xref: /openbmc/linux/fs/udf/inode.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 	return mpage_readpage(page, udf_get_block);
199 }
200 
201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.set_page_dirty	= __set_page_dirty_buffers,
239 	.readpage	= udf_readpage,
240 	.readahead	= udf_readahead,
241 	.writepage	= udf_writepage,
242 	.writepages	= udf_writepages,
243 	.write_begin	= udf_write_begin,
244 	.write_end	= generic_write_end,
245 	.direct_IO	= udf_direct_IO,
246 	.bmap		= udf_bmap,
247 };
248 
249 /*
250  * Expand file stored in ICB to a normal one-block-file
251  *
252  * This function requires i_data_sem for writing and releases it.
253  * This function requires i_mutex held
254  */
255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257 	struct page *page;
258 	char *kaddr;
259 	struct udf_inode_info *iinfo = UDF_I(inode);
260 	int err;
261 	struct writeback_control udf_wbc = {
262 		.sync_mode = WB_SYNC_NONE,
263 		.nr_to_write = 1,
264 	};
265 
266 	WARN_ON_ONCE(!inode_is_locked(inode));
267 	if (!iinfo->i_lenAlloc) {
268 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 		else
271 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 		/* from now on we have normal address_space methods */
273 		inode->i_data.a_ops = &udf_aops;
274 		up_write(&iinfo->i_data_sem);
275 		mark_inode_dirty(inode);
276 		return 0;
277 	}
278 	/*
279 	 * Release i_data_sem so that we can lock a page - page lock ranks
280 	 * above i_data_sem. i_mutex still protects us against file changes.
281 	 */
282 	up_write(&iinfo->i_data_sem);
283 
284 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 	if (!page)
286 		return -ENOMEM;
287 
288 	if (!PageUptodate(page)) {
289 		kaddr = kmap_atomic(page);
290 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 		       PAGE_SIZE - iinfo->i_lenAlloc);
292 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 			iinfo->i_lenAlloc);
294 		flush_dcache_page(page);
295 		SetPageUptodate(page);
296 		kunmap_atomic(kaddr);
297 	}
298 	down_write(&iinfo->i_data_sem);
299 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 	       iinfo->i_lenAlloc);
301 	iinfo->i_lenAlloc = 0;
302 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 	else
305 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 	/* from now on we have normal address_space methods */
307 	inode->i_data.a_ops = &udf_aops;
308 	up_write(&iinfo->i_data_sem);
309 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 	if (err) {
311 		/* Restore everything back so that we don't lose data... */
312 		lock_page(page);
313 		down_write(&iinfo->i_data_sem);
314 		kaddr = kmap_atomic(page);
315 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 		kunmap_atomic(kaddr);
317 		unlock_page(page);
318 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 		inode->i_data.a_ops = &udf_adinicb_aops;
320 		up_write(&iinfo->i_data_sem);
321 	}
322 	put_page(page);
323 	mark_inode_dirty(inode);
324 
325 	return err;
326 }
327 
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 					    udf_pblk_t *block, int *err)
330 {
331 	udf_pblk_t newblock;
332 	struct buffer_head *dbh = NULL;
333 	struct kernel_lb_addr eloc;
334 	uint8_t alloctype;
335 	struct extent_position epos;
336 
337 	struct udf_fileident_bh sfibh, dfibh;
338 	loff_t f_pos = udf_ext0_offset(inode);
339 	int size = udf_ext0_offset(inode) + inode->i_size;
340 	struct fileIdentDesc cfi, *sfi, *dfi;
341 	struct udf_inode_info *iinfo = UDF_I(inode);
342 
343 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 		alloctype = ICBTAG_FLAG_AD_SHORT;
345 	else
346 		alloctype = ICBTAG_FLAG_AD_LONG;
347 
348 	if (!inode->i_size) {
349 		iinfo->i_alloc_type = alloctype;
350 		mark_inode_dirty(inode);
351 		return NULL;
352 	}
353 
354 	/* alloc block, and copy data to it */
355 	*block = udf_new_block(inode->i_sb, inode,
356 			       iinfo->i_location.partitionReferenceNum,
357 			       iinfo->i_location.logicalBlockNum, err);
358 	if (!(*block))
359 		return NULL;
360 	newblock = udf_get_pblock(inode->i_sb, *block,
361 				  iinfo->i_location.partitionReferenceNum,
362 				0);
363 	if (!newblock)
364 		return NULL;
365 	dbh = udf_tgetblk(inode->i_sb, newblock);
366 	if (!dbh)
367 		return NULL;
368 	lock_buffer(dbh);
369 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 	set_buffer_uptodate(dbh);
371 	unlock_buffer(dbh);
372 	mark_buffer_dirty_inode(dbh, inode);
373 
374 	sfibh.soffset = sfibh.eoffset =
375 			f_pos & (inode->i_sb->s_blocksize - 1);
376 	sfibh.sbh = sfibh.ebh = NULL;
377 	dfibh.soffset = dfibh.eoffset = 0;
378 	dfibh.sbh = dfibh.ebh = dbh;
379 	while (f_pos < size) {
380 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 					 NULL, NULL, NULL);
383 		if (!sfi) {
384 			brelse(dbh);
385 			return NULL;
386 		}
387 		iinfo->i_alloc_type = alloctype;
388 		sfi->descTag.tagLocation = cpu_to_le32(*block);
389 		dfibh.soffset = dfibh.eoffset;
390 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 				 sfi->fileIdent +
394 					le16_to_cpu(sfi->lengthOfImpUse))) {
395 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 			brelse(dbh);
397 			return NULL;
398 		}
399 	}
400 	mark_buffer_dirty_inode(dbh, inode);
401 
402 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403 	iinfo->i_lenAlloc = 0;
404 	eloc.logicalBlockNum = *block;
405 	eloc.partitionReferenceNum =
406 				iinfo->i_location.partitionReferenceNum;
407 	iinfo->i_lenExtents = inode->i_size;
408 	epos.bh = NULL;
409 	epos.block = iinfo->i_location;
410 	epos.offset = udf_file_entry_alloc_offset(inode);
411 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412 	/* UniqueID stuff */
413 
414 	brelse(epos.bh);
415 	mark_inode_dirty(inode);
416 	return dbh;
417 }
418 
419 static int udf_get_block(struct inode *inode, sector_t block,
420 			 struct buffer_head *bh_result, int create)
421 {
422 	int err, new;
423 	sector_t phys = 0;
424 	struct udf_inode_info *iinfo;
425 
426 	if (!create) {
427 		phys = udf_block_map(inode, block);
428 		if (phys)
429 			map_bh(bh_result, inode->i_sb, phys);
430 		return 0;
431 	}
432 
433 	err = -EIO;
434 	new = 0;
435 	iinfo = UDF_I(inode);
436 
437 	down_write(&iinfo->i_data_sem);
438 	if (block == iinfo->i_next_alloc_block + 1) {
439 		iinfo->i_next_alloc_block++;
440 		iinfo->i_next_alloc_goal++;
441 	}
442 
443 	udf_clear_extent_cache(inode);
444 	phys = inode_getblk(inode, block, &err, &new);
445 	if (!phys)
446 		goto abort;
447 
448 	if (new)
449 		set_buffer_new(bh_result);
450 	map_bh(bh_result, inode->i_sb, phys);
451 
452 abort:
453 	up_write(&iinfo->i_data_sem);
454 	return err;
455 }
456 
457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 				      int create, int *err)
459 {
460 	struct buffer_head *bh;
461 	struct buffer_head dummy;
462 
463 	dummy.b_state = 0;
464 	dummy.b_blocknr = -1000;
465 	*err = udf_get_block(inode, block, &dummy, create);
466 	if (!*err && buffer_mapped(&dummy)) {
467 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 		if (buffer_new(&dummy)) {
469 			lock_buffer(bh);
470 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 			set_buffer_uptodate(bh);
472 			unlock_buffer(bh);
473 			mark_buffer_dirty_inode(bh, inode);
474 		}
475 		return bh;
476 	}
477 
478 	return NULL;
479 }
480 
481 /* Extend the file with new blocks totaling 'new_block_bytes',
482  * return the number of extents added
483  */
484 static int udf_do_extend_file(struct inode *inode,
485 			      struct extent_position *last_pos,
486 			      struct kernel_long_ad *last_ext,
487 			      loff_t new_block_bytes)
488 {
489 	uint32_t add;
490 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 	struct super_block *sb = inode->i_sb;
492 	struct kernel_lb_addr prealloc_loc = {};
493 	uint32_t prealloc_len = 0;
494 	struct udf_inode_info *iinfo;
495 	int err;
496 
497 	/* The previous extent is fake and we should not extend by anything
498 	 * - there's nothing to do... */
499 	if (!new_block_bytes && fake)
500 		return 0;
501 
502 	iinfo = UDF_I(inode);
503 	/* Round the last extent up to a multiple of block size */
504 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 		last_ext->extLength =
506 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 		iinfo->i_lenExtents =
510 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 			~(sb->s_blocksize - 1);
512 	}
513 
514 	/* Last extent are just preallocated blocks? */
515 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 						EXT_NOT_RECORDED_ALLOCATED) {
517 		/* Save the extent so that we can reattach it to the end */
518 		prealloc_loc = last_ext->extLocation;
519 		prealloc_len = last_ext->extLength;
520 		/* Mark the extent as a hole */
521 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 		last_ext->extLocation.logicalBlockNum = 0;
524 		last_ext->extLocation.partitionReferenceNum = 0;
525 	}
526 
527 	/* Can we merge with the previous extent? */
528 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 		add = (1 << 30) - sb->s_blocksize -
531 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532 		if (add > new_block_bytes)
533 			add = new_block_bytes;
534 		new_block_bytes -= add;
535 		last_ext->extLength += add;
536 	}
537 
538 	if (fake) {
539 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 			     last_ext->extLength, 1);
541 		count++;
542 	} else {
543 		struct kernel_lb_addr tmploc;
544 		uint32_t tmplen;
545 
546 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 				last_ext->extLength, 1);
548 
549 		/*
550 		 * We've rewritten the last extent. If we are going to add
551 		 * more extents, we may need to enter possible following
552 		 * empty indirect extent.
553 		 */
554 		if (new_block_bytes || prealloc_len)
555 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556 	}
557 
558 	/* Managed to do everything necessary? */
559 	if (!new_block_bytes)
560 		goto out;
561 
562 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563 	last_ext->extLocation.logicalBlockNum = 0;
564 	last_ext->extLocation.partitionReferenceNum = 0;
565 	add = (1 << 30) - sb->s_blocksize;
566 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567 
568 	/* Create enough extents to cover the whole hole */
569 	while (new_block_bytes > add) {
570 		new_block_bytes -= add;
571 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 				   last_ext->extLength, 1);
573 		if (err)
574 			return err;
575 		count++;
576 	}
577 	if (new_block_bytes) {
578 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579 			new_block_bytes;
580 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581 				   last_ext->extLength, 1);
582 		if (err)
583 			return err;
584 		count++;
585 	}
586 
587 out:
588 	/* Do we have some preallocated blocks saved? */
589 	if (prealloc_len) {
590 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
591 				   prealloc_len, 1);
592 		if (err)
593 			return err;
594 		last_ext->extLocation = prealloc_loc;
595 		last_ext->extLength = prealloc_len;
596 		count++;
597 	}
598 
599 	/* last_pos should point to the last written extent... */
600 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601 		last_pos->offset -= sizeof(struct short_ad);
602 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603 		last_pos->offset -= sizeof(struct long_ad);
604 	else
605 		return -EIO;
606 
607 	return count;
608 }
609 
610 /* Extend the final block of the file to final_block_len bytes */
611 static void udf_do_extend_final_block(struct inode *inode,
612 				      struct extent_position *last_pos,
613 				      struct kernel_long_ad *last_ext,
614 				      uint32_t final_block_len)
615 {
616 	struct super_block *sb = inode->i_sb;
617 	uint32_t added_bytes;
618 
619 	added_bytes = final_block_len -
620 		      (last_ext->extLength & (sb->s_blocksize - 1));
621 	last_ext->extLength += added_bytes;
622 	UDF_I(inode)->i_lenExtents += added_bytes;
623 
624 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
625 			last_ext->extLength, 1);
626 }
627 
628 static int udf_extend_file(struct inode *inode, loff_t newsize)
629 {
630 
631 	struct extent_position epos;
632 	struct kernel_lb_addr eloc;
633 	uint32_t elen;
634 	int8_t etype;
635 	struct super_block *sb = inode->i_sb;
636 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637 	unsigned long partial_final_block;
638 	int adsize;
639 	struct udf_inode_info *iinfo = UDF_I(inode);
640 	struct kernel_long_ad extent;
641 	int err = 0;
642 	int within_final_block;
643 
644 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645 		adsize = sizeof(struct short_ad);
646 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647 		adsize = sizeof(struct long_ad);
648 	else
649 		BUG();
650 
651 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652 	within_final_block = (etype != -1);
653 
654 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656 		/* File has no extents at all or has empty last
657 		 * indirect extent! Create a fake extent... */
658 		extent.extLocation.logicalBlockNum = 0;
659 		extent.extLocation.partitionReferenceNum = 0;
660 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661 	} else {
662 		epos.offset -= adsize;
663 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
664 				      &extent.extLength, 0);
665 		extent.extLength |= etype << 30;
666 	}
667 
668 	partial_final_block = newsize & (sb->s_blocksize - 1);
669 
670 	/* File has extent covering the new size (could happen when extending
671 	 * inside a block)?
672 	 */
673 	if (within_final_block) {
674 		/* Extending file within the last file block */
675 		udf_do_extend_final_block(inode, &epos, &extent,
676 					  partial_final_block);
677 	} else {
678 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679 			     partial_final_block;
680 		err = udf_do_extend_file(inode, &epos, &extent, add);
681 	}
682 
683 	if (err < 0)
684 		goto out;
685 	err = 0;
686 	iinfo->i_lenExtents = newsize;
687 out:
688 	brelse(epos.bh);
689 	return err;
690 }
691 
692 static sector_t inode_getblk(struct inode *inode, sector_t block,
693 			     int *err, int *new)
694 {
695 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696 	struct extent_position prev_epos, cur_epos, next_epos;
697 	int count = 0, startnum = 0, endnum = 0;
698 	uint32_t elen = 0, tmpelen;
699 	struct kernel_lb_addr eloc, tmpeloc;
700 	int c = 1;
701 	loff_t lbcount = 0, b_off = 0;
702 	udf_pblk_t newblocknum, newblock;
703 	sector_t offset = 0;
704 	int8_t etype;
705 	struct udf_inode_info *iinfo = UDF_I(inode);
706 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707 	int lastblock = 0;
708 	bool isBeyondEOF;
709 
710 	*err = 0;
711 	*new = 0;
712 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
713 	prev_epos.block = iinfo->i_location;
714 	prev_epos.bh = NULL;
715 	cur_epos = next_epos = prev_epos;
716 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717 
718 	/* find the extent which contains the block we are looking for.
719 	   alternate between laarr[0] and laarr[1] for locations of the
720 	   current extent, and the previous extent */
721 	do {
722 		if (prev_epos.bh != cur_epos.bh) {
723 			brelse(prev_epos.bh);
724 			get_bh(cur_epos.bh);
725 			prev_epos.bh = cur_epos.bh;
726 		}
727 		if (cur_epos.bh != next_epos.bh) {
728 			brelse(cur_epos.bh);
729 			get_bh(next_epos.bh);
730 			cur_epos.bh = next_epos.bh;
731 		}
732 
733 		lbcount += elen;
734 
735 		prev_epos.block = cur_epos.block;
736 		cur_epos.block = next_epos.block;
737 
738 		prev_epos.offset = cur_epos.offset;
739 		cur_epos.offset = next_epos.offset;
740 
741 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742 		if (etype == -1)
743 			break;
744 
745 		c = !c;
746 
747 		laarr[c].extLength = (etype << 30) | elen;
748 		laarr[c].extLocation = eloc;
749 
750 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751 			pgoal = eloc.logicalBlockNum +
752 				((elen + inode->i_sb->s_blocksize - 1) >>
753 				 inode->i_sb->s_blocksize_bits);
754 
755 		count++;
756 	} while (lbcount + elen <= b_off);
757 
758 	b_off -= lbcount;
759 	offset = b_off >> inode->i_sb->s_blocksize_bits;
760 	/*
761 	 * Move prev_epos and cur_epos into indirect extent if we are at
762 	 * the pointer to it
763 	 */
764 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766 
767 	/* if the extent is allocated and recorded, return the block
768 	   if the extent is not a multiple of the blocksize, round up */
769 
770 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771 		if (elen & (inode->i_sb->s_blocksize - 1)) {
772 			elen = EXT_RECORDED_ALLOCATED |
773 				((elen + inode->i_sb->s_blocksize - 1) &
774 				 ~(inode->i_sb->s_blocksize - 1));
775 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776 		}
777 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778 		goto out_free;
779 	}
780 
781 	/* Are we beyond EOF? */
782 	if (etype == -1) {
783 		int ret;
784 		loff_t hole_len;
785 		isBeyondEOF = true;
786 		if (count) {
787 			if (c)
788 				laarr[0] = laarr[1];
789 			startnum = 1;
790 		} else {
791 			/* Create a fake extent when there's not one */
792 			memset(&laarr[0].extLocation, 0x00,
793 				sizeof(struct kernel_lb_addr));
794 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795 			/* Will udf_do_extend_file() create real extent from
796 			   a fake one? */
797 			startnum = (offset > 0);
798 		}
799 		/* Create extents for the hole between EOF and offset */
800 		hole_len = (loff_t)offset << inode->i_blkbits;
801 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802 		if (ret < 0) {
803 			*err = ret;
804 			newblock = 0;
805 			goto out_free;
806 		}
807 		c = 0;
808 		offset = 0;
809 		count += ret;
810 		/* We are not covered by a preallocated extent? */
811 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812 						EXT_NOT_RECORDED_ALLOCATED) {
813 			/* Is there any real extent? - otherwise we overwrite
814 			 * the fake one... */
815 			if (count)
816 				c = !c;
817 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818 				inode->i_sb->s_blocksize;
819 			memset(&laarr[c].extLocation, 0x00,
820 				sizeof(struct kernel_lb_addr));
821 			count++;
822 		}
823 		endnum = c + 1;
824 		lastblock = 1;
825 	} else {
826 		isBeyondEOF = false;
827 		endnum = startnum = ((count > 2) ? 2 : count);
828 
829 		/* if the current extent is in position 0,
830 		   swap it with the previous */
831 		if (!c && count != 1) {
832 			laarr[2] = laarr[0];
833 			laarr[0] = laarr[1];
834 			laarr[1] = laarr[2];
835 			c = 1;
836 		}
837 
838 		/* if the current block is located in an extent,
839 		   read the next extent */
840 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841 		if (etype != -1) {
842 			laarr[c + 1].extLength = (etype << 30) | elen;
843 			laarr[c + 1].extLocation = eloc;
844 			count++;
845 			startnum++;
846 			endnum++;
847 		} else
848 			lastblock = 1;
849 	}
850 
851 	/* if the current extent is not recorded but allocated, get the
852 	 * block in the extent corresponding to the requested block */
853 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855 	else { /* otherwise, allocate a new block */
856 		if (iinfo->i_next_alloc_block == block)
857 			goal = iinfo->i_next_alloc_goal;
858 
859 		if (!goal) {
860 			if (!(goal = pgoal)) /* XXX: what was intended here? */
861 				goal = iinfo->i_location.logicalBlockNum + 1;
862 		}
863 
864 		newblocknum = udf_new_block(inode->i_sb, inode,
865 				iinfo->i_location.partitionReferenceNum,
866 				goal, err);
867 		if (!newblocknum) {
868 			*err = -ENOSPC;
869 			newblock = 0;
870 			goto out_free;
871 		}
872 		if (isBeyondEOF)
873 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874 	}
875 
876 	/* if the extent the requsted block is located in contains multiple
877 	 * blocks, split the extent into at most three extents. blocks prior
878 	 * to requested block, requested block, and blocks after requested
879 	 * block */
880 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881 
882 	/* We preallocate blocks only for regular files. It also makes sense
883 	 * for directories but there's a problem when to drop the
884 	 * preallocation. We might use some delayed work for that but I feel
885 	 * it's overengineering for a filesystem like UDF. */
886 	if (S_ISREG(inode->i_mode))
887 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888 
889 	/* merge any continuous blocks in laarr */
890 	udf_merge_extents(inode, laarr, &endnum);
891 
892 	/* write back the new extents, inserting new extents if the new number
893 	 * of extents is greater than the old number, and deleting extents if
894 	 * the new number of extents is less than the old number */
895 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896 
897 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
898 				iinfo->i_location.partitionReferenceNum, 0);
899 	if (!newblock) {
900 		*err = -EIO;
901 		goto out_free;
902 	}
903 	*new = 1;
904 	iinfo->i_next_alloc_block = block;
905 	iinfo->i_next_alloc_goal = newblocknum;
906 	inode->i_ctime = current_time(inode);
907 
908 	if (IS_SYNC(inode))
909 		udf_sync_inode(inode);
910 	else
911 		mark_inode_dirty(inode);
912 out_free:
913 	brelse(prev_epos.bh);
914 	brelse(cur_epos.bh);
915 	brelse(next_epos.bh);
916 	return newblock;
917 }
918 
919 static void udf_split_extents(struct inode *inode, int *c, int offset,
920 			       udf_pblk_t newblocknum,
921 			       struct kernel_long_ad *laarr, int *endnum)
922 {
923 	unsigned long blocksize = inode->i_sb->s_blocksize;
924 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925 
926 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927 	    (laarr[*c].extLength >> 30) ==
928 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929 		int curr = *c;
930 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931 			    blocksize - 1) >> blocksize_bits;
932 		int8_t etype = (laarr[curr].extLength >> 30);
933 
934 		if (blen == 1)
935 			;
936 		else if (!offset || blen == offset + 1) {
937 			laarr[curr + 2] = laarr[curr + 1];
938 			laarr[curr + 1] = laarr[curr];
939 		} else {
940 			laarr[curr + 3] = laarr[curr + 1];
941 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942 		}
943 
944 		if (offset) {
945 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 				udf_free_blocks(inode->i_sb, inode,
947 						&laarr[curr].extLocation,
948 						0, offset);
949 				laarr[curr].extLength =
950 					EXT_NOT_RECORDED_NOT_ALLOCATED |
951 					(offset << blocksize_bits);
952 				laarr[curr].extLocation.logicalBlockNum = 0;
953 				laarr[curr].extLocation.
954 						partitionReferenceNum = 0;
955 			} else
956 				laarr[curr].extLength = (etype << 30) |
957 					(offset << blocksize_bits);
958 			curr++;
959 			(*c)++;
960 			(*endnum)++;
961 		}
962 
963 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
964 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965 			laarr[curr].extLocation.partitionReferenceNum =
966 				UDF_I(inode)->i_location.partitionReferenceNum;
967 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968 			blocksize;
969 		curr++;
970 
971 		if (blen != offset + 1) {
972 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973 				laarr[curr].extLocation.logicalBlockNum +=
974 								offset + 1;
975 			laarr[curr].extLength = (etype << 30) |
976 				((blen - (offset + 1)) << blocksize_bits);
977 			curr++;
978 			(*endnum)++;
979 		}
980 	}
981 }
982 
983 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984 				 struct kernel_long_ad *laarr,
985 				 int *endnum)
986 {
987 	int start, length = 0, currlength = 0, i;
988 
989 	if (*endnum >= (c + 1)) {
990 		if (!lastblock)
991 			return;
992 		else
993 			start = c;
994 	} else {
995 		if ((laarr[c + 1].extLength >> 30) ==
996 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997 			start = c + 1;
998 			length = currlength =
999 				(((laarr[c + 1].extLength &
1000 					UDF_EXTENT_LENGTH_MASK) +
1001 				inode->i_sb->s_blocksize - 1) >>
1002 				inode->i_sb->s_blocksize_bits);
1003 		} else
1004 			start = c;
1005 	}
1006 
1007 	for (i = start + 1; i <= *endnum; i++) {
1008 		if (i == *endnum) {
1009 			if (lastblock)
1010 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011 		} else if ((laarr[i].extLength >> 30) ==
1012 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013 			length += (((laarr[i].extLength &
1014 						UDF_EXTENT_LENGTH_MASK) +
1015 				    inode->i_sb->s_blocksize - 1) >>
1016 				    inode->i_sb->s_blocksize_bits);
1017 		} else
1018 			break;
1019 	}
1020 
1021 	if (length) {
1022 		int next = laarr[start].extLocation.logicalBlockNum +
1023 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024 			  inode->i_sb->s_blocksize - 1) >>
1025 			  inode->i_sb->s_blocksize_bits);
1026 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027 				laarr[start].extLocation.partitionReferenceNum,
1028 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030 				currlength);
1031 		if (numalloc) 	{
1032 			if (start == (c + 1))
1033 				laarr[start].extLength +=
1034 					(numalloc <<
1035 					 inode->i_sb->s_blocksize_bits);
1036 			else {
1037 				memmove(&laarr[c + 2], &laarr[c + 1],
1038 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1039 				(*endnum)++;
1040 				laarr[c + 1].extLocation.logicalBlockNum = next;
1041 				laarr[c + 1].extLocation.partitionReferenceNum =
1042 					laarr[c].extLocation.
1043 							partitionReferenceNum;
1044 				laarr[c + 1].extLength =
1045 					EXT_NOT_RECORDED_ALLOCATED |
1046 					(numalloc <<
1047 					 inode->i_sb->s_blocksize_bits);
1048 				start = c + 1;
1049 			}
1050 
1051 			for (i = start + 1; numalloc && i < *endnum; i++) {
1052 				int elen = ((laarr[i].extLength &
1053 						UDF_EXTENT_LENGTH_MASK) +
1054 					    inode->i_sb->s_blocksize - 1) >>
1055 					    inode->i_sb->s_blocksize_bits;
1056 
1057 				if (elen > numalloc) {
1058 					laarr[i].extLength -=
1059 						(numalloc <<
1060 						 inode->i_sb->s_blocksize_bits);
1061 					numalloc = 0;
1062 				} else {
1063 					numalloc -= elen;
1064 					if (*endnum > (i + 1))
1065 						memmove(&laarr[i],
1066 							&laarr[i + 1],
1067 							sizeof(struct long_ad) *
1068 							(*endnum - (i + 1)));
1069 					i--;
1070 					(*endnum)--;
1071 				}
1072 			}
1073 			UDF_I(inode)->i_lenExtents +=
1074 				numalloc << inode->i_sb->s_blocksize_bits;
1075 		}
1076 	}
1077 }
1078 
1079 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080 			      int *endnum)
1081 {
1082 	int i;
1083 	unsigned long blocksize = inode->i_sb->s_blocksize;
1084 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085 
1086 	for (i = 0; i < (*endnum - 1); i++) {
1087 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089 
1090 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091 			(((li->extLength >> 30) ==
1092 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093 			((lip1->extLocation.logicalBlockNum -
1094 			  li->extLocation.logicalBlockNum) ==
1095 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 			blocksize - 1) >> blocksize_bits)))) {
1097 
1098 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101 				lip1->extLength = (lip1->extLength -
1102 						  (li->extLength &
1103 						   UDF_EXTENT_LENGTH_MASK) +
1104 						   UDF_EXTENT_LENGTH_MASK) &
1105 							~(blocksize - 1);
1106 				li->extLength = (li->extLength &
1107 						 UDF_EXTENT_FLAG_MASK) +
1108 						(UDF_EXTENT_LENGTH_MASK + 1) -
1109 						blocksize;
1110 				lip1->extLocation.logicalBlockNum =
1111 					li->extLocation.logicalBlockNum +
1112 					((li->extLength &
1113 						UDF_EXTENT_LENGTH_MASK) >>
1114 						blocksize_bits);
1115 			} else {
1116 				li->extLength = lip1->extLength +
1117 					(((li->extLength &
1118 						UDF_EXTENT_LENGTH_MASK) +
1119 					 blocksize - 1) & ~(blocksize - 1));
1120 				if (*endnum > (i + 2))
1121 					memmove(&laarr[i + 1], &laarr[i + 2],
1122 						sizeof(struct long_ad) *
1123 						(*endnum - (i + 2)));
1124 				i--;
1125 				(*endnum)--;
1126 			}
1127 		} else if (((li->extLength >> 30) ==
1128 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129 			   ((lip1->extLength >> 30) ==
1130 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132 					((li->extLength &
1133 					  UDF_EXTENT_LENGTH_MASK) +
1134 					 blocksize - 1) >> blocksize_bits);
1135 			li->extLocation.logicalBlockNum = 0;
1136 			li->extLocation.partitionReferenceNum = 0;
1137 
1138 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141 				lip1->extLength = (lip1->extLength -
1142 						   (li->extLength &
1143 						   UDF_EXTENT_LENGTH_MASK) +
1144 						   UDF_EXTENT_LENGTH_MASK) &
1145 						   ~(blocksize - 1);
1146 				li->extLength = (li->extLength &
1147 						 UDF_EXTENT_FLAG_MASK) +
1148 						(UDF_EXTENT_LENGTH_MASK + 1) -
1149 						blocksize;
1150 			} else {
1151 				li->extLength = lip1->extLength +
1152 					(((li->extLength &
1153 						UDF_EXTENT_LENGTH_MASK) +
1154 					  blocksize - 1) & ~(blocksize - 1));
1155 				if (*endnum > (i + 2))
1156 					memmove(&laarr[i + 1], &laarr[i + 2],
1157 						sizeof(struct long_ad) *
1158 						(*endnum - (i + 2)));
1159 				i--;
1160 				(*endnum)--;
1161 			}
1162 		} else if ((li->extLength >> 30) ==
1163 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164 			udf_free_blocks(inode->i_sb, inode,
1165 					&li->extLocation, 0,
1166 					((li->extLength &
1167 						UDF_EXTENT_LENGTH_MASK) +
1168 					 blocksize - 1) >> blocksize_bits);
1169 			li->extLocation.logicalBlockNum = 0;
1170 			li->extLocation.partitionReferenceNum = 0;
1171 			li->extLength = (li->extLength &
1172 						UDF_EXTENT_LENGTH_MASK) |
1173 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1174 		}
1175 	}
1176 }
1177 
1178 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179 			       int startnum, int endnum,
1180 			       struct extent_position *epos)
1181 {
1182 	int start = 0, i;
1183 	struct kernel_lb_addr tmploc;
1184 	uint32_t tmplen;
1185 
1186 	if (startnum > endnum) {
1187 		for (i = 0; i < (startnum - endnum); i++)
1188 			udf_delete_aext(inode, *epos);
1189 	} else if (startnum < endnum) {
1190 		for (i = 0; i < (endnum - startnum); i++) {
1191 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192 					laarr[i].extLength);
1193 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 				      &laarr[i].extLength, 1);
1195 			start++;
1196 		}
1197 	}
1198 
1199 	for (i = start; i < endnum; i++) {
1200 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 			       laarr[i].extLength, 1);
1203 	}
1204 }
1205 
1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 			      int create, int *err)
1208 {
1209 	struct buffer_head *bh = NULL;
1210 
1211 	bh = udf_getblk(inode, block, create, err);
1212 	if (!bh)
1213 		return NULL;
1214 
1215 	if (buffer_uptodate(bh))
1216 		return bh;
1217 
1218 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 
1220 	wait_on_buffer(bh);
1221 	if (buffer_uptodate(bh))
1222 		return bh;
1223 
1224 	brelse(bh);
1225 	*err = -EIO;
1226 	return NULL;
1227 }
1228 
1229 int udf_setsize(struct inode *inode, loff_t newsize)
1230 {
1231 	int err;
1232 	struct udf_inode_info *iinfo;
1233 	unsigned int bsize = i_blocksize(inode);
1234 
1235 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 	      S_ISLNK(inode->i_mode)))
1237 		return -EINVAL;
1238 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239 		return -EPERM;
1240 
1241 	iinfo = UDF_I(inode);
1242 	if (newsize > inode->i_size) {
1243 		down_write(&iinfo->i_data_sem);
1244 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 			if (bsize <
1246 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1247 				err = udf_expand_file_adinicb(inode);
1248 				if (err)
1249 					return err;
1250 				down_write(&iinfo->i_data_sem);
1251 			} else {
1252 				iinfo->i_lenAlloc = newsize;
1253 				goto set_size;
1254 			}
1255 		}
1256 		err = udf_extend_file(inode, newsize);
1257 		if (err) {
1258 			up_write(&iinfo->i_data_sem);
1259 			return err;
1260 		}
1261 set_size:
1262 		up_write(&iinfo->i_data_sem);
1263 		truncate_setsize(inode, newsize);
1264 	} else {
1265 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266 			down_write(&iinfo->i_data_sem);
1267 			udf_clear_extent_cache(inode);
1268 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269 			       0x00, bsize - newsize -
1270 			       udf_file_entry_alloc_offset(inode));
1271 			iinfo->i_lenAlloc = newsize;
1272 			truncate_setsize(inode, newsize);
1273 			up_write(&iinfo->i_data_sem);
1274 			goto update_time;
1275 		}
1276 		err = block_truncate_page(inode->i_mapping, newsize,
1277 					  udf_get_block);
1278 		if (err)
1279 			return err;
1280 		truncate_setsize(inode, newsize);
1281 		down_write(&iinfo->i_data_sem);
1282 		udf_clear_extent_cache(inode);
1283 		err = udf_truncate_extents(inode);
1284 		up_write(&iinfo->i_data_sem);
1285 		if (err)
1286 			return err;
1287 	}
1288 update_time:
1289 	inode->i_mtime = inode->i_ctime = current_time(inode);
1290 	if (IS_SYNC(inode))
1291 		udf_sync_inode(inode);
1292 	else
1293 		mark_inode_dirty(inode);
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299  * arbitrary - just that we hopefully don't limit any real use of rewritten
1300  * inode on write-once media but avoid looping for too long on corrupted media.
1301  */
1302 #define UDF_MAX_ICB_NESTING 1024
1303 
1304 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305 {
1306 	struct buffer_head *bh = NULL;
1307 	struct fileEntry *fe;
1308 	struct extendedFileEntry *efe;
1309 	uint16_t ident;
1310 	struct udf_inode_info *iinfo = UDF_I(inode);
1311 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1313 	unsigned int link_count;
1314 	unsigned int indirections = 0;
1315 	int bs = inode->i_sb->s_blocksize;
1316 	int ret = -EIO;
1317 	uint32_t uid, gid;
1318 
1319 reread:
1320 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322 			  iloc->partitionReferenceNum, sbi->s_partitions);
1323 		return -EIO;
1324 	}
1325 
1326 	if (iloc->logicalBlockNum >=
1327 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328 		udf_debug("block=%u, partition=%u out of range\n",
1329 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330 		return -EIO;
1331 	}
1332 
1333 	/*
1334 	 * Set defaults, but the inode is still incomplete!
1335 	 * Note: get_new_inode() sets the following on a new inode:
1336 	 *      i_sb = sb
1337 	 *      i_no = ino
1338 	 *      i_flags = sb->s_flags
1339 	 *      i_state = 0
1340 	 * clean_inode(): zero fills and sets
1341 	 *      i_count = 1
1342 	 *      i_nlink = 1
1343 	 *      i_op = NULL;
1344 	 */
1345 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346 	if (!bh) {
1347 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348 		return -EIO;
1349 	}
1350 
1351 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352 	    ident != TAG_IDENT_USE) {
1353 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354 			inode->i_ino, ident);
1355 		goto out;
1356 	}
1357 
1358 	fe = (struct fileEntry *)bh->b_data;
1359 	efe = (struct extendedFileEntry *)bh->b_data;
1360 
1361 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362 		struct buffer_head *ibh;
1363 
1364 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365 		if (ident == TAG_IDENT_IE && ibh) {
1366 			struct kernel_lb_addr loc;
1367 			struct indirectEntry *ie;
1368 
1369 			ie = (struct indirectEntry *)ibh->b_data;
1370 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371 
1372 			if (ie->indirectICB.extLength) {
1373 				brelse(ibh);
1374 				memcpy(&iinfo->i_location, &loc,
1375 				       sizeof(struct kernel_lb_addr));
1376 				if (++indirections > UDF_MAX_ICB_NESTING) {
1377 					udf_err(inode->i_sb,
1378 						"too many ICBs in ICB hierarchy"
1379 						" (max %d supported)\n",
1380 						UDF_MAX_ICB_NESTING);
1381 					goto out;
1382 				}
1383 				brelse(bh);
1384 				goto reread;
1385 			}
1386 		}
1387 		brelse(ibh);
1388 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390 			le16_to_cpu(fe->icbTag.strategyType));
1391 		goto out;
1392 	}
1393 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1394 		iinfo->i_strat4096 = 0;
1395 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396 		iinfo->i_strat4096 = 1;
1397 
1398 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399 							ICBTAG_FLAG_AD_MASK;
1400 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403 		ret = -EIO;
1404 		goto out;
1405 	}
1406 	iinfo->i_unique = 0;
1407 	iinfo->i_lenEAttr = 0;
1408 	iinfo->i_lenExtents = 0;
1409 	iinfo->i_lenAlloc = 0;
1410 	iinfo->i_next_alloc_block = 0;
1411 	iinfo->i_next_alloc_goal = 0;
1412 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413 		iinfo->i_efe = 1;
1414 		iinfo->i_use = 0;
1415 		ret = udf_alloc_i_data(inode, bs -
1416 					sizeof(struct extendedFileEntry));
1417 		if (ret)
1418 			goto out;
1419 		memcpy(iinfo->i_data,
1420 		       bh->b_data + sizeof(struct extendedFileEntry),
1421 		       bs - sizeof(struct extendedFileEntry));
1422 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423 		iinfo->i_efe = 0;
1424 		iinfo->i_use = 0;
1425 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426 		if (ret)
1427 			goto out;
1428 		memcpy(iinfo->i_data,
1429 		       bh->b_data + sizeof(struct fileEntry),
1430 		       bs - sizeof(struct fileEntry));
1431 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432 		iinfo->i_efe = 0;
1433 		iinfo->i_use = 1;
1434 		iinfo->i_lenAlloc = le32_to_cpu(
1435 				((struct unallocSpaceEntry *)bh->b_data)->
1436 				 lengthAllocDescs);
1437 		ret = udf_alloc_i_data(inode, bs -
1438 					sizeof(struct unallocSpaceEntry));
1439 		if (ret)
1440 			goto out;
1441 		memcpy(iinfo->i_data,
1442 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1443 		       bs - sizeof(struct unallocSpaceEntry));
1444 		return 0;
1445 	}
1446 
1447 	ret = -EIO;
1448 	read_lock(&sbi->s_cred_lock);
1449 	uid = le32_to_cpu(fe->uid);
1450 	if (uid == UDF_INVALID_ID ||
1451 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452 		inode->i_uid = sbi->s_uid;
1453 	else
1454 		i_uid_write(inode, uid);
1455 
1456 	gid = le32_to_cpu(fe->gid);
1457 	if (gid == UDF_INVALID_ID ||
1458 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459 		inode->i_gid = sbi->s_gid;
1460 	else
1461 		i_gid_write(inode, gid);
1462 
1463 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464 			sbi->s_fmode != UDF_INVALID_MODE)
1465 		inode->i_mode = sbi->s_fmode;
1466 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467 			sbi->s_dmode != UDF_INVALID_MODE)
1468 		inode->i_mode = sbi->s_dmode;
1469 	else
1470 		inode->i_mode = udf_convert_permissions(fe);
1471 	inode->i_mode &= ~sbi->s_umask;
1472 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473 
1474 	read_unlock(&sbi->s_cred_lock);
1475 
1476 	link_count = le16_to_cpu(fe->fileLinkCount);
1477 	if (!link_count) {
1478 		if (!hidden_inode) {
1479 			ret = -ESTALE;
1480 			goto out;
1481 		}
1482 		link_count = 1;
1483 	}
1484 	set_nlink(inode, link_count);
1485 
1486 	inode->i_size = le64_to_cpu(fe->informationLength);
1487 	iinfo->i_lenExtents = inode->i_size;
1488 
1489 	if (iinfo->i_efe == 0) {
1490 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491 			(inode->i_sb->s_blocksize_bits - 9);
1492 
1493 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496 
1497 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501 		iinfo->i_streamdir = 0;
1502 		iinfo->i_lenStreams = 0;
1503 	} else {
1504 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505 		    (inode->i_sb->s_blocksize_bits - 9);
1506 
1507 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511 
1512 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516 
1517 		/* Named streams */
1518 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519 		iinfo->i_locStreamdir =
1520 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522 		if (iinfo->i_lenStreams >= inode->i_size)
1523 			iinfo->i_lenStreams -= inode->i_size;
1524 		else
1525 			iinfo->i_lenStreams = 0;
1526 	}
1527 	inode->i_generation = iinfo->i_unique;
1528 
1529 	/*
1530 	 * Sanity check length of allocation descriptors and extended attrs to
1531 	 * avoid integer overflows
1532 	 */
1533 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534 		goto out;
1535 	/* Now do exact checks */
1536 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537 		goto out;
1538 	/* Sanity checks for files in ICB so that we don't get confused later */
1539 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540 		/*
1541 		 * For file in ICB data is stored in allocation descriptor
1542 		 * so sizes should match
1543 		 */
1544 		if (iinfo->i_lenAlloc != inode->i_size)
1545 			goto out;
1546 		/* File in ICB has to fit in there... */
1547 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548 			goto out;
1549 	}
1550 
1551 	switch (fe->icbTag.fileType) {
1552 	case ICBTAG_FILE_TYPE_DIRECTORY:
1553 		inode->i_op = &udf_dir_inode_operations;
1554 		inode->i_fop = &udf_dir_operations;
1555 		inode->i_mode |= S_IFDIR;
1556 		inc_nlink(inode);
1557 		break;
1558 	case ICBTAG_FILE_TYPE_REALTIME:
1559 	case ICBTAG_FILE_TYPE_REGULAR:
1560 	case ICBTAG_FILE_TYPE_UNDEF:
1561 	case ICBTAG_FILE_TYPE_VAT20:
1562 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563 			inode->i_data.a_ops = &udf_adinicb_aops;
1564 		else
1565 			inode->i_data.a_ops = &udf_aops;
1566 		inode->i_op = &udf_file_inode_operations;
1567 		inode->i_fop = &udf_file_operations;
1568 		inode->i_mode |= S_IFREG;
1569 		break;
1570 	case ICBTAG_FILE_TYPE_BLOCK:
1571 		inode->i_mode |= S_IFBLK;
1572 		break;
1573 	case ICBTAG_FILE_TYPE_CHAR:
1574 		inode->i_mode |= S_IFCHR;
1575 		break;
1576 	case ICBTAG_FILE_TYPE_FIFO:
1577 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578 		break;
1579 	case ICBTAG_FILE_TYPE_SOCKET:
1580 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581 		break;
1582 	case ICBTAG_FILE_TYPE_SYMLINK:
1583 		inode->i_data.a_ops = &udf_symlink_aops;
1584 		inode->i_op = &udf_symlink_inode_operations;
1585 		inode_nohighmem(inode);
1586 		inode->i_mode = S_IFLNK | 0777;
1587 		break;
1588 	case ICBTAG_FILE_TYPE_MAIN:
1589 		udf_debug("METADATA FILE-----\n");
1590 		break;
1591 	case ICBTAG_FILE_TYPE_MIRROR:
1592 		udf_debug("METADATA MIRROR FILE-----\n");
1593 		break;
1594 	case ICBTAG_FILE_TYPE_BITMAP:
1595 		udf_debug("METADATA BITMAP FILE-----\n");
1596 		break;
1597 	default:
1598 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599 			inode->i_ino, fe->icbTag.fileType);
1600 		goto out;
1601 	}
1602 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603 		struct deviceSpec *dsea =
1604 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605 		if (dsea) {
1606 			init_special_inode(inode, inode->i_mode,
1607 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608 				      le32_to_cpu(dsea->minorDeviceIdent)));
1609 			/* Developer ID ??? */
1610 		} else
1611 			goto out;
1612 	}
1613 	ret = 0;
1614 out:
1615 	brelse(bh);
1616 	return ret;
1617 }
1618 
1619 static int udf_alloc_i_data(struct inode *inode, size_t size)
1620 {
1621 	struct udf_inode_info *iinfo = UDF_I(inode);
1622 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623 	if (!iinfo->i_data)
1624 		return -ENOMEM;
1625 	return 0;
1626 }
1627 
1628 static umode_t udf_convert_permissions(struct fileEntry *fe)
1629 {
1630 	umode_t mode;
1631 	uint32_t permissions;
1632 	uint32_t flags;
1633 
1634 	permissions = le32_to_cpu(fe->permissions);
1635 	flags = le16_to_cpu(fe->icbTag.flags);
1636 
1637 	mode =	((permissions) & 0007) |
1638 		((permissions >> 2) & 0070) |
1639 		((permissions >> 4) & 0700) |
1640 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643 
1644 	return mode;
1645 }
1646 
1647 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648 {
1649 	struct udf_inode_info *iinfo = UDF_I(inode);
1650 
1651 	/*
1652 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653 	 * In Unix, delete permission tracks write
1654 	 */
1655 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656 	if (mode & 0200)
1657 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658 	if (mode & 0020)
1659 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660 	if (mode & 0002)
1661 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662 }
1663 
1664 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665 {
1666 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667 }
1668 
1669 static int udf_sync_inode(struct inode *inode)
1670 {
1671 	return udf_update_inode(inode, 1);
1672 }
1673 
1674 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675 {
1676 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679 		iinfo->i_crtime = time;
1680 }
1681 
1682 static int udf_update_inode(struct inode *inode, int do_sync)
1683 {
1684 	struct buffer_head *bh = NULL;
1685 	struct fileEntry *fe;
1686 	struct extendedFileEntry *efe;
1687 	uint64_t lb_recorded;
1688 	uint32_t udfperms;
1689 	uint16_t icbflags;
1690 	uint16_t crclen;
1691 	int err = 0;
1692 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694 	struct udf_inode_info *iinfo = UDF_I(inode);
1695 
1696 	bh = udf_tgetblk(inode->i_sb,
1697 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698 	if (!bh) {
1699 		udf_debug("getblk failure\n");
1700 		return -EIO;
1701 	}
1702 
1703 	lock_buffer(bh);
1704 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705 	fe = (struct fileEntry *)bh->b_data;
1706 	efe = (struct extendedFileEntry *)bh->b_data;
1707 
1708 	if (iinfo->i_use) {
1709 		struct unallocSpaceEntry *use =
1710 			(struct unallocSpaceEntry *)bh->b_data;
1711 
1712 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714 		       iinfo->i_data, inode->i_sb->s_blocksize -
1715 					sizeof(struct unallocSpaceEntry));
1716 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717 		crclen = sizeof(struct unallocSpaceEntry);
1718 
1719 		goto finish;
1720 	}
1721 
1722 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724 	else
1725 		fe->uid = cpu_to_le32(i_uid_read(inode));
1726 
1727 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729 	else
1730 		fe->gid = cpu_to_le32(i_gid_read(inode));
1731 
1732 	udfperms = ((inode->i_mode & 0007)) |
1733 		   ((inode->i_mode & 0070) << 2) |
1734 		   ((inode->i_mode & 0700) << 4);
1735 
1736 	udfperms |= iinfo->i_extraPerms;
1737 	fe->permissions = cpu_to_le32(udfperms);
1738 
1739 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741 	else
1742 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743 
1744 	fe->informationLength = cpu_to_le64(inode->i_size);
1745 
1746 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747 		struct regid *eid;
1748 		struct deviceSpec *dsea =
1749 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750 		if (!dsea) {
1751 			dsea = (struct deviceSpec *)
1752 				udf_add_extendedattr(inode,
1753 						     sizeof(struct deviceSpec) +
1754 						     sizeof(struct regid), 12, 0x3);
1755 			dsea->attrType = cpu_to_le32(12);
1756 			dsea->attrSubtype = 1;
1757 			dsea->attrLength = cpu_to_le32(
1758 						sizeof(struct deviceSpec) +
1759 						sizeof(struct regid));
1760 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761 		}
1762 		eid = (struct regid *)dsea->impUse;
1763 		memset(eid, 0, sizeof(*eid));
1764 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1765 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769 	}
1770 
1771 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772 		lb_recorded = 0; /* No extents => no blocks! */
1773 	else
1774 		lb_recorded =
1775 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776 			(blocksize_bits - 9);
1777 
1778 	if (iinfo->i_efe == 0) {
1779 		memcpy(bh->b_data + sizeof(struct fileEntry),
1780 		       iinfo->i_data,
1781 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783 
1784 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1788 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796 		crclen = sizeof(struct fileEntry);
1797 	} else {
1798 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799 		       iinfo->i_data,
1800 		       inode->i_sb->s_blocksize -
1801 					sizeof(struct extendedFileEntry));
1802 		efe->objectSize =
1803 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805 
1806 		if (iinfo->i_streamdir) {
1807 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808 
1809 			icb_lad->extLocation =
1810 				cpu_to_lelb(iinfo->i_locStreamdir);
1811 			icb_lad->extLength =
1812 				cpu_to_le32(inode->i_sb->s_blocksize);
1813 		}
1814 
1815 		udf_adjust_time(iinfo, inode->i_atime);
1816 		udf_adjust_time(iinfo, inode->i_mtime);
1817 		udf_adjust_time(iinfo, inode->i_ctime);
1818 
1819 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823 
1824 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833 		crclen = sizeof(struct extendedFileEntry);
1834 	}
1835 
1836 finish:
1837 	if (iinfo->i_strat4096) {
1838 		fe->icbTag.strategyType = cpu_to_le16(4096);
1839 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1840 		fe->icbTag.numEntries = cpu_to_le16(2);
1841 	} else {
1842 		fe->icbTag.strategyType = cpu_to_le16(4);
1843 		fe->icbTag.numEntries = cpu_to_le16(1);
1844 	}
1845 
1846 	if (iinfo->i_use)
1847 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848 	else if (S_ISDIR(inode->i_mode))
1849 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850 	else if (S_ISREG(inode->i_mode))
1851 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852 	else if (S_ISLNK(inode->i_mode))
1853 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854 	else if (S_ISBLK(inode->i_mode))
1855 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856 	else if (S_ISCHR(inode->i_mode))
1857 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858 	else if (S_ISFIFO(inode->i_mode))
1859 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860 	else if (S_ISSOCK(inode->i_mode))
1861 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862 
1863 	icbflags =	iinfo->i_alloc_type |
1864 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867 			(le16_to_cpu(fe->icbTag.flags) &
1868 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870 
1871 	fe->icbTag.flags = cpu_to_le16(icbflags);
1872 	if (sbi->s_udfrev >= 0x0200)
1873 		fe->descTag.descVersion = cpu_to_le16(3);
1874 	else
1875 		fe->descTag.descVersion = cpu_to_le16(2);
1876 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877 	fe->descTag.tagLocation = cpu_to_le32(
1878 					iinfo->i_location.logicalBlockNum);
1879 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882 						  crclen));
1883 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884 
1885 	set_buffer_uptodate(bh);
1886 	unlock_buffer(bh);
1887 
1888 	/* write the data blocks */
1889 	mark_buffer_dirty(bh);
1890 	if (do_sync) {
1891 		sync_dirty_buffer(bh);
1892 		if (buffer_write_io_error(bh)) {
1893 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894 				 inode->i_ino);
1895 			err = -EIO;
1896 		}
1897 	}
1898 	brelse(bh);
1899 
1900 	return err;
1901 }
1902 
1903 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904 			 bool hidden_inode)
1905 {
1906 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907 	struct inode *inode = iget_locked(sb, block);
1908 	int err;
1909 
1910 	if (!inode)
1911 		return ERR_PTR(-ENOMEM);
1912 
1913 	if (!(inode->i_state & I_NEW))
1914 		return inode;
1915 
1916 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 	err = udf_read_inode(inode, hidden_inode);
1918 	if (err < 0) {
1919 		iget_failed(inode);
1920 		return ERR_PTR(err);
1921 	}
1922 	unlock_new_inode(inode);
1923 
1924 	return inode;
1925 }
1926 
1927 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 			    struct extent_position *epos)
1929 {
1930 	struct super_block *sb = inode->i_sb;
1931 	struct buffer_head *bh;
1932 	struct allocExtDesc *aed;
1933 	struct extent_position nepos;
1934 	struct kernel_lb_addr neloc;
1935 	int ver, adsize;
1936 
1937 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 		adsize = sizeof(struct short_ad);
1939 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 		adsize = sizeof(struct long_ad);
1941 	else
1942 		return -EIO;
1943 
1944 	neloc.logicalBlockNum = block;
1945 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946 
1947 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 	if (!bh)
1949 		return -EIO;
1950 	lock_buffer(bh);
1951 	memset(bh->b_data, 0x00, sb->s_blocksize);
1952 	set_buffer_uptodate(bh);
1953 	unlock_buffer(bh);
1954 	mark_buffer_dirty_inode(bh, inode);
1955 
1956 	aed = (struct allocExtDesc *)(bh->b_data);
1957 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 		aed->previousAllocExtLocation =
1959 				cpu_to_le32(epos->block.logicalBlockNum);
1960 	}
1961 	aed->lengthAllocDescs = cpu_to_le32(0);
1962 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 		ver = 3;
1964 	else
1965 		ver = 2;
1966 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 		    sizeof(struct tag));
1968 
1969 	nepos.block = neloc;
1970 	nepos.offset = sizeof(struct allocExtDesc);
1971 	nepos.bh = bh;
1972 
1973 	/*
1974 	 * Do we have to copy current last extent to make space for indirect
1975 	 * one?
1976 	 */
1977 	if (epos->offset + adsize > sb->s_blocksize) {
1978 		struct kernel_lb_addr cp_loc;
1979 		uint32_t cp_len;
1980 		int cp_type;
1981 
1982 		epos->offset -= adsize;
1983 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 		cp_len |= ((uint32_t)cp_type) << 30;
1985 
1986 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 		udf_write_aext(inode, epos, &nepos.block,
1988 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 	} else {
1990 		__udf_add_aext(inode, epos, &nepos.block,
1991 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 	}
1993 
1994 	brelse(epos->bh);
1995 	*epos = nepos;
1996 
1997 	return 0;
1998 }
1999 
2000 /*
2001  * Append extent at the given position - should be the first free one in inode
2002  * / indirect extent. This function assumes there is enough space in the inode
2003  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004  */
2005 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008 	struct udf_inode_info *iinfo = UDF_I(inode);
2009 	struct allocExtDesc *aed;
2010 	int adsize;
2011 
2012 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 		adsize = sizeof(struct short_ad);
2014 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 		adsize = sizeof(struct long_ad);
2016 	else
2017 		return -EIO;
2018 
2019 	if (!epos->bh) {
2020 		WARN_ON(iinfo->i_lenAlloc !=
2021 			epos->offset - udf_file_entry_alloc_offset(inode));
2022 	} else {
2023 		aed = (struct allocExtDesc *)epos->bh->b_data;
2024 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 			epos->offset - sizeof(struct allocExtDesc));
2026 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 	}
2028 
2029 	udf_write_aext(inode, epos, eloc, elen, inc);
2030 
2031 	if (!epos->bh) {
2032 		iinfo->i_lenAlloc += adsize;
2033 		mark_inode_dirty(inode);
2034 	} else {
2035 		aed = (struct allocExtDesc *)epos->bh->b_data;
2036 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 			udf_update_tag(epos->bh->b_data,
2040 					epos->offset + (inc ? 0 : adsize));
2041 		else
2042 			udf_update_tag(epos->bh->b_data,
2043 					sizeof(struct allocExtDesc));
2044 		mark_buffer_dirty_inode(epos->bh, inode);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 /*
2051  * Append extent at given position - should be the first free one in inode
2052  * / indirect extent. Takes care of allocating and linking indirect blocks.
2053  */
2054 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056 {
2057 	int adsize;
2058 	struct super_block *sb = inode->i_sb;
2059 
2060 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 		adsize = sizeof(struct short_ad);
2062 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 		adsize = sizeof(struct long_ad);
2064 	else
2065 		return -EIO;
2066 
2067 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 		int err;
2069 		udf_pblk_t new_block;
2070 
2071 		new_block = udf_new_block(sb, NULL,
2072 					  epos->block.partitionReferenceNum,
2073 					  epos->block.logicalBlockNum, &err);
2074 		if (!new_block)
2075 			return -ENOSPC;
2076 
2077 		err = udf_setup_indirect_aext(inode, new_block, epos);
2078 		if (err)
2079 			return err;
2080 	}
2081 
2082 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083 }
2084 
2085 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087 {
2088 	int adsize;
2089 	uint8_t *ptr;
2090 	struct short_ad *sad;
2091 	struct long_ad *lad;
2092 	struct udf_inode_info *iinfo = UDF_I(inode);
2093 
2094 	if (!epos->bh)
2095 		ptr = iinfo->i_data + epos->offset -
2096 			udf_file_entry_alloc_offset(inode) +
2097 			iinfo->i_lenEAttr;
2098 	else
2099 		ptr = epos->bh->b_data + epos->offset;
2100 
2101 	switch (iinfo->i_alloc_type) {
2102 	case ICBTAG_FLAG_AD_SHORT:
2103 		sad = (struct short_ad *)ptr;
2104 		sad->extLength = cpu_to_le32(elen);
2105 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 		adsize = sizeof(struct short_ad);
2107 		break;
2108 	case ICBTAG_FLAG_AD_LONG:
2109 		lad = (struct long_ad *)ptr;
2110 		lad->extLength = cpu_to_le32(elen);
2111 		lad->extLocation = cpu_to_lelb(*eloc);
2112 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 		adsize = sizeof(struct long_ad);
2114 		break;
2115 	default:
2116 		return;
2117 	}
2118 
2119 	if (epos->bh) {
2120 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 			struct allocExtDesc *aed =
2123 				(struct allocExtDesc *)epos->bh->b_data;
2124 			udf_update_tag(epos->bh->b_data,
2125 				       le32_to_cpu(aed->lengthAllocDescs) +
2126 				       sizeof(struct allocExtDesc));
2127 		}
2128 		mark_buffer_dirty_inode(epos->bh, inode);
2129 	} else {
2130 		mark_inode_dirty(inode);
2131 	}
2132 
2133 	if (inc)
2134 		epos->offset += adsize;
2135 }
2136 
2137 /*
2138  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139  * someone does some weird stuff.
2140  */
2141 #define UDF_MAX_INDIR_EXTS 16
2142 
2143 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145 {
2146 	int8_t etype;
2147 	unsigned int indirections = 0;
2148 
2149 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 		udf_pblk_t block;
2152 
2153 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 			udf_err(inode->i_sb,
2155 				"too many indirect extents in inode %lu\n",
2156 				inode->i_ino);
2157 			return -1;
2158 		}
2159 
2160 		epos->block = *eloc;
2161 		epos->offset = sizeof(struct allocExtDesc);
2162 		brelse(epos->bh);
2163 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 		epos->bh = udf_tread(inode->i_sb, block);
2165 		if (!epos->bh) {
2166 			udf_debug("reading block %u failed!\n", block);
2167 			return -1;
2168 		}
2169 	}
2170 
2171 	return etype;
2172 }
2173 
2174 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176 {
2177 	int alen;
2178 	int8_t etype;
2179 	uint8_t *ptr;
2180 	struct short_ad *sad;
2181 	struct long_ad *lad;
2182 	struct udf_inode_info *iinfo = UDF_I(inode);
2183 
2184 	if (!epos->bh) {
2185 		if (!epos->offset)
2186 			epos->offset = udf_file_entry_alloc_offset(inode);
2187 		ptr = iinfo->i_data + epos->offset -
2188 			udf_file_entry_alloc_offset(inode) +
2189 			iinfo->i_lenEAttr;
2190 		alen = udf_file_entry_alloc_offset(inode) +
2191 							iinfo->i_lenAlloc;
2192 	} else {
2193 		if (!epos->offset)
2194 			epos->offset = sizeof(struct allocExtDesc);
2195 		ptr = epos->bh->b_data + epos->offset;
2196 		alen = sizeof(struct allocExtDesc) +
2197 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 							lengthAllocDescs);
2199 	}
2200 
2201 	switch (iinfo->i_alloc_type) {
2202 	case ICBTAG_FLAG_AD_SHORT:
2203 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 		if (!sad)
2205 			return -1;
2206 		etype = le32_to_cpu(sad->extLength) >> 30;
2207 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 		eloc->partitionReferenceNum =
2209 				iinfo->i_location.partitionReferenceNum;
2210 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 		break;
2212 	case ICBTAG_FLAG_AD_LONG:
2213 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 		if (!lad)
2215 			return -1;
2216 		etype = le32_to_cpu(lad->extLength) >> 30;
2217 		*eloc = lelb_to_cpu(lad->extLocation);
2218 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 		break;
2220 	default:
2221 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 		return -1;
2223 	}
2224 
2225 	return etype;
2226 }
2227 
2228 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 			      struct kernel_lb_addr neloc, uint32_t nelen)
2230 {
2231 	struct kernel_lb_addr oeloc;
2232 	uint32_t oelen;
2233 	int8_t etype;
2234 
2235 	if (epos.bh)
2236 		get_bh(epos.bh);
2237 
2238 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240 		neloc = oeloc;
2241 		nelen = (etype << 30) | oelen;
2242 	}
2243 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244 	brelse(epos.bh);
2245 
2246 	return (nelen >> 30);
2247 }
2248 
2249 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250 {
2251 	struct extent_position oepos;
2252 	int adsize;
2253 	int8_t etype;
2254 	struct allocExtDesc *aed;
2255 	struct udf_inode_info *iinfo;
2256 	struct kernel_lb_addr eloc;
2257 	uint32_t elen;
2258 
2259 	if (epos.bh) {
2260 		get_bh(epos.bh);
2261 		get_bh(epos.bh);
2262 	}
2263 
2264 	iinfo = UDF_I(inode);
2265 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266 		adsize = sizeof(struct short_ad);
2267 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268 		adsize = sizeof(struct long_ad);
2269 	else
2270 		adsize = 0;
2271 
2272 	oepos = epos;
2273 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274 		return -1;
2275 
2276 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278 		if (oepos.bh != epos.bh) {
2279 			oepos.block = epos.block;
2280 			brelse(oepos.bh);
2281 			get_bh(epos.bh);
2282 			oepos.bh = epos.bh;
2283 			oepos.offset = epos.offset - adsize;
2284 		}
2285 	}
2286 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287 	elen = 0;
2288 
2289 	if (epos.bh != oepos.bh) {
2290 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 		if (!oepos.bh) {
2294 			iinfo->i_lenAlloc -= (adsize * 2);
2295 			mark_inode_dirty(inode);
2296 		} else {
2297 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2298 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301 				udf_update_tag(oepos.bh->b_data,
2302 						oepos.offset - (2 * adsize));
2303 			else
2304 				udf_update_tag(oepos.bh->b_data,
2305 						sizeof(struct allocExtDesc));
2306 			mark_buffer_dirty_inode(oepos.bh, inode);
2307 		}
2308 	} else {
2309 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310 		if (!oepos.bh) {
2311 			iinfo->i_lenAlloc -= adsize;
2312 			mark_inode_dirty(inode);
2313 		} else {
2314 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2315 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318 				udf_update_tag(oepos.bh->b_data,
2319 						epos.offset - adsize);
2320 			else
2321 				udf_update_tag(oepos.bh->b_data,
2322 						sizeof(struct allocExtDesc));
2323 			mark_buffer_dirty_inode(oepos.bh, inode);
2324 		}
2325 	}
2326 
2327 	brelse(epos.bh);
2328 	brelse(oepos.bh);
2329 
2330 	return (elen >> 30);
2331 }
2332 
2333 int8_t inode_bmap(struct inode *inode, sector_t block,
2334 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2335 		  uint32_t *elen, sector_t *offset)
2336 {
2337 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339 	int8_t etype;
2340 	struct udf_inode_info *iinfo;
2341 
2342 	iinfo = UDF_I(inode);
2343 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344 		pos->offset = 0;
2345 		pos->block = iinfo->i_location;
2346 		pos->bh = NULL;
2347 	}
2348 	*elen = 0;
2349 	do {
2350 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351 		if (etype == -1) {
2352 			*offset = (bcount - lbcount) >> blocksize_bits;
2353 			iinfo->i_lenExtents = lbcount;
2354 			return -1;
2355 		}
2356 		lbcount += *elen;
2357 	} while (lbcount <= bcount);
2358 	/* update extent cache */
2359 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2360 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361 
2362 	return etype;
2363 }
2364 
2365 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366 {
2367 	struct kernel_lb_addr eloc;
2368 	uint32_t elen;
2369 	sector_t offset;
2370 	struct extent_position epos = {};
2371 	udf_pblk_t ret;
2372 
2373 	down_read(&UDF_I(inode)->i_data_sem);
2374 
2375 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376 						(EXT_RECORDED_ALLOCATED >> 30))
2377 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378 	else
2379 		ret = 0;
2380 
2381 	up_read(&UDF_I(inode)->i_data_sem);
2382 	brelse(epos.bh);
2383 
2384 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385 		return udf_fixed_to_variable(ret);
2386 	else
2387 		return ret;
2388 }
2389