xref: /openbmc/linux/fs/udf/inode.c (revision 22246614)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 					sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_delete_inode(struct inode *inode)
72 {
73 	truncate_inode_pages(&inode->i_data, 0);
74 
75 	if (is_bad_inode(inode))
76 		goto no_delete;
77 
78 	inode->i_size = 0;
79 	udf_truncate(inode);
80 	lock_kernel();
81 
82 	udf_update_inode(inode, IS_SYNC(inode));
83 	udf_free_inode(inode);
84 
85 	unlock_kernel();
86 	return;
87 
88 no_delete:
89 	clear_inode(inode);
90 }
91 
92 /*
93  * If we are going to release inode from memory, we discard preallocation and
94  * truncate last inode extent to proper length. We could use drop_inode() but
95  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
96  * use clear_inode() but we have to make sure to write inode as it's not written
97  * automatically.
98  */
99 void udf_clear_inode(struct inode *inode)
100 {
101 	struct udf_inode_info *iinfo;
102 	if (!(inode->i_sb->s_flags & MS_RDONLY)) {
103 		lock_kernel();
104 		/* Discard preallocation for directories, symlinks, etc. */
105 		udf_discard_prealloc(inode);
106 		udf_truncate_tail_extent(inode);
107 		unlock_kernel();
108 		write_inode_now(inode, 0);
109 	}
110 	iinfo = UDF_I(inode);
111 	kfree(iinfo->i_ext.i_data);
112 	iinfo->i_ext.i_data = NULL;
113 }
114 
115 static int udf_writepage(struct page *page, struct writeback_control *wbc)
116 {
117 	return block_write_full_page(page, udf_get_block, wbc);
118 }
119 
120 static int udf_readpage(struct file *file, struct page *page)
121 {
122 	return block_read_full_page(page, udf_get_block);
123 }
124 
125 static int udf_write_begin(struct file *file, struct address_space *mapping,
126 			loff_t pos, unsigned len, unsigned flags,
127 			struct page **pagep, void **fsdata)
128 {
129 	*pagep = NULL;
130 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
131 				udf_get_block);
132 }
133 
134 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
135 {
136 	return generic_block_bmap(mapping, block, udf_get_block);
137 }
138 
139 const struct address_space_operations udf_aops = {
140 	.readpage	= udf_readpage,
141 	.writepage	= udf_writepage,
142 	.sync_page	= block_sync_page,
143 	.write_begin		= udf_write_begin,
144 	.write_end		= generic_write_end,
145 	.bmap		= udf_bmap,
146 };
147 
148 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
149 {
150 	struct page *page;
151 	char *kaddr;
152 	struct udf_inode_info *iinfo = UDF_I(inode);
153 	struct writeback_control udf_wbc = {
154 		.sync_mode = WB_SYNC_NONE,
155 		.nr_to_write = 1,
156 	};
157 
158 	/* from now on we have normal address_space methods */
159 	inode->i_data.a_ops = &udf_aops;
160 
161 	if (!iinfo->i_lenAlloc) {
162 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
163 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
164 		else
165 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
166 		mark_inode_dirty(inode);
167 		return;
168 	}
169 
170 	page = grab_cache_page(inode->i_mapping, 0);
171 	BUG_ON(!PageLocked(page));
172 
173 	if (!PageUptodate(page)) {
174 		kaddr = kmap(page);
175 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
176 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
177 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
178 			iinfo->i_lenAlloc);
179 		flush_dcache_page(page);
180 		SetPageUptodate(page);
181 		kunmap(page);
182 	}
183 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
184 	       iinfo->i_lenAlloc);
185 	iinfo->i_lenAlloc = 0;
186 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
187 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
188 	else
189 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
190 
191 	inode->i_data.a_ops->writepage(page, &udf_wbc);
192 	page_cache_release(page);
193 
194 	mark_inode_dirty(inode);
195 }
196 
197 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
198 					   int *err)
199 {
200 	int newblock;
201 	struct buffer_head *dbh = NULL;
202 	kernel_lb_addr eloc;
203 	uint32_t elen;
204 	uint8_t alloctype;
205 	struct extent_position epos;
206 
207 	struct udf_fileident_bh sfibh, dfibh;
208 	loff_t f_pos = udf_ext0_offset(inode);
209 	int size = udf_ext0_offset(inode) + inode->i_size;
210 	struct fileIdentDesc cfi, *sfi, *dfi;
211 	struct udf_inode_info *iinfo = UDF_I(inode);
212 
213 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
214 		alloctype = ICBTAG_FLAG_AD_SHORT;
215 	else
216 		alloctype = ICBTAG_FLAG_AD_LONG;
217 
218 	if (!inode->i_size) {
219 		iinfo->i_alloc_type = alloctype;
220 		mark_inode_dirty(inode);
221 		return NULL;
222 	}
223 
224 	/* alloc block, and copy data to it */
225 	*block = udf_new_block(inode->i_sb, inode,
226 			       iinfo->i_location.partitionReferenceNum,
227 			       iinfo->i_location.logicalBlockNum, err);
228 	if (!(*block))
229 		return NULL;
230 	newblock = udf_get_pblock(inode->i_sb, *block,
231 				  iinfo->i_location.partitionReferenceNum,
232 				0);
233 	if (!newblock)
234 		return NULL;
235 	dbh = udf_tgetblk(inode->i_sb, newblock);
236 	if (!dbh)
237 		return NULL;
238 	lock_buffer(dbh);
239 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
240 	set_buffer_uptodate(dbh);
241 	unlock_buffer(dbh);
242 	mark_buffer_dirty_inode(dbh, inode);
243 
244 	sfibh.soffset = sfibh.eoffset =
245 			f_pos & (inode->i_sb->s_blocksize - 1);
246 	sfibh.sbh = sfibh.ebh = NULL;
247 	dfibh.soffset = dfibh.eoffset = 0;
248 	dfibh.sbh = dfibh.ebh = dbh;
249 	while (f_pos < size) {
250 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
251 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
252 					 NULL, NULL, NULL);
253 		if (!sfi) {
254 			brelse(dbh);
255 			return NULL;
256 		}
257 		iinfo->i_alloc_type = alloctype;
258 		sfi->descTag.tagLocation = cpu_to_le32(*block);
259 		dfibh.soffset = dfibh.eoffset;
260 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
261 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
262 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
263 				 sfi->fileIdent +
264 					le16_to_cpu(sfi->lengthOfImpUse))) {
265 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
266 			brelse(dbh);
267 			return NULL;
268 		}
269 	}
270 	mark_buffer_dirty_inode(dbh, inode);
271 
272 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
273 		iinfo->i_lenAlloc);
274 	iinfo->i_lenAlloc = 0;
275 	eloc.logicalBlockNum = *block;
276 	eloc.partitionReferenceNum =
277 				iinfo->i_location.partitionReferenceNum;
278 	elen = inode->i_sb->s_blocksize;
279 	iinfo->i_lenExtents = elen;
280 	epos.bh = NULL;
281 	epos.block = iinfo->i_location;
282 	epos.offset = udf_file_entry_alloc_offset(inode);
283 	udf_add_aext(inode, &epos, eloc, elen, 0);
284 	/* UniqueID stuff */
285 
286 	brelse(epos.bh);
287 	mark_inode_dirty(inode);
288 	return dbh;
289 }
290 
291 static int udf_get_block(struct inode *inode, sector_t block,
292 			 struct buffer_head *bh_result, int create)
293 {
294 	int err, new;
295 	struct buffer_head *bh;
296 	sector_t phys = 0;
297 	struct udf_inode_info *iinfo;
298 
299 	if (!create) {
300 		phys = udf_block_map(inode, block);
301 		if (phys)
302 			map_bh(bh_result, inode->i_sb, phys);
303 		return 0;
304 	}
305 
306 	err = -EIO;
307 	new = 0;
308 	bh = NULL;
309 
310 	lock_kernel();
311 
312 	iinfo = UDF_I(inode);
313 	if (block == iinfo->i_next_alloc_block + 1) {
314 		iinfo->i_next_alloc_block++;
315 		iinfo->i_next_alloc_goal++;
316 	}
317 
318 	err = 0;
319 
320 	bh = inode_getblk(inode, block, &err, &phys, &new);
321 	BUG_ON(bh);
322 	if (err)
323 		goto abort;
324 	BUG_ON(!phys);
325 
326 	if (new)
327 		set_buffer_new(bh_result);
328 	map_bh(bh_result, inode->i_sb, phys);
329 
330 abort:
331 	unlock_kernel();
332 	return err;
333 }
334 
335 static struct buffer_head *udf_getblk(struct inode *inode, long block,
336 				      int create, int *err)
337 {
338 	struct buffer_head *bh;
339 	struct buffer_head dummy;
340 
341 	dummy.b_state = 0;
342 	dummy.b_blocknr = -1000;
343 	*err = udf_get_block(inode, block, &dummy, create);
344 	if (!*err && buffer_mapped(&dummy)) {
345 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
346 		if (buffer_new(&dummy)) {
347 			lock_buffer(bh);
348 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
349 			set_buffer_uptodate(bh);
350 			unlock_buffer(bh);
351 			mark_buffer_dirty_inode(bh, inode);
352 		}
353 		return bh;
354 	}
355 
356 	return NULL;
357 }
358 
359 /* Extend the file by 'blocks' blocks, return the number of extents added */
360 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
361 		    kernel_long_ad *last_ext, sector_t blocks)
362 {
363 	sector_t add;
364 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
365 	struct super_block *sb = inode->i_sb;
366 	kernel_lb_addr prealloc_loc = {};
367 	int prealloc_len = 0;
368 	struct udf_inode_info *iinfo;
369 
370 	/* The previous extent is fake and we should not extend by anything
371 	 * - there's nothing to do... */
372 	if (!blocks && fake)
373 		return 0;
374 
375 	iinfo = UDF_I(inode);
376 	/* Round the last extent up to a multiple of block size */
377 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
378 		last_ext->extLength =
379 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
380 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
381 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
382 		iinfo->i_lenExtents =
383 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
384 			~(sb->s_blocksize - 1);
385 	}
386 
387 	/* Last extent are just preallocated blocks? */
388 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
389 						EXT_NOT_RECORDED_ALLOCATED) {
390 		/* Save the extent so that we can reattach it to the end */
391 		prealloc_loc = last_ext->extLocation;
392 		prealloc_len = last_ext->extLength;
393 		/* Mark the extent as a hole */
394 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
395 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
396 		last_ext->extLocation.logicalBlockNum = 0;
397 		last_ext->extLocation.partitionReferenceNum = 0;
398 	}
399 
400 	/* Can we merge with the previous extent? */
401 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
402 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
403 		add = ((1 << 30) - sb->s_blocksize -
404 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
405 			sb->s_blocksize_bits;
406 		if (add > blocks)
407 			add = blocks;
408 		blocks -= add;
409 		last_ext->extLength += add << sb->s_blocksize_bits;
410 	}
411 
412 	if (fake) {
413 		udf_add_aext(inode, last_pos, last_ext->extLocation,
414 			     last_ext->extLength, 1);
415 		count++;
416 	} else
417 		udf_write_aext(inode, last_pos, last_ext->extLocation,
418 				last_ext->extLength, 1);
419 
420 	/* Managed to do everything necessary? */
421 	if (!blocks)
422 		goto out;
423 
424 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425 	last_ext->extLocation.logicalBlockNum = 0;
426 	last_ext->extLocation.partitionReferenceNum = 0;
427 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
428 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
429 				(add << sb->s_blocksize_bits);
430 
431 	/* Create enough extents to cover the whole hole */
432 	while (blocks > add) {
433 		blocks -= add;
434 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
435 				 last_ext->extLength, 1) == -1)
436 			return -1;
437 		count++;
438 	}
439 	if (blocks) {
440 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
441 			(blocks << sb->s_blocksize_bits);
442 		if (udf_add_aext(inode, last_pos, last_ext->extLocation,
443 				 last_ext->extLength, 1) == -1)
444 			return -1;
445 		count++;
446 	}
447 
448 out:
449 	/* Do we have some preallocated blocks saved? */
450 	if (prealloc_len) {
451 		if (udf_add_aext(inode, last_pos, prealloc_loc,
452 				 prealloc_len, 1) == -1)
453 			return -1;
454 		last_ext->extLocation = prealloc_loc;
455 		last_ext->extLength = prealloc_len;
456 		count++;
457 	}
458 
459 	/* last_pos should point to the last written extent... */
460 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
461 		last_pos->offset -= sizeof(short_ad);
462 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
463 		last_pos->offset -= sizeof(long_ad);
464 	else
465 		return -1;
466 
467 	return count;
468 }
469 
470 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
471 					int *err, sector_t *phys, int *new)
472 {
473 	static sector_t last_block;
474 	struct buffer_head *result = NULL;
475 	kernel_long_ad laarr[EXTENT_MERGE_SIZE];
476 	struct extent_position prev_epos, cur_epos, next_epos;
477 	int count = 0, startnum = 0, endnum = 0;
478 	uint32_t elen = 0, tmpelen;
479 	kernel_lb_addr eloc, tmpeloc;
480 	int c = 1;
481 	loff_t lbcount = 0, b_off = 0;
482 	uint32_t newblocknum, newblock;
483 	sector_t offset = 0;
484 	int8_t etype;
485 	struct udf_inode_info *iinfo = UDF_I(inode);
486 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
487 	int lastblock = 0;
488 
489 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
490 	prev_epos.block = iinfo->i_location;
491 	prev_epos.bh = NULL;
492 	cur_epos = next_epos = prev_epos;
493 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
494 
495 	/* find the extent which contains the block we are looking for.
496 	   alternate between laarr[0] and laarr[1] for locations of the
497 	   current extent, and the previous extent */
498 	do {
499 		if (prev_epos.bh != cur_epos.bh) {
500 			brelse(prev_epos.bh);
501 			get_bh(cur_epos.bh);
502 			prev_epos.bh = cur_epos.bh;
503 		}
504 		if (cur_epos.bh != next_epos.bh) {
505 			brelse(cur_epos.bh);
506 			get_bh(next_epos.bh);
507 			cur_epos.bh = next_epos.bh;
508 		}
509 
510 		lbcount += elen;
511 
512 		prev_epos.block = cur_epos.block;
513 		cur_epos.block = next_epos.block;
514 
515 		prev_epos.offset = cur_epos.offset;
516 		cur_epos.offset = next_epos.offset;
517 
518 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
519 		if (etype == -1)
520 			break;
521 
522 		c = !c;
523 
524 		laarr[c].extLength = (etype << 30) | elen;
525 		laarr[c].extLocation = eloc;
526 
527 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
528 			pgoal = eloc.logicalBlockNum +
529 				((elen + inode->i_sb->s_blocksize - 1) >>
530 				 inode->i_sb->s_blocksize_bits);
531 
532 		count++;
533 	} while (lbcount + elen <= b_off);
534 
535 	b_off -= lbcount;
536 	offset = b_off >> inode->i_sb->s_blocksize_bits;
537 	/*
538 	 * Move prev_epos and cur_epos into indirect extent if we are at
539 	 * the pointer to it
540 	 */
541 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
542 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
543 
544 	/* if the extent is allocated and recorded, return the block
545 	   if the extent is not a multiple of the blocksize, round up */
546 
547 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
548 		if (elen & (inode->i_sb->s_blocksize - 1)) {
549 			elen = EXT_RECORDED_ALLOCATED |
550 				((elen + inode->i_sb->s_blocksize - 1) &
551 				 ~(inode->i_sb->s_blocksize - 1));
552 			etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
553 		}
554 		brelse(prev_epos.bh);
555 		brelse(cur_epos.bh);
556 		brelse(next_epos.bh);
557 		newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
558 		*phys = newblock;
559 		return NULL;
560 	}
561 
562 	last_block = block;
563 	/* Are we beyond EOF? */
564 	if (etype == -1) {
565 		int ret;
566 
567 		if (count) {
568 			if (c)
569 				laarr[0] = laarr[1];
570 			startnum = 1;
571 		} else {
572 			/* Create a fake extent when there's not one */
573 			memset(&laarr[0].extLocation, 0x00,
574 				sizeof(kernel_lb_addr));
575 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
576 			/* Will udf_extend_file() create real extent from
577 			   a fake one? */
578 			startnum = (offset > 0);
579 		}
580 		/* Create extents for the hole between EOF and offset */
581 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
582 		if (ret == -1) {
583 			brelse(prev_epos.bh);
584 			brelse(cur_epos.bh);
585 			brelse(next_epos.bh);
586 			/* We don't really know the error here so we just make
587 			 * something up */
588 			*err = -ENOSPC;
589 			return NULL;
590 		}
591 		c = 0;
592 		offset = 0;
593 		count += ret;
594 		/* We are not covered by a preallocated extent? */
595 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
596 						EXT_NOT_RECORDED_ALLOCATED) {
597 			/* Is there any real extent? - otherwise we overwrite
598 			 * the fake one... */
599 			if (count)
600 				c = !c;
601 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
602 				inode->i_sb->s_blocksize;
603 			memset(&laarr[c].extLocation, 0x00,
604 				sizeof(kernel_lb_addr));
605 			count++;
606 			endnum++;
607 		}
608 		endnum = c + 1;
609 		lastblock = 1;
610 	} else {
611 		endnum = startnum = ((count > 2) ? 2 : count);
612 
613 		/* if the current extent is in position 0,
614 		   swap it with the previous */
615 		if (!c && count != 1) {
616 			laarr[2] = laarr[0];
617 			laarr[0] = laarr[1];
618 			laarr[1] = laarr[2];
619 			c = 1;
620 		}
621 
622 		/* if the current block is located in an extent,
623 		   read the next extent */
624 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
625 		if (etype != -1) {
626 			laarr[c + 1].extLength = (etype << 30) | elen;
627 			laarr[c + 1].extLocation = eloc;
628 			count++;
629 			startnum++;
630 			endnum++;
631 		} else
632 			lastblock = 1;
633 	}
634 
635 	/* if the current extent is not recorded but allocated, get the
636 	 * block in the extent corresponding to the requested block */
637 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
638 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
639 	else { /* otherwise, allocate a new block */
640 		if (iinfo->i_next_alloc_block == block)
641 			goal = iinfo->i_next_alloc_goal;
642 
643 		if (!goal) {
644 			if (!(goal = pgoal)) /* XXX: what was intended here? */
645 				goal = iinfo->i_location.logicalBlockNum + 1;
646 		}
647 
648 		newblocknum = udf_new_block(inode->i_sb, inode,
649 				iinfo->i_location.partitionReferenceNum,
650 				goal, err);
651 		if (!newblocknum) {
652 			brelse(prev_epos.bh);
653 			*err = -ENOSPC;
654 			return NULL;
655 		}
656 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
657 	}
658 
659 	/* if the extent the requsted block is located in contains multiple
660 	 * blocks, split the extent into at most three extents. blocks prior
661 	 * to requested block, requested block, and blocks after requested
662 	 * block */
663 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
664 
665 #ifdef UDF_PREALLOCATE
666 	/* preallocate blocks */
667 	udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
668 #endif
669 
670 	/* merge any continuous blocks in laarr */
671 	udf_merge_extents(inode, laarr, &endnum);
672 
673 	/* write back the new extents, inserting new extents if the new number
674 	 * of extents is greater than the old number, and deleting extents if
675 	 * the new number of extents is less than the old number */
676 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
677 
678 	brelse(prev_epos.bh);
679 
680 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
681 				iinfo->i_location.partitionReferenceNum, 0);
682 	if (!newblock)
683 		return NULL;
684 	*phys = newblock;
685 	*err = 0;
686 	*new = 1;
687 	iinfo->i_next_alloc_block = block;
688 	iinfo->i_next_alloc_goal = newblocknum;
689 	inode->i_ctime = current_fs_time(inode->i_sb);
690 
691 	if (IS_SYNC(inode))
692 		udf_sync_inode(inode);
693 	else
694 		mark_inode_dirty(inode);
695 
696 	return result;
697 }
698 
699 static void udf_split_extents(struct inode *inode, int *c, int offset,
700 			      int newblocknum,
701 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
702 			      int *endnum)
703 {
704 	unsigned long blocksize = inode->i_sb->s_blocksize;
705 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
706 
707 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
708 	    (laarr[*c].extLength >> 30) ==
709 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
710 		int curr = *c;
711 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
712 			    blocksize - 1) >> blocksize_bits;
713 		int8_t etype = (laarr[curr].extLength >> 30);
714 
715 		if (blen == 1)
716 			;
717 		else if (!offset || blen == offset + 1) {
718 			laarr[curr + 2] = laarr[curr + 1];
719 			laarr[curr + 1] = laarr[curr];
720 		} else {
721 			laarr[curr + 3] = laarr[curr + 1];
722 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
723 		}
724 
725 		if (offset) {
726 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
727 				udf_free_blocks(inode->i_sb, inode,
728 						laarr[curr].extLocation,
729 						0, offset);
730 				laarr[curr].extLength =
731 					EXT_NOT_RECORDED_NOT_ALLOCATED |
732 					(offset << blocksize_bits);
733 				laarr[curr].extLocation.logicalBlockNum = 0;
734 				laarr[curr].extLocation.
735 						partitionReferenceNum = 0;
736 			} else
737 				laarr[curr].extLength = (etype << 30) |
738 					(offset << blocksize_bits);
739 			curr++;
740 			(*c)++;
741 			(*endnum)++;
742 		}
743 
744 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
745 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
746 			laarr[curr].extLocation.partitionReferenceNum =
747 				UDF_I(inode)->i_location.partitionReferenceNum;
748 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
749 			blocksize;
750 		curr++;
751 
752 		if (blen != offset + 1) {
753 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
754 				laarr[curr].extLocation.logicalBlockNum +=
755 								offset + 1;
756 			laarr[curr].extLength = (etype << 30) |
757 				((blen - (offset + 1)) << blocksize_bits);
758 			curr++;
759 			(*endnum)++;
760 		}
761 	}
762 }
763 
764 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
765 				 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
766 				 int *endnum)
767 {
768 	int start, length = 0, currlength = 0, i;
769 
770 	if (*endnum >= (c + 1)) {
771 		if (!lastblock)
772 			return;
773 		else
774 			start = c;
775 	} else {
776 		if ((laarr[c + 1].extLength >> 30) ==
777 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
778 			start = c + 1;
779 			length = currlength =
780 				(((laarr[c + 1].extLength &
781 					UDF_EXTENT_LENGTH_MASK) +
782 				inode->i_sb->s_blocksize - 1) >>
783 				inode->i_sb->s_blocksize_bits);
784 		} else
785 			start = c;
786 	}
787 
788 	for (i = start + 1; i <= *endnum; i++) {
789 		if (i == *endnum) {
790 			if (lastblock)
791 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
792 		} else if ((laarr[i].extLength >> 30) ==
793 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
794 			length += (((laarr[i].extLength &
795 						UDF_EXTENT_LENGTH_MASK) +
796 				    inode->i_sb->s_blocksize - 1) >>
797 				    inode->i_sb->s_blocksize_bits);
798 		} else
799 			break;
800 	}
801 
802 	if (length) {
803 		int next = laarr[start].extLocation.logicalBlockNum +
804 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
805 			  inode->i_sb->s_blocksize - 1) >>
806 			  inode->i_sb->s_blocksize_bits);
807 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
808 				laarr[start].extLocation.partitionReferenceNum,
809 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
810 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
811 				currlength);
812 		if (numalloc) 	{
813 			if (start == (c + 1))
814 				laarr[start].extLength +=
815 					(numalloc <<
816 					 inode->i_sb->s_blocksize_bits);
817 			else {
818 				memmove(&laarr[c + 2], &laarr[c + 1],
819 					sizeof(long_ad) * (*endnum - (c + 1)));
820 				(*endnum)++;
821 				laarr[c + 1].extLocation.logicalBlockNum = next;
822 				laarr[c + 1].extLocation.partitionReferenceNum =
823 					laarr[c].extLocation.
824 							partitionReferenceNum;
825 				laarr[c + 1].extLength =
826 					EXT_NOT_RECORDED_ALLOCATED |
827 					(numalloc <<
828 					 inode->i_sb->s_blocksize_bits);
829 				start = c + 1;
830 			}
831 
832 			for (i = start + 1; numalloc && i < *endnum; i++) {
833 				int elen = ((laarr[i].extLength &
834 						UDF_EXTENT_LENGTH_MASK) +
835 					    inode->i_sb->s_blocksize - 1) >>
836 					    inode->i_sb->s_blocksize_bits;
837 
838 				if (elen > numalloc) {
839 					laarr[i].extLength -=
840 						(numalloc <<
841 						 inode->i_sb->s_blocksize_bits);
842 					numalloc = 0;
843 				} else {
844 					numalloc -= elen;
845 					if (*endnum > (i + 1))
846 						memmove(&laarr[i],
847 							&laarr[i + 1],
848 							sizeof(long_ad) *
849 							(*endnum - (i + 1)));
850 					i--;
851 					(*endnum)--;
852 				}
853 			}
854 			UDF_I(inode)->i_lenExtents +=
855 				numalloc << inode->i_sb->s_blocksize_bits;
856 		}
857 	}
858 }
859 
860 static void udf_merge_extents(struct inode *inode,
861 			      kernel_long_ad laarr[EXTENT_MERGE_SIZE],
862 			      int *endnum)
863 {
864 	int i;
865 	unsigned long blocksize = inode->i_sb->s_blocksize;
866 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
867 
868 	for (i = 0; i < (*endnum - 1); i++) {
869 		kernel_long_ad *li /*l[i]*/ = &laarr[i];
870 		kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
871 
872 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
873 			(((li->extLength >> 30) ==
874 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
875 			((lip1->extLocation.logicalBlockNum -
876 			  li->extLocation.logicalBlockNum) ==
877 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
878 			blocksize - 1) >> blocksize_bits)))) {
879 
880 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
881 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
882 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
883 				lip1->extLength = (lip1->extLength -
884 						  (li->extLength &
885 						   UDF_EXTENT_LENGTH_MASK) +
886 						   UDF_EXTENT_LENGTH_MASK) &
887 							~(blocksize - 1);
888 				li->extLength = (li->extLength &
889 						 UDF_EXTENT_FLAG_MASK) +
890 						(UDF_EXTENT_LENGTH_MASK + 1) -
891 						blocksize;
892 				lip1->extLocation.logicalBlockNum =
893 					li->extLocation.logicalBlockNum +
894 					((li->extLength &
895 						UDF_EXTENT_LENGTH_MASK) >>
896 						blocksize_bits);
897 			} else {
898 				li->extLength = lip1->extLength +
899 					(((li->extLength &
900 						UDF_EXTENT_LENGTH_MASK) +
901 					 blocksize - 1) & ~(blocksize - 1));
902 				if (*endnum > (i + 2))
903 					memmove(&laarr[i + 1], &laarr[i + 2],
904 						sizeof(long_ad) *
905 						(*endnum - (i + 2)));
906 				i--;
907 				(*endnum)--;
908 			}
909 		} else if (((li->extLength >> 30) ==
910 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
911 			   ((lip1->extLength >> 30) ==
912 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
913 			udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
914 					((li->extLength &
915 					  UDF_EXTENT_LENGTH_MASK) +
916 					 blocksize - 1) >> blocksize_bits);
917 			li->extLocation.logicalBlockNum = 0;
918 			li->extLocation.partitionReferenceNum = 0;
919 
920 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
921 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
922 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
923 				lip1->extLength = (lip1->extLength -
924 						   (li->extLength &
925 						   UDF_EXTENT_LENGTH_MASK) +
926 						   UDF_EXTENT_LENGTH_MASK) &
927 						   ~(blocksize - 1);
928 				li->extLength = (li->extLength &
929 						 UDF_EXTENT_FLAG_MASK) +
930 						(UDF_EXTENT_LENGTH_MASK + 1) -
931 						blocksize;
932 			} else {
933 				li->extLength = lip1->extLength +
934 					(((li->extLength &
935 						UDF_EXTENT_LENGTH_MASK) +
936 					  blocksize - 1) & ~(blocksize - 1));
937 				if (*endnum > (i + 2))
938 					memmove(&laarr[i + 1], &laarr[i + 2],
939 						sizeof(long_ad) *
940 						(*endnum - (i + 2)));
941 				i--;
942 				(*endnum)--;
943 			}
944 		} else if ((li->extLength >> 30) ==
945 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 			udf_free_blocks(inode->i_sb, inode,
947 					li->extLocation, 0,
948 					((li->extLength &
949 						UDF_EXTENT_LENGTH_MASK) +
950 					 blocksize - 1) >> blocksize_bits);
951 			li->extLocation.logicalBlockNum = 0;
952 			li->extLocation.partitionReferenceNum = 0;
953 			li->extLength = (li->extLength &
954 						UDF_EXTENT_LENGTH_MASK) |
955 						EXT_NOT_RECORDED_NOT_ALLOCATED;
956 		}
957 	}
958 }
959 
960 static void udf_update_extents(struct inode *inode,
961 			       kernel_long_ad laarr[EXTENT_MERGE_SIZE],
962 			       int startnum, int endnum,
963 			       struct extent_position *epos)
964 {
965 	int start = 0, i;
966 	kernel_lb_addr tmploc;
967 	uint32_t tmplen;
968 
969 	if (startnum > endnum) {
970 		for (i = 0; i < (startnum - endnum); i++)
971 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
972 					laarr[i].extLength);
973 	} else if (startnum < endnum) {
974 		for (i = 0; i < (endnum - startnum); i++) {
975 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
976 					laarr[i].extLength);
977 			udf_next_aext(inode, epos, &laarr[i].extLocation,
978 				      &laarr[i].extLength, 1);
979 			start++;
980 		}
981 	}
982 
983 	for (i = start; i < endnum; i++) {
984 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
985 		udf_write_aext(inode, epos, laarr[i].extLocation,
986 			       laarr[i].extLength, 1);
987 	}
988 }
989 
990 struct buffer_head *udf_bread(struct inode *inode, int block,
991 			      int create, int *err)
992 {
993 	struct buffer_head *bh = NULL;
994 
995 	bh = udf_getblk(inode, block, create, err);
996 	if (!bh)
997 		return NULL;
998 
999 	if (buffer_uptodate(bh))
1000 		return bh;
1001 
1002 	ll_rw_block(READ, 1, &bh);
1003 
1004 	wait_on_buffer(bh);
1005 	if (buffer_uptodate(bh))
1006 		return bh;
1007 
1008 	brelse(bh);
1009 	*err = -EIO;
1010 	return NULL;
1011 }
1012 
1013 void udf_truncate(struct inode *inode)
1014 {
1015 	int offset;
1016 	int err;
1017 	struct udf_inode_info *iinfo;
1018 
1019 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1020 	      S_ISLNK(inode->i_mode)))
1021 		return;
1022 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1023 		return;
1024 
1025 	lock_kernel();
1026 	iinfo = UDF_I(inode);
1027 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1028 		if (inode->i_sb->s_blocksize <
1029 				(udf_file_entry_alloc_offset(inode) +
1030 				 inode->i_size)) {
1031 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1032 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1033 				inode->i_size = iinfo->i_lenAlloc;
1034 				unlock_kernel();
1035 				return;
1036 			} else
1037 				udf_truncate_extents(inode);
1038 		} else {
1039 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1040 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1041 				0x00, inode->i_sb->s_blocksize -
1042 				offset - udf_file_entry_alloc_offset(inode));
1043 			iinfo->i_lenAlloc = inode->i_size;
1044 		}
1045 	} else {
1046 		block_truncate_page(inode->i_mapping, inode->i_size,
1047 				    udf_get_block);
1048 		udf_truncate_extents(inode);
1049 	}
1050 
1051 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1052 	if (IS_SYNC(inode))
1053 		udf_sync_inode(inode);
1054 	else
1055 		mark_inode_dirty(inode);
1056 	unlock_kernel();
1057 }
1058 
1059 static void __udf_read_inode(struct inode *inode)
1060 {
1061 	struct buffer_head *bh = NULL;
1062 	struct fileEntry *fe;
1063 	uint16_t ident;
1064 	struct udf_inode_info *iinfo = UDF_I(inode);
1065 
1066 	/*
1067 	 * Set defaults, but the inode is still incomplete!
1068 	 * Note: get_new_inode() sets the following on a new inode:
1069 	 *      i_sb = sb
1070 	 *      i_no = ino
1071 	 *      i_flags = sb->s_flags
1072 	 *      i_state = 0
1073 	 * clean_inode(): zero fills and sets
1074 	 *      i_count = 1
1075 	 *      i_nlink = 1
1076 	 *      i_op = NULL;
1077 	 */
1078 	bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident);
1079 	if (!bh) {
1080 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1081 		       inode->i_ino);
1082 		make_bad_inode(inode);
1083 		return;
1084 	}
1085 
1086 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1087 	    ident != TAG_IDENT_USE) {
1088 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1089 				"failed ident=%d\n", inode->i_ino, ident);
1090 		brelse(bh);
1091 		make_bad_inode(inode);
1092 		return;
1093 	}
1094 
1095 	fe = (struct fileEntry *)bh->b_data;
1096 
1097 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1098 		struct buffer_head *ibh;
1099 
1100 		ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1,
1101 					&ident);
1102 		if (ident == TAG_IDENT_IE && ibh) {
1103 			struct buffer_head *nbh = NULL;
1104 			kernel_lb_addr loc;
1105 			struct indirectEntry *ie;
1106 
1107 			ie = (struct indirectEntry *)ibh->b_data;
1108 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1109 
1110 			if (ie->indirectICB.extLength &&
1111 				(nbh = udf_read_ptagged(inode->i_sb, loc, 0,
1112 							&ident))) {
1113 				if (ident == TAG_IDENT_FE ||
1114 					ident == TAG_IDENT_EFE) {
1115 					memcpy(&iinfo->i_location,
1116 						&loc,
1117 						sizeof(kernel_lb_addr));
1118 					brelse(bh);
1119 					brelse(ibh);
1120 					brelse(nbh);
1121 					__udf_read_inode(inode);
1122 					return;
1123 				}
1124 				brelse(nbh);
1125 			}
1126 		}
1127 		brelse(ibh);
1128 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1129 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1130 		       le16_to_cpu(fe->icbTag.strategyType));
1131 		brelse(bh);
1132 		make_bad_inode(inode);
1133 		return;
1134 	}
1135 	udf_fill_inode(inode, bh);
1136 
1137 	brelse(bh);
1138 }
1139 
1140 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1141 {
1142 	struct fileEntry *fe;
1143 	struct extendedFileEntry *efe;
1144 	int offset;
1145 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1146 	struct udf_inode_info *iinfo = UDF_I(inode);
1147 
1148 	fe = (struct fileEntry *)bh->b_data;
1149 	efe = (struct extendedFileEntry *)bh->b_data;
1150 
1151 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1152 		iinfo->i_strat4096 = 0;
1153 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1154 		iinfo->i_strat4096 = 1;
1155 
1156 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1157 							ICBTAG_FLAG_AD_MASK;
1158 	iinfo->i_unique = 0;
1159 	iinfo->i_lenEAttr = 0;
1160 	iinfo->i_lenExtents = 0;
1161 	iinfo->i_lenAlloc = 0;
1162 	iinfo->i_next_alloc_block = 0;
1163 	iinfo->i_next_alloc_goal = 0;
1164 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1165 		iinfo->i_efe = 1;
1166 		iinfo->i_use = 0;
1167 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1168 					sizeof(struct extendedFileEntry))) {
1169 			make_bad_inode(inode);
1170 			return;
1171 		}
1172 		memcpy(iinfo->i_ext.i_data,
1173 		       bh->b_data + sizeof(struct extendedFileEntry),
1174 		       inode->i_sb->s_blocksize -
1175 					sizeof(struct extendedFileEntry));
1176 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1177 		iinfo->i_efe = 0;
1178 		iinfo->i_use = 0;
1179 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1180 						sizeof(struct fileEntry))) {
1181 			make_bad_inode(inode);
1182 			return;
1183 		}
1184 		memcpy(iinfo->i_ext.i_data,
1185 		       bh->b_data + sizeof(struct fileEntry),
1186 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1187 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1188 		iinfo->i_efe = 0;
1189 		iinfo->i_use = 1;
1190 		iinfo->i_lenAlloc = le32_to_cpu(
1191 				((struct unallocSpaceEntry *)bh->b_data)->
1192 				 lengthAllocDescs);
1193 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1194 					sizeof(struct unallocSpaceEntry))) {
1195 			make_bad_inode(inode);
1196 			return;
1197 		}
1198 		memcpy(iinfo->i_ext.i_data,
1199 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1200 		       inode->i_sb->s_blocksize -
1201 					sizeof(struct unallocSpaceEntry));
1202 		return;
1203 	}
1204 
1205 	inode->i_uid = le32_to_cpu(fe->uid);
1206 	if (inode->i_uid == -1 ||
1207 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1208 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1209 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1210 
1211 	inode->i_gid = le32_to_cpu(fe->gid);
1212 	if (inode->i_gid == -1 ||
1213 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1214 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1215 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1216 
1217 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1218 	if (!inode->i_nlink)
1219 		inode->i_nlink = 1;
1220 
1221 	inode->i_size = le64_to_cpu(fe->informationLength);
1222 	iinfo->i_lenExtents = inode->i_size;
1223 
1224 	inode->i_mode = udf_convert_permissions(fe);
1225 	inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1226 
1227 	if (iinfo->i_efe == 0) {
1228 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1229 			(inode->i_sb->s_blocksize_bits - 9);
1230 
1231 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1232 			inode->i_atime = sbi->s_record_time;
1233 
1234 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1235 					    fe->modificationTime))
1236 			inode->i_mtime = sbi->s_record_time;
1237 
1238 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1239 			inode->i_ctime = sbi->s_record_time;
1240 
1241 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1242 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1243 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1244 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1245 	} else {
1246 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1247 		    (inode->i_sb->s_blocksize_bits - 9);
1248 
1249 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1250 			inode->i_atime = sbi->s_record_time;
1251 
1252 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1253 					    efe->modificationTime))
1254 			inode->i_mtime = sbi->s_record_time;
1255 
1256 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1257 			iinfo->i_crtime = sbi->s_record_time;
1258 
1259 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1260 			inode->i_ctime = sbi->s_record_time;
1261 
1262 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1263 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1264 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1265 		offset = sizeof(struct extendedFileEntry) +
1266 							iinfo->i_lenEAttr;
1267 	}
1268 
1269 	switch (fe->icbTag.fileType) {
1270 	case ICBTAG_FILE_TYPE_DIRECTORY:
1271 		inode->i_op = &udf_dir_inode_operations;
1272 		inode->i_fop = &udf_dir_operations;
1273 		inode->i_mode |= S_IFDIR;
1274 		inc_nlink(inode);
1275 		break;
1276 	case ICBTAG_FILE_TYPE_REALTIME:
1277 	case ICBTAG_FILE_TYPE_REGULAR:
1278 	case ICBTAG_FILE_TYPE_UNDEF:
1279 	case ICBTAG_FILE_TYPE_VAT20:
1280 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1281 			inode->i_data.a_ops = &udf_adinicb_aops;
1282 		else
1283 			inode->i_data.a_ops = &udf_aops;
1284 		inode->i_op = &udf_file_inode_operations;
1285 		inode->i_fop = &udf_file_operations;
1286 		inode->i_mode |= S_IFREG;
1287 		break;
1288 	case ICBTAG_FILE_TYPE_BLOCK:
1289 		inode->i_mode |= S_IFBLK;
1290 		break;
1291 	case ICBTAG_FILE_TYPE_CHAR:
1292 		inode->i_mode |= S_IFCHR;
1293 		break;
1294 	case ICBTAG_FILE_TYPE_FIFO:
1295 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1296 		break;
1297 	case ICBTAG_FILE_TYPE_SOCKET:
1298 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1299 		break;
1300 	case ICBTAG_FILE_TYPE_SYMLINK:
1301 		inode->i_data.a_ops = &udf_symlink_aops;
1302 		inode->i_op = &page_symlink_inode_operations;
1303 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1304 		break;
1305 	case ICBTAG_FILE_TYPE_MAIN:
1306 		udf_debug("METADATA FILE-----\n");
1307 		break;
1308 	case ICBTAG_FILE_TYPE_MIRROR:
1309 		udf_debug("METADATA MIRROR FILE-----\n");
1310 		break;
1311 	case ICBTAG_FILE_TYPE_BITMAP:
1312 		udf_debug("METADATA BITMAP FILE-----\n");
1313 		break;
1314 	default:
1315 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1316 				"file type=%d\n", inode->i_ino,
1317 				fe->icbTag.fileType);
1318 		make_bad_inode(inode);
1319 		return;
1320 	}
1321 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1322 		struct deviceSpec *dsea =
1323 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1324 		if (dsea) {
1325 			init_special_inode(inode, inode->i_mode,
1326 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1327 				      le32_to_cpu(dsea->minorDeviceIdent)));
1328 			/* Developer ID ??? */
1329 		} else
1330 			make_bad_inode(inode);
1331 	}
1332 }
1333 
1334 static int udf_alloc_i_data(struct inode *inode, size_t size)
1335 {
1336 	struct udf_inode_info *iinfo = UDF_I(inode);
1337 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1338 
1339 	if (!iinfo->i_ext.i_data) {
1340 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1341 				"no free memory\n", inode->i_ino);
1342 		return -ENOMEM;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static mode_t udf_convert_permissions(struct fileEntry *fe)
1349 {
1350 	mode_t mode;
1351 	uint32_t permissions;
1352 	uint32_t flags;
1353 
1354 	permissions = le32_to_cpu(fe->permissions);
1355 	flags = le16_to_cpu(fe->icbTag.flags);
1356 
1357 	mode =	((permissions) & S_IRWXO) |
1358 		((permissions >> 2) & S_IRWXG) |
1359 		((permissions >> 4) & S_IRWXU) |
1360 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1361 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1362 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1363 
1364 	return mode;
1365 }
1366 
1367 int udf_write_inode(struct inode *inode, int sync)
1368 {
1369 	int ret;
1370 
1371 	lock_kernel();
1372 	ret = udf_update_inode(inode, sync);
1373 	unlock_kernel();
1374 
1375 	return ret;
1376 }
1377 
1378 int udf_sync_inode(struct inode *inode)
1379 {
1380 	return udf_update_inode(inode, 1);
1381 }
1382 
1383 static int udf_update_inode(struct inode *inode, int do_sync)
1384 {
1385 	struct buffer_head *bh = NULL;
1386 	struct fileEntry *fe;
1387 	struct extendedFileEntry *efe;
1388 	uint32_t udfperms;
1389 	uint16_t icbflags;
1390 	uint16_t crclen;
1391 	int err = 0;
1392 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1393 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1394 	struct udf_inode_info *iinfo = UDF_I(inode);
1395 
1396 	bh = udf_tread(inode->i_sb,
1397 			udf_get_lb_pblock(inode->i_sb,
1398 					  iinfo->i_location, 0));
1399 	if (!bh) {
1400 		udf_debug("bread failure\n");
1401 		return -EIO;
1402 	}
1403 
1404 	memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1405 
1406 	fe = (struct fileEntry *)bh->b_data;
1407 	efe = (struct extendedFileEntry *)bh->b_data;
1408 
1409 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410 		struct unallocSpaceEntry *use =
1411 			(struct unallocSpaceEntry *)bh->b_data;
1412 
1413 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1414 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1415 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1416 					sizeof(struct unallocSpaceEntry));
1417 		crclen = sizeof(struct unallocSpaceEntry) +
1418 				iinfo->i_lenAlloc - sizeof(tag);
1419 		use->descTag.tagLocation = cpu_to_le32(
1420 						iinfo->i_location.
1421 							logicalBlockNum);
1422 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1423 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1424 							   sizeof(tag),
1425 							   crclen));
1426 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1427 
1428 		mark_buffer_dirty(bh);
1429 		brelse(bh);
1430 		return err;
1431 	}
1432 
1433 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1434 		fe->uid = cpu_to_le32(-1);
1435 	else
1436 		fe->uid = cpu_to_le32(inode->i_uid);
1437 
1438 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1439 		fe->gid = cpu_to_le32(-1);
1440 	else
1441 		fe->gid = cpu_to_le32(inode->i_gid);
1442 
1443 	udfperms = ((inode->i_mode & S_IRWXO)) |
1444 		   ((inode->i_mode & S_IRWXG) << 2) |
1445 		   ((inode->i_mode & S_IRWXU) << 4);
1446 
1447 	udfperms |= (le32_to_cpu(fe->permissions) &
1448 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1449 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1450 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1451 	fe->permissions = cpu_to_le32(udfperms);
1452 
1453 	if (S_ISDIR(inode->i_mode))
1454 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1455 	else
1456 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1457 
1458 	fe->informationLength = cpu_to_le64(inode->i_size);
1459 
1460 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1461 		regid *eid;
1462 		struct deviceSpec *dsea =
1463 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1464 		if (!dsea) {
1465 			dsea = (struct deviceSpec *)
1466 				udf_add_extendedattr(inode,
1467 						     sizeof(struct deviceSpec) +
1468 						     sizeof(regid), 12, 0x3);
1469 			dsea->attrType = cpu_to_le32(12);
1470 			dsea->attrSubtype = 1;
1471 			dsea->attrLength = cpu_to_le32(
1472 						sizeof(struct deviceSpec) +
1473 						sizeof(regid));
1474 			dsea->impUseLength = cpu_to_le32(sizeof(regid));
1475 		}
1476 		eid = (regid *)dsea->impUse;
1477 		memset(eid, 0, sizeof(regid));
1478 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1479 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1480 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1481 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1482 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1483 	}
1484 
1485 	if (iinfo->i_efe == 0) {
1486 		memcpy(bh->b_data + sizeof(struct fileEntry),
1487 		       iinfo->i_ext.i_data,
1488 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1489 		fe->logicalBlocksRecorded = cpu_to_le64(
1490 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1491 			(blocksize_bits - 9));
1492 
1493 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1494 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1495 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1496 		memset(&(fe->impIdent), 0, sizeof(regid));
1497 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1498 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1499 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1500 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1501 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1502 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1503 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1504 		crclen = sizeof(struct fileEntry);
1505 	} else {
1506 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1507 		       iinfo->i_ext.i_data,
1508 		       inode->i_sb->s_blocksize -
1509 					sizeof(struct extendedFileEntry));
1510 		efe->objectSize = cpu_to_le64(inode->i_size);
1511 		efe->logicalBlocksRecorded = cpu_to_le64(
1512 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1513 			(blocksize_bits - 9));
1514 
1515 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1516 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1517 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1518 			iinfo->i_crtime = inode->i_atime;
1519 
1520 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1521 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1522 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1523 			iinfo->i_crtime = inode->i_mtime;
1524 
1525 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1526 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1527 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1528 			iinfo->i_crtime = inode->i_ctime;
1529 
1530 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1531 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1532 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1533 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1534 
1535 		memset(&(efe->impIdent), 0, sizeof(regid));
1536 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1537 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1538 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1539 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1540 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1541 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1542 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1543 		crclen = sizeof(struct extendedFileEntry);
1544 	}
1545 	if (iinfo->i_strat4096) {
1546 		fe->icbTag.strategyType = cpu_to_le16(4096);
1547 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1548 		fe->icbTag.numEntries = cpu_to_le16(2);
1549 	} else {
1550 		fe->icbTag.strategyType = cpu_to_le16(4);
1551 		fe->icbTag.numEntries = cpu_to_le16(1);
1552 	}
1553 
1554 	if (S_ISDIR(inode->i_mode))
1555 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1556 	else if (S_ISREG(inode->i_mode))
1557 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1558 	else if (S_ISLNK(inode->i_mode))
1559 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1560 	else if (S_ISBLK(inode->i_mode))
1561 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1562 	else if (S_ISCHR(inode->i_mode))
1563 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1564 	else if (S_ISFIFO(inode->i_mode))
1565 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1566 	else if (S_ISSOCK(inode->i_mode))
1567 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1568 
1569 	icbflags =	iinfo->i_alloc_type |
1570 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1571 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1572 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1573 			(le16_to_cpu(fe->icbTag.flags) &
1574 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1575 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1576 
1577 	fe->icbTag.flags = cpu_to_le16(icbflags);
1578 	if (sbi->s_udfrev >= 0x0200)
1579 		fe->descTag.descVersion = cpu_to_le16(3);
1580 	else
1581 		fe->descTag.descVersion = cpu_to_le16(2);
1582 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1583 	fe->descTag.tagLocation = cpu_to_le32(
1584 					iinfo->i_location.logicalBlockNum);
1585 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1586 								sizeof(tag);
1587 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1588 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(tag),
1589 						  crclen));
1590 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1591 
1592 	/* write the data blocks */
1593 	mark_buffer_dirty(bh);
1594 	if (do_sync) {
1595 		sync_dirty_buffer(bh);
1596 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1597 			printk(KERN_WARNING "IO error syncing udf inode "
1598 				"[%s:%08lx]\n", inode->i_sb->s_id,
1599 				inode->i_ino);
1600 			err = -EIO;
1601 		}
1602 	}
1603 	brelse(bh);
1604 
1605 	return err;
1606 }
1607 
1608 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1609 {
1610 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1611 	struct inode *inode = iget_locked(sb, block);
1612 
1613 	if (!inode)
1614 		return NULL;
1615 
1616 	if (inode->i_state & I_NEW) {
1617 		memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr));
1618 		__udf_read_inode(inode);
1619 		unlock_new_inode(inode);
1620 	}
1621 
1622 	if (is_bad_inode(inode))
1623 		goto out_iput;
1624 
1625 	if (ino.logicalBlockNum >= UDF_SB(sb)->
1626 			s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1627 		udf_debug("block=%d, partition=%d out of range\n",
1628 			  ino.logicalBlockNum, ino.partitionReferenceNum);
1629 		make_bad_inode(inode);
1630 		goto out_iput;
1631 	}
1632 
1633 	return inode;
1634 
1635  out_iput:
1636 	iput(inode);
1637 	return NULL;
1638 }
1639 
1640 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1641 		    kernel_lb_addr eloc, uint32_t elen, int inc)
1642 {
1643 	int adsize;
1644 	short_ad *sad = NULL;
1645 	long_ad *lad = NULL;
1646 	struct allocExtDesc *aed;
1647 	int8_t etype;
1648 	uint8_t *ptr;
1649 	struct udf_inode_info *iinfo = UDF_I(inode);
1650 
1651 	if (!epos->bh)
1652 		ptr = iinfo->i_ext.i_data + epos->offset -
1653 			udf_file_entry_alloc_offset(inode) +
1654 			iinfo->i_lenEAttr;
1655 	else
1656 		ptr = epos->bh->b_data + epos->offset;
1657 
1658 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1659 		adsize = sizeof(short_ad);
1660 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1661 		adsize = sizeof(long_ad);
1662 	else
1663 		return -1;
1664 
1665 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1666 		char *sptr, *dptr;
1667 		struct buffer_head *nbh;
1668 		int err, loffset;
1669 		kernel_lb_addr obloc = epos->block;
1670 
1671 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1672 						obloc.partitionReferenceNum,
1673 						obloc.logicalBlockNum, &err);
1674 		if (!epos->block.logicalBlockNum)
1675 			return -1;
1676 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1677 								 epos->block,
1678 								 0));
1679 		if (!nbh)
1680 			return -1;
1681 		lock_buffer(nbh);
1682 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1683 		set_buffer_uptodate(nbh);
1684 		unlock_buffer(nbh);
1685 		mark_buffer_dirty_inode(nbh, inode);
1686 
1687 		aed = (struct allocExtDesc *)(nbh->b_data);
1688 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1689 			aed->previousAllocExtLocation =
1690 					cpu_to_le32(obloc.logicalBlockNum);
1691 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1692 			loffset = epos->offset;
1693 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1694 			sptr = ptr - adsize;
1695 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1696 			memcpy(dptr, sptr, adsize);
1697 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1698 		} else {
1699 			loffset = epos->offset + adsize;
1700 			aed->lengthAllocDescs = cpu_to_le32(0);
1701 			sptr = ptr;
1702 			epos->offset = sizeof(struct allocExtDesc);
1703 
1704 			if (epos->bh) {
1705 				aed = (struct allocExtDesc *)epos->bh->b_data;
1706 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1707 			} else {
1708 				iinfo->i_lenAlloc += adsize;
1709 				mark_inode_dirty(inode);
1710 			}
1711 		}
1712 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1713 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1714 				    epos->block.logicalBlockNum, sizeof(tag));
1715 		else
1716 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1717 				    epos->block.logicalBlockNum, sizeof(tag));
1718 		switch (iinfo->i_alloc_type) {
1719 		case ICBTAG_FLAG_AD_SHORT:
1720 			sad = (short_ad *)sptr;
1721 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1722 						     inode->i_sb->s_blocksize);
1723 			sad->extPosition =
1724 				cpu_to_le32(epos->block.logicalBlockNum);
1725 			break;
1726 		case ICBTAG_FLAG_AD_LONG:
1727 			lad = (long_ad *)sptr;
1728 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1729 						     inode->i_sb->s_blocksize);
1730 			lad->extLocation = cpu_to_lelb(epos->block);
1731 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1732 			break;
1733 		}
1734 		if (epos->bh) {
1735 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1736 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1737 				udf_update_tag(epos->bh->b_data, loffset);
1738 			else
1739 				udf_update_tag(epos->bh->b_data,
1740 						sizeof(struct allocExtDesc));
1741 			mark_buffer_dirty_inode(epos->bh, inode);
1742 			brelse(epos->bh);
1743 		} else {
1744 			mark_inode_dirty(inode);
1745 		}
1746 		epos->bh = nbh;
1747 	}
1748 
1749 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1750 
1751 	if (!epos->bh) {
1752 		iinfo->i_lenAlloc += adsize;
1753 		mark_inode_dirty(inode);
1754 	} else {
1755 		aed = (struct allocExtDesc *)epos->bh->b_data;
1756 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1757 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1758 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1759 			udf_update_tag(epos->bh->b_data,
1760 					epos->offset + (inc ? 0 : adsize));
1761 		else
1762 			udf_update_tag(epos->bh->b_data,
1763 					sizeof(struct allocExtDesc));
1764 		mark_buffer_dirty_inode(epos->bh, inode);
1765 	}
1766 
1767 	return etype;
1768 }
1769 
1770 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1771 		      kernel_lb_addr eloc, uint32_t elen, int inc)
1772 {
1773 	int adsize;
1774 	uint8_t *ptr;
1775 	short_ad *sad;
1776 	long_ad *lad;
1777 	struct udf_inode_info *iinfo = UDF_I(inode);
1778 
1779 	if (!epos->bh)
1780 		ptr = iinfo->i_ext.i_data + epos->offset -
1781 			udf_file_entry_alloc_offset(inode) +
1782 			iinfo->i_lenEAttr;
1783 	else
1784 		ptr = epos->bh->b_data + epos->offset;
1785 
1786 	switch (iinfo->i_alloc_type) {
1787 	case ICBTAG_FLAG_AD_SHORT:
1788 		sad = (short_ad *)ptr;
1789 		sad->extLength = cpu_to_le32(elen);
1790 		sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1791 		adsize = sizeof(short_ad);
1792 		break;
1793 	case ICBTAG_FLAG_AD_LONG:
1794 		lad = (long_ad *)ptr;
1795 		lad->extLength = cpu_to_le32(elen);
1796 		lad->extLocation = cpu_to_lelb(eloc);
1797 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1798 		adsize = sizeof(long_ad);
1799 		break;
1800 	default:
1801 		return -1;
1802 	}
1803 
1804 	if (epos->bh) {
1805 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1806 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1807 			struct allocExtDesc *aed =
1808 				(struct allocExtDesc *)epos->bh->b_data;
1809 			udf_update_tag(epos->bh->b_data,
1810 				       le32_to_cpu(aed->lengthAllocDescs) +
1811 				       sizeof(struct allocExtDesc));
1812 		}
1813 		mark_buffer_dirty_inode(epos->bh, inode);
1814 	} else {
1815 		mark_inode_dirty(inode);
1816 	}
1817 
1818 	if (inc)
1819 		epos->offset += adsize;
1820 
1821 	return (elen >> 30);
1822 }
1823 
1824 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1825 		     kernel_lb_addr *eloc, uint32_t *elen, int inc)
1826 {
1827 	int8_t etype;
1828 
1829 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1830 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1831 		int block;
1832 		epos->block = *eloc;
1833 		epos->offset = sizeof(struct allocExtDesc);
1834 		brelse(epos->bh);
1835 		block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
1836 		epos->bh = udf_tread(inode->i_sb, block);
1837 		if (!epos->bh) {
1838 			udf_debug("reading block %d failed!\n", block);
1839 			return -1;
1840 		}
1841 	}
1842 
1843 	return etype;
1844 }
1845 
1846 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1847 			kernel_lb_addr *eloc, uint32_t *elen, int inc)
1848 {
1849 	int alen;
1850 	int8_t etype;
1851 	uint8_t *ptr;
1852 	short_ad *sad;
1853 	long_ad *lad;
1854 	struct udf_inode_info *iinfo = UDF_I(inode);
1855 
1856 	if (!epos->bh) {
1857 		if (!epos->offset)
1858 			epos->offset = udf_file_entry_alloc_offset(inode);
1859 		ptr = iinfo->i_ext.i_data + epos->offset -
1860 			udf_file_entry_alloc_offset(inode) +
1861 			iinfo->i_lenEAttr;
1862 		alen = udf_file_entry_alloc_offset(inode) +
1863 							iinfo->i_lenAlloc;
1864 	} else {
1865 		if (!epos->offset)
1866 			epos->offset = sizeof(struct allocExtDesc);
1867 		ptr = epos->bh->b_data + epos->offset;
1868 		alen = sizeof(struct allocExtDesc) +
1869 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1870 							lengthAllocDescs);
1871 	}
1872 
1873 	switch (iinfo->i_alloc_type) {
1874 	case ICBTAG_FLAG_AD_SHORT:
1875 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1876 		if (!sad)
1877 			return -1;
1878 		etype = le32_to_cpu(sad->extLength) >> 30;
1879 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1880 		eloc->partitionReferenceNum =
1881 				iinfo->i_location.partitionReferenceNum;
1882 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1883 		break;
1884 	case ICBTAG_FLAG_AD_LONG:
1885 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1886 		if (!lad)
1887 			return -1;
1888 		etype = le32_to_cpu(lad->extLength) >> 30;
1889 		*eloc = lelb_to_cpu(lad->extLocation);
1890 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1891 		break;
1892 	default:
1893 		udf_debug("alloc_type = %d unsupported\n",
1894 				iinfo->i_alloc_type);
1895 		return -1;
1896 	}
1897 
1898 	return etype;
1899 }
1900 
1901 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1902 			      kernel_lb_addr neloc, uint32_t nelen)
1903 {
1904 	kernel_lb_addr oeloc;
1905 	uint32_t oelen;
1906 	int8_t etype;
1907 
1908 	if (epos.bh)
1909 		get_bh(epos.bh);
1910 
1911 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1912 		udf_write_aext(inode, &epos, neloc, nelen, 1);
1913 		neloc = oeloc;
1914 		nelen = (etype << 30) | oelen;
1915 	}
1916 	udf_add_aext(inode, &epos, neloc, nelen, 1);
1917 	brelse(epos.bh);
1918 
1919 	return (nelen >> 30);
1920 }
1921 
1922 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1923 		       kernel_lb_addr eloc, uint32_t elen)
1924 {
1925 	struct extent_position oepos;
1926 	int adsize;
1927 	int8_t etype;
1928 	struct allocExtDesc *aed;
1929 	struct udf_inode_info *iinfo;
1930 
1931 	if (epos.bh) {
1932 		get_bh(epos.bh);
1933 		get_bh(epos.bh);
1934 	}
1935 
1936 	iinfo = UDF_I(inode);
1937 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 		adsize = sizeof(short_ad);
1939 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 		adsize = sizeof(long_ad);
1941 	else
1942 		adsize = 0;
1943 
1944 	oepos = epos;
1945 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1946 		return -1;
1947 
1948 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1949 		udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1950 		if (oepos.bh != epos.bh) {
1951 			oepos.block = epos.block;
1952 			brelse(oepos.bh);
1953 			get_bh(epos.bh);
1954 			oepos.bh = epos.bh;
1955 			oepos.offset = epos.offset - adsize;
1956 		}
1957 	}
1958 	memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1959 	elen = 0;
1960 
1961 	if (epos.bh != oepos.bh) {
1962 		udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1963 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1964 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1965 		if (!oepos.bh) {
1966 			iinfo->i_lenAlloc -= (adsize * 2);
1967 			mark_inode_dirty(inode);
1968 		} else {
1969 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1970 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1971 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1972 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1973 				udf_update_tag(oepos.bh->b_data,
1974 						oepos.offset - (2 * adsize));
1975 			else
1976 				udf_update_tag(oepos.bh->b_data,
1977 						sizeof(struct allocExtDesc));
1978 			mark_buffer_dirty_inode(oepos.bh, inode);
1979 		}
1980 	} else {
1981 		udf_write_aext(inode, &oepos, eloc, elen, 1);
1982 		if (!oepos.bh) {
1983 			iinfo->i_lenAlloc -= adsize;
1984 			mark_inode_dirty(inode);
1985 		} else {
1986 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1987 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1988 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1989 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1990 				udf_update_tag(oepos.bh->b_data,
1991 						epos.offset - adsize);
1992 			else
1993 				udf_update_tag(oepos.bh->b_data,
1994 						sizeof(struct allocExtDesc));
1995 			mark_buffer_dirty_inode(oepos.bh, inode);
1996 		}
1997 	}
1998 
1999 	brelse(epos.bh);
2000 	brelse(oepos.bh);
2001 
2002 	return (elen >> 30);
2003 }
2004 
2005 int8_t inode_bmap(struct inode *inode, sector_t block,
2006 		  struct extent_position *pos, kernel_lb_addr *eloc,
2007 		  uint32_t *elen, sector_t *offset)
2008 {
2009 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2010 	loff_t lbcount = 0, bcount =
2011 	    (loff_t) block << blocksize_bits;
2012 	int8_t etype;
2013 	struct udf_inode_info *iinfo;
2014 
2015 	iinfo = UDF_I(inode);
2016 	pos->offset = 0;
2017 	pos->block = iinfo->i_location;
2018 	pos->bh = NULL;
2019 	*elen = 0;
2020 
2021 	do {
2022 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2023 		if (etype == -1) {
2024 			*offset = (bcount - lbcount) >> blocksize_bits;
2025 			iinfo->i_lenExtents = lbcount;
2026 			return -1;
2027 		}
2028 		lbcount += *elen;
2029 	} while (lbcount <= bcount);
2030 
2031 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2032 
2033 	return etype;
2034 }
2035 
2036 long udf_block_map(struct inode *inode, sector_t block)
2037 {
2038 	kernel_lb_addr eloc;
2039 	uint32_t elen;
2040 	sector_t offset;
2041 	struct extent_position epos = {};
2042 	int ret;
2043 
2044 	lock_kernel();
2045 
2046 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2047 						(EXT_RECORDED_ALLOCATED >> 30))
2048 		ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
2049 	else
2050 		ret = 0;
2051 
2052 	unlock_kernel();
2053 	brelse(epos.bh);
2054 
2055 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2056 		return udf_fixed_to_variable(ret);
2057 	else
2058 		return ret;
2059 }
2060