb_addr));
807 			count++;
808 		}
809 		endnum = c + 1;
810 		lastblock = 1;
811 	} else {
812 		isBeyondEOF = false;
813 		endnum = startnum = ((count > 2) ? 2 : count);
814 
815 		/* if the current extent is in position 0,
816 		   swap it with the previous */
817 		if (!c && count != 1) {
818 			laarr[2] = laarr[0];
819 			laarr[0] = laarr[1];
820 			laarr[1] = laarr[2];
821 			c = 1;
822 		}
823 
824 		/* if the current block is located in an extent,
825 		   read the next extent */
826 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
827 		if (etype != -1) {
828 			laarr[c + 1].extLength = (etype << 30) | elen;
829 			laarr[c + 1].extLocation = eloc;
830 			count++;
831 			startnum++;
832 			endnum++;
833 		} else
834 			lastblock = 1;
835 	}
836 
837 	/* if the current extent is not recorded but allocated, get the
838 	 * block in the extent corresponding to the requested block */
839 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
840 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
841 	else { /* otherwise, allocate a new block */
842 		if (iinfo->i_next_alloc_block == block)
843 			goal = iinfo->i_next_alloc_goal;
844 
845 		if (!goal) {
846 			if (!(goal = pgoal)) /* XXX: what was intended here? */
847 				goal = iinfo->i_location.logicalBlockNum + 1;
848 		}
849 
850 		newblocknum = udf_new_block(inode->i_sb, inode,
851 				iinfo->i_location.partitionReferenceNum,
852 				goal, err);
853 		if (!newblocknum) {
854 			*err = -ENOSPC;
855 			newblock = 0;
856 			goto out_free;
857 		}
858 		if (isBeyondEOF)
859 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
860 	}
861 
862 	/* if the extent the requsted block is located in contains multiple
863 	 * blocks, split the extent into at most three extents. blocks prior
864 	 * to requested block, requested block, and blocks after requested
865 	 * block */
866 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
867 
868 	/* We preallocate blocks only for regular files. It also makes sense
869 	 * for directories but there's a problem when to drop the
870 	 * preallocation. We might use some delayed work for that but I feel
871 	 * it's overengineering for a filesystem like UDF. */
872 	if (S_ISREG(inode->i_mode))
873 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
874 
875 	/* merge any continuous blocks in laarr */
876 	udf_merge_extents(inode, laarr, &endnum);
877 
878 	/* write back the new extents, inserting new extents if the new number
879 	 * of extents is greater than the old number, and deleting extents if
880 	 * the new number of extents is less than the old number */
881 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
882 
883 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
884 				iinfo->i_location.partitionReferenceNum, 0);
885 	if (!newblock) {
886 		*err = -EIO;
887 		goto out_free;
888 	}
889 	*new = 1;
890 	iinfo->i_next_alloc_block = block;
891 	iinfo->i_next_alloc_goal = newblocknum;
892 	inode->i_ctime = current_time(inode);
893 
894 	if (IS_SYNC(inode))
895 		udf_sync_inode(inode);
896 	else
897 		mark_inode_dirty(inode);
898 out_free:
899 	brelse(prev_epos.bh);
900 	brelse(cur_epos.bh);
901 	brelse(next_epos.bh);
902 	return newblock;
903 }
904 
905 static void udf_split_extents(struct inode *inode, int *c, int offset,
906 			       udf_pblk_t newblocknum,
907 			       struct kernel_long_ad *laarr, int *endnum)
908 {
909 	unsigned long blocksize = inode->i_sb->s_blocksize;
910 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
911 
912 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
913 	    (laarr[*c].extLength >> 30) ==
914 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
915 		int curr = *c;
916 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
917 			    blocksize - 1) >> blocksize_bits;
918 		int8_t etype = (laarr[curr].extLength >> 30);
919 
920 		if (blen == 1)
921 			;
922 		else if (!offset || blen == offset + 1) {
923 			laarr[curr + 2] = laarr[curr + 1];
924 			laarr[curr + 1] = laarr[curr];
925 		} else {
926 			laarr[curr + 3] = laarr[curr + 1];
927 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
928 		}
929 
930 		if (offset) {
931 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
932 				udf_free_blocks(inode->i_sb, inode,
933 						&laarr[curr].extLocation,
934 						0, offset);
935 				laarr[curr].extLength =
936 					EXT_NOT_RECORDED_NOT_ALLOCATED |
937 					(offset << blocksize_bits);
938 				laarr[curr].extLocation.logicalBlockNum = 0;
939 				laarr[curr].extLocation.
940 						partitionReferenceNum = 0;
941 			} else
942 				laarr[curr].extLength = (etype << 30) |
943 					(offset << blocksize_bits);
944 			curr++;
945 			(*c)++;
946 			(*endnum)++;
947 		}
948 
949 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
950 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
951 			laarr[curr].extLocation.partitionReferenceNum =
952 				UDF_I(inode)->i_location.partitionReferenceNum;
953 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
954 			blocksize;
955 		curr++;
956 
957 		if (blen != offset + 1) {
958 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
959 				laarr[curr].extLocation.logicalBlockNum +=
960 								offset + 1;
961 			laarr[curr].extLength = (etype << 30) |
962 				((blen - (offset + 1)) << blocksize_bits);
963 			curr++;
964 			(*endnum)++;
965 		}
966 	}
967 }
968 
969 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
970 				 struct kernel_long_ad *laarr,
971 				 int *endnum)
972 {
973 	int start, length = 0, currlength = 0, i;
974 
975 	if (*endnum >= (c + 1)) {
976 		if (!lastblock)
977 			return;
978 		else
979 			start = c;
980 	} else {
981 		if ((laarr[c + 1].extLength >> 30) ==
982 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
983 			start = c + 1;
984 			length = currlength =
985 				(((laarr[c + 1].extLength &
986 					UDF_EXTENT_LENGTH_MASK) +
987 				inode->i_sb->s_blocksize - 1) >>
988 				inode->i_sb->s_blocksize_bits);
989 		} else
990 			start = c;
991 	}
992 
993 	for (i = start + 1; i <= *endnum; i++) {
994 		if (i == *endnum) {
995 			if (lastblock)
996 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
997 		} else if ((laarr[i].extLength >> 30) ==
998 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
999 			length += (((laarr[i].extLength &
1000 						UDF_EXTENT_LENGTH_MASK) +
1001 				    inode->i_sb->s_blocksize - 1) >>
1002 				    inode->i_sb->s_blocksize_bits);
1003 		} else
1004 			break;
1005 	}
1006 
1007 	if (length) {
1008 		int next = laarr[start].extLocation.logicalBlockNum +
1009 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1010 			  inode->i_sb->s_blocksize - 1) >>
1011 			  inode->i_sb->s_blocksize_bits);
1012 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1013 				laarr[start].extLocation.partitionReferenceNum,
1014 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1015 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1016 				currlength);
1017 		if (numalloc) 	{
1018 			if (start == (c + 1))
1019 				laarr[start].extLength +=
1020 					(numalloc <<
1021 					 inode->i_sb->s_blocksize_bits);
1022 			else {
1023 				memmove(&laarr[c + 2], &laarr[c + 1],
1024 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1025 				(*endnum)++;
1026 				laarr[c + 1].extLocation.logicalBlockNum = next;
1027 				laarr[c + 1].extLocation.partitionReferenceNum =
1028 					laarr[c].extLocation.
1029 							partitionReferenceNum;
1030 				laarr[c + 1].extLength =
1031 					EXT_NOT_RECORDED_ALLOCATED |
1032 					(numalloc <<
1033 					 inode->i_sb->s_blocksize_bits);
1034 				start = c + 1;
1035 			}
1036 
1037 			for (i = start + 1; numalloc && i < *endnum; i++) {
1038 				int elen = ((laarr[i].extLength &
1039 						UDF_EXTENT_LENGTH_MASK) +
1040 					    inode->i_sb->s_blocksize - 1) >>
1041 					    inode->i_sb->s_blocksize_bits;
1042 
1043 				if (elen > numalloc) {
1044 					laarr[i].extLength -=
1045 						(numalloc <<
1046 						 inode->i_sb->s_blocksize_bits);
1047 					numalloc = 0;
1048 				} else {
1049 					numalloc -= elen;
1050 					if (*endnum > (i + 1))
1051 						memmove(&laarr[i],
1052 							&laarr[i + 1],
1053 							sizeof(struct long_ad) *
1054 							(*endnum - (i + 1)));
1055 					i--;
1056 					(*endnum)--;
1057 				}
1058 			}
1059 			UDF_I(inode)->i_lenExtents +=
1060 				numalloc << inode->i_sb->s_blocksize_bits;
1061 		}
1062 	}
1063 }
1064 
1065 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1066 			      int *endnum)
1067 {
1068 	int i;
1069 	unsigned long blocksize = inode->i_sb->s_blocksize;
1070 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1071 
1072 	for (i = 0; i < (*endnum - 1); i++) {
1073 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1074 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1075 
1076 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1077 			(((li->extLength >> 30) ==
1078 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1079 			((lip1->extLocation.logicalBlockNum -
1080 			  li->extLocation.logicalBlockNum) ==
1081 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082 			blocksize - 1) >> blocksize_bits)))) {
1083 
1084 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1085 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1086 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1087 				lip1->extLength = (lip1->extLength -
1088 						  (li->extLength &
1089 						   UDF_EXTENT_LENGTH_MASK) +
1090 						   UDF_EXTENT_LENGTH_MASK) &
1091 							~(blocksize - 1);
1092 				li->extLength = (li->extLength &
1093 						 UDF_EXTENT_FLAG_MASK) +
1094 						(UDF_EXTENT_LENGTH_MASK + 1) -
1095 						blocksize;
1096 				lip1->extLocation.logicalBlockNum =
1097 					li->extLocation.logicalBlockNum +
1098 					((li->extLength &
1099 						UDF_EXTENT_LENGTH_MASK) >>
1100 						blocksize_bits);
1101 			} else {
1102 				li->extLength = lip1->extLength +
1103 					(((li->extLength &
1104 						UDF_EXTENT_LENGTH_MASK) +
1105 					 blocksize - 1) & ~(blocksize - 1));
1106 				if (*endnum > (i + 2))
1107 					memmove(&laarr[i + 1], &laarr[i + 2],
1108 						sizeof(struct long_ad) *
1109 						(*endnum - (i + 2)));
1110 				i--;
1111 				(*endnum)--;
1112 			}
1113 		} else if (((li->extLength >> 30) ==
1114 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1115 			   ((lip1->extLength >> 30) ==
1116 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1117 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1118 					((li->extLength &
1119 					  UDF_EXTENT_LENGTH_MASK) +
1120 					 blocksize - 1) >> blocksize_bits);
1121 			li->extLocation.logicalBlockNum = 0;
1122 			li->extLocation.partitionReferenceNum = 0;
1123 
1124 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1127 				lip1->extLength = (lip1->extLength -
1128 						   (li->extLength &
1129 						   UDF_EXTENT_LENGTH_MASK) +
1130 						   UDF_EXTENT_LENGTH_MASK) &
1131 						   ~(blocksize - 1);
1132 				li->extLength = (li->extLength &
1133 						 UDF_EXTENT_FLAG_MASK) +
1134 						(UDF_EXTENT_LENGTH_MASK + 1) -
1135 						blocksize;
1136 			} else {
1137 				li->extLength = lip1->extLength +
1138 					(((li->extLength &
1139 						UDF_EXTENT_LENGTH_MASK) +
1140 					  blocksize - 1) & ~(blocksize - 1));
1141 				if (*endnum > (i + 2))
1142 					memmove(&laarr[i + 1], &laarr[i + 2],
1143 						sizeof(struct long_ad) *
1144 						(*endnum - (i + 2)));
1145 				i--;
1146 				(*endnum)--;
1147 			}
1148 		} else if ((li->extLength >> 30) ==
1149 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1150 			udf_free_blocks(inode->i_sb, inode,
1151 					&li->extLocation, 0,
1152 					((li->extLength &
1153 						UDF_EXTENT_LENGTH_MASK) +
1154 					 blocksize - 1) >> blocksize_bits);
1155 			li->extLocation.logicalBlockNum = 0;
1156 			li->extLocation.partitionReferenceNum = 0;
1157 			li->extLength = (li->extLength &
1158 						UDF_EXTENT_LENGTH_MASK) |
1159 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1160 		}
1161 	}
1162 }
1163 
1164 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1165 			       int startnum, int endnum,
1166 			       struct extent_position *epos)
1167 {
1168 	int start = 0, i;
1169 	struct kernel_lb_addr tmploc;
1170 	uint32_t tmplen;
1171 
1172 	if (startnum > endnum) {
1173 		for (i = 0; i < (startnum - endnum); i++)
1174 			udf_delete_aext(inode, *epos);
1175 	} else if (startnum < endnum) {
1176 		for (i = 0; i < (endnum - startnum); i++) {
1177 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1178 					laarr[i].extLength);
1179 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1180 				      &laarr[i].extLength, 1);
1181 			start++;
1182 		}
1183 	}
1184 
1185 	for (i = start; i < endnum; i++) {
1186 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1187 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1188 			       laarr[i].extLength, 1);
1189 	}
1190 }
1191 
1192 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1193 			      int create, int *err)
1194 {
1195 	struct buffer_head *bh = NULL;
1196 
1197 	bh = udf_getblk(inode, block, create, err);
1198 	if (!bh)
1199 		return NULL;
1200 
1201 	if (bh_read(bh, 0) >= 0)
1202 		return bh;
1203 
1204 	brelse(bh);
1205 	*err = -EIO;
1206 	return NULL;
1207 }
1208 
1209 int udf_setsize(struct inode *inode, loff_t newsize)
1210 {
1211 	int err;
1212 	struct udf_inode_info *iinfo;
1213 	unsigned int bsize = i_blocksize(inode);
1214 
1215 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1216 	      S_ISLNK(inode->i_mode)))
1217 		return -EINVAL;
1218 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1219 		return -EPERM;
1220 
1221 	iinfo = UDF_I(inode);
1222 	if (newsize > inode->i_size) {
1223 		down_write(&iinfo->i_data_sem);
1224 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1225 			if (bsize <
1226 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1227 				err = udf_expand_file_adinicb(inode);
1228 				if (err)
1229 					return err;
1230 				down_write(&iinfo->i_data_sem);
1231 			} else {
1232 				iinfo->i_lenAlloc = newsize;
1233 				goto set_size;
1234 			}
1235 		}
1236 		err = udf_extend_file(inode, newsize);
1237 		if (err) {
1238 			up_write(&iinfo->i_data_sem);
1239 			return err;
1240 		}
1241 set_size:
1242 		up_write(&iinfo->i_data_sem);
1243 		truncate_setsize(inode, newsize);
1244 	} else {
1245 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1246 			down_write(&iinfo->i_data_sem);
1247 			udf_clear_extent_cache(inode);
1248 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1249 			       0x00, bsize - newsize -
1250 			       udf_file_entry_alloc_offset(inode));
1251 			iinfo->i_lenAlloc = newsize;
1252 			truncate_setsize(inode, newsize);
1253 			up_write(&iinfo->i_data_sem);
1254 			goto update_time;
1255 		}
1256 		err = block_truncate_page(inode->i_mapping, newsize,
1257 					  udf_get_block);
1258 		if (err)
1259 			return err;
1260 		truncate_setsize(inode, newsize);
1261 		down_write(&iinfo->i_data_sem);
1262 		udf_clear_extent_cache(inode);
1263 		err = udf_truncate_extents(inode);
1264 		up_write(&iinfo->i_data_sem);
1265 		if (err)
1266 			return err;
1267 	}
1268 update_time:
1269 	inode->i_mtime = inode->i_ctime = current_time(inode);
1270 	if (IS_SYNC(inode))
1271 		udf_sync_inode(inode);
1272 	else
1273 		mark_inode_dirty(inode);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1279  * arbitrary - just that we hopefully don't limit any real use of rewritten
1280  * inode on write-once media but avoid looping for too long on corrupted media.
1281  */
1282 #define UDF_MAX_ICB_NESTING 1024
1283 
1284 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1285 {
1286 	struct buffer_head *bh = NULL;
1287 	struct fileEntry *fe;
1288 	struct extendedFileEntry *efe;
1289 	uint16_t ident;
1290 	struct udf_inode_info *iinfo = UDF_I(inode);
1291 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1292 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1293 	unsigned int link_count;
1294 	unsigned int indirections = 0;
1295 	int bs = inode->i_sb->s_blocksize;
1296 	int ret = -EIO;
1297 	uint32_t uid, gid;
1298 
1299 reread:
1300 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1301 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1302 			  iloc->partitionReferenceNum, sbi->s_partitions);
1303 		return -EIO;
1304 	}
1305 
1306 	if (iloc->logicalBlockNum >=
1307 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1308 		udf_debug("block=%u, partition=%u out of range\n",
1309 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1310 		return -EIO;
1311 	}
1312 
1313 	/*
1314 	 * Set defaults, but the inode is still incomplete!
1315 	 * Note: get_new_inode() sets the following on a new inode:
1316 	 *      i_sb = sb
1317 	 *      i_no = ino
1318 	 *      i_flags = sb->s_flags
1319 	 *      i_state = 0
1320 	 * clean_inode(): zero fills and sets
1321 	 *      i_count = 1
1322 	 *      i_nlink = 1
1323 	 *      i_op = NULL;
1324 	 */
1325 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1326 	if (!bh) {
1327 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1328 		return -EIO;
1329 	}
1330 
1331 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1332 	    ident != TAG_IDENT_USE) {
1333 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1334 			inode->i_ino, ident);
1335 		goto out;
1336 	}
1337 
1338 	fe = (struct fileEntry *)bh->b_data;
1339 	efe = (struct extendedFileEntry *)bh->b_data;
1340 
1341 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1342 		struct buffer_head *ibh;
1343 
1344 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1345 		if (ident == TAG_IDENT_IE && ibh) {
1346 			struct kernel_lb_addr loc;
1347 			struct indirectEntry *ie;
1348 
1349 			ie = (struct indirectEntry *)ibh->b_data;
1350 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1351 
1352 			if (ie->indirectICB.extLength) {
1353 				brelse(ibh);
1354 				memcpy(&iinfo->i_location, &loc,
1355 				       sizeof(struct kernel_lb_addr));
1356 				if (++indirections > UDF_MAX_ICB_NESTING) {
1357 					udf_err(inode->i_sb,
1358 						"too many ICBs in ICB hierarchy"
1359 						" (max %d supported)\n",
1360 						UDF_MAX_ICB_NESTING);
1361 					goto out;
1362 				}
1363 				brelse(bh);
1364 				goto reread;
1365 			}
1366 		}
1367 		brelse(ibh);
1368 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1369 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1370 			le16_to_cpu(fe->icbTag.strategyType));
1371 		goto out;
1372 	}
1373 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1374 		iinfo->i_strat4096 = 0;
1375 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1376 		iinfo->i_strat4096 = 1;
1377 
1378 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1379 							ICBTAG_FLAG_AD_MASK;
1380 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1381 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1382 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1383 		ret = -EIO;
1384 		goto out;
1385 	}
1386 	iinfo->i_unique = 0;
1387 	iinfo->i_lenEAttr = 0;
1388 	iinfo->i_lenExtents = 0;
1389 	iinfo->i_lenAlloc = 0;
1390 	iinfo->i_next_alloc_block = 0;
1391 	iinfo->i_next_alloc_goal = 0;
1392 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1393 		iinfo->i_efe = 1;
1394 		iinfo->i_use = 0;
1395 		ret = udf_alloc_i_data(inode, bs -
1396 					sizeof(struct extendedFileEntry));
1397 		if (ret)
1398 			goto out;
1399 		memcpy(iinfo->i_data,
1400 		       bh->b_data + sizeof(struct extendedFileEntry),
1401 		       bs - sizeof(struct extendedFileEntry));
1402 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1403 		iinfo->i_efe = 0;
1404 		iinfo->i_use = 0;
1405 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1406 		if (ret)
1407 			goto out;
1408 		memcpy(iinfo->i_data,
1409 		       bh->b_data + sizeof(struct fileEntry),
1410 		       bs - sizeof(struct fileEntry));
1411 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1412 		iinfo->i_efe = 0;
1413 		iinfo->i_use = 1;
1414 		iinfo->i_lenAlloc = le32_to_cpu(
1415 				((struct unallocSpaceEntry *)bh->b_data)->
1416 				 lengthAllocDescs);
1417 		ret = udf_alloc_i_data(inode, bs -
1418 					sizeof(struct unallocSpaceEntry));
1419 		if (ret)
1420 			goto out;
1421 		memcpy(iinfo->i_data,
1422 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1423 		       bs - sizeof(struct unallocSpaceEntry));
1424 		return 0;
1425 	}
1426 
1427 	ret = -EIO;
1428 	read_lock(&sbi->s_cred_lock);
1429 	uid = le32_to_cpu(fe->uid);
1430 	if (uid == UDF_INVALID_ID ||
1431 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1432 		inode->i_uid = sbi->s_uid;
1433 	else
1434 		i_uid_write(inode, uid);
1435 
1436 	gid = le32_to_cpu(fe->gid);
1437 	if (gid == UDF_INVALID_ID ||
1438 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1439 		inode->i_gid = sbi->s_gid;
1440 	else
1441 		i_gid_write(inode, gid);
1442 
1443 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1444 			sbi->s_fmode != UDF_INVALID_MODE)
1445 		inode->i_mode = sbi->s_fmode;
1446 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1447 			sbi->s_dmode != UDF_INVALID_MODE)
1448 		inode->i_mode = sbi->s_dmode;
1449 	else
1450 		inode->i_mode = udf_convert_permissions(fe);
1451 	inode->i_mode &= ~sbi->s_umask;
1452 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1453 
1454 	read_unlock(&sbi->s_cred_lock);
1455 
1456 	link_count = le16_to_cpu(fe->fileLinkCount);
1457 	if (!link_count) {
1458 		if (!hidden_inode) {
1459 			ret = -ESTALE;
1460 			goto out;
1461 		}
1462 		link_count = 1;
1463 	}
1464 	set_nlink(inode, link_count);
1465 
1466 	inode->i_size = le64_to_cpu(fe->informationLength);
1467 	iinfo->i_lenExtents = inode->i_size;
1468 
1469 	if (iinfo->i_efe == 0) {
1470 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1471 			(inode->i_sb->s_blocksize_bits - 9);
1472 
1473 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1474 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1475 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1476 
1477 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1478 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1479 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1480 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1481 		iinfo->i_streamdir = 0;
1482 		iinfo->i_lenStreams = 0;
1483 	} else {
1484 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1485 		    (inode->i_sb->s_blocksize_bits - 9);
1486 
1487 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1488 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1489 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1490 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1491 
1492 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1493 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1494 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1495 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1496 
1497 		/* Named streams */
1498 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1499 		iinfo->i_locStreamdir =
1500 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1501 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1502 		if (iinfo->i_lenStreams >= inode->i_size)
1503 			iinfo->i_lenStreams -= inode->i_size;
1504 		else
1505 			iinfo->i_lenStreams = 0;
1506 	}
1507 	inode->i_generation = iinfo->i_unique;
1508 
1509 	/*
1510 	 * Sanity check length of allocation descriptors and extended attrs to
1511 	 * avoid integer overflows
1512 	 */
1513 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1514 		goto out;
1515 	/* Now do exact checks */
1516 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1517 		goto out;
1518 	/* Sanity checks for files in ICB so that we don't get confused later */
1519 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1520 		/*
1521 		 * For file in ICB data is stored in allocation descriptor
1522 		 * so sizes should match
1523 		 */
1524 		if (iinfo->i_lenAlloc != inode->i_size)
1525 			goto out;
1526 		/* File in ICB has to fit in there... */
1527 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1528 			goto out;
1529 	}
1530 
1531 	switch (fe->icbTag.fileType) {
1532 	case ICBTAG_FILE_TYPE_DIRECTORY:
1533 		inode->i_op = &udf_dir_inode_operations;
1534 		inode->i_fop = &udf_dir_operations;
1535 		inode->i_mode |= S_IFDIR;
1536 		inc_nlink(inode);
1537 		break;
1538 	case ICBTAG_FILE_TYPE_REALTIME:
1539 	case ICBTAG_FILE_TYPE_REGULAR:
1540 	case ICBTAG_FILE_TYPE_UNDEF:
1541 	case ICBTAG_FILE_TYPE_VAT20:
1542 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1543 			inode->i_data.a_ops = &udf_adinicb_aops;
1544 		else
1545 			inode->i_data.a_ops = &udf_aops;
1546 		inode->i_op = &udf_file_inode_operations;
1547 		inode->i_fop = &udf_file_operations;
1548 		inode->i_mode |= S_IFREG;
1549 		break;
1550 	case ICBTAG_FILE_TYPE_BLOCK:
1551 		inode->i_mode |= S_IFBLK;
1552 		break;
1553 	case ICBTAG_FILE_TYPE_CHAR:
1554 		inode->i_mode |= S_IFCHR;
1555 		break;
1556 	case ICBTAG_FILE_TYPE_FIFO:
1557 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1558 		break;
1559 	case ICBTAG_FILE_TYPE_SOCKET:
1560 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1561 		break;
1562 	case ICBTAG_FILE_TYPE_SYMLINK:
1563 		inode->i_data.a_ops = &udf_symlink_aops;
1564 		inode->i_op = &udf_symlink_inode_operations;
1565 		inode_nohighmem(inode);
1566 		inode->i_mode = S_IFLNK | 0777;
1567 		break;
1568 	case ICBTAG_FILE_TYPE_MAIN:
1569 		udf_debug("METADATA FILE-----\n");
1570 		break;
1571 	case ICBTAG_FILE_TYPE_MIRROR:
1572 		udf_debug("METADATA MIRROR FILE-----\n");
1573 		break;
1574 	case ICBTAG_FILE_TYPE_BITMAP:
1575 		udf_debug("METADATA BITMAP FILE-----\n");
1576 		break;
1577 	default:
1578 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1579 			inode->i_ino, fe->icbTag.fileType);
1580 		goto out;
1581 	}
1582 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1583 		struct deviceSpec *dsea =
1584 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1585 		if (dsea) {
1586 			init_special_inode(inode, inode->i_mode,
1587 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1588 				      le32_to_cpu(dsea->minorDeviceIdent)));
1589 			/* Developer ID ??? */
1590 		} else
1591 			goto out;
1592 	}
1593 	ret = 0;
1594 out:
1595 	brelse(bh);
1596 	return ret;
1597 }
1598 
1599 static int udf_alloc_i_data(struct inode *inode, size_t size)
1600 {
1601 	struct udf_inode_info *iinfo = UDF_I(inode);
1602 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1603 	if (!iinfo->i_data)
1604 		return -ENOMEM;
1605 	return 0;
1606 }
1607 
1608 static umode_t udf_convert_permissions(struct fileEntry *fe)
1609 {
1610 	umode_t mode;
1611 	uint32_t permissions;
1612 	uint32_t flags;
1613 
1614 	permissions = le32_to_cpu(fe->permissions);
1615 	flags = le16_to_cpu(fe->icbTag.flags);
1616 
1617 	mode =	((permissions) & 0007) |
1618 		((permissions >> 2) & 0070) |
1619 		((permissions >> 4) & 0700) |
1620 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1621 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1622 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1623 
1624 	return mode;
1625 }
1626 
1627 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1628 {
1629 	struct udf_inode_info *iinfo = UDF_I(inode);
1630 
1631 	/*
1632 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1633 	 * In Unix, delete permission tracks write
1634 	 */
1635 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1636 	if (mode & 0200)
1637 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1638 	if (mode & 0020)
1639 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1640 	if (mode & 0002)
1641 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1642 }
1643 
1644 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1645 {
1646 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1647 }
1648 
1649 static int udf_sync_inode(struct inode *inode)
1650 {
1651 	return udf_update_inode(inode, 1);
1652 }
1653 
1654 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1655 {
1656 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1657 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1658 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1659 		iinfo->i_crtime = time;
1660 }
1661 
1662 static int udf_update_inode(struct inode *inode, int do_sync)
1663 {
1664 	struct buffer_head *bh = NULL;
1665 	struct fileEntry *fe;
1666 	struct extendedFileEntry *efe;
1667 	uint64_t lb_recorded;
1668 	uint32_t udfperms;
1669 	uint16_t icbflags;
1670 	uint16_t crclen;
1671 	int err = 0;
1672 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1673 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1674 	struct udf_inode_info *iinfo = UDF_I(inode);
1675 
1676 	bh = udf_tgetblk(inode->i_sb,
1677 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1678 	if (!bh) {
1679 		udf_debug("getblk failure\n");
1680 		return -EIO;
1681 	}
1682 
1683 	lock_buffer(bh);
1684 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1685 	fe = (struct fileEntry *)bh->b_data;
1686 	efe = (struct extendedFileEntry *)bh->b_data;
1687 
1688 	if (iinfo->i_use) {
1689 		struct unallocSpaceEntry *use =
1690 			(struct unallocSpaceEntry *)bh->b_data;
1691 
1692 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1693 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1694 		       iinfo->i_data, inode->i_sb->s_blocksize -
1695 					sizeof(struct unallocSpaceEntry));
1696 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1697 		crclen = sizeof(struct unallocSpaceEntry);
1698 
1699 		goto finish;
1700 	}
1701 
1702 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1703 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1704 	else
1705 		fe->uid = cpu_to_le32(i_uid_read(inode));
1706 
1707 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1708 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1709 	else
1710 		fe->gid = cpu_to_le32(i_gid_read(inode));
1711 
1712 	udfperms = ((inode->i_mode & 0007)) |
1713 		   ((inode->i_mode & 0070) << 2) |
1714 		   ((inode->i_mode & 0700) << 4);
1715 
1716 	udfperms |= iinfo->i_extraPerms;
1717 	fe->permissions = cpu_to_le32(udfperms);
1718 
1719 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1720 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1721 	else
1722 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1723 
1724 	fe->informationLength = cpu_to_le64(inode->i_size);
1725 
1726 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1727 		struct regid *eid;
1728 		struct deviceSpec *dsea =
1729 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1730 		if (!dsea) {
1731 			dsea = (struct deviceSpec *)
1732 				udf_add_extendedattr(inode,
1733 						     sizeof(struct deviceSpec) +
1734 						     sizeof(struct regid), 12, 0x3);
1735 			dsea->attrType = cpu_to_le32(12);
1736 			dsea->attrSubtype = 1;
1737 			dsea->attrLength = cpu_to_le32(
1738 						sizeof(struct deviceSpec) +
1739 						sizeof(struct regid));
1740 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1741 		}
1742 		eid = (struct regid *)dsea->impUse;
1743 		memset(eid, 0, sizeof(*eid));
1744 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1745 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1746 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1747 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1748 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1749 	}
1750 
1751 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1752 		lb_recorded = 0; /* No extents => no blocks! */
1753 	else
1754 		lb_recorded =
1755 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1756 			(blocksize_bits - 9);
1757 
1758 	if (iinfo->i_efe == 0) {
1759 		memcpy(bh->b_data + sizeof(struct fileEntry),
1760 		       iinfo->i_data,
1761 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1762 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1763 
1764 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1765 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1766 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1767 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1768 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1769 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1770 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1771 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1772 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1773 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1774 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1775 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1776 		crclen = sizeof(struct fileEntry);
1777 	} else {
1778 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1779 		       iinfo->i_data,
1780 		       inode->i_sb->s_blocksize -
1781 					sizeof(struct extendedFileEntry));
1782 		efe->objectSize =
1783 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1784 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1785 
1786 		if (iinfo->i_streamdir) {
1787 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1788 
1789 			icb_lad->extLocation =
1790 				cpu_to_lelb(iinfo->i_locStreamdir);
1791 			icb_lad->extLength =
1792 				cpu_to_le32(inode->i_sb->s_blocksize);
1793 		}
1794 
1795 		udf_adjust_time(iinfo, inode->i_atime);
1796 		udf_adjust_time(iinfo, inode->i_mtime);
1797 		udf_adjust_time(iinfo, inode->i_ctime);
1798 
1799 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1800 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1801 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1802 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1803 
1804 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1805 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1806 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1807 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1808 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1809 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1810 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1811 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1812 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1813 		crclen = sizeof(struct extendedFileEntry);
1814 	}
1815 
1816 finish:
1817 	if (iinfo->i_strat4096) {
1818 		fe->icbTag.strategyType = cpu_to_le16(4096);
1819 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1820 		fe->icbTag.numEntries = cpu_to_le16(2);
1821 	} else {
1822 		fe->icbTag.strategyType = cpu_to_le16(4);
1823 		fe->icbTag.numEntries = cpu_to_le16(1);
1824 	}
1825 
1826 	if (iinfo->i_use)
1827 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1828 	else if (S_ISDIR(inode->i_mode))
1829 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1830 	else if (S_ISREG(inode->i_mode))
1831 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1832 	else if (S_ISLNK(inode->i_mode))
1833 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1834 	else if (S_ISBLK(inode->i_mode))
1835 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1836 	else if (S_ISCHR(inode->i_mode))
1837 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1838 	else if (S_ISFIFO(inode->i_mode))
1839 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1840 	else if (S_ISSOCK(inode->i_mode))
1841 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1842 
1843 	icbflags =	iinfo->i_alloc_type |
1844 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1845 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1846 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1847 			(le16_to_cpu(fe->icbTag.flags) &
1848 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1849 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1850 
1851 	fe->icbTag.flags = cpu_to_le16(icbflags);
1852 	if (sbi->s_udfrev >= 0x0200)
1853 		fe->descTag.descVersion = cpu_to_le16(3);
1854 	else
1855 		fe->descTag.descVersion = cpu_to_le16(2);
1856 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1857 	fe->descTag.tagLocation = cpu_to_le32(
1858 					iinfo->i_location.logicalBlockNum);
1859 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1860 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1861 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1862 						  crclen));
1863 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1864 
1865 	set_buffer_uptodate(bh);
1866 	unlock_buffer(bh);
1867 
1868 	/* write the data blocks */
1869 	mark_buffer_dirty(bh);
1870 	if (do_sync) {
1871 		sync_dirty_buffer(bh);
1872 		if (buffer_write_io_error(bh)) {
1873 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1874 				 inode->i_ino);
1875 			err = -EIO;
1876 		}
1877 	}
1878 	brelse(bh);
1879 
1880 	return err;
1881 }
1882 
1883 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1884 			 bool hidden_inode)
1885 {
1886 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1887 	struct inode *inode = iget_locked(sb, block);
1888 	int err;
1889 
1890 	if (!inode)
1891 		return ERR_PTR(-ENOMEM);
1892 
1893 	if (!(inode->i_state & I_NEW))
1894 		return inode;
1895 
1896 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1897 	err = udf_read_inode(inode, hidden_inode);
1898 	if (err < 0) {
1899 		iget_failed(inode);
1900 		return ERR_PTR(err);
1901 	}
1902 	unlock_new_inode(inode);
1903 
1904 	return inode;
1905 }
1906 
1907 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1908 			    struct extent_position *epos)
1909 {
1910 	struct super_block *sb = inode->i_sb;
1911 	struct buffer_head *bh;
1912 	struct allocExtDesc *aed;
1913 	struct extent_position nepos;
1914 	struct kernel_lb_addr neloc;
1915 	int ver, adsize;
1916 
1917 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1918 		adsize = sizeof(struct short_ad);
1919 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1920 		adsize = sizeof(struct long_ad);
1921 	else
1922 		return -EIO;
1923 
1924 	neloc.logicalBlockNum = block;
1925 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1926 
1927 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1928 	if (!bh)
1929 		return -EIO;
1930 	lock_buffer(bh);
1931 	memset(bh->b_data, 0x00, sb->s_blocksize);
1932 	set_buffer_uptodate(bh);
1933 	unlock_buffer(bh);
1934 	mark_buffer_dirty_inode(bh, inode);
1935 
1936 	aed = (struct allocExtDesc *)(bh->b_data);
1937 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1938 		aed->previousAllocExtLocation =
1939 				cpu_to_le32(epos->block.logicalBlockNum);
1940 	}
1941 	aed->lengthAllocDescs = cpu_to_le32(0);
1942 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1943 		ver = 3;
1944 	else
1945 		ver = 2;
1946 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1947 		    sizeof(struct tag));
1948 
1949 	nepos.block = neloc;
1950 	nepos.offset = sizeof(struct allocExtDesc);
1951 	nepos.bh = bh;
1952 
1953 	/*
1954 	 * Do we have to copy current last extent to make space for indirect
1955 	 * one?
1956 	 */
1957 	if (epos->offset + adsize > sb->s_blocksize) {
1958 		struct kernel_lb_addr cp_loc;
1959 		uint32_t cp_len;
1960 		int cp_type;
1961 
1962 		epos->offset -= adsize;
1963 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1964 		cp_len |= ((uint32_t)cp_type) << 30;
1965 
1966 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1967 		udf_write_aext(inode, epos, &nepos.block,
1968 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1969 	} else {
1970 		__udf_add_aext(inode, epos, &nepos.block,
1971 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1972 	}
1973 
1974 	brelse(epos->bh);
1975 	*epos = nepos;
1976 
1977 	return 0;
1978 }
1979 
1980 /*
1981  * Append extent at the given position - should be the first free one in inode
1982  * / indirect extent. This function assumes there is enough space in the inode
1983  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1984  */
1985 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1986 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987 {
1988 	struct udf_inode_info *iinfo = UDF_I(inode);
1989 	struct allocExtDesc *aed;
1990 	int adsize;
1991 
1992 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1993 		adsize = sizeof(struct short_ad);
1994 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1995 		adsize = sizeof(struct long_ad);
1996 	else
1997 		return -EIO;
1998 
1999 	if (!epos->bh) {
2000 		WARN_ON(iinfo->i_lenAlloc !=
2001 			epos->offset - udf_file_entry_alloc_offset(inode));
2002 	} else {
2003 		aed = (struct allocExtDesc *)epos->bh->b_data;
2004 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2005 			epos->offset - sizeof(struct allocExtDesc));
2006 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2007 	}
2008 
2009 	udf_write_aext(inode, epos, eloc, elen, inc);
2010 
2011 	if (!epos->bh) {
2012 		iinfo->i_lenAlloc += adsize;
2013 		mark_inode_dirty(inode);
2014 	} else {
2015 		aed = (struct allocExtDesc *)epos->bh->b_data;
2016 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2017 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2018 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2019 			udf_update_tag(epos->bh->b_data,
2020 					epos->offset + (inc ? 0 : adsize));
2021 		else
2022 			udf_update_tag(epos->bh->b_data,
2023 					sizeof(struct allocExtDesc));
2024 		mark_buffer_dirty_inode(epos->bh, inode);
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Append extent at given position - should be the first free one in inode
2032  * / indirect extent. Takes care of allocating and linking indirect blocks.
2033  */
2034 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2035 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2036 {
2037 	int adsize;
2038 	struct super_block *sb = inode->i_sb;
2039 
2040 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2041 		adsize = sizeof(struct short_ad);
2042 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2043 		adsize = sizeof(struct long_ad);
2044 	else
2045 		return -EIO;
2046 
2047 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2048 		int err;
2049 		udf_pblk_t new_block;
2050 
2051 		new_block = udf_new_block(sb, NULL,
2052 					  epos->block.partitionReferenceNum,
2053 					  epos->block.logicalBlockNum, &err);
2054 		if (!new_block)
2055 			return -ENOSPC;
2056 
2057 		err = udf_setup_indirect_aext(inode, new_block, epos);
2058 		if (err)
2059 			return err;
2060 	}
2061 
2062 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2063 }
2064 
2065 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2066 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2067 {
2068 	int adsize;
2069 	uint8_t *ptr;
2070 	struct short_ad *sad;
2071 	struct long_ad *lad;
2072 	struct udf_inode_info *iinfo = UDF_I(inode);
2073 
2074 	if (!epos->bh)
2075 		ptr = iinfo->i_data + epos->offset -
2076 			udf_file_entry_alloc_offset(inode) +
2077 			iinfo->i_lenEAttr;
2078 	else
2079 		ptr = epos->bh->b_data + epos->offset;
2080 
2081 	switch (iinfo->i_alloc_type) {
2082 	case ICBTAG_FLAG_AD_SHORT:
2083 		sad = (struct short_ad *)ptr;
2084 		sad->extLength = cpu_to_le32(elen);
2085 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2086 		adsize = sizeof(struct short_ad);
2087 		break;
2088 	case ICBTAG_FLAG_AD_LONG:
2089 		lad = (struct long_ad *)ptr;
2090 		lad->extLength = cpu_to_le32(elen);
2091 		lad->extLocation = cpu_to_lelb(*eloc);
2092 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2093 		adsize = sizeof(struct long_ad);
2094 		break;
2095 	default:
2096 		return;
2097 	}
2098 
2099 	if (epos->bh) {
2100 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2101 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2102 			struct allocExtDesc *aed =
2103 				(struct allocExtDesc *)epos->bh->b_data;
2104 			udf_update_tag(epos->bh->b_data,
2105 				       le32_to_cpu(aed->lengthAllocDescs) +
2106 				       sizeof(struct allocExtDesc));
2107 		}
2108 		mark_buffer_dirty_inode(epos->bh, inode);
2109 	} else {
2110 		mark_inode_dirty(inode);
2111 	}
2112 
2113 	if (inc)
2114 		epos->offset += adsize;
2115 }
2116 
2117 /*
2118  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2119  * someone does some weird stuff.
2120  */
2121 #define UDF_MAX_INDIR_EXTS 16
2122 
2123 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2124 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2125 {
2126 	int8_t etype;
2127 	unsigned int indirections = 0;
2128 
2129 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2130 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2131 		udf_pblk_t block;
2132 
2133 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2134 			udf_err(inode->i_sb,
2135 				"too many indirect extents in inode %lu\n",
2136 				inode->i_ino);
2137 			return -1;
2138 		}
2139 
2140 		epos->block = *eloc;
2141 		epos->offset = sizeof(struct allocExtDesc);
2142 		brelse(epos->bh);
2143 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2144 		epos->bh = udf_tread(inode->i_sb, block);
2145 		if (!epos->bh) {
2146 			udf_debug("reading block %u failed!\n", block);
2147 			return -1;
2148 		}
2149 	}
2150 
2151 	return etype;
2152 }
2153 
2154 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2155 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2156 {
2157 	int alen;
2158 	int8_t etype;
2159 	uint8_t *ptr;
2160 	struct short_ad *sad;
2161 	struct long_ad *lad;
2162 	struct udf_inode_info *iinfo = UDF_I(inode);
2163 
2164 	if (!epos->bh) {
2165 		if (!epos->offset)
2166 			epos->offset = udf_file_entry_alloc_offset(inode);
2167 		ptr = iinfo->i_data + epos->offset -
2168 			udf_file_entry_alloc_offset(inode) +
2169 			iinfo->i_lenEAttr;
2170 		alen = udf_file_entry_alloc_offset(inode) +
2171 							iinfo->i_lenAlloc;
2172 	} else {
2173 		if (!epos->offset)
2174 			epos->offset = sizeof(struct allocExtDesc);
2175 		ptr = epos->bh->b_data + epos->offset;
2176 		alen = sizeof(struct allocExtDesc) +
2177 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2178 							lengthAllocDescs);
2179 	}
2180 
2181 	switch (iinfo->i_alloc_type) {
2182 	case ICBTAG_FLAG_AD_SHORT:
2183 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2184 		if (!sad)
2185 			return -1;
2186 		etype = le32_to_cpu(sad->extLength) >> 30;
2187 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2188 		eloc->partitionReferenceNum =
2189 				iinfo->i_location.partitionReferenceNum;
2190 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2191 		break;
2192 	case ICBTAG_FLAG_AD_LONG:
2193 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2194 		if (!lad)
2195 			return -1;
2196 		etype = le32_to_cpu(lad->extLength) >> 30;
2197 		*eloc = lelb_to_cpu(lad->extLocation);
2198 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2199 		break;
2200 	default:
2201 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2202 		return -1;
2203 	}
2204 
2205 	return etype;
2206 }
2207 
2208 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2209 			      struct kernel_lb_addr neloc, uint32_t nelen)
2210 {
2211 	struct kernel_lb_addr oeloc;
2212 	uint32_t oelen;
2213 	int8_t etype;
2214 
2215 	if (epos.bh)
2216 		get_bh(epos.bh);
2217 
2218 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2219 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2220 		neloc = oeloc;
2221 		nelen = (etype << 30) | oelen;
2222 	}
2223 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2224 	brelse(epos.bh);
2225 
2226 	return (nelen >> 30);
2227 }
2228 
2229 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2230 {
2231 	struct extent_position oepos;
2232 	int adsize;
2233 	int8_t etype;
2234 	struct allocExtDesc *aed;
2235 	struct udf_inode_info *iinfo;
2236 	struct kernel_lb_addr eloc;
2237 	uint32_t elen;
2238 
2239 	if (epos.bh) {
2240 		get_bh(epos.bh);
2241 		get_bh(epos.bh);
2242 	}
2243 
2244 	iinfo = UDF_I(inode);
2245 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2246 		adsize = sizeof(struct short_ad);
2247 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2248 		adsize = sizeof(struct long_ad);
2249 	else
2250 		adsize = 0;
2251 
2252 	oepos = epos;
2253 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2254 		return -1;
2255 
2256 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2257 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2258 		if (oepos.bh != epos.bh) {
2259 			oepos.block = epos.block;
2260 			brelse(oepos.bh);
2261 			get_bh(epos.bh);
2262 			oepos.bh = epos.bh;
2263 			oepos.offset = epos.offset - adsize;
2264 		}
2265 	}
2266 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2267 	elen = 0;
2268 
2269 	if (epos.bh != oepos.bh) {
2270 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2271 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2272 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2273 		if (!oepos.bh) {
2274 			iinfo->i_lenAlloc -= (adsize * 2);
2275 			mark_inode_dirty(inode);
2276 		} else {
2277 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2278 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2279 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2280 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2281 				udf_update_tag(oepos.bh->b_data,
2282 						oepos.offset - (2 * adsize));
2283 			else
2284 				udf_update_tag(oepos.bh->b_data,
2285 						sizeof(struct allocExtDesc));
2286 			mark_buffer_dirty_inode(oepos.bh, inode);
2287 		}
2288 	} else {
2289 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2290 		if (!oepos.bh) {
2291 			iinfo->i_lenAlloc -= adsize;
2292 			mark_inode_dirty(inode);
2293 		} else {
2294 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2295 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2296 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2297 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2298 				udf_update_tag(oepos.bh->b_data,
2299 						epos.offset - adsize);
2300 			else
2301 				udf_update_tag(oepos.bh->b_data,
2302 						sizeof(struct allocExtDesc));
2303 			mark_buffer_dirty_inode(oepos.bh, inode);
2304 		}
2305 	}
2306 
2307 	brelse(epos.bh);
2308 	brelse(oepos.bh);
2309 
2310 	return (elen >> 30);
2311 }
2312 
2313 int8_t inode_bmap(struct inode *inode, sector_t block,
2314 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2315 		  uint32_t *elen, sector_t *offset)
2316 {
2317 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2318 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2319 	int8_t etype;
2320 	struct udf_inode_info *iinfo;
2321 
2322 	iinfo = UDF_I(inode);
2323 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2324 		pos->offset = 0;
2325 		pos->block = iinfo->i_location;
2326 		pos->bh = NULL;
2327 	}
2328 	*elen = 0;
2329 	do {
2330 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2331 		if (etype == -1) {
2332 			*offset = (bcount - lbcount) >> blocksize_bits;
2333 			iinfo->i_lenExtents = lbcount;
2334 			return -1;
2335 		}
2336 		lbcount += *elen;
2337 	} while (lbcount <= bcount);
2338 	/* update extent cache */
2339 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2340 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2341 
2342 	return etype;
2343 }
2344 
2345 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2346 {
2347 	struct kernel_lb_addr eloc;
2348 	uint32_t elen;
2349 	sector_t offset;
2350 	struct extent_position epos = {};
2351 	udf_pblk_t ret;
2352 
2353 	down_read(&UDF_I(inode)->i_data_sem);
2354 
2355 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2356 						(EXT_RECORDED_ALLOCATED >> 30))
2357 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2358 	else
2359 		ret = 0;
2360 
2361 	up_read(&UDF_I(inode)->i_data_sem);
2362 	brelse(epos.bh);
2363 
2364 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2365 		return udf_fixed_to_variable(ret);
2366 	else
2367 		return ret;
2368 }
2369