1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 struct udf_map_rq; 56 57 static umode_t udf_convert_permissions(struct fileEntry *); 58 static int udf_update_inode(struct inode *, int); 59 static int udf_sync_inode(struct inode *inode); 60 static int udf_alloc_i_data(struct inode *inode, size_t size); 61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 62 static int udf_insert_aext(struct inode *, struct extent_position, 63 struct kernel_lb_addr, uint32_t); 64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 65 struct kernel_long_ad *, int *); 66 static void udf_prealloc_extents(struct inode *, int, int, 67 struct kernel_long_ad *, int *); 68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 70 int, struct extent_position *); 71 static int udf_get_block_wb(struct inode *inode, sector_t block, 72 struct buffer_head *bh_result, int create); 73 74 static void __udf_clear_extent_cache(struct inode *inode) 75 { 76 struct udf_inode_info *iinfo = UDF_I(inode); 77 78 if (iinfo->cached_extent.lstart != -1) { 79 brelse(iinfo->cached_extent.epos.bh); 80 iinfo->cached_extent.lstart = -1; 81 } 82 } 83 84 /* Invalidate extent cache */ 85 static void udf_clear_extent_cache(struct inode *inode) 86 { 87 struct udf_inode_info *iinfo = UDF_I(inode); 88 89 spin_lock(&iinfo->i_extent_cache_lock); 90 __udf_clear_extent_cache(inode); 91 spin_unlock(&iinfo->i_extent_cache_lock); 92 } 93 94 /* Return contents of extent cache */ 95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 96 loff_t *lbcount, struct extent_position *pos) 97 { 98 struct udf_inode_info *iinfo = UDF_I(inode); 99 int ret = 0; 100 101 spin_lock(&iinfo->i_extent_cache_lock); 102 if ((iinfo->cached_extent.lstart <= bcount) && 103 (iinfo->cached_extent.lstart != -1)) { 104 /* Cache hit */ 105 *lbcount = iinfo->cached_extent.lstart; 106 memcpy(pos, &iinfo->cached_extent.epos, 107 sizeof(struct extent_position)); 108 if (pos->bh) 109 get_bh(pos->bh); 110 ret = 1; 111 } 112 spin_unlock(&iinfo->i_extent_cache_lock); 113 return ret; 114 } 115 116 /* Add extent to extent cache */ 117 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 118 struct extent_position *pos) 119 { 120 struct udf_inode_info *iinfo = UDF_I(inode); 121 122 spin_lock(&iinfo->i_extent_cache_lock); 123 /* Invalidate previously cached extent */ 124 __udf_clear_extent_cache(inode); 125 if (pos->bh) 126 get_bh(pos->bh); 127 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 128 iinfo->cached_extent.lstart = estart; 129 switch (iinfo->i_alloc_type) { 130 case ICBTAG_FLAG_AD_SHORT: 131 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 132 break; 133 case ICBTAG_FLAG_AD_LONG: 134 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 135 break; 136 } 137 spin_unlock(&iinfo->i_extent_cache_lock); 138 } 139 140 void udf_evict_inode(struct inode *inode) 141 { 142 struct udf_inode_info *iinfo = UDF_I(inode); 143 int want_delete = 0; 144 145 if (!is_bad_inode(inode)) { 146 if (!inode->i_nlink) { 147 want_delete = 1; 148 udf_setsize(inode, 0); 149 udf_update_inode(inode, IS_SYNC(inode)); 150 } 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, 154 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 } 160 truncate_inode_pages_final(&inode->i_data); 161 invalidate_inode_buffers(inode); 162 clear_inode(inode); 163 kfree(iinfo->i_data); 164 iinfo->i_data = NULL; 165 udf_clear_extent_cache(inode); 166 if (want_delete) { 167 udf_free_inode(inode); 168 } 169 } 170 171 static void udf_write_failed(struct address_space *mapping, loff_t to) 172 { 173 struct inode *inode = mapping->host; 174 struct udf_inode_info *iinfo = UDF_I(inode); 175 loff_t isize = inode->i_size; 176 177 if (to > isize) { 178 truncate_pagecache(inode, isize); 179 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 180 down_write(&iinfo->i_data_sem); 181 udf_clear_extent_cache(inode); 182 udf_truncate_extents(inode); 183 up_write(&iinfo->i_data_sem); 184 } 185 } 186 } 187 188 static int udf_adinicb_writepage(struct page *page, 189 struct writeback_control *wbc, void *data) 190 { 191 struct inode *inode = page->mapping->host; 192 struct udf_inode_info *iinfo = UDF_I(inode); 193 194 BUG_ON(!PageLocked(page)); 195 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 196 i_size_read(inode)); 197 unlock_page(page); 198 mark_inode_dirty(inode); 199 200 return 0; 201 } 202 203 static int udf_writepages(struct address_space *mapping, 204 struct writeback_control *wbc) 205 { 206 struct inode *inode = mapping->host; 207 struct udf_inode_info *iinfo = UDF_I(inode); 208 209 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 210 return mpage_writepages(mapping, wbc, udf_get_block_wb); 211 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 212 } 213 214 static void udf_adinicb_readpage(struct page *page) 215 { 216 struct inode *inode = page->mapping->host; 217 char *kaddr; 218 struct udf_inode_info *iinfo = UDF_I(inode); 219 loff_t isize = i_size_read(inode); 220 221 kaddr = kmap_local_page(page); 222 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 223 memset(kaddr + isize, 0, PAGE_SIZE - isize); 224 flush_dcache_page(page); 225 SetPageUptodate(page); 226 kunmap_local(kaddr); 227 } 228 229 static int udf_read_folio(struct file *file, struct folio *folio) 230 { 231 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 232 233 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 234 udf_adinicb_readpage(&folio->page); 235 folio_unlock(folio); 236 return 0; 237 } 238 return mpage_read_folio(folio, udf_get_block); 239 } 240 241 static void udf_readahead(struct readahead_control *rac) 242 { 243 mpage_readahead(rac, udf_get_block); 244 } 245 246 static int udf_write_begin(struct file *file, struct address_space *mapping, 247 loff_t pos, unsigned len, 248 struct page **pagep, void **fsdata) 249 { 250 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 251 struct page *page; 252 int ret; 253 254 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 255 ret = block_write_begin(mapping, pos, len, pagep, 256 udf_get_block); 257 if (unlikely(ret)) 258 udf_write_failed(mapping, pos + len); 259 return ret; 260 } 261 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 262 return -EIO; 263 page = grab_cache_page_write_begin(mapping, 0); 264 if (!page) 265 return -ENOMEM; 266 *pagep = page; 267 if (!PageUptodate(page)) 268 udf_adinicb_readpage(page); 269 return 0; 270 } 271 272 static int udf_write_end(struct file *file, struct address_space *mapping, 273 loff_t pos, unsigned len, unsigned copied, 274 struct page *page, void *fsdata) 275 { 276 struct inode *inode = file_inode(file); 277 loff_t last_pos; 278 279 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 280 return generic_write_end(file, mapping, pos, len, copied, page, 281 fsdata); 282 last_pos = pos + copied; 283 if (last_pos > inode->i_size) 284 i_size_write(inode, last_pos); 285 set_page_dirty(page); 286 unlock_page(page); 287 put_page(page); 288 289 return copied; 290 } 291 292 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 293 { 294 struct file *file = iocb->ki_filp; 295 struct address_space *mapping = file->f_mapping; 296 struct inode *inode = mapping->host; 297 size_t count = iov_iter_count(iter); 298 ssize_t ret; 299 300 /* Fallback to buffered IO for in-ICB files */ 301 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 302 return 0; 303 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 304 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 305 udf_write_failed(mapping, iocb->ki_pos + count); 306 return ret; 307 } 308 309 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 310 { 311 struct udf_inode_info *iinfo = UDF_I(mapping->host); 312 313 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 314 return -EINVAL; 315 return generic_block_bmap(mapping, block, udf_get_block); 316 } 317 318 const struct address_space_operations udf_aops = { 319 .dirty_folio = block_dirty_folio, 320 .invalidate_folio = block_invalidate_folio, 321 .read_folio = udf_read_folio, 322 .readahead = udf_readahead, 323 .writepages = udf_writepages, 324 .write_begin = udf_write_begin, 325 .write_end = udf_write_end, 326 .direct_IO = udf_direct_IO, 327 .bmap = udf_bmap, 328 .migrate_folio = buffer_migrate_folio, 329 }; 330 331 /* 332 * Expand file stored in ICB to a normal one-block-file 333 * 334 * This function requires i_mutex held 335 */ 336 int udf_expand_file_adinicb(struct inode *inode) 337 { 338 struct page *page; 339 struct udf_inode_info *iinfo = UDF_I(inode); 340 int err; 341 342 WARN_ON_ONCE(!inode_is_locked(inode)); 343 if (!iinfo->i_lenAlloc) { 344 down_write(&iinfo->i_data_sem); 345 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 346 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 347 else 348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 349 /* from now on we have normal address_space methods */ 350 inode->i_data.a_ops = &udf_aops; 351 up_write(&iinfo->i_data_sem); 352 mark_inode_dirty(inode); 353 return 0; 354 } 355 356 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 357 if (!page) 358 return -ENOMEM; 359 360 if (!PageUptodate(page)) 361 udf_adinicb_readpage(page); 362 down_write(&iinfo->i_data_sem); 363 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 364 iinfo->i_lenAlloc); 365 iinfo->i_lenAlloc = 0; 366 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 367 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 368 else 369 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 370 set_page_dirty(page); 371 unlock_page(page); 372 up_write(&iinfo->i_data_sem); 373 err = filemap_fdatawrite(inode->i_mapping); 374 if (err) { 375 /* Restore everything back so that we don't lose data... */ 376 lock_page(page); 377 down_write(&iinfo->i_data_sem); 378 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 379 inode->i_size); 380 unlock_page(page); 381 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 382 iinfo->i_lenAlloc = inode->i_size; 383 up_write(&iinfo->i_data_sem); 384 } 385 put_page(page); 386 mark_inode_dirty(inode); 387 388 return err; 389 } 390 391 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 392 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 393 394 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 395 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 396 397 struct udf_map_rq { 398 sector_t lblk; 399 udf_pblk_t pblk; 400 int iflags; /* UDF_MAP_ flags determining behavior */ 401 int oflags; /* UDF_BLK_ flags reporting results */ 402 }; 403 404 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 405 { 406 int err; 407 struct udf_inode_info *iinfo = UDF_I(inode); 408 409 map->oflags = 0; 410 if (!(map->iflags & UDF_MAP_CREATE)) { 411 struct kernel_lb_addr eloc; 412 uint32_t elen; 413 sector_t offset; 414 struct extent_position epos = {}; 415 416 down_read(&iinfo->i_data_sem); 417 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 418 == (EXT_RECORDED_ALLOCATED >> 30)) { 419 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 420 offset); 421 map->oflags |= UDF_BLK_MAPPED; 422 } 423 up_read(&iinfo->i_data_sem); 424 brelse(epos.bh); 425 426 return 0; 427 } 428 429 down_write(&iinfo->i_data_sem); 430 /* 431 * Block beyond EOF and prealloc extents? Just discard preallocation 432 * as it is not useful and complicates things. 433 */ 434 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 435 udf_discard_prealloc(inode); 436 udf_clear_extent_cache(inode); 437 err = inode_getblk(inode, map); 438 up_write(&iinfo->i_data_sem); 439 return err; 440 } 441 442 static int __udf_get_block(struct inode *inode, sector_t block, 443 struct buffer_head *bh_result, int flags) 444 { 445 int err; 446 struct udf_map_rq map = { 447 .lblk = block, 448 .iflags = flags, 449 }; 450 451 err = udf_map_block(inode, &map); 452 if (err < 0) 453 return err; 454 if (map.oflags & UDF_BLK_MAPPED) { 455 map_bh(bh_result, inode->i_sb, map.pblk); 456 if (map.oflags & UDF_BLK_NEW) 457 set_buffer_new(bh_result); 458 } 459 return 0; 460 } 461 462 int udf_get_block(struct inode *inode, sector_t block, 463 struct buffer_head *bh_result, int create) 464 { 465 int flags = create ? UDF_MAP_CREATE : 0; 466 467 /* 468 * We preallocate blocks only for regular files. It also makes sense 469 * for directories but there's a problem when to drop the 470 * preallocation. We might use some delayed work for that but I feel 471 * it's overengineering for a filesystem like UDF. 472 */ 473 if (!S_ISREG(inode->i_mode)) 474 flags |= UDF_MAP_NOPREALLOC; 475 return __udf_get_block(inode, block, bh_result, flags); 476 } 477 478 /* 479 * We shouldn't be allocating blocks on page writeback since we allocate them 480 * on page fault. We can spot dirty buffers without allocated blocks though 481 * when truncate expands file. These however don't have valid data so we can 482 * safely ignore them. So never allocate blocks from page writeback. 483 */ 484 static int udf_get_block_wb(struct inode *inode, sector_t block, 485 struct buffer_head *bh_result, int create) 486 { 487 return __udf_get_block(inode, block, bh_result, 0); 488 } 489 490 /* Extend the file with new blocks totaling 'new_block_bytes', 491 * return the number of extents added 492 */ 493 static int udf_do_extend_file(struct inode *inode, 494 struct extent_position *last_pos, 495 struct kernel_long_ad *last_ext, 496 loff_t new_block_bytes) 497 { 498 uint32_t add; 499 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 500 struct super_block *sb = inode->i_sb; 501 struct udf_inode_info *iinfo; 502 int err; 503 504 /* The previous extent is fake and we should not extend by anything 505 * - there's nothing to do... */ 506 if (!new_block_bytes && fake) 507 return 0; 508 509 iinfo = UDF_I(inode); 510 /* Round the last extent up to a multiple of block size */ 511 if (last_ext->extLength & (sb->s_blocksize - 1)) { 512 last_ext->extLength = 513 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 514 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 515 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 516 iinfo->i_lenExtents = 517 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 518 ~(sb->s_blocksize - 1); 519 } 520 521 add = 0; 522 /* Can we merge with the previous extent? */ 523 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 524 EXT_NOT_RECORDED_NOT_ALLOCATED) { 525 add = (1 << 30) - sb->s_blocksize - 526 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 527 if (add > new_block_bytes) 528 add = new_block_bytes; 529 new_block_bytes -= add; 530 last_ext->extLength += add; 531 } 532 533 if (fake) { 534 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 535 last_ext->extLength, 1); 536 if (err < 0) 537 goto out_err; 538 count++; 539 } else { 540 struct kernel_lb_addr tmploc; 541 uint32_t tmplen; 542 543 udf_write_aext(inode, last_pos, &last_ext->extLocation, 544 last_ext->extLength, 1); 545 546 /* 547 * We've rewritten the last extent. If we are going to add 548 * more extents, we may need to enter possible following 549 * empty indirect extent. 550 */ 551 if (new_block_bytes) 552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 553 } 554 iinfo->i_lenExtents += add; 555 556 /* Managed to do everything necessary? */ 557 if (!new_block_bytes) 558 goto out; 559 560 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 561 last_ext->extLocation.logicalBlockNum = 0; 562 last_ext->extLocation.partitionReferenceNum = 0; 563 add = (1 << 30) - sb->s_blocksize; 564 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 565 566 /* Create enough extents to cover the whole hole */ 567 while (new_block_bytes > add) { 568 new_block_bytes -= add; 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 goto out_err; 573 iinfo->i_lenExtents += add; 574 count++; 575 } 576 if (new_block_bytes) { 577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 578 new_block_bytes; 579 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 580 last_ext->extLength, 1); 581 if (err) 582 goto out_err; 583 iinfo->i_lenExtents += new_block_bytes; 584 count++; 585 } 586 587 out: 588 /* last_pos should point to the last written extent... */ 589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 590 last_pos->offset -= sizeof(struct short_ad); 591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 592 last_pos->offset -= sizeof(struct long_ad); 593 else 594 return -EIO; 595 596 return count; 597 out_err: 598 /* Remove extents we've created so far */ 599 udf_clear_extent_cache(inode); 600 udf_truncate_extents(inode); 601 return err; 602 } 603 604 /* Extend the final block of the file to final_block_len bytes */ 605 static void udf_do_extend_final_block(struct inode *inode, 606 struct extent_position *last_pos, 607 struct kernel_long_ad *last_ext, 608 uint32_t new_elen) 609 { 610 uint32_t added_bytes; 611 612 /* 613 * Extent already large enough? It may be already rounded up to block 614 * size... 615 */ 616 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 617 return; 618 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 619 last_ext->extLength += added_bytes; 620 UDF_I(inode)->i_lenExtents += added_bytes; 621 622 udf_write_aext(inode, last_pos, &last_ext->extLocation, 623 last_ext->extLength, 1); 624 } 625 626 static int udf_extend_file(struct inode *inode, loff_t newsize) 627 { 628 629 struct extent_position epos; 630 struct kernel_lb_addr eloc; 631 uint32_t elen; 632 int8_t etype; 633 struct super_block *sb = inode->i_sb; 634 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 635 loff_t new_elen; 636 int adsize; 637 struct udf_inode_info *iinfo = UDF_I(inode); 638 struct kernel_long_ad extent; 639 int err = 0; 640 bool within_last_ext; 641 642 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 643 adsize = sizeof(struct short_ad); 644 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 645 adsize = sizeof(struct long_ad); 646 else 647 BUG(); 648 649 down_write(&iinfo->i_data_sem); 650 /* 651 * When creating hole in file, just don't bother with preserving 652 * preallocation. It likely won't be very useful anyway. 653 */ 654 udf_discard_prealloc(inode); 655 656 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 657 within_last_ext = (etype != -1); 658 /* We don't expect extents past EOF... */ 659 WARN_ON_ONCE(within_last_ext && 660 elen > ((loff_t)offset + 1) << inode->i_blkbits); 661 662 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 663 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 664 /* File has no extents at all or has empty last 665 * indirect extent! Create a fake extent... */ 666 extent.extLocation.logicalBlockNum = 0; 667 extent.extLocation.partitionReferenceNum = 0; 668 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 669 } else { 670 epos.offset -= adsize; 671 etype = udf_next_aext(inode, &epos, &extent.extLocation, 672 &extent.extLength, 0); 673 extent.extLength |= etype << 30; 674 } 675 676 new_elen = ((loff_t)offset << inode->i_blkbits) | 677 (newsize & (sb->s_blocksize - 1)); 678 679 /* File has extent covering the new size (could happen when extending 680 * inside a block)? 681 */ 682 if (within_last_ext) { 683 /* Extending file within the last file block */ 684 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 685 } else { 686 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 687 } 688 689 if (err < 0) 690 goto out; 691 err = 0; 692 out: 693 brelse(epos.bh); 694 up_write(&iinfo->i_data_sem); 695 return err; 696 } 697 698 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 699 { 700 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 701 struct extent_position prev_epos, cur_epos, next_epos; 702 int count = 0, startnum = 0, endnum = 0; 703 uint32_t elen = 0, tmpelen; 704 struct kernel_lb_addr eloc, tmpeloc; 705 int c = 1; 706 loff_t lbcount = 0, b_off = 0; 707 udf_pblk_t newblocknum; 708 sector_t offset = 0; 709 int8_t etype; 710 struct udf_inode_info *iinfo = UDF_I(inode); 711 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 712 int lastblock = 0; 713 bool isBeyondEOF; 714 int ret = 0; 715 716 prev_epos.offset = udf_file_entry_alloc_offset(inode); 717 prev_epos.block = iinfo->i_location; 718 prev_epos.bh = NULL; 719 cur_epos = next_epos = prev_epos; 720 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 721 722 /* find the extent which contains the block we are looking for. 723 alternate between laarr[0] and laarr[1] for locations of the 724 current extent, and the previous extent */ 725 do { 726 if (prev_epos.bh != cur_epos.bh) { 727 brelse(prev_epos.bh); 728 get_bh(cur_epos.bh); 729 prev_epos.bh = cur_epos.bh; 730 } 731 if (cur_epos.bh != next_epos.bh) { 732 brelse(cur_epos.bh); 733 get_bh(next_epos.bh); 734 cur_epos.bh = next_epos.bh; 735 } 736 737 lbcount += elen; 738 739 prev_epos.block = cur_epos.block; 740 cur_epos.block = next_epos.block; 741 742 prev_epos.offset = cur_epos.offset; 743 cur_epos.offset = next_epos.offset; 744 745 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 746 if (etype == -1) 747 break; 748 749 c = !c; 750 751 laarr[c].extLength = (etype << 30) | elen; 752 laarr[c].extLocation = eloc; 753 754 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 755 pgoal = eloc.logicalBlockNum + 756 ((elen + inode->i_sb->s_blocksize - 1) >> 757 inode->i_sb->s_blocksize_bits); 758 759 count++; 760 } while (lbcount + elen <= b_off); 761 762 b_off -= lbcount; 763 offset = b_off >> inode->i_sb->s_blocksize_bits; 764 /* 765 * Move prev_epos and cur_epos into indirect extent if we are at 766 * the pointer to it 767 */ 768 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 769 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 770 771 /* if the extent is allocated and recorded, return the block 772 if the extent is not a multiple of the blocksize, round up */ 773 774 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 775 if (elen & (inode->i_sb->s_blocksize - 1)) { 776 elen = EXT_RECORDED_ALLOCATED | 777 ((elen + inode->i_sb->s_blocksize - 1) & 778 ~(inode->i_sb->s_blocksize - 1)); 779 iinfo->i_lenExtents = 780 ALIGN(iinfo->i_lenExtents, 781 inode->i_sb->s_blocksize); 782 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 783 } 784 map->oflags = UDF_BLK_MAPPED; 785 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 786 goto out_free; 787 } 788 789 /* Are we beyond EOF and preallocated extent? */ 790 if (etype == -1) { 791 loff_t hole_len; 792 793 isBeyondEOF = true; 794 if (count) { 795 if (c) 796 laarr[0] = laarr[1]; 797 startnum = 1; 798 } else { 799 /* Create a fake extent when there's not one */ 800 memset(&laarr[0].extLocation, 0x00, 801 sizeof(struct kernel_lb_addr)); 802 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 803 /* Will udf_do_extend_file() create real extent from 804 a fake one? */ 805 startnum = (offset > 0); 806 } 807 /* Create extents for the hole between EOF and offset */ 808 hole_len = (loff_t)offset << inode->i_blkbits; 809 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 810 if (ret < 0) 811 goto out_free; 812 c = 0; 813 offset = 0; 814 count += ret; 815 /* 816 * Is there any real extent? - otherwise we overwrite the fake 817 * one... 818 */ 819 if (count) 820 c = !c; 821 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 822 inode->i_sb->s_blocksize; 823 memset(&laarr[c].extLocation, 0x00, 824 sizeof(struct kernel_lb_addr)); 825 count++; 826 endnum = c + 1; 827 lastblock = 1; 828 } else { 829 isBeyondEOF = false; 830 endnum = startnum = ((count > 2) ? 2 : count); 831 832 /* if the current extent is in position 0, 833 swap it with the previous */ 834 if (!c && count != 1) { 835 laarr[2] = laarr[0]; 836 laarr[0] = laarr[1]; 837 laarr[1] = laarr[2]; 838 c = 1; 839 } 840 841 /* if the current block is located in an extent, 842 read the next extent */ 843 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 844 if (etype != -1) { 845 laarr[c + 1].extLength = (etype << 30) | elen; 846 laarr[c + 1].extLocation = eloc; 847 count++; 848 startnum++; 849 endnum++; 850 } else 851 lastblock = 1; 852 } 853 854 /* if the current extent is not recorded but allocated, get the 855 * block in the extent corresponding to the requested block */ 856 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 857 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 858 else { /* otherwise, allocate a new block */ 859 if (iinfo->i_next_alloc_block == map->lblk) 860 goal = iinfo->i_next_alloc_goal; 861 862 if (!goal) { 863 if (!(goal = pgoal)) /* XXX: what was intended here? */ 864 goal = iinfo->i_location.logicalBlockNum + 1; 865 } 866 867 newblocknum = udf_new_block(inode->i_sb, inode, 868 iinfo->i_location.partitionReferenceNum, 869 goal, &ret); 870 if (!newblocknum) 871 goto out_free; 872 if (isBeyondEOF) 873 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 874 } 875 876 /* if the extent the requsted block is located in contains multiple 877 * blocks, split the extent into at most three extents. blocks prior 878 * to requested block, requested block, and blocks after requested 879 * block */ 880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 881 882 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 883 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 884 885 /* merge any continuous blocks in laarr */ 886 udf_merge_extents(inode, laarr, &endnum); 887 888 /* write back the new extents, inserting new extents if the new number 889 * of extents is greater than the old number, and deleting extents if 890 * the new number of extents is less than the old number */ 891 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 892 if (ret < 0) 893 goto out_free; 894 895 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 896 iinfo->i_location.partitionReferenceNum, 0); 897 if (!map->pblk) { 898 ret = -EFSCORRUPTED; 899 goto out_free; 900 } 901 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 902 iinfo->i_next_alloc_block = map->lblk + 1; 903 iinfo->i_next_alloc_goal = newblocknum + 1; 904 inode->i_ctime = current_time(inode); 905 906 if (IS_SYNC(inode)) 907 udf_sync_inode(inode); 908 else 909 mark_inode_dirty(inode); 910 ret = 0; 911 out_free: 912 brelse(prev_epos.bh); 913 brelse(cur_epos.bh); 914 brelse(next_epos.bh); 915 return ret; 916 } 917 918 static void udf_split_extents(struct inode *inode, int *c, int offset, 919 udf_pblk_t newblocknum, 920 struct kernel_long_ad *laarr, int *endnum) 921 { 922 unsigned long blocksize = inode->i_sb->s_blocksize; 923 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 924 925 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 926 (laarr[*c].extLength >> 30) == 927 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 928 int curr = *c; 929 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 930 blocksize - 1) >> blocksize_bits; 931 int8_t etype = (laarr[curr].extLength >> 30); 932 933 if (blen == 1) 934 ; 935 else if (!offset || blen == offset + 1) { 936 laarr[curr + 2] = laarr[curr + 1]; 937 laarr[curr + 1] = laarr[curr]; 938 } else { 939 laarr[curr + 3] = laarr[curr + 1]; 940 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 941 } 942 943 if (offset) { 944 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 945 udf_free_blocks(inode->i_sb, inode, 946 &laarr[curr].extLocation, 947 0, offset); 948 laarr[curr].extLength = 949 EXT_NOT_RECORDED_NOT_ALLOCATED | 950 (offset << blocksize_bits); 951 laarr[curr].extLocation.logicalBlockNum = 0; 952 laarr[curr].extLocation. 953 partitionReferenceNum = 0; 954 } else 955 laarr[curr].extLength = (etype << 30) | 956 (offset << blocksize_bits); 957 curr++; 958 (*c)++; 959 (*endnum)++; 960 } 961 962 laarr[curr].extLocation.logicalBlockNum = newblocknum; 963 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 964 laarr[curr].extLocation.partitionReferenceNum = 965 UDF_I(inode)->i_location.partitionReferenceNum; 966 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 967 blocksize; 968 curr++; 969 970 if (blen != offset + 1) { 971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 972 laarr[curr].extLocation.logicalBlockNum += 973 offset + 1; 974 laarr[curr].extLength = (etype << 30) | 975 ((blen - (offset + 1)) << blocksize_bits); 976 curr++; 977 (*endnum)++; 978 } 979 } 980 } 981 982 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 983 struct kernel_long_ad *laarr, 984 int *endnum) 985 { 986 int start, length = 0, currlength = 0, i; 987 988 if (*endnum >= (c + 1)) { 989 if (!lastblock) 990 return; 991 else 992 start = c; 993 } else { 994 if ((laarr[c + 1].extLength >> 30) == 995 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 996 start = c + 1; 997 length = currlength = 998 (((laarr[c + 1].extLength & 999 UDF_EXTENT_LENGTH_MASK) + 1000 inode->i_sb->s_blocksize - 1) >> 1001 inode->i_sb->s_blocksize_bits); 1002 } else 1003 start = c; 1004 } 1005 1006 for (i = start + 1; i <= *endnum; i++) { 1007 if (i == *endnum) { 1008 if (lastblock) 1009 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1010 } else if ((laarr[i].extLength >> 30) == 1011 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1012 length += (((laarr[i].extLength & 1013 UDF_EXTENT_LENGTH_MASK) + 1014 inode->i_sb->s_blocksize - 1) >> 1015 inode->i_sb->s_blocksize_bits); 1016 } else 1017 break; 1018 } 1019 1020 if (length) { 1021 int next = laarr[start].extLocation.logicalBlockNum + 1022 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1023 inode->i_sb->s_blocksize - 1) >> 1024 inode->i_sb->s_blocksize_bits); 1025 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1026 laarr[start].extLocation.partitionReferenceNum, 1027 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1028 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1029 currlength); 1030 if (numalloc) { 1031 if (start == (c + 1)) 1032 laarr[start].extLength += 1033 (numalloc << 1034 inode->i_sb->s_blocksize_bits); 1035 else { 1036 memmove(&laarr[c + 2], &laarr[c + 1], 1037 sizeof(struct long_ad) * (*endnum - (c + 1))); 1038 (*endnum)++; 1039 laarr[c + 1].extLocation.logicalBlockNum = next; 1040 laarr[c + 1].extLocation.partitionReferenceNum = 1041 laarr[c].extLocation. 1042 partitionReferenceNum; 1043 laarr[c + 1].extLength = 1044 EXT_NOT_RECORDED_ALLOCATED | 1045 (numalloc << 1046 inode->i_sb->s_blocksize_bits); 1047 start = c + 1; 1048 } 1049 1050 for (i = start + 1; numalloc && i < *endnum; i++) { 1051 int elen = ((laarr[i].extLength & 1052 UDF_EXTENT_LENGTH_MASK) + 1053 inode->i_sb->s_blocksize - 1) >> 1054 inode->i_sb->s_blocksize_bits; 1055 1056 if (elen > numalloc) { 1057 laarr[i].extLength -= 1058 (numalloc << 1059 inode->i_sb->s_blocksize_bits); 1060 numalloc = 0; 1061 } else { 1062 numalloc -= elen; 1063 if (*endnum > (i + 1)) 1064 memmove(&laarr[i], 1065 &laarr[i + 1], 1066 sizeof(struct long_ad) * 1067 (*endnum - (i + 1))); 1068 i--; 1069 (*endnum)--; 1070 } 1071 } 1072 UDF_I(inode)->i_lenExtents += 1073 numalloc << inode->i_sb->s_blocksize_bits; 1074 } 1075 } 1076 } 1077 1078 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1079 int *endnum) 1080 { 1081 int i; 1082 unsigned long blocksize = inode->i_sb->s_blocksize; 1083 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1084 1085 for (i = 0; i < (*endnum - 1); i++) { 1086 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1087 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1088 1089 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1090 (((li->extLength >> 30) == 1091 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1092 ((lip1->extLocation.logicalBlockNum - 1093 li->extLocation.logicalBlockNum) == 1094 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1095 blocksize - 1) >> blocksize_bits)))) { 1096 1097 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1098 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1100 li->extLength = lip1->extLength + 1101 (((li->extLength & 1102 UDF_EXTENT_LENGTH_MASK) + 1103 blocksize - 1) & ~(blocksize - 1)); 1104 if (*endnum > (i + 2)) 1105 memmove(&laarr[i + 1], &laarr[i + 2], 1106 sizeof(struct long_ad) * 1107 (*endnum - (i + 2))); 1108 i--; 1109 (*endnum)--; 1110 } 1111 } else if (((li->extLength >> 30) == 1112 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1113 ((lip1->extLength >> 30) == 1114 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1115 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1116 ((li->extLength & 1117 UDF_EXTENT_LENGTH_MASK) + 1118 blocksize - 1) >> blocksize_bits); 1119 li->extLocation.logicalBlockNum = 0; 1120 li->extLocation.partitionReferenceNum = 0; 1121 1122 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1123 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1124 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1125 lip1->extLength = (lip1->extLength - 1126 (li->extLength & 1127 UDF_EXTENT_LENGTH_MASK) + 1128 UDF_EXTENT_LENGTH_MASK) & 1129 ~(blocksize - 1); 1130 li->extLength = (li->extLength & 1131 UDF_EXTENT_FLAG_MASK) + 1132 (UDF_EXTENT_LENGTH_MASK + 1) - 1133 blocksize; 1134 } else { 1135 li->extLength = lip1->extLength + 1136 (((li->extLength & 1137 UDF_EXTENT_LENGTH_MASK) + 1138 blocksize - 1) & ~(blocksize - 1)); 1139 if (*endnum > (i + 2)) 1140 memmove(&laarr[i + 1], &laarr[i + 2], 1141 sizeof(struct long_ad) * 1142 (*endnum - (i + 2))); 1143 i--; 1144 (*endnum)--; 1145 } 1146 } else if ((li->extLength >> 30) == 1147 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1148 udf_free_blocks(inode->i_sb, inode, 1149 &li->extLocation, 0, 1150 ((li->extLength & 1151 UDF_EXTENT_LENGTH_MASK) + 1152 blocksize - 1) >> blocksize_bits); 1153 li->extLocation.logicalBlockNum = 0; 1154 li->extLocation.partitionReferenceNum = 0; 1155 li->extLength = (li->extLength & 1156 UDF_EXTENT_LENGTH_MASK) | 1157 EXT_NOT_RECORDED_NOT_ALLOCATED; 1158 } 1159 } 1160 } 1161 1162 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1163 int startnum, int endnum, 1164 struct extent_position *epos) 1165 { 1166 int start = 0, i; 1167 struct kernel_lb_addr tmploc; 1168 uint32_t tmplen; 1169 int err; 1170 1171 if (startnum > endnum) { 1172 for (i = 0; i < (startnum - endnum); i++) 1173 udf_delete_aext(inode, *epos); 1174 } else if (startnum < endnum) { 1175 for (i = 0; i < (endnum - startnum); i++) { 1176 err = udf_insert_aext(inode, *epos, 1177 laarr[i].extLocation, 1178 laarr[i].extLength); 1179 /* 1180 * If we fail here, we are likely corrupting the extent 1181 * list and leaking blocks. At least stop early to 1182 * limit the damage. 1183 */ 1184 if (err < 0) 1185 return err; 1186 udf_next_aext(inode, epos, &laarr[i].extLocation, 1187 &laarr[i].extLength, 1); 1188 start++; 1189 } 1190 } 1191 1192 for (i = start; i < endnum; i++) { 1193 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1194 udf_write_aext(inode, epos, &laarr[i].extLocation, 1195 laarr[i].extLength, 1); 1196 } 1197 return 0; 1198 } 1199 1200 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1201 int create, int *err) 1202 { 1203 struct buffer_head *bh = NULL; 1204 struct udf_map_rq map = { 1205 .lblk = block, 1206 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1207 }; 1208 1209 *err = udf_map_block(inode, &map); 1210 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1211 return NULL; 1212 1213 bh = sb_getblk(inode->i_sb, map.pblk); 1214 if (!bh) { 1215 *err = -ENOMEM; 1216 return NULL; 1217 } 1218 if (map.oflags & UDF_BLK_NEW) { 1219 lock_buffer(bh); 1220 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1221 set_buffer_uptodate(bh); 1222 unlock_buffer(bh); 1223 mark_buffer_dirty_inode(bh, inode); 1224 return bh; 1225 } 1226 1227 if (bh_read(bh, 0) >= 0) 1228 return bh; 1229 1230 brelse(bh); 1231 *err = -EIO; 1232 return NULL; 1233 } 1234 1235 int udf_setsize(struct inode *inode, loff_t newsize) 1236 { 1237 int err = 0; 1238 struct udf_inode_info *iinfo; 1239 unsigned int bsize = i_blocksize(inode); 1240 1241 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1242 S_ISLNK(inode->i_mode))) 1243 return -EINVAL; 1244 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1245 return -EPERM; 1246 1247 filemap_invalidate_lock(inode->i_mapping); 1248 iinfo = UDF_I(inode); 1249 if (newsize > inode->i_size) { 1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1251 if (bsize >= 1252 (udf_file_entry_alloc_offset(inode) + newsize)) { 1253 down_write(&iinfo->i_data_sem); 1254 iinfo->i_lenAlloc = newsize; 1255 up_write(&iinfo->i_data_sem); 1256 goto set_size; 1257 } 1258 err = udf_expand_file_adinicb(inode); 1259 if (err) 1260 goto out_unlock; 1261 } 1262 err = udf_extend_file(inode, newsize); 1263 if (err) 1264 goto out_unlock; 1265 set_size: 1266 truncate_setsize(inode, newsize); 1267 } else { 1268 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1269 down_write(&iinfo->i_data_sem); 1270 udf_clear_extent_cache(inode); 1271 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1272 0x00, bsize - newsize - 1273 udf_file_entry_alloc_offset(inode)); 1274 iinfo->i_lenAlloc = newsize; 1275 truncate_setsize(inode, newsize); 1276 up_write(&iinfo->i_data_sem); 1277 goto update_time; 1278 } 1279 err = block_truncate_page(inode->i_mapping, newsize, 1280 udf_get_block); 1281 if (err) 1282 goto out_unlock; 1283 truncate_setsize(inode, newsize); 1284 down_write(&iinfo->i_data_sem); 1285 udf_clear_extent_cache(inode); 1286 err = udf_truncate_extents(inode); 1287 up_write(&iinfo->i_data_sem); 1288 if (err) 1289 goto out_unlock; 1290 } 1291 update_time: 1292 inode->i_mtime = inode->i_ctime = current_time(inode); 1293 if (IS_SYNC(inode)) 1294 udf_sync_inode(inode); 1295 else 1296 mark_inode_dirty(inode); 1297 out_unlock: 1298 filemap_invalidate_unlock(inode->i_mapping); 1299 return err; 1300 } 1301 1302 /* 1303 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1304 * arbitrary - just that we hopefully don't limit any real use of rewritten 1305 * inode on write-once media but avoid looping for too long on corrupted media. 1306 */ 1307 #define UDF_MAX_ICB_NESTING 1024 1308 1309 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1310 { 1311 struct buffer_head *bh = NULL; 1312 struct fileEntry *fe; 1313 struct extendedFileEntry *efe; 1314 uint16_t ident; 1315 struct udf_inode_info *iinfo = UDF_I(inode); 1316 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1317 struct kernel_lb_addr *iloc = &iinfo->i_location; 1318 unsigned int link_count; 1319 unsigned int indirections = 0; 1320 int bs = inode->i_sb->s_blocksize; 1321 int ret = -EIO; 1322 uint32_t uid, gid; 1323 1324 reread: 1325 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1326 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1327 iloc->partitionReferenceNum, sbi->s_partitions); 1328 return -EIO; 1329 } 1330 1331 if (iloc->logicalBlockNum >= 1332 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1333 udf_debug("block=%u, partition=%u out of range\n", 1334 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1335 return -EIO; 1336 } 1337 1338 /* 1339 * Set defaults, but the inode is still incomplete! 1340 * Note: get_new_inode() sets the following on a new inode: 1341 * i_sb = sb 1342 * i_no = ino 1343 * i_flags = sb->s_flags 1344 * i_state = 0 1345 * clean_inode(): zero fills and sets 1346 * i_count = 1 1347 * i_nlink = 1 1348 * i_op = NULL; 1349 */ 1350 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1351 if (!bh) { 1352 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1353 return -EIO; 1354 } 1355 1356 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1357 ident != TAG_IDENT_USE) { 1358 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1359 inode->i_ino, ident); 1360 goto out; 1361 } 1362 1363 fe = (struct fileEntry *)bh->b_data; 1364 efe = (struct extendedFileEntry *)bh->b_data; 1365 1366 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1367 struct buffer_head *ibh; 1368 1369 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1370 if (ident == TAG_IDENT_IE && ibh) { 1371 struct kernel_lb_addr loc; 1372 struct indirectEntry *ie; 1373 1374 ie = (struct indirectEntry *)ibh->b_data; 1375 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1376 1377 if (ie->indirectICB.extLength) { 1378 brelse(ibh); 1379 memcpy(&iinfo->i_location, &loc, 1380 sizeof(struct kernel_lb_addr)); 1381 if (++indirections > UDF_MAX_ICB_NESTING) { 1382 udf_err(inode->i_sb, 1383 "too many ICBs in ICB hierarchy" 1384 " (max %d supported)\n", 1385 UDF_MAX_ICB_NESTING); 1386 goto out; 1387 } 1388 brelse(bh); 1389 goto reread; 1390 } 1391 } 1392 brelse(ibh); 1393 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1394 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1395 le16_to_cpu(fe->icbTag.strategyType)); 1396 goto out; 1397 } 1398 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1399 iinfo->i_strat4096 = 0; 1400 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1401 iinfo->i_strat4096 = 1; 1402 1403 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1404 ICBTAG_FLAG_AD_MASK; 1405 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1406 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1407 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1408 ret = -EIO; 1409 goto out; 1410 } 1411 iinfo->i_hidden = hidden_inode; 1412 iinfo->i_unique = 0; 1413 iinfo->i_lenEAttr = 0; 1414 iinfo->i_lenExtents = 0; 1415 iinfo->i_lenAlloc = 0; 1416 iinfo->i_next_alloc_block = 0; 1417 iinfo->i_next_alloc_goal = 0; 1418 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1419 iinfo->i_efe = 1; 1420 iinfo->i_use = 0; 1421 ret = udf_alloc_i_data(inode, bs - 1422 sizeof(struct extendedFileEntry)); 1423 if (ret) 1424 goto out; 1425 memcpy(iinfo->i_data, 1426 bh->b_data + sizeof(struct extendedFileEntry), 1427 bs - sizeof(struct extendedFileEntry)); 1428 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1429 iinfo->i_efe = 0; 1430 iinfo->i_use = 0; 1431 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1432 if (ret) 1433 goto out; 1434 memcpy(iinfo->i_data, 1435 bh->b_data + sizeof(struct fileEntry), 1436 bs - sizeof(struct fileEntry)); 1437 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1438 iinfo->i_efe = 0; 1439 iinfo->i_use = 1; 1440 iinfo->i_lenAlloc = le32_to_cpu( 1441 ((struct unallocSpaceEntry *)bh->b_data)-> 1442 lengthAllocDescs); 1443 ret = udf_alloc_i_data(inode, bs - 1444 sizeof(struct unallocSpaceEntry)); 1445 if (ret) 1446 goto out; 1447 memcpy(iinfo->i_data, 1448 bh->b_data + sizeof(struct unallocSpaceEntry), 1449 bs - sizeof(struct unallocSpaceEntry)); 1450 return 0; 1451 } 1452 1453 ret = -EIO; 1454 read_lock(&sbi->s_cred_lock); 1455 uid = le32_to_cpu(fe->uid); 1456 if (uid == UDF_INVALID_ID || 1457 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1458 inode->i_uid = sbi->s_uid; 1459 else 1460 i_uid_write(inode, uid); 1461 1462 gid = le32_to_cpu(fe->gid); 1463 if (gid == UDF_INVALID_ID || 1464 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1465 inode->i_gid = sbi->s_gid; 1466 else 1467 i_gid_write(inode, gid); 1468 1469 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1470 sbi->s_fmode != UDF_INVALID_MODE) 1471 inode->i_mode = sbi->s_fmode; 1472 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1473 sbi->s_dmode != UDF_INVALID_MODE) 1474 inode->i_mode = sbi->s_dmode; 1475 else 1476 inode->i_mode = udf_convert_permissions(fe); 1477 inode->i_mode &= ~sbi->s_umask; 1478 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1479 1480 read_unlock(&sbi->s_cred_lock); 1481 1482 link_count = le16_to_cpu(fe->fileLinkCount); 1483 if (!link_count) { 1484 if (!hidden_inode) { 1485 ret = -ESTALE; 1486 goto out; 1487 } 1488 link_count = 1; 1489 } 1490 set_nlink(inode, link_count); 1491 1492 inode->i_size = le64_to_cpu(fe->informationLength); 1493 iinfo->i_lenExtents = inode->i_size; 1494 1495 if (iinfo->i_efe == 0) { 1496 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1497 (inode->i_sb->s_blocksize_bits - 9); 1498 1499 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1500 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1501 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1502 1503 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1504 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1505 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1506 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1507 iinfo->i_streamdir = 0; 1508 iinfo->i_lenStreams = 0; 1509 } else { 1510 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1511 (inode->i_sb->s_blocksize_bits - 9); 1512 1513 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1514 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1515 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1516 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1517 1518 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1519 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1520 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1521 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1522 1523 /* Named streams */ 1524 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1525 iinfo->i_locStreamdir = 1526 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1527 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1528 if (iinfo->i_lenStreams >= inode->i_size) 1529 iinfo->i_lenStreams -= inode->i_size; 1530 else 1531 iinfo->i_lenStreams = 0; 1532 } 1533 inode->i_generation = iinfo->i_unique; 1534 1535 /* 1536 * Sanity check length of allocation descriptors and extended attrs to 1537 * avoid integer overflows 1538 */ 1539 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1540 goto out; 1541 /* Now do exact checks */ 1542 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1543 goto out; 1544 /* Sanity checks for files in ICB so that we don't get confused later */ 1545 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1546 /* 1547 * For file in ICB data is stored in allocation descriptor 1548 * so sizes should match 1549 */ 1550 if (iinfo->i_lenAlloc != inode->i_size) 1551 goto out; 1552 /* File in ICB has to fit in there... */ 1553 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1554 goto out; 1555 } 1556 1557 switch (fe->icbTag.fileType) { 1558 case ICBTAG_FILE_TYPE_DIRECTORY: 1559 inode->i_op = &udf_dir_inode_operations; 1560 inode->i_fop = &udf_dir_operations; 1561 inode->i_mode |= S_IFDIR; 1562 inc_nlink(inode); 1563 break; 1564 case ICBTAG_FILE_TYPE_REALTIME: 1565 case ICBTAG_FILE_TYPE_REGULAR: 1566 case ICBTAG_FILE_TYPE_UNDEF: 1567 case ICBTAG_FILE_TYPE_VAT20: 1568 inode->i_data.a_ops = &udf_aops; 1569 inode->i_op = &udf_file_inode_operations; 1570 inode->i_fop = &udf_file_operations; 1571 inode->i_mode |= S_IFREG; 1572 break; 1573 case ICBTAG_FILE_TYPE_BLOCK: 1574 inode->i_mode |= S_IFBLK; 1575 break; 1576 case ICBTAG_FILE_TYPE_CHAR: 1577 inode->i_mode |= S_IFCHR; 1578 break; 1579 case ICBTAG_FILE_TYPE_FIFO: 1580 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1581 break; 1582 case ICBTAG_FILE_TYPE_SOCKET: 1583 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1584 break; 1585 case ICBTAG_FILE_TYPE_SYMLINK: 1586 inode->i_data.a_ops = &udf_symlink_aops; 1587 inode->i_op = &udf_symlink_inode_operations; 1588 inode_nohighmem(inode); 1589 inode->i_mode = S_IFLNK | 0777; 1590 break; 1591 case ICBTAG_FILE_TYPE_MAIN: 1592 udf_debug("METADATA FILE-----\n"); 1593 break; 1594 case ICBTAG_FILE_TYPE_MIRROR: 1595 udf_debug("METADATA MIRROR FILE-----\n"); 1596 break; 1597 case ICBTAG_FILE_TYPE_BITMAP: 1598 udf_debug("METADATA BITMAP FILE-----\n"); 1599 break; 1600 default: 1601 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1602 inode->i_ino, fe->icbTag.fileType); 1603 goto out; 1604 } 1605 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1606 struct deviceSpec *dsea = 1607 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1608 if (dsea) { 1609 init_special_inode(inode, inode->i_mode, 1610 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1611 le32_to_cpu(dsea->minorDeviceIdent))); 1612 /* Developer ID ??? */ 1613 } else 1614 goto out; 1615 } 1616 ret = 0; 1617 out: 1618 brelse(bh); 1619 return ret; 1620 } 1621 1622 static int udf_alloc_i_data(struct inode *inode, size_t size) 1623 { 1624 struct udf_inode_info *iinfo = UDF_I(inode); 1625 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1626 if (!iinfo->i_data) 1627 return -ENOMEM; 1628 return 0; 1629 } 1630 1631 static umode_t udf_convert_permissions(struct fileEntry *fe) 1632 { 1633 umode_t mode; 1634 uint32_t permissions; 1635 uint32_t flags; 1636 1637 permissions = le32_to_cpu(fe->permissions); 1638 flags = le16_to_cpu(fe->icbTag.flags); 1639 1640 mode = ((permissions) & 0007) | 1641 ((permissions >> 2) & 0070) | 1642 ((permissions >> 4) & 0700) | 1643 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1644 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1645 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1646 1647 return mode; 1648 } 1649 1650 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1651 { 1652 struct udf_inode_info *iinfo = UDF_I(inode); 1653 1654 /* 1655 * UDF 2.01 sec. 3.3.3.3 Note 2: 1656 * In Unix, delete permission tracks write 1657 */ 1658 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1659 if (mode & 0200) 1660 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1661 if (mode & 0020) 1662 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1663 if (mode & 0002) 1664 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1665 } 1666 1667 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1668 { 1669 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1670 } 1671 1672 static int udf_sync_inode(struct inode *inode) 1673 { 1674 return udf_update_inode(inode, 1); 1675 } 1676 1677 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1678 { 1679 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1680 (iinfo->i_crtime.tv_sec == time.tv_sec && 1681 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1682 iinfo->i_crtime = time; 1683 } 1684 1685 static int udf_update_inode(struct inode *inode, int do_sync) 1686 { 1687 struct buffer_head *bh = NULL; 1688 struct fileEntry *fe; 1689 struct extendedFileEntry *efe; 1690 uint64_t lb_recorded; 1691 uint32_t udfperms; 1692 uint16_t icbflags; 1693 uint16_t crclen; 1694 int err = 0; 1695 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1696 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1697 struct udf_inode_info *iinfo = UDF_I(inode); 1698 1699 bh = sb_getblk(inode->i_sb, 1700 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1701 if (!bh) { 1702 udf_debug("getblk failure\n"); 1703 return -EIO; 1704 } 1705 1706 lock_buffer(bh); 1707 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1708 fe = (struct fileEntry *)bh->b_data; 1709 efe = (struct extendedFileEntry *)bh->b_data; 1710 1711 if (iinfo->i_use) { 1712 struct unallocSpaceEntry *use = 1713 (struct unallocSpaceEntry *)bh->b_data; 1714 1715 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1716 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1717 iinfo->i_data, inode->i_sb->s_blocksize - 1718 sizeof(struct unallocSpaceEntry)); 1719 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1720 crclen = sizeof(struct unallocSpaceEntry); 1721 1722 goto finish; 1723 } 1724 1725 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1726 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1727 else 1728 fe->uid = cpu_to_le32(i_uid_read(inode)); 1729 1730 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1731 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1732 else 1733 fe->gid = cpu_to_le32(i_gid_read(inode)); 1734 1735 udfperms = ((inode->i_mode & 0007)) | 1736 ((inode->i_mode & 0070) << 2) | 1737 ((inode->i_mode & 0700) << 4); 1738 1739 udfperms |= iinfo->i_extraPerms; 1740 fe->permissions = cpu_to_le32(udfperms); 1741 1742 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1743 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1744 else { 1745 if (iinfo->i_hidden) 1746 fe->fileLinkCount = cpu_to_le16(0); 1747 else 1748 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1749 } 1750 1751 fe->informationLength = cpu_to_le64(inode->i_size); 1752 1753 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1754 struct regid *eid; 1755 struct deviceSpec *dsea = 1756 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1757 if (!dsea) { 1758 dsea = (struct deviceSpec *) 1759 udf_add_extendedattr(inode, 1760 sizeof(struct deviceSpec) + 1761 sizeof(struct regid), 12, 0x3); 1762 dsea->attrType = cpu_to_le32(12); 1763 dsea->attrSubtype = 1; 1764 dsea->attrLength = cpu_to_le32( 1765 sizeof(struct deviceSpec) + 1766 sizeof(struct regid)); 1767 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1768 } 1769 eid = (struct regid *)dsea->impUse; 1770 memset(eid, 0, sizeof(*eid)); 1771 strcpy(eid->ident, UDF_ID_DEVELOPER); 1772 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1773 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1774 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1775 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1776 } 1777 1778 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1779 lb_recorded = 0; /* No extents => no blocks! */ 1780 else 1781 lb_recorded = 1782 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1783 (blocksize_bits - 9); 1784 1785 if (iinfo->i_efe == 0) { 1786 memcpy(bh->b_data + sizeof(struct fileEntry), 1787 iinfo->i_data, 1788 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1789 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1790 1791 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1792 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1793 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1794 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1795 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1796 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1797 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1798 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1799 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1800 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1801 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1802 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1803 crclen = sizeof(struct fileEntry); 1804 } else { 1805 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1806 iinfo->i_data, 1807 inode->i_sb->s_blocksize - 1808 sizeof(struct extendedFileEntry)); 1809 efe->objectSize = 1810 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1811 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1812 1813 if (iinfo->i_streamdir) { 1814 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1815 1816 icb_lad->extLocation = 1817 cpu_to_lelb(iinfo->i_locStreamdir); 1818 icb_lad->extLength = 1819 cpu_to_le32(inode->i_sb->s_blocksize); 1820 } 1821 1822 udf_adjust_time(iinfo, inode->i_atime); 1823 udf_adjust_time(iinfo, inode->i_mtime); 1824 udf_adjust_time(iinfo, inode->i_ctime); 1825 1826 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1827 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1828 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1829 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1830 1831 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1832 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1833 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1834 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1835 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1836 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1837 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1838 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1839 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1840 crclen = sizeof(struct extendedFileEntry); 1841 } 1842 1843 finish: 1844 if (iinfo->i_strat4096) { 1845 fe->icbTag.strategyType = cpu_to_le16(4096); 1846 fe->icbTag.strategyParameter = cpu_to_le16(1); 1847 fe->icbTag.numEntries = cpu_to_le16(2); 1848 } else { 1849 fe->icbTag.strategyType = cpu_to_le16(4); 1850 fe->icbTag.numEntries = cpu_to_le16(1); 1851 } 1852 1853 if (iinfo->i_use) 1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1855 else if (S_ISDIR(inode->i_mode)) 1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1857 else if (S_ISREG(inode->i_mode)) 1858 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1859 else if (S_ISLNK(inode->i_mode)) 1860 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1861 else if (S_ISBLK(inode->i_mode)) 1862 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1863 else if (S_ISCHR(inode->i_mode)) 1864 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1865 else if (S_ISFIFO(inode->i_mode)) 1866 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1867 else if (S_ISSOCK(inode->i_mode)) 1868 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1869 1870 icbflags = iinfo->i_alloc_type | 1871 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1872 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1873 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1874 (le16_to_cpu(fe->icbTag.flags) & 1875 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1876 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1877 1878 fe->icbTag.flags = cpu_to_le16(icbflags); 1879 if (sbi->s_udfrev >= 0x0200) 1880 fe->descTag.descVersion = cpu_to_le16(3); 1881 else 1882 fe->descTag.descVersion = cpu_to_le16(2); 1883 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1884 fe->descTag.tagLocation = cpu_to_le32( 1885 iinfo->i_location.logicalBlockNum); 1886 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1887 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1888 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1889 crclen)); 1890 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1891 1892 set_buffer_uptodate(bh); 1893 unlock_buffer(bh); 1894 1895 /* write the data blocks */ 1896 mark_buffer_dirty(bh); 1897 if (do_sync) { 1898 sync_dirty_buffer(bh); 1899 if (buffer_write_io_error(bh)) { 1900 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1901 inode->i_ino); 1902 err = -EIO; 1903 } 1904 } 1905 brelse(bh); 1906 1907 return err; 1908 } 1909 1910 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1911 bool hidden_inode) 1912 { 1913 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1914 struct inode *inode = iget_locked(sb, block); 1915 int err; 1916 1917 if (!inode) 1918 return ERR_PTR(-ENOMEM); 1919 1920 if (!(inode->i_state & I_NEW)) { 1921 if (UDF_I(inode)->i_hidden != hidden_inode) { 1922 iput(inode); 1923 return ERR_PTR(-EFSCORRUPTED); 1924 } 1925 return inode; 1926 } 1927 1928 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1929 err = udf_read_inode(inode, hidden_inode); 1930 if (err < 0) { 1931 iget_failed(inode); 1932 return ERR_PTR(err); 1933 } 1934 unlock_new_inode(inode); 1935 1936 return inode; 1937 } 1938 1939 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1940 struct extent_position *epos) 1941 { 1942 struct super_block *sb = inode->i_sb; 1943 struct buffer_head *bh; 1944 struct allocExtDesc *aed; 1945 struct extent_position nepos; 1946 struct kernel_lb_addr neloc; 1947 int ver, adsize; 1948 1949 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1950 adsize = sizeof(struct short_ad); 1951 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1952 adsize = sizeof(struct long_ad); 1953 else 1954 return -EIO; 1955 1956 neloc.logicalBlockNum = block; 1957 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1958 1959 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1960 if (!bh) 1961 return -EIO; 1962 lock_buffer(bh); 1963 memset(bh->b_data, 0x00, sb->s_blocksize); 1964 set_buffer_uptodate(bh); 1965 unlock_buffer(bh); 1966 mark_buffer_dirty_inode(bh, inode); 1967 1968 aed = (struct allocExtDesc *)(bh->b_data); 1969 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1970 aed->previousAllocExtLocation = 1971 cpu_to_le32(epos->block.logicalBlockNum); 1972 } 1973 aed->lengthAllocDescs = cpu_to_le32(0); 1974 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1975 ver = 3; 1976 else 1977 ver = 2; 1978 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1979 sizeof(struct tag)); 1980 1981 nepos.block = neloc; 1982 nepos.offset = sizeof(struct allocExtDesc); 1983 nepos.bh = bh; 1984 1985 /* 1986 * Do we have to copy current last extent to make space for indirect 1987 * one? 1988 */ 1989 if (epos->offset + adsize > sb->s_blocksize) { 1990 struct kernel_lb_addr cp_loc; 1991 uint32_t cp_len; 1992 int cp_type; 1993 1994 epos->offset -= adsize; 1995 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1996 cp_len |= ((uint32_t)cp_type) << 30; 1997 1998 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1999 udf_write_aext(inode, epos, &nepos.block, 2000 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2001 } else { 2002 __udf_add_aext(inode, epos, &nepos.block, 2003 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2004 } 2005 2006 brelse(epos->bh); 2007 *epos = nepos; 2008 2009 return 0; 2010 } 2011 2012 /* 2013 * Append extent at the given position - should be the first free one in inode 2014 * / indirect extent. This function assumes there is enough space in the inode 2015 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2016 */ 2017 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2018 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2019 { 2020 struct udf_inode_info *iinfo = UDF_I(inode); 2021 struct allocExtDesc *aed; 2022 int adsize; 2023 2024 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2025 adsize = sizeof(struct short_ad); 2026 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2027 adsize = sizeof(struct long_ad); 2028 else 2029 return -EIO; 2030 2031 if (!epos->bh) { 2032 WARN_ON(iinfo->i_lenAlloc != 2033 epos->offset - udf_file_entry_alloc_offset(inode)); 2034 } else { 2035 aed = (struct allocExtDesc *)epos->bh->b_data; 2036 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2037 epos->offset - sizeof(struct allocExtDesc)); 2038 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2039 } 2040 2041 udf_write_aext(inode, epos, eloc, elen, inc); 2042 2043 if (!epos->bh) { 2044 iinfo->i_lenAlloc += adsize; 2045 mark_inode_dirty(inode); 2046 } else { 2047 aed = (struct allocExtDesc *)epos->bh->b_data; 2048 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2049 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2050 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2051 udf_update_tag(epos->bh->b_data, 2052 epos->offset + (inc ? 0 : adsize)); 2053 else 2054 udf_update_tag(epos->bh->b_data, 2055 sizeof(struct allocExtDesc)); 2056 mark_buffer_dirty_inode(epos->bh, inode); 2057 } 2058 2059 return 0; 2060 } 2061 2062 /* 2063 * Append extent at given position - should be the first free one in inode 2064 * / indirect extent. Takes care of allocating and linking indirect blocks. 2065 */ 2066 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2067 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2068 { 2069 int adsize; 2070 struct super_block *sb = inode->i_sb; 2071 2072 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2073 adsize = sizeof(struct short_ad); 2074 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2075 adsize = sizeof(struct long_ad); 2076 else 2077 return -EIO; 2078 2079 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2080 int err; 2081 udf_pblk_t new_block; 2082 2083 new_block = udf_new_block(sb, NULL, 2084 epos->block.partitionReferenceNum, 2085 epos->block.logicalBlockNum, &err); 2086 if (!new_block) 2087 return -ENOSPC; 2088 2089 err = udf_setup_indirect_aext(inode, new_block, epos); 2090 if (err) 2091 return err; 2092 } 2093 2094 return __udf_add_aext(inode, epos, eloc, elen, inc); 2095 } 2096 2097 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2098 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2099 { 2100 int adsize; 2101 uint8_t *ptr; 2102 struct short_ad *sad; 2103 struct long_ad *lad; 2104 struct udf_inode_info *iinfo = UDF_I(inode); 2105 2106 if (!epos->bh) 2107 ptr = iinfo->i_data + epos->offset - 2108 udf_file_entry_alloc_offset(inode) + 2109 iinfo->i_lenEAttr; 2110 else 2111 ptr = epos->bh->b_data + epos->offset; 2112 2113 switch (iinfo->i_alloc_type) { 2114 case ICBTAG_FLAG_AD_SHORT: 2115 sad = (struct short_ad *)ptr; 2116 sad->extLength = cpu_to_le32(elen); 2117 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2118 adsize = sizeof(struct short_ad); 2119 break; 2120 case ICBTAG_FLAG_AD_LONG: 2121 lad = (struct long_ad *)ptr; 2122 lad->extLength = cpu_to_le32(elen); 2123 lad->extLocation = cpu_to_lelb(*eloc); 2124 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2125 adsize = sizeof(struct long_ad); 2126 break; 2127 default: 2128 return; 2129 } 2130 2131 if (epos->bh) { 2132 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2133 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2134 struct allocExtDesc *aed = 2135 (struct allocExtDesc *)epos->bh->b_data; 2136 udf_update_tag(epos->bh->b_data, 2137 le32_to_cpu(aed->lengthAllocDescs) + 2138 sizeof(struct allocExtDesc)); 2139 } 2140 mark_buffer_dirty_inode(epos->bh, inode); 2141 } else { 2142 mark_inode_dirty(inode); 2143 } 2144 2145 if (inc) 2146 epos->offset += adsize; 2147 } 2148 2149 /* 2150 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2151 * someone does some weird stuff. 2152 */ 2153 #define UDF_MAX_INDIR_EXTS 16 2154 2155 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2156 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2157 { 2158 int8_t etype; 2159 unsigned int indirections = 0; 2160 2161 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2162 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2163 udf_pblk_t block; 2164 2165 if (++indirections > UDF_MAX_INDIR_EXTS) { 2166 udf_err(inode->i_sb, 2167 "too many indirect extents in inode %lu\n", 2168 inode->i_ino); 2169 return -1; 2170 } 2171 2172 epos->block = *eloc; 2173 epos->offset = sizeof(struct allocExtDesc); 2174 brelse(epos->bh); 2175 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2176 epos->bh = sb_bread(inode->i_sb, block); 2177 if (!epos->bh) { 2178 udf_debug("reading block %u failed!\n", block); 2179 return -1; 2180 } 2181 } 2182 2183 return etype; 2184 } 2185 2186 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2187 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2188 { 2189 int alen; 2190 int8_t etype; 2191 uint8_t *ptr; 2192 struct short_ad *sad; 2193 struct long_ad *lad; 2194 struct udf_inode_info *iinfo = UDF_I(inode); 2195 2196 if (!epos->bh) { 2197 if (!epos->offset) 2198 epos->offset = udf_file_entry_alloc_offset(inode); 2199 ptr = iinfo->i_data + epos->offset - 2200 udf_file_entry_alloc_offset(inode) + 2201 iinfo->i_lenEAttr; 2202 alen = udf_file_entry_alloc_offset(inode) + 2203 iinfo->i_lenAlloc; 2204 } else { 2205 if (!epos->offset) 2206 epos->offset = sizeof(struct allocExtDesc); 2207 ptr = epos->bh->b_data + epos->offset; 2208 alen = sizeof(struct allocExtDesc) + 2209 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2210 lengthAllocDescs); 2211 } 2212 2213 switch (iinfo->i_alloc_type) { 2214 case ICBTAG_FLAG_AD_SHORT: 2215 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2216 if (!sad) 2217 return -1; 2218 etype = le32_to_cpu(sad->extLength) >> 30; 2219 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2220 eloc->partitionReferenceNum = 2221 iinfo->i_location.partitionReferenceNum; 2222 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2223 break; 2224 case ICBTAG_FLAG_AD_LONG: 2225 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2226 if (!lad) 2227 return -1; 2228 etype = le32_to_cpu(lad->extLength) >> 30; 2229 *eloc = lelb_to_cpu(lad->extLocation); 2230 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2231 break; 2232 default: 2233 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2234 return -1; 2235 } 2236 2237 return etype; 2238 } 2239 2240 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2241 struct kernel_lb_addr neloc, uint32_t nelen) 2242 { 2243 struct kernel_lb_addr oeloc; 2244 uint32_t oelen; 2245 int8_t etype; 2246 int err; 2247 2248 if (epos.bh) 2249 get_bh(epos.bh); 2250 2251 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2252 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2253 neloc = oeloc; 2254 nelen = (etype << 30) | oelen; 2255 } 2256 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2257 brelse(epos.bh); 2258 2259 return err; 2260 } 2261 2262 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2263 { 2264 struct extent_position oepos; 2265 int adsize; 2266 int8_t etype; 2267 struct allocExtDesc *aed; 2268 struct udf_inode_info *iinfo; 2269 struct kernel_lb_addr eloc; 2270 uint32_t elen; 2271 2272 if (epos.bh) { 2273 get_bh(epos.bh); 2274 get_bh(epos.bh); 2275 } 2276 2277 iinfo = UDF_I(inode); 2278 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2279 adsize = sizeof(struct short_ad); 2280 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2281 adsize = sizeof(struct long_ad); 2282 else 2283 adsize = 0; 2284 2285 oepos = epos; 2286 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2287 return -1; 2288 2289 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2290 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2291 if (oepos.bh != epos.bh) { 2292 oepos.block = epos.block; 2293 brelse(oepos.bh); 2294 get_bh(epos.bh); 2295 oepos.bh = epos.bh; 2296 oepos.offset = epos.offset - adsize; 2297 } 2298 } 2299 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2300 elen = 0; 2301 2302 if (epos.bh != oepos.bh) { 2303 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2304 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2305 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2306 if (!oepos.bh) { 2307 iinfo->i_lenAlloc -= (adsize * 2); 2308 mark_inode_dirty(inode); 2309 } else { 2310 aed = (struct allocExtDesc *)oepos.bh->b_data; 2311 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2312 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2313 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2314 udf_update_tag(oepos.bh->b_data, 2315 oepos.offset - (2 * adsize)); 2316 else 2317 udf_update_tag(oepos.bh->b_data, 2318 sizeof(struct allocExtDesc)); 2319 mark_buffer_dirty_inode(oepos.bh, inode); 2320 } 2321 } else { 2322 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2323 if (!oepos.bh) { 2324 iinfo->i_lenAlloc -= adsize; 2325 mark_inode_dirty(inode); 2326 } else { 2327 aed = (struct allocExtDesc *)oepos.bh->b_data; 2328 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2329 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2330 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2331 udf_update_tag(oepos.bh->b_data, 2332 epos.offset - adsize); 2333 else 2334 udf_update_tag(oepos.bh->b_data, 2335 sizeof(struct allocExtDesc)); 2336 mark_buffer_dirty_inode(oepos.bh, inode); 2337 } 2338 } 2339 2340 brelse(epos.bh); 2341 brelse(oepos.bh); 2342 2343 return (elen >> 30); 2344 } 2345 2346 int8_t inode_bmap(struct inode *inode, sector_t block, 2347 struct extent_position *pos, struct kernel_lb_addr *eloc, 2348 uint32_t *elen, sector_t *offset) 2349 { 2350 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2351 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2352 int8_t etype; 2353 struct udf_inode_info *iinfo; 2354 2355 iinfo = UDF_I(inode); 2356 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2357 pos->offset = 0; 2358 pos->block = iinfo->i_location; 2359 pos->bh = NULL; 2360 } 2361 *elen = 0; 2362 do { 2363 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2364 if (etype == -1) { 2365 *offset = (bcount - lbcount) >> blocksize_bits; 2366 iinfo->i_lenExtents = lbcount; 2367 return -1; 2368 } 2369 lbcount += *elen; 2370 } while (lbcount <= bcount); 2371 /* update extent cache */ 2372 udf_update_extent_cache(inode, lbcount - *elen, pos); 2373 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2374 2375 return etype; 2376 } 2377