xref: /openbmc/linux/fs/udf/inode.c (revision 174cb748)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 struct udf_map_rq;
56 
57 static umode_t udf_convert_permissions(struct fileEntry *);
58 static int udf_update_inode(struct inode *, int);
59 static int udf_sync_inode(struct inode *inode);
60 static int udf_alloc_i_data(struct inode *inode, size_t size);
61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
62 static int udf_insert_aext(struct inode *, struct extent_position,
63 			   struct kernel_lb_addr, uint32_t);
64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
65 			      struct kernel_long_ad *, int *);
66 static void udf_prealloc_extents(struct inode *, int, int,
67 				 struct kernel_long_ad *, int *);
68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
70 			      int, struct extent_position *);
71 static int udf_get_block_wb(struct inode *inode, sector_t block,
72 			    struct buffer_head *bh_result, int create);
73 
74 static void __udf_clear_extent_cache(struct inode *inode)
75 {
76 	struct udf_inode_info *iinfo = UDF_I(inode);
77 
78 	if (iinfo->cached_extent.lstart != -1) {
79 		brelse(iinfo->cached_extent.epos.bh);
80 		iinfo->cached_extent.lstart = -1;
81 	}
82 }
83 
84 /* Invalidate extent cache */
85 static void udf_clear_extent_cache(struct inode *inode)
86 {
87 	struct udf_inode_info *iinfo = UDF_I(inode);
88 
89 	spin_lock(&iinfo->i_extent_cache_lock);
90 	__udf_clear_extent_cache(inode);
91 	spin_unlock(&iinfo->i_extent_cache_lock);
92 }
93 
94 /* Return contents of extent cache */
95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
96 				 loff_t *lbcount, struct extent_position *pos)
97 {
98 	struct udf_inode_info *iinfo = UDF_I(inode);
99 	int ret = 0;
100 
101 	spin_lock(&iinfo->i_extent_cache_lock);
102 	if ((iinfo->cached_extent.lstart <= bcount) &&
103 	    (iinfo->cached_extent.lstart != -1)) {
104 		/* Cache hit */
105 		*lbcount = iinfo->cached_extent.lstart;
106 		memcpy(pos, &iinfo->cached_extent.epos,
107 		       sizeof(struct extent_position));
108 		if (pos->bh)
109 			get_bh(pos->bh);
110 		ret = 1;
111 	}
112 	spin_unlock(&iinfo->i_extent_cache_lock);
113 	return ret;
114 }
115 
116 /* Add extent to extent cache */
117 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
118 				    struct extent_position *pos)
119 {
120 	struct udf_inode_info *iinfo = UDF_I(inode);
121 
122 	spin_lock(&iinfo->i_extent_cache_lock);
123 	/* Invalidate previously cached extent */
124 	__udf_clear_extent_cache(inode);
125 	if (pos->bh)
126 		get_bh(pos->bh);
127 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
128 	iinfo->cached_extent.lstart = estart;
129 	switch (iinfo->i_alloc_type) {
130 	case ICBTAG_FLAG_AD_SHORT:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
132 		break;
133 	case ICBTAG_FLAG_AD_LONG:
134 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
135 		break;
136 	}
137 	spin_unlock(&iinfo->i_extent_cache_lock);
138 }
139 
140 void udf_evict_inode(struct inode *inode)
141 {
142 	struct udf_inode_info *iinfo = UDF_I(inode);
143 	int want_delete = 0;
144 
145 	if (!is_bad_inode(inode)) {
146 		if (!inode->i_nlink) {
147 			want_delete = 1;
148 			udf_setsize(inode, 0);
149 			udf_update_inode(inode, IS_SYNC(inode));
150 		}
151 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152 		    inode->i_size != iinfo->i_lenExtents) {
153 			udf_warn(inode->i_sb,
154 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 				 inode->i_ino, inode->i_mode,
156 				 (unsigned long long)inode->i_size,
157 				 (unsigned long long)iinfo->i_lenExtents);
158 		}
159 	}
160 	truncate_inode_pages_final(&inode->i_data);
161 	invalidate_inode_buffers(inode);
162 	clear_inode(inode);
163 	kfree(iinfo->i_data);
164 	iinfo->i_data = NULL;
165 	udf_clear_extent_cache(inode);
166 	if (want_delete) {
167 		udf_free_inode(inode);
168 	}
169 }
170 
171 static void udf_write_failed(struct address_space *mapping, loff_t to)
172 {
173 	struct inode *inode = mapping->host;
174 	struct udf_inode_info *iinfo = UDF_I(inode);
175 	loff_t isize = inode->i_size;
176 
177 	if (to > isize) {
178 		truncate_pagecache(inode, isize);
179 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
180 			down_write(&iinfo->i_data_sem);
181 			udf_clear_extent_cache(inode);
182 			udf_truncate_extents(inode);
183 			up_write(&iinfo->i_data_sem);
184 		}
185 	}
186 }
187 
188 static int udf_adinicb_writepage(struct page *page,
189 				 struct writeback_control *wbc, void *data)
190 {
191 	struct inode *inode = page->mapping->host;
192 	char *kaddr;
193 	struct udf_inode_info *iinfo = UDF_I(inode);
194 
195 	BUG_ON(!PageLocked(page));
196 
197 	kaddr = kmap_atomic(page);
198 	memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, i_size_read(inode));
199 	SetPageUptodate(page);
200 	kunmap_atomic(kaddr);
201 	unlock_page(page);
202 	mark_inode_dirty(inode);
203 
204 	return 0;
205 }
206 
207 static int udf_writepages(struct address_space *mapping,
208 			  struct writeback_control *wbc)
209 {
210 	struct inode *inode = mapping->host;
211 	struct udf_inode_info *iinfo = UDF_I(inode);
212 
213 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
214 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
215 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
216 }
217 
218 static void udf_adinicb_readpage(struct page *page)
219 {
220 	struct inode *inode = page->mapping->host;
221 	char *kaddr;
222 	struct udf_inode_info *iinfo = UDF_I(inode);
223 	loff_t isize = i_size_read(inode);
224 
225 	kaddr = kmap_atomic(page);
226 	memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
227 	memset(kaddr + isize, 0, PAGE_SIZE - isize);
228 	flush_dcache_page(page);
229 	SetPageUptodate(page);
230 	kunmap_atomic(kaddr);
231 }
232 
233 static int udf_read_folio(struct file *file, struct folio *folio)
234 {
235 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
236 
237 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
238 		udf_adinicb_readpage(&folio->page);
239 		folio_unlock(folio);
240 		return 0;
241 	}
242 	return mpage_read_folio(folio, udf_get_block);
243 }
244 
245 static void udf_readahead(struct readahead_control *rac)
246 {
247 	mpage_readahead(rac, udf_get_block);
248 }
249 
250 static int udf_write_begin(struct file *file, struct address_space *mapping,
251 			   loff_t pos, unsigned len,
252 			   struct page **pagep, void **fsdata)
253 {
254 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
255 	struct page *page;
256 	int ret;
257 
258 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
259 		ret = block_write_begin(mapping, pos, len, pagep,
260 					udf_get_block);
261 		if (unlikely(ret))
262 			udf_write_failed(mapping, pos + len);
263 		return ret;
264 	}
265 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
266 		return -EIO;
267 	page = grab_cache_page_write_begin(mapping, 0);
268 	if (!page)
269 		return -ENOMEM;
270 	*pagep = page;
271 	if (!PageUptodate(page))
272 		udf_adinicb_readpage(page);
273 	return 0;
274 }
275 
276 static int udf_write_end(struct file *file, struct address_space *mapping,
277 			 loff_t pos, unsigned len, unsigned copied,
278 			 struct page *page, void *fsdata)
279 {
280 	struct inode *inode = file_inode(file);
281 	loff_t last_pos;
282 
283 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
284 		return generic_write_end(file, mapping, pos, len, copied, page,
285 					 fsdata);
286 	last_pos = pos + copied;
287 	if (last_pos > inode->i_size)
288 		i_size_write(inode, last_pos);
289 	set_page_dirty(page);
290 	unlock_page(page);
291 	put_page(page);
292 
293 	return copied;
294 }
295 
296 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
297 {
298 	struct file *file = iocb->ki_filp;
299 	struct address_space *mapping = file->f_mapping;
300 	struct inode *inode = mapping->host;
301 	size_t count = iov_iter_count(iter);
302 	ssize_t ret;
303 
304 	/* Fallback to buffered IO for in-ICB files */
305 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
306 		return 0;
307 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
308 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
309 		udf_write_failed(mapping, iocb->ki_pos + count);
310 	return ret;
311 }
312 
313 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
314 {
315 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
316 
317 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
318 		return -EINVAL;
319 	return generic_block_bmap(mapping, block, udf_get_block);
320 }
321 
322 const struct address_space_operations udf_aops = {
323 	.dirty_folio	= block_dirty_folio,
324 	.invalidate_folio = block_invalidate_folio,
325 	.read_folio	= udf_read_folio,
326 	.readahead	= udf_readahead,
327 	.writepages	= udf_writepages,
328 	.write_begin	= udf_write_begin,
329 	.write_end	= udf_write_end,
330 	.direct_IO	= udf_direct_IO,
331 	.bmap		= udf_bmap,
332 	.migrate_folio	= buffer_migrate_folio,
333 };
334 
335 /*
336  * Expand file stored in ICB to a normal one-block-file
337  *
338  * This function requires i_mutex held
339  */
340 int udf_expand_file_adinicb(struct inode *inode)
341 {
342 	struct page *page;
343 	char *kaddr;
344 	struct udf_inode_info *iinfo = UDF_I(inode);
345 	int err;
346 
347 	WARN_ON_ONCE(!inode_is_locked(inode));
348 	if (!iinfo->i_lenAlloc) {
349 		down_write(&iinfo->i_data_sem);
350 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
351 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
352 		else
353 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
354 		/* from now on we have normal address_space methods */
355 		inode->i_data.a_ops = &udf_aops;
356 		up_write(&iinfo->i_data_sem);
357 		mark_inode_dirty(inode);
358 		return 0;
359 	}
360 
361 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
362 	if (!page)
363 		return -ENOMEM;
364 
365 	if (!PageUptodate(page)) {
366 		kaddr = kmap_atomic(page);
367 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
368 		       PAGE_SIZE - iinfo->i_lenAlloc);
369 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
370 			iinfo->i_lenAlloc);
371 		flush_dcache_page(page);
372 		SetPageUptodate(page);
373 		kunmap_atomic(kaddr);
374 	}
375 	down_write(&iinfo->i_data_sem);
376 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
377 	       iinfo->i_lenAlloc);
378 	iinfo->i_lenAlloc = 0;
379 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
380 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
381 	else
382 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
383 	set_page_dirty(page);
384 	unlock_page(page);
385 	up_write(&iinfo->i_data_sem);
386 	err = filemap_fdatawrite(inode->i_mapping);
387 	if (err) {
388 		/* Restore everything back so that we don't lose data... */
389 		lock_page(page);
390 		down_write(&iinfo->i_data_sem);
391 		kaddr = kmap_atomic(page);
392 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
393 		kunmap_atomic(kaddr);
394 		unlock_page(page);
395 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 		iinfo->i_lenAlloc = inode->i_size;
397 		up_write(&iinfo->i_data_sem);
398 	}
399 	put_page(page);
400 	mark_inode_dirty(inode);
401 
402 	return err;
403 }
404 
405 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
406 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
407 
408 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
409 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
410 
411 struct udf_map_rq {
412 	sector_t lblk;
413 	udf_pblk_t pblk;
414 	int iflags;		/* UDF_MAP_ flags determining behavior */
415 	int oflags;		/* UDF_BLK_ flags reporting results */
416 };
417 
418 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
419 {
420 	int err;
421 	struct udf_inode_info *iinfo = UDF_I(inode);
422 
423 	map->oflags = 0;
424 	if (!(map->iflags & UDF_MAP_CREATE)) {
425 		struct kernel_lb_addr eloc;
426 		uint32_t elen;
427 		sector_t offset;
428 		struct extent_position epos = {};
429 
430 		down_read(&iinfo->i_data_sem);
431 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
432 				== (EXT_RECORDED_ALLOCATED >> 30)) {
433 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
434 							offset);
435 			map->oflags |= UDF_BLK_MAPPED;
436 		}
437 		up_read(&iinfo->i_data_sem);
438 		brelse(epos.bh);
439 
440 		return 0;
441 	}
442 
443 	down_write(&iinfo->i_data_sem);
444 	/*
445 	 * Block beyond EOF and prealloc extents? Just discard preallocation
446 	 * as it is not useful and complicates things.
447 	 */
448 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
449 		udf_discard_prealloc(inode);
450 	udf_clear_extent_cache(inode);
451 	err = inode_getblk(inode, map);
452 	up_write(&iinfo->i_data_sem);
453 	return err;
454 }
455 
456 static int __udf_get_block(struct inode *inode, sector_t block,
457 			   struct buffer_head *bh_result, int flags)
458 {
459 	int err;
460 	struct udf_map_rq map = {
461 		.lblk = block,
462 		.iflags = flags,
463 	};
464 
465 	err = udf_map_block(inode, &map);
466 	if (err < 0)
467 		return err;
468 	if (map.oflags & UDF_BLK_MAPPED) {
469 		map_bh(bh_result, inode->i_sb, map.pblk);
470 		if (map.oflags & UDF_BLK_NEW)
471 			set_buffer_new(bh_result);
472 	}
473 	return 0;
474 }
475 
476 int udf_get_block(struct inode *inode, sector_t block,
477 		  struct buffer_head *bh_result, int create)
478 {
479 	int flags = create ? UDF_MAP_CREATE : 0;
480 
481 	/*
482 	 * We preallocate blocks only for regular files. It also makes sense
483 	 * for directories but there's a problem when to drop the
484 	 * preallocation. We might use some delayed work for that but I feel
485 	 * it's overengineering for a filesystem like UDF.
486 	 */
487 	if (!S_ISREG(inode->i_mode))
488 		flags |= UDF_MAP_NOPREALLOC;
489 	return __udf_get_block(inode, block, bh_result, flags);
490 }
491 
492 /*
493  * We shouldn't be allocating blocks on page writeback since we allocate them
494  * on page fault. We can spot dirty buffers without allocated blocks though
495  * when truncate expands file. These however don't have valid data so we can
496  * safely ignore them. So never allocate blocks from page writeback.
497  */
498 static int udf_get_block_wb(struct inode *inode, sector_t block,
499 			    struct buffer_head *bh_result, int create)
500 {
501 	return __udf_get_block(inode, block, bh_result, 0);
502 }
503 
504 /* Extend the file with new blocks totaling 'new_block_bytes',
505  * return the number of extents added
506  */
507 static int udf_do_extend_file(struct inode *inode,
508 			      struct extent_position *last_pos,
509 			      struct kernel_long_ad *last_ext,
510 			      loff_t new_block_bytes)
511 {
512 	uint32_t add;
513 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
514 	struct super_block *sb = inode->i_sb;
515 	struct udf_inode_info *iinfo;
516 	int err;
517 
518 	/* The previous extent is fake and we should not extend by anything
519 	 * - there's nothing to do... */
520 	if (!new_block_bytes && fake)
521 		return 0;
522 
523 	iinfo = UDF_I(inode);
524 	/* Round the last extent up to a multiple of block size */
525 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
526 		last_ext->extLength =
527 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
528 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
529 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
530 		iinfo->i_lenExtents =
531 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
532 			~(sb->s_blocksize - 1);
533 	}
534 
535 	add = 0;
536 	/* Can we merge with the previous extent? */
537 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
538 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
539 		add = (1 << 30) - sb->s_blocksize -
540 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
541 		if (add > new_block_bytes)
542 			add = new_block_bytes;
543 		new_block_bytes -= add;
544 		last_ext->extLength += add;
545 	}
546 
547 	if (fake) {
548 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
549 				   last_ext->extLength, 1);
550 		if (err < 0)
551 			goto out_err;
552 		count++;
553 	} else {
554 		struct kernel_lb_addr tmploc;
555 		uint32_t tmplen;
556 
557 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
558 				last_ext->extLength, 1);
559 
560 		/*
561 		 * We've rewritten the last extent. If we are going to add
562 		 * more extents, we may need to enter possible following
563 		 * empty indirect extent.
564 		 */
565 		if (new_block_bytes)
566 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
567 	}
568 	iinfo->i_lenExtents += add;
569 
570 	/* Managed to do everything necessary? */
571 	if (!new_block_bytes)
572 		goto out;
573 
574 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
575 	last_ext->extLocation.logicalBlockNum = 0;
576 	last_ext->extLocation.partitionReferenceNum = 0;
577 	add = (1 << 30) - sb->s_blocksize;
578 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
579 
580 	/* Create enough extents to cover the whole hole */
581 	while (new_block_bytes > add) {
582 		new_block_bytes -= add;
583 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
584 				   last_ext->extLength, 1);
585 		if (err)
586 			goto out_err;
587 		iinfo->i_lenExtents += add;
588 		count++;
589 	}
590 	if (new_block_bytes) {
591 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
592 			new_block_bytes;
593 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
594 				   last_ext->extLength, 1);
595 		if (err)
596 			goto out_err;
597 		iinfo->i_lenExtents += new_block_bytes;
598 		count++;
599 	}
600 
601 out:
602 	/* last_pos should point to the last written extent... */
603 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
604 		last_pos->offset -= sizeof(struct short_ad);
605 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
606 		last_pos->offset -= sizeof(struct long_ad);
607 	else
608 		return -EIO;
609 
610 	return count;
611 out_err:
612 	/* Remove extents we've created so far */
613 	udf_clear_extent_cache(inode);
614 	udf_truncate_extents(inode);
615 	return err;
616 }
617 
618 /* Extend the final block of the file to final_block_len bytes */
619 static void udf_do_extend_final_block(struct inode *inode,
620 				      struct extent_position *last_pos,
621 				      struct kernel_long_ad *last_ext,
622 				      uint32_t new_elen)
623 {
624 	uint32_t added_bytes;
625 
626 	/*
627 	 * Extent already large enough? It may be already rounded up to block
628 	 * size...
629 	 */
630 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
631 		return;
632 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
633 	last_ext->extLength += added_bytes;
634 	UDF_I(inode)->i_lenExtents += added_bytes;
635 
636 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
637 			last_ext->extLength, 1);
638 }
639 
640 static int udf_extend_file(struct inode *inode, loff_t newsize)
641 {
642 
643 	struct extent_position epos;
644 	struct kernel_lb_addr eloc;
645 	uint32_t elen;
646 	int8_t etype;
647 	struct super_block *sb = inode->i_sb;
648 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
649 	loff_t new_elen;
650 	int adsize;
651 	struct udf_inode_info *iinfo = UDF_I(inode);
652 	struct kernel_long_ad extent;
653 	int err = 0;
654 	bool within_last_ext;
655 
656 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
657 		adsize = sizeof(struct short_ad);
658 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
659 		adsize = sizeof(struct long_ad);
660 	else
661 		BUG();
662 
663 	down_write(&iinfo->i_data_sem);
664 	/*
665 	 * When creating hole in file, just don't bother with preserving
666 	 * preallocation. It likely won't be very useful anyway.
667 	 */
668 	udf_discard_prealloc(inode);
669 
670 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
671 	within_last_ext = (etype != -1);
672 	/* We don't expect extents past EOF... */
673 	WARN_ON_ONCE(within_last_ext &&
674 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
675 
676 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
677 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
678 		/* File has no extents at all or has empty last
679 		 * indirect extent! Create a fake extent... */
680 		extent.extLocation.logicalBlockNum = 0;
681 		extent.extLocation.partitionReferenceNum = 0;
682 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
683 	} else {
684 		epos.offset -= adsize;
685 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
686 				      &extent.extLength, 0);
687 		extent.extLength |= etype << 30;
688 	}
689 
690 	new_elen = ((loff_t)offset << inode->i_blkbits) |
691 					(newsize & (sb->s_blocksize - 1));
692 
693 	/* File has extent covering the new size (could happen when extending
694 	 * inside a block)?
695 	 */
696 	if (within_last_ext) {
697 		/* Extending file within the last file block */
698 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
699 	} else {
700 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
701 	}
702 
703 	if (err < 0)
704 		goto out;
705 	err = 0;
706 out:
707 	brelse(epos.bh);
708 	up_write(&iinfo->i_data_sem);
709 	return err;
710 }
711 
712 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
713 {
714 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
715 	struct extent_position prev_epos, cur_epos, next_epos;
716 	int count = 0, startnum = 0, endnum = 0;
717 	uint32_t elen = 0, tmpelen;
718 	struct kernel_lb_addr eloc, tmpeloc;
719 	int c = 1;
720 	loff_t lbcount = 0, b_off = 0;
721 	udf_pblk_t newblocknum;
722 	sector_t offset = 0;
723 	int8_t etype;
724 	struct udf_inode_info *iinfo = UDF_I(inode);
725 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
726 	int lastblock = 0;
727 	bool isBeyondEOF;
728 	int ret = 0;
729 
730 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
731 	prev_epos.block = iinfo->i_location;
732 	prev_epos.bh = NULL;
733 	cur_epos = next_epos = prev_epos;
734 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
735 
736 	/* find the extent which contains the block we are looking for.
737 	   alternate between laarr[0] and laarr[1] for locations of the
738 	   current extent, and the previous extent */
739 	do {
740 		if (prev_epos.bh != cur_epos.bh) {
741 			brelse(prev_epos.bh);
742 			get_bh(cur_epos.bh);
743 			prev_epos.bh = cur_epos.bh;
744 		}
745 		if (cur_epos.bh != next_epos.bh) {
746 			brelse(cur_epos.bh);
747 			get_bh(next_epos.bh);
748 			cur_epos.bh = next_epos.bh;
749 		}
750 
751 		lbcount += elen;
752 
753 		prev_epos.block = cur_epos.block;
754 		cur_epos.block = next_epos.block;
755 
756 		prev_epos.offset = cur_epos.offset;
757 		cur_epos.offset = next_epos.offset;
758 
759 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
760 		if (etype == -1)
761 			break;
762 
763 		c = !c;
764 
765 		laarr[c].extLength = (etype << 30) | elen;
766 		laarr[c].extLocation = eloc;
767 
768 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
769 			pgoal = eloc.logicalBlockNum +
770 				((elen + inode->i_sb->s_blocksize - 1) >>
771 				 inode->i_sb->s_blocksize_bits);
772 
773 		count++;
774 	} while (lbcount + elen <= b_off);
775 
776 	b_off -= lbcount;
777 	offset = b_off >> inode->i_sb->s_blocksize_bits;
778 	/*
779 	 * Move prev_epos and cur_epos into indirect extent if we are at
780 	 * the pointer to it
781 	 */
782 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
783 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
784 
785 	/* if the extent is allocated and recorded, return the block
786 	   if the extent is not a multiple of the blocksize, round up */
787 
788 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
789 		if (elen & (inode->i_sb->s_blocksize - 1)) {
790 			elen = EXT_RECORDED_ALLOCATED |
791 				((elen + inode->i_sb->s_blocksize - 1) &
792 				 ~(inode->i_sb->s_blocksize - 1));
793 			iinfo->i_lenExtents =
794 				ALIGN(iinfo->i_lenExtents,
795 				      inode->i_sb->s_blocksize);
796 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
797 		}
798 		map->oflags = UDF_BLK_MAPPED;
799 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
800 		goto out_free;
801 	}
802 
803 	/* Are we beyond EOF and preallocated extent? */
804 	if (etype == -1) {
805 		loff_t hole_len;
806 
807 		isBeyondEOF = true;
808 		if (count) {
809 			if (c)
810 				laarr[0] = laarr[1];
811 			startnum = 1;
812 		} else {
813 			/* Create a fake extent when there's not one */
814 			memset(&laarr[0].extLocation, 0x00,
815 				sizeof(struct kernel_lb_addr));
816 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
817 			/* Will udf_do_extend_file() create real extent from
818 			   a fake one? */
819 			startnum = (offset > 0);
820 		}
821 		/* Create extents for the hole between EOF and offset */
822 		hole_len = (loff_t)offset << inode->i_blkbits;
823 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
824 		if (ret < 0)
825 			goto out_free;
826 		c = 0;
827 		offset = 0;
828 		count += ret;
829 		/*
830 		 * Is there any real extent? - otherwise we overwrite the fake
831 		 * one...
832 		 */
833 		if (count)
834 			c = !c;
835 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
836 			inode->i_sb->s_blocksize;
837 		memset(&laarr[c].extLocation, 0x00,
838 			sizeof(struct kernel_lb_addr));
839 		count++;
840 		endnum = c + 1;
841 		lastblock = 1;
842 	} else {
843 		isBeyondEOF = false;
844 		endnum = startnum = ((count > 2) ? 2 : count);
845 
846 		/* if the current extent is in position 0,
847 		   swap it with the previous */
848 		if (!c && count != 1) {
849 			laarr[2] = laarr[0];
850 			laarr[0] = laarr[1];
851 			laarr[1] = laarr[2];
852 			c = 1;
853 		}
854 
855 		/* if the current block is located in an extent,
856 		   read the next extent */
857 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
858 		if (etype != -1) {
859 			laarr[c + 1].extLength = (etype << 30) | elen;
860 			laarr[c + 1].extLocation = eloc;
861 			count++;
862 			startnum++;
863 			endnum++;
864 		} else
865 			lastblock = 1;
866 	}
867 
868 	/* if the current extent is not recorded but allocated, get the
869 	 * block in the extent corresponding to the requested block */
870 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
871 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
872 	else { /* otherwise, allocate a new block */
873 		if (iinfo->i_next_alloc_block == map->lblk)
874 			goal = iinfo->i_next_alloc_goal;
875 
876 		if (!goal) {
877 			if (!(goal = pgoal)) /* XXX: what was intended here? */
878 				goal = iinfo->i_location.logicalBlockNum + 1;
879 		}
880 
881 		newblocknum = udf_new_block(inode->i_sb, inode,
882 				iinfo->i_location.partitionReferenceNum,
883 				goal, &ret);
884 		if (!newblocknum)
885 			goto out_free;
886 		if (isBeyondEOF)
887 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
888 	}
889 
890 	/* if the extent the requsted block is located in contains multiple
891 	 * blocks, split the extent into at most three extents. blocks prior
892 	 * to requested block, requested block, and blocks after requested
893 	 * block */
894 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
895 
896 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
897 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
898 
899 	/* merge any continuous blocks in laarr */
900 	udf_merge_extents(inode, laarr, &endnum);
901 
902 	/* write back the new extents, inserting new extents if the new number
903 	 * of extents is greater than the old number, and deleting extents if
904 	 * the new number of extents is less than the old number */
905 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
906 	if (ret < 0)
907 		goto out_free;
908 
909 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
910 				iinfo->i_location.partitionReferenceNum, 0);
911 	if (!map->pblk) {
912 		ret = -EFSCORRUPTED;
913 		goto out_free;
914 	}
915 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
916 	iinfo->i_next_alloc_block = map->lblk + 1;
917 	iinfo->i_next_alloc_goal = newblocknum + 1;
918 	inode->i_ctime = current_time(inode);
919 
920 	if (IS_SYNC(inode))
921 		udf_sync_inode(inode);
922 	else
923 		mark_inode_dirty(inode);
924 	ret = 0;
925 out_free:
926 	brelse(prev_epos.bh);
927 	brelse(cur_epos.bh);
928 	brelse(next_epos.bh);
929 	return ret;
930 }
931 
932 static void udf_split_extents(struct inode *inode, int *c, int offset,
933 			       udf_pblk_t newblocknum,
934 			       struct kernel_long_ad *laarr, int *endnum)
935 {
936 	unsigned long blocksize = inode->i_sb->s_blocksize;
937 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
938 
939 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
940 	    (laarr[*c].extLength >> 30) ==
941 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
942 		int curr = *c;
943 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
944 			    blocksize - 1) >> blocksize_bits;
945 		int8_t etype = (laarr[curr].extLength >> 30);
946 
947 		if (blen == 1)
948 			;
949 		else if (!offset || blen == offset + 1) {
950 			laarr[curr + 2] = laarr[curr + 1];
951 			laarr[curr + 1] = laarr[curr];
952 		} else {
953 			laarr[curr + 3] = laarr[curr + 1];
954 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
955 		}
956 
957 		if (offset) {
958 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 				udf_free_blocks(inode->i_sb, inode,
960 						&laarr[curr].extLocation,
961 						0, offset);
962 				laarr[curr].extLength =
963 					EXT_NOT_RECORDED_NOT_ALLOCATED |
964 					(offset << blocksize_bits);
965 				laarr[curr].extLocation.logicalBlockNum = 0;
966 				laarr[curr].extLocation.
967 						partitionReferenceNum = 0;
968 			} else
969 				laarr[curr].extLength = (etype << 30) |
970 					(offset << blocksize_bits);
971 			curr++;
972 			(*c)++;
973 			(*endnum)++;
974 		}
975 
976 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
977 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
978 			laarr[curr].extLocation.partitionReferenceNum =
979 				UDF_I(inode)->i_location.partitionReferenceNum;
980 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
981 			blocksize;
982 		curr++;
983 
984 		if (blen != offset + 1) {
985 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
986 				laarr[curr].extLocation.logicalBlockNum +=
987 								offset + 1;
988 			laarr[curr].extLength = (etype << 30) |
989 				((blen - (offset + 1)) << blocksize_bits);
990 			curr++;
991 			(*endnum)++;
992 		}
993 	}
994 }
995 
996 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
997 				 struct kernel_long_ad *laarr,
998 				 int *endnum)
999 {
1000 	int start, length = 0, currlength = 0, i;
1001 
1002 	if (*endnum >= (c + 1)) {
1003 		if (!lastblock)
1004 			return;
1005 		else
1006 			start = c;
1007 	} else {
1008 		if ((laarr[c + 1].extLength >> 30) ==
1009 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1010 			start = c + 1;
1011 			length = currlength =
1012 				(((laarr[c + 1].extLength &
1013 					UDF_EXTENT_LENGTH_MASK) +
1014 				inode->i_sb->s_blocksize - 1) >>
1015 				inode->i_sb->s_blocksize_bits);
1016 		} else
1017 			start = c;
1018 	}
1019 
1020 	for (i = start + 1; i <= *endnum; i++) {
1021 		if (i == *endnum) {
1022 			if (lastblock)
1023 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1024 		} else if ((laarr[i].extLength >> 30) ==
1025 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1026 			length += (((laarr[i].extLength &
1027 						UDF_EXTENT_LENGTH_MASK) +
1028 				    inode->i_sb->s_blocksize - 1) >>
1029 				    inode->i_sb->s_blocksize_bits);
1030 		} else
1031 			break;
1032 	}
1033 
1034 	if (length) {
1035 		int next = laarr[start].extLocation.logicalBlockNum +
1036 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1037 			  inode->i_sb->s_blocksize - 1) >>
1038 			  inode->i_sb->s_blocksize_bits);
1039 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1040 				laarr[start].extLocation.partitionReferenceNum,
1041 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1042 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1043 				currlength);
1044 		if (numalloc) 	{
1045 			if (start == (c + 1))
1046 				laarr[start].extLength +=
1047 					(numalloc <<
1048 					 inode->i_sb->s_blocksize_bits);
1049 			else {
1050 				memmove(&laarr[c + 2], &laarr[c + 1],
1051 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1052 				(*endnum)++;
1053 				laarr[c + 1].extLocation.logicalBlockNum = next;
1054 				laarr[c + 1].extLocation.partitionReferenceNum =
1055 					laarr[c].extLocation.
1056 							partitionReferenceNum;
1057 				laarr[c + 1].extLength =
1058 					EXT_NOT_RECORDED_ALLOCATED |
1059 					(numalloc <<
1060 					 inode->i_sb->s_blocksize_bits);
1061 				start = c + 1;
1062 			}
1063 
1064 			for (i = start + 1; numalloc && i < *endnum; i++) {
1065 				int elen = ((laarr[i].extLength &
1066 						UDF_EXTENT_LENGTH_MASK) +
1067 					    inode->i_sb->s_blocksize - 1) >>
1068 					    inode->i_sb->s_blocksize_bits;
1069 
1070 				if (elen > numalloc) {
1071 					laarr[i].extLength -=
1072 						(numalloc <<
1073 						 inode->i_sb->s_blocksize_bits);
1074 					numalloc = 0;
1075 				} else {
1076 					numalloc -= elen;
1077 					if (*endnum > (i + 1))
1078 						memmove(&laarr[i],
1079 							&laarr[i + 1],
1080 							sizeof(struct long_ad) *
1081 							(*endnum - (i + 1)));
1082 					i--;
1083 					(*endnum)--;
1084 				}
1085 			}
1086 			UDF_I(inode)->i_lenExtents +=
1087 				numalloc << inode->i_sb->s_blocksize_bits;
1088 		}
1089 	}
1090 }
1091 
1092 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1093 			      int *endnum)
1094 {
1095 	int i;
1096 	unsigned long blocksize = inode->i_sb->s_blocksize;
1097 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1098 
1099 	for (i = 0; i < (*endnum - 1); i++) {
1100 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1101 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1102 
1103 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1104 			(((li->extLength >> 30) ==
1105 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1106 			((lip1->extLocation.logicalBlockNum -
1107 			  li->extLocation.logicalBlockNum) ==
1108 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1109 			blocksize - 1) >> blocksize_bits)))) {
1110 
1111 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1112 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1113 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1114 				li->extLength = lip1->extLength +
1115 					(((li->extLength &
1116 						UDF_EXTENT_LENGTH_MASK) +
1117 					 blocksize - 1) & ~(blocksize - 1));
1118 				if (*endnum > (i + 2))
1119 					memmove(&laarr[i + 1], &laarr[i + 2],
1120 						sizeof(struct long_ad) *
1121 						(*endnum - (i + 2)));
1122 				i--;
1123 				(*endnum)--;
1124 			}
1125 		} else if (((li->extLength >> 30) ==
1126 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1127 			   ((lip1->extLength >> 30) ==
1128 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1129 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1130 					((li->extLength &
1131 					  UDF_EXTENT_LENGTH_MASK) +
1132 					 blocksize - 1) >> blocksize_bits);
1133 			li->extLocation.logicalBlockNum = 0;
1134 			li->extLocation.partitionReferenceNum = 0;
1135 
1136 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1137 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1138 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1139 				lip1->extLength = (lip1->extLength -
1140 						   (li->extLength &
1141 						   UDF_EXTENT_LENGTH_MASK) +
1142 						   UDF_EXTENT_LENGTH_MASK) &
1143 						   ~(blocksize - 1);
1144 				li->extLength = (li->extLength &
1145 						 UDF_EXTENT_FLAG_MASK) +
1146 						(UDF_EXTENT_LENGTH_MASK + 1) -
1147 						blocksize;
1148 			} else {
1149 				li->extLength = lip1->extLength +
1150 					(((li->extLength &
1151 						UDF_EXTENT_LENGTH_MASK) +
1152 					  blocksize - 1) & ~(blocksize - 1));
1153 				if (*endnum > (i + 2))
1154 					memmove(&laarr[i + 1], &laarr[i + 2],
1155 						sizeof(struct long_ad) *
1156 						(*endnum - (i + 2)));
1157 				i--;
1158 				(*endnum)--;
1159 			}
1160 		} else if ((li->extLength >> 30) ==
1161 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1162 			udf_free_blocks(inode->i_sb, inode,
1163 					&li->extLocation, 0,
1164 					((li->extLength &
1165 						UDF_EXTENT_LENGTH_MASK) +
1166 					 blocksize - 1) >> blocksize_bits);
1167 			li->extLocation.logicalBlockNum = 0;
1168 			li->extLocation.partitionReferenceNum = 0;
1169 			li->extLength = (li->extLength &
1170 						UDF_EXTENT_LENGTH_MASK) |
1171 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1172 		}
1173 	}
1174 }
1175 
1176 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1177 			      int startnum, int endnum,
1178 			      struct extent_position *epos)
1179 {
1180 	int start = 0, i;
1181 	struct kernel_lb_addr tmploc;
1182 	uint32_t tmplen;
1183 	int err;
1184 
1185 	if (startnum > endnum) {
1186 		for (i = 0; i < (startnum - endnum); i++)
1187 			udf_delete_aext(inode, *epos);
1188 	} else if (startnum < endnum) {
1189 		for (i = 0; i < (endnum - startnum); i++) {
1190 			err = udf_insert_aext(inode, *epos,
1191 					      laarr[i].extLocation,
1192 					      laarr[i].extLength);
1193 			/*
1194 			 * If we fail here, we are likely corrupting the extent
1195 			 * list and leaking blocks. At least stop early to
1196 			 * limit the damage.
1197 			 */
1198 			if (err < 0)
1199 				return err;
1200 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1201 				      &laarr[i].extLength, 1);
1202 			start++;
1203 		}
1204 	}
1205 
1206 	for (i = start; i < endnum; i++) {
1207 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1208 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1209 			       laarr[i].extLength, 1);
1210 	}
1211 	return 0;
1212 }
1213 
1214 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1215 			      int create, int *err)
1216 {
1217 	struct buffer_head *bh = NULL;
1218 	struct udf_map_rq map = {
1219 		.lblk = block,
1220 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1221 	};
1222 
1223 	*err = udf_map_block(inode, &map);
1224 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1225 		return NULL;
1226 
1227 	bh = sb_getblk(inode->i_sb, map.pblk);
1228 	if (!bh) {
1229 		*err = -ENOMEM;
1230 		return NULL;
1231 	}
1232 	if (map.oflags & UDF_BLK_NEW) {
1233 		lock_buffer(bh);
1234 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1235 		set_buffer_uptodate(bh);
1236 		unlock_buffer(bh);
1237 		mark_buffer_dirty_inode(bh, inode);
1238 		return bh;
1239 	}
1240 
1241 	if (bh_read(bh, 0) >= 0)
1242 		return bh;
1243 
1244 	brelse(bh);
1245 	*err = -EIO;
1246 	return NULL;
1247 }
1248 
1249 int udf_setsize(struct inode *inode, loff_t newsize)
1250 {
1251 	int err = 0;
1252 	struct udf_inode_info *iinfo;
1253 	unsigned int bsize = i_blocksize(inode);
1254 
1255 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1256 	      S_ISLNK(inode->i_mode)))
1257 		return -EINVAL;
1258 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1259 		return -EPERM;
1260 
1261 	filemap_invalidate_lock(inode->i_mapping);
1262 	iinfo = UDF_I(inode);
1263 	if (newsize > inode->i_size) {
1264 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1265 			if (bsize >=
1266 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1267 				down_write(&iinfo->i_data_sem);
1268 				iinfo->i_lenAlloc = newsize;
1269 				up_write(&iinfo->i_data_sem);
1270 				goto set_size;
1271 			}
1272 			err = udf_expand_file_adinicb(inode);
1273 			if (err)
1274 				goto out_unlock;
1275 		}
1276 		err = udf_extend_file(inode, newsize);
1277 		if (err)
1278 			goto out_unlock;
1279 set_size:
1280 		truncate_setsize(inode, newsize);
1281 	} else {
1282 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1283 			down_write(&iinfo->i_data_sem);
1284 			udf_clear_extent_cache(inode);
1285 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1286 			       0x00, bsize - newsize -
1287 			       udf_file_entry_alloc_offset(inode));
1288 			iinfo->i_lenAlloc = newsize;
1289 			truncate_setsize(inode, newsize);
1290 			up_write(&iinfo->i_data_sem);
1291 			goto update_time;
1292 		}
1293 		err = block_truncate_page(inode->i_mapping, newsize,
1294 					  udf_get_block);
1295 		if (err)
1296 			goto out_unlock;
1297 		truncate_setsize(inode, newsize);
1298 		down_write(&iinfo->i_data_sem);
1299 		udf_clear_extent_cache(inode);
1300 		err = udf_truncate_extents(inode);
1301 		up_write(&iinfo->i_data_sem);
1302 		if (err)
1303 			goto out_unlock;
1304 	}
1305 update_time:
1306 	inode->i_mtime = inode->i_ctime = current_time(inode);
1307 	if (IS_SYNC(inode))
1308 		udf_sync_inode(inode);
1309 	else
1310 		mark_inode_dirty(inode);
1311 out_unlock:
1312 	filemap_invalidate_unlock(inode->i_mapping);
1313 	return err;
1314 }
1315 
1316 /*
1317  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1318  * arbitrary - just that we hopefully don't limit any real use of rewritten
1319  * inode on write-once media but avoid looping for too long on corrupted media.
1320  */
1321 #define UDF_MAX_ICB_NESTING 1024
1322 
1323 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1324 {
1325 	struct buffer_head *bh = NULL;
1326 	struct fileEntry *fe;
1327 	struct extendedFileEntry *efe;
1328 	uint16_t ident;
1329 	struct udf_inode_info *iinfo = UDF_I(inode);
1330 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1331 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1332 	unsigned int link_count;
1333 	unsigned int indirections = 0;
1334 	int bs = inode->i_sb->s_blocksize;
1335 	int ret = -EIO;
1336 	uint32_t uid, gid;
1337 
1338 reread:
1339 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1340 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1341 			  iloc->partitionReferenceNum, sbi->s_partitions);
1342 		return -EIO;
1343 	}
1344 
1345 	if (iloc->logicalBlockNum >=
1346 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1347 		udf_debug("block=%u, partition=%u out of range\n",
1348 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1349 		return -EIO;
1350 	}
1351 
1352 	/*
1353 	 * Set defaults, but the inode is still incomplete!
1354 	 * Note: get_new_inode() sets the following on a new inode:
1355 	 *      i_sb = sb
1356 	 *      i_no = ino
1357 	 *      i_flags = sb->s_flags
1358 	 *      i_state = 0
1359 	 * clean_inode(): zero fills and sets
1360 	 *      i_count = 1
1361 	 *      i_nlink = 1
1362 	 *      i_op = NULL;
1363 	 */
1364 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1365 	if (!bh) {
1366 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1367 		return -EIO;
1368 	}
1369 
1370 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1371 	    ident != TAG_IDENT_USE) {
1372 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1373 			inode->i_ino, ident);
1374 		goto out;
1375 	}
1376 
1377 	fe = (struct fileEntry *)bh->b_data;
1378 	efe = (struct extendedFileEntry *)bh->b_data;
1379 
1380 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1381 		struct buffer_head *ibh;
1382 
1383 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1384 		if (ident == TAG_IDENT_IE && ibh) {
1385 			struct kernel_lb_addr loc;
1386 			struct indirectEntry *ie;
1387 
1388 			ie = (struct indirectEntry *)ibh->b_data;
1389 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1390 
1391 			if (ie->indirectICB.extLength) {
1392 				brelse(ibh);
1393 				memcpy(&iinfo->i_location, &loc,
1394 				       sizeof(struct kernel_lb_addr));
1395 				if (++indirections > UDF_MAX_ICB_NESTING) {
1396 					udf_err(inode->i_sb,
1397 						"too many ICBs in ICB hierarchy"
1398 						" (max %d supported)\n",
1399 						UDF_MAX_ICB_NESTING);
1400 					goto out;
1401 				}
1402 				brelse(bh);
1403 				goto reread;
1404 			}
1405 		}
1406 		brelse(ibh);
1407 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1408 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1409 			le16_to_cpu(fe->icbTag.strategyType));
1410 		goto out;
1411 	}
1412 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1413 		iinfo->i_strat4096 = 0;
1414 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1415 		iinfo->i_strat4096 = 1;
1416 
1417 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1418 							ICBTAG_FLAG_AD_MASK;
1419 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1420 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1421 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1422 		ret = -EIO;
1423 		goto out;
1424 	}
1425 	iinfo->i_hidden = hidden_inode;
1426 	iinfo->i_unique = 0;
1427 	iinfo->i_lenEAttr = 0;
1428 	iinfo->i_lenExtents = 0;
1429 	iinfo->i_lenAlloc = 0;
1430 	iinfo->i_next_alloc_block = 0;
1431 	iinfo->i_next_alloc_goal = 0;
1432 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1433 		iinfo->i_efe = 1;
1434 		iinfo->i_use = 0;
1435 		ret = udf_alloc_i_data(inode, bs -
1436 					sizeof(struct extendedFileEntry));
1437 		if (ret)
1438 			goto out;
1439 		memcpy(iinfo->i_data,
1440 		       bh->b_data + sizeof(struct extendedFileEntry),
1441 		       bs - sizeof(struct extendedFileEntry));
1442 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1443 		iinfo->i_efe = 0;
1444 		iinfo->i_use = 0;
1445 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1446 		if (ret)
1447 			goto out;
1448 		memcpy(iinfo->i_data,
1449 		       bh->b_data + sizeof(struct fileEntry),
1450 		       bs - sizeof(struct fileEntry));
1451 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1452 		iinfo->i_efe = 0;
1453 		iinfo->i_use = 1;
1454 		iinfo->i_lenAlloc = le32_to_cpu(
1455 				((struct unallocSpaceEntry *)bh->b_data)->
1456 				 lengthAllocDescs);
1457 		ret = udf_alloc_i_data(inode, bs -
1458 					sizeof(struct unallocSpaceEntry));
1459 		if (ret)
1460 			goto out;
1461 		memcpy(iinfo->i_data,
1462 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1463 		       bs - sizeof(struct unallocSpaceEntry));
1464 		return 0;
1465 	}
1466 
1467 	ret = -EIO;
1468 	read_lock(&sbi->s_cred_lock);
1469 	uid = le32_to_cpu(fe->uid);
1470 	if (uid == UDF_INVALID_ID ||
1471 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1472 		inode->i_uid = sbi->s_uid;
1473 	else
1474 		i_uid_write(inode, uid);
1475 
1476 	gid = le32_to_cpu(fe->gid);
1477 	if (gid == UDF_INVALID_ID ||
1478 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1479 		inode->i_gid = sbi->s_gid;
1480 	else
1481 		i_gid_write(inode, gid);
1482 
1483 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1484 			sbi->s_fmode != UDF_INVALID_MODE)
1485 		inode->i_mode = sbi->s_fmode;
1486 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1487 			sbi->s_dmode != UDF_INVALID_MODE)
1488 		inode->i_mode = sbi->s_dmode;
1489 	else
1490 		inode->i_mode = udf_convert_permissions(fe);
1491 	inode->i_mode &= ~sbi->s_umask;
1492 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1493 
1494 	read_unlock(&sbi->s_cred_lock);
1495 
1496 	link_count = le16_to_cpu(fe->fileLinkCount);
1497 	if (!link_count) {
1498 		if (!hidden_inode) {
1499 			ret = -ESTALE;
1500 			goto out;
1501 		}
1502 		link_count = 1;
1503 	}
1504 	set_nlink(inode, link_count);
1505 
1506 	inode->i_size = le64_to_cpu(fe->informationLength);
1507 	iinfo->i_lenExtents = inode->i_size;
1508 
1509 	if (iinfo->i_efe == 0) {
1510 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1511 			(inode->i_sb->s_blocksize_bits - 9);
1512 
1513 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1514 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1515 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1516 
1517 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1518 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1519 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1520 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1521 		iinfo->i_streamdir = 0;
1522 		iinfo->i_lenStreams = 0;
1523 	} else {
1524 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1525 		    (inode->i_sb->s_blocksize_bits - 9);
1526 
1527 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1528 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1529 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1530 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1531 
1532 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1533 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1534 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1535 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1536 
1537 		/* Named streams */
1538 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1539 		iinfo->i_locStreamdir =
1540 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1541 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1542 		if (iinfo->i_lenStreams >= inode->i_size)
1543 			iinfo->i_lenStreams -= inode->i_size;
1544 		else
1545 			iinfo->i_lenStreams = 0;
1546 	}
1547 	inode->i_generation = iinfo->i_unique;
1548 
1549 	/*
1550 	 * Sanity check length of allocation descriptors and extended attrs to
1551 	 * avoid integer overflows
1552 	 */
1553 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1554 		goto out;
1555 	/* Now do exact checks */
1556 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1557 		goto out;
1558 	/* Sanity checks for files in ICB so that we don't get confused later */
1559 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1560 		/*
1561 		 * For file in ICB data is stored in allocation descriptor
1562 		 * so sizes should match
1563 		 */
1564 		if (iinfo->i_lenAlloc != inode->i_size)
1565 			goto out;
1566 		/* File in ICB has to fit in there... */
1567 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1568 			goto out;
1569 	}
1570 
1571 	switch (fe->icbTag.fileType) {
1572 	case ICBTAG_FILE_TYPE_DIRECTORY:
1573 		inode->i_op = &udf_dir_inode_operations;
1574 		inode->i_fop = &udf_dir_operations;
1575 		inode->i_mode |= S_IFDIR;
1576 		inc_nlink(inode);
1577 		break;
1578 	case ICBTAG_FILE_TYPE_REALTIME:
1579 	case ICBTAG_FILE_TYPE_REGULAR:
1580 	case ICBTAG_FILE_TYPE_UNDEF:
1581 	case ICBTAG_FILE_TYPE_VAT20:
1582 		inode->i_data.a_ops = &udf_aops;
1583 		inode->i_op = &udf_file_inode_operations;
1584 		inode->i_fop = &udf_file_operations;
1585 		inode->i_mode |= S_IFREG;
1586 		break;
1587 	case ICBTAG_FILE_TYPE_BLOCK:
1588 		inode->i_mode |= S_IFBLK;
1589 		break;
1590 	case ICBTAG_FILE_TYPE_CHAR:
1591 		inode->i_mode |= S_IFCHR;
1592 		break;
1593 	case ICBTAG_FILE_TYPE_FIFO:
1594 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1595 		break;
1596 	case ICBTAG_FILE_TYPE_SOCKET:
1597 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1598 		break;
1599 	case ICBTAG_FILE_TYPE_SYMLINK:
1600 		inode->i_data.a_ops = &udf_symlink_aops;
1601 		inode->i_op = &udf_symlink_inode_operations;
1602 		inode_nohighmem(inode);
1603 		inode->i_mode = S_IFLNK | 0777;
1604 		break;
1605 	case ICBTAG_FILE_TYPE_MAIN:
1606 		udf_debug("METADATA FILE-----\n");
1607 		break;
1608 	case ICBTAG_FILE_TYPE_MIRROR:
1609 		udf_debug("METADATA MIRROR FILE-----\n");
1610 		break;
1611 	case ICBTAG_FILE_TYPE_BITMAP:
1612 		udf_debug("METADATA BITMAP FILE-----\n");
1613 		break;
1614 	default:
1615 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1616 			inode->i_ino, fe->icbTag.fileType);
1617 		goto out;
1618 	}
1619 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1620 		struct deviceSpec *dsea =
1621 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1622 		if (dsea) {
1623 			init_special_inode(inode, inode->i_mode,
1624 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1625 				      le32_to_cpu(dsea->minorDeviceIdent)));
1626 			/* Developer ID ??? */
1627 		} else
1628 			goto out;
1629 	}
1630 	ret = 0;
1631 out:
1632 	brelse(bh);
1633 	return ret;
1634 }
1635 
1636 static int udf_alloc_i_data(struct inode *inode, size_t size)
1637 {
1638 	struct udf_inode_info *iinfo = UDF_I(inode);
1639 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1640 	if (!iinfo->i_data)
1641 		return -ENOMEM;
1642 	return 0;
1643 }
1644 
1645 static umode_t udf_convert_permissions(struct fileEntry *fe)
1646 {
1647 	umode_t mode;
1648 	uint32_t permissions;
1649 	uint32_t flags;
1650 
1651 	permissions = le32_to_cpu(fe->permissions);
1652 	flags = le16_to_cpu(fe->icbTag.flags);
1653 
1654 	mode =	((permissions) & 0007) |
1655 		((permissions >> 2) & 0070) |
1656 		((permissions >> 4) & 0700) |
1657 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1658 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1659 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1660 
1661 	return mode;
1662 }
1663 
1664 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1665 {
1666 	struct udf_inode_info *iinfo = UDF_I(inode);
1667 
1668 	/*
1669 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1670 	 * In Unix, delete permission tracks write
1671 	 */
1672 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1673 	if (mode & 0200)
1674 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1675 	if (mode & 0020)
1676 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1677 	if (mode & 0002)
1678 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1679 }
1680 
1681 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1682 {
1683 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1684 }
1685 
1686 static int udf_sync_inode(struct inode *inode)
1687 {
1688 	return udf_update_inode(inode, 1);
1689 }
1690 
1691 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1692 {
1693 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1694 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1695 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1696 		iinfo->i_crtime = time;
1697 }
1698 
1699 static int udf_update_inode(struct inode *inode, int do_sync)
1700 {
1701 	struct buffer_head *bh = NULL;
1702 	struct fileEntry *fe;
1703 	struct extendedFileEntry *efe;
1704 	uint64_t lb_recorded;
1705 	uint32_t udfperms;
1706 	uint16_t icbflags;
1707 	uint16_t crclen;
1708 	int err = 0;
1709 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1710 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1711 	struct udf_inode_info *iinfo = UDF_I(inode);
1712 
1713 	bh = sb_getblk(inode->i_sb,
1714 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1715 	if (!bh) {
1716 		udf_debug("getblk failure\n");
1717 		return -EIO;
1718 	}
1719 
1720 	lock_buffer(bh);
1721 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1722 	fe = (struct fileEntry *)bh->b_data;
1723 	efe = (struct extendedFileEntry *)bh->b_data;
1724 
1725 	if (iinfo->i_use) {
1726 		struct unallocSpaceEntry *use =
1727 			(struct unallocSpaceEntry *)bh->b_data;
1728 
1729 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1730 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1731 		       iinfo->i_data, inode->i_sb->s_blocksize -
1732 					sizeof(struct unallocSpaceEntry));
1733 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1734 		crclen = sizeof(struct unallocSpaceEntry);
1735 
1736 		goto finish;
1737 	}
1738 
1739 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1740 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1741 	else
1742 		fe->uid = cpu_to_le32(i_uid_read(inode));
1743 
1744 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1745 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1746 	else
1747 		fe->gid = cpu_to_le32(i_gid_read(inode));
1748 
1749 	udfperms = ((inode->i_mode & 0007)) |
1750 		   ((inode->i_mode & 0070) << 2) |
1751 		   ((inode->i_mode & 0700) << 4);
1752 
1753 	udfperms |= iinfo->i_extraPerms;
1754 	fe->permissions = cpu_to_le32(udfperms);
1755 
1756 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1757 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1758 	else {
1759 		if (iinfo->i_hidden)
1760 			fe->fileLinkCount = cpu_to_le16(0);
1761 		else
1762 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1763 	}
1764 
1765 	fe->informationLength = cpu_to_le64(inode->i_size);
1766 
1767 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1768 		struct regid *eid;
1769 		struct deviceSpec *dsea =
1770 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1771 		if (!dsea) {
1772 			dsea = (struct deviceSpec *)
1773 				udf_add_extendedattr(inode,
1774 						     sizeof(struct deviceSpec) +
1775 						     sizeof(struct regid), 12, 0x3);
1776 			dsea->attrType = cpu_to_le32(12);
1777 			dsea->attrSubtype = 1;
1778 			dsea->attrLength = cpu_to_le32(
1779 						sizeof(struct deviceSpec) +
1780 						sizeof(struct regid));
1781 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1782 		}
1783 		eid = (struct regid *)dsea->impUse;
1784 		memset(eid, 0, sizeof(*eid));
1785 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1786 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1787 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1788 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1789 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1790 	}
1791 
1792 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1793 		lb_recorded = 0; /* No extents => no blocks! */
1794 	else
1795 		lb_recorded =
1796 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1797 			(blocksize_bits - 9);
1798 
1799 	if (iinfo->i_efe == 0) {
1800 		memcpy(bh->b_data + sizeof(struct fileEntry),
1801 		       iinfo->i_data,
1802 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1803 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804 
1805 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1806 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1807 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1808 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1809 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1810 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1813 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1814 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1815 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1816 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1817 		crclen = sizeof(struct fileEntry);
1818 	} else {
1819 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1820 		       iinfo->i_data,
1821 		       inode->i_sb->s_blocksize -
1822 					sizeof(struct extendedFileEntry));
1823 		efe->objectSize =
1824 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1825 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1826 
1827 		if (iinfo->i_streamdir) {
1828 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1829 
1830 			icb_lad->extLocation =
1831 				cpu_to_lelb(iinfo->i_locStreamdir);
1832 			icb_lad->extLength =
1833 				cpu_to_le32(inode->i_sb->s_blocksize);
1834 		}
1835 
1836 		udf_adjust_time(iinfo, inode->i_atime);
1837 		udf_adjust_time(iinfo, inode->i_mtime);
1838 		udf_adjust_time(iinfo, inode->i_ctime);
1839 
1840 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1841 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1842 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1843 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1844 
1845 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1846 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1847 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1848 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1849 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1850 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1851 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1852 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1853 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1854 		crclen = sizeof(struct extendedFileEntry);
1855 	}
1856 
1857 finish:
1858 	if (iinfo->i_strat4096) {
1859 		fe->icbTag.strategyType = cpu_to_le16(4096);
1860 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1861 		fe->icbTag.numEntries = cpu_to_le16(2);
1862 	} else {
1863 		fe->icbTag.strategyType = cpu_to_le16(4);
1864 		fe->icbTag.numEntries = cpu_to_le16(1);
1865 	}
1866 
1867 	if (iinfo->i_use)
1868 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1869 	else if (S_ISDIR(inode->i_mode))
1870 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1871 	else if (S_ISREG(inode->i_mode))
1872 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1873 	else if (S_ISLNK(inode->i_mode))
1874 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1875 	else if (S_ISBLK(inode->i_mode))
1876 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1877 	else if (S_ISCHR(inode->i_mode))
1878 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1879 	else if (S_ISFIFO(inode->i_mode))
1880 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1881 	else if (S_ISSOCK(inode->i_mode))
1882 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1883 
1884 	icbflags =	iinfo->i_alloc_type |
1885 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1886 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1887 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1888 			(le16_to_cpu(fe->icbTag.flags) &
1889 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1890 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1891 
1892 	fe->icbTag.flags = cpu_to_le16(icbflags);
1893 	if (sbi->s_udfrev >= 0x0200)
1894 		fe->descTag.descVersion = cpu_to_le16(3);
1895 	else
1896 		fe->descTag.descVersion = cpu_to_le16(2);
1897 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1898 	fe->descTag.tagLocation = cpu_to_le32(
1899 					iinfo->i_location.logicalBlockNum);
1900 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1901 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1902 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1903 						  crclen));
1904 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1905 
1906 	set_buffer_uptodate(bh);
1907 	unlock_buffer(bh);
1908 
1909 	/* write the data blocks */
1910 	mark_buffer_dirty(bh);
1911 	if (do_sync) {
1912 		sync_dirty_buffer(bh);
1913 		if (buffer_write_io_error(bh)) {
1914 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1915 				 inode->i_ino);
1916 			err = -EIO;
1917 		}
1918 	}
1919 	brelse(bh);
1920 
1921 	return err;
1922 }
1923 
1924 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1925 			 bool hidden_inode)
1926 {
1927 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1928 	struct inode *inode = iget_locked(sb, block);
1929 	int err;
1930 
1931 	if (!inode)
1932 		return ERR_PTR(-ENOMEM);
1933 
1934 	if (!(inode->i_state & I_NEW)) {
1935 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1936 			iput(inode);
1937 			return ERR_PTR(-EFSCORRUPTED);
1938 		}
1939 		return inode;
1940 	}
1941 
1942 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1943 	err = udf_read_inode(inode, hidden_inode);
1944 	if (err < 0) {
1945 		iget_failed(inode);
1946 		return ERR_PTR(err);
1947 	}
1948 	unlock_new_inode(inode);
1949 
1950 	return inode;
1951 }
1952 
1953 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1954 			    struct extent_position *epos)
1955 {
1956 	struct super_block *sb = inode->i_sb;
1957 	struct buffer_head *bh;
1958 	struct allocExtDesc *aed;
1959 	struct extent_position nepos;
1960 	struct kernel_lb_addr neloc;
1961 	int ver, adsize;
1962 
1963 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1964 		adsize = sizeof(struct short_ad);
1965 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1966 		adsize = sizeof(struct long_ad);
1967 	else
1968 		return -EIO;
1969 
1970 	neloc.logicalBlockNum = block;
1971 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1972 
1973 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1974 	if (!bh)
1975 		return -EIO;
1976 	lock_buffer(bh);
1977 	memset(bh->b_data, 0x00, sb->s_blocksize);
1978 	set_buffer_uptodate(bh);
1979 	unlock_buffer(bh);
1980 	mark_buffer_dirty_inode(bh, inode);
1981 
1982 	aed = (struct allocExtDesc *)(bh->b_data);
1983 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1984 		aed->previousAllocExtLocation =
1985 				cpu_to_le32(epos->block.logicalBlockNum);
1986 	}
1987 	aed->lengthAllocDescs = cpu_to_le32(0);
1988 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1989 		ver = 3;
1990 	else
1991 		ver = 2;
1992 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1993 		    sizeof(struct tag));
1994 
1995 	nepos.block = neloc;
1996 	nepos.offset = sizeof(struct allocExtDesc);
1997 	nepos.bh = bh;
1998 
1999 	/*
2000 	 * Do we have to copy current last extent to make space for indirect
2001 	 * one?
2002 	 */
2003 	if (epos->offset + adsize > sb->s_blocksize) {
2004 		struct kernel_lb_addr cp_loc;
2005 		uint32_t cp_len;
2006 		int cp_type;
2007 
2008 		epos->offset -= adsize;
2009 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2010 		cp_len |= ((uint32_t)cp_type) << 30;
2011 
2012 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2013 		udf_write_aext(inode, epos, &nepos.block,
2014 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2015 	} else {
2016 		__udf_add_aext(inode, epos, &nepos.block,
2017 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2018 	}
2019 
2020 	brelse(epos->bh);
2021 	*epos = nepos;
2022 
2023 	return 0;
2024 }
2025 
2026 /*
2027  * Append extent at the given position - should be the first free one in inode
2028  * / indirect extent. This function assumes there is enough space in the inode
2029  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2030  */
2031 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2032 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2033 {
2034 	struct udf_inode_info *iinfo = UDF_I(inode);
2035 	struct allocExtDesc *aed;
2036 	int adsize;
2037 
2038 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039 		adsize = sizeof(struct short_ad);
2040 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041 		adsize = sizeof(struct long_ad);
2042 	else
2043 		return -EIO;
2044 
2045 	if (!epos->bh) {
2046 		WARN_ON(iinfo->i_lenAlloc !=
2047 			epos->offset - udf_file_entry_alloc_offset(inode));
2048 	} else {
2049 		aed = (struct allocExtDesc *)epos->bh->b_data;
2050 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2051 			epos->offset - sizeof(struct allocExtDesc));
2052 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2053 	}
2054 
2055 	udf_write_aext(inode, epos, eloc, elen, inc);
2056 
2057 	if (!epos->bh) {
2058 		iinfo->i_lenAlloc += adsize;
2059 		mark_inode_dirty(inode);
2060 	} else {
2061 		aed = (struct allocExtDesc *)epos->bh->b_data;
2062 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2063 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2064 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2065 			udf_update_tag(epos->bh->b_data,
2066 					epos->offset + (inc ? 0 : adsize));
2067 		else
2068 			udf_update_tag(epos->bh->b_data,
2069 					sizeof(struct allocExtDesc));
2070 		mark_buffer_dirty_inode(epos->bh, inode);
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 /*
2077  * Append extent at given position - should be the first free one in inode
2078  * / indirect extent. Takes care of allocating and linking indirect blocks.
2079  */
2080 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2081 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082 {
2083 	int adsize;
2084 	struct super_block *sb = inode->i_sb;
2085 
2086 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2087 		adsize = sizeof(struct short_ad);
2088 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2089 		adsize = sizeof(struct long_ad);
2090 	else
2091 		return -EIO;
2092 
2093 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2094 		int err;
2095 		udf_pblk_t new_block;
2096 
2097 		new_block = udf_new_block(sb, NULL,
2098 					  epos->block.partitionReferenceNum,
2099 					  epos->block.logicalBlockNum, &err);
2100 		if (!new_block)
2101 			return -ENOSPC;
2102 
2103 		err = udf_setup_indirect_aext(inode, new_block, epos);
2104 		if (err)
2105 			return err;
2106 	}
2107 
2108 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2109 }
2110 
2111 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2112 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2113 {
2114 	int adsize;
2115 	uint8_t *ptr;
2116 	struct short_ad *sad;
2117 	struct long_ad *lad;
2118 	struct udf_inode_info *iinfo = UDF_I(inode);
2119 
2120 	if (!epos->bh)
2121 		ptr = iinfo->i_data + epos->offset -
2122 			udf_file_entry_alloc_offset(inode) +
2123 			iinfo->i_lenEAttr;
2124 	else
2125 		ptr = epos->bh->b_data + epos->offset;
2126 
2127 	switch (iinfo->i_alloc_type) {
2128 	case ICBTAG_FLAG_AD_SHORT:
2129 		sad = (struct short_ad *)ptr;
2130 		sad->extLength = cpu_to_le32(elen);
2131 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2132 		adsize = sizeof(struct short_ad);
2133 		break;
2134 	case ICBTAG_FLAG_AD_LONG:
2135 		lad = (struct long_ad *)ptr;
2136 		lad->extLength = cpu_to_le32(elen);
2137 		lad->extLocation = cpu_to_lelb(*eloc);
2138 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2139 		adsize = sizeof(struct long_ad);
2140 		break;
2141 	default:
2142 		return;
2143 	}
2144 
2145 	if (epos->bh) {
2146 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2147 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2148 			struct allocExtDesc *aed =
2149 				(struct allocExtDesc *)epos->bh->b_data;
2150 			udf_update_tag(epos->bh->b_data,
2151 				       le32_to_cpu(aed->lengthAllocDescs) +
2152 				       sizeof(struct allocExtDesc));
2153 		}
2154 		mark_buffer_dirty_inode(epos->bh, inode);
2155 	} else {
2156 		mark_inode_dirty(inode);
2157 	}
2158 
2159 	if (inc)
2160 		epos->offset += adsize;
2161 }
2162 
2163 /*
2164  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2165  * someone does some weird stuff.
2166  */
2167 #define UDF_MAX_INDIR_EXTS 16
2168 
2169 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2170 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171 {
2172 	int8_t etype;
2173 	unsigned int indirections = 0;
2174 
2175 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2176 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2177 		udf_pblk_t block;
2178 
2179 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2180 			udf_err(inode->i_sb,
2181 				"too many indirect extents in inode %lu\n",
2182 				inode->i_ino);
2183 			return -1;
2184 		}
2185 
2186 		epos->block = *eloc;
2187 		epos->offset = sizeof(struct allocExtDesc);
2188 		brelse(epos->bh);
2189 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2190 		epos->bh = sb_bread(inode->i_sb, block);
2191 		if (!epos->bh) {
2192 			udf_debug("reading block %u failed!\n", block);
2193 			return -1;
2194 		}
2195 	}
2196 
2197 	return etype;
2198 }
2199 
2200 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2201 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2202 {
2203 	int alen;
2204 	int8_t etype;
2205 	uint8_t *ptr;
2206 	struct short_ad *sad;
2207 	struct long_ad *lad;
2208 	struct udf_inode_info *iinfo = UDF_I(inode);
2209 
2210 	if (!epos->bh) {
2211 		if (!epos->offset)
2212 			epos->offset = udf_file_entry_alloc_offset(inode);
2213 		ptr = iinfo->i_data + epos->offset -
2214 			udf_file_entry_alloc_offset(inode) +
2215 			iinfo->i_lenEAttr;
2216 		alen = udf_file_entry_alloc_offset(inode) +
2217 							iinfo->i_lenAlloc;
2218 	} else {
2219 		if (!epos->offset)
2220 			epos->offset = sizeof(struct allocExtDesc);
2221 		ptr = epos->bh->b_data + epos->offset;
2222 		alen = sizeof(struct allocExtDesc) +
2223 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2224 							lengthAllocDescs);
2225 	}
2226 
2227 	switch (iinfo->i_alloc_type) {
2228 	case ICBTAG_FLAG_AD_SHORT:
2229 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2230 		if (!sad)
2231 			return -1;
2232 		etype = le32_to_cpu(sad->extLength) >> 30;
2233 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2234 		eloc->partitionReferenceNum =
2235 				iinfo->i_location.partitionReferenceNum;
2236 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2237 		break;
2238 	case ICBTAG_FLAG_AD_LONG:
2239 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2240 		if (!lad)
2241 			return -1;
2242 		etype = le32_to_cpu(lad->extLength) >> 30;
2243 		*eloc = lelb_to_cpu(lad->extLocation);
2244 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2245 		break;
2246 	default:
2247 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2248 		return -1;
2249 	}
2250 
2251 	return etype;
2252 }
2253 
2254 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2255 			   struct kernel_lb_addr neloc, uint32_t nelen)
2256 {
2257 	struct kernel_lb_addr oeloc;
2258 	uint32_t oelen;
2259 	int8_t etype;
2260 	int err;
2261 
2262 	if (epos.bh)
2263 		get_bh(epos.bh);
2264 
2265 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2266 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2267 		neloc = oeloc;
2268 		nelen = (etype << 30) | oelen;
2269 	}
2270 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2271 	brelse(epos.bh);
2272 
2273 	return err;
2274 }
2275 
2276 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2277 {
2278 	struct extent_position oepos;
2279 	int adsize;
2280 	int8_t etype;
2281 	struct allocExtDesc *aed;
2282 	struct udf_inode_info *iinfo;
2283 	struct kernel_lb_addr eloc;
2284 	uint32_t elen;
2285 
2286 	if (epos.bh) {
2287 		get_bh(epos.bh);
2288 		get_bh(epos.bh);
2289 	}
2290 
2291 	iinfo = UDF_I(inode);
2292 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2293 		adsize = sizeof(struct short_ad);
2294 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2295 		adsize = sizeof(struct long_ad);
2296 	else
2297 		adsize = 0;
2298 
2299 	oepos = epos;
2300 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2301 		return -1;
2302 
2303 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2304 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2305 		if (oepos.bh != epos.bh) {
2306 			oepos.block = epos.block;
2307 			brelse(oepos.bh);
2308 			get_bh(epos.bh);
2309 			oepos.bh = epos.bh;
2310 			oepos.offset = epos.offset - adsize;
2311 		}
2312 	}
2313 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2314 	elen = 0;
2315 
2316 	if (epos.bh != oepos.bh) {
2317 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2318 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2319 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2320 		if (!oepos.bh) {
2321 			iinfo->i_lenAlloc -= (adsize * 2);
2322 			mark_inode_dirty(inode);
2323 		} else {
2324 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2325 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2326 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2327 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2328 				udf_update_tag(oepos.bh->b_data,
2329 						oepos.offset - (2 * adsize));
2330 			else
2331 				udf_update_tag(oepos.bh->b_data,
2332 						sizeof(struct allocExtDesc));
2333 			mark_buffer_dirty_inode(oepos.bh, inode);
2334 		}
2335 	} else {
2336 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2337 		if (!oepos.bh) {
2338 			iinfo->i_lenAlloc -= adsize;
2339 			mark_inode_dirty(inode);
2340 		} else {
2341 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2342 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2343 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2344 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2345 				udf_update_tag(oepos.bh->b_data,
2346 						epos.offset - adsize);
2347 			else
2348 				udf_update_tag(oepos.bh->b_data,
2349 						sizeof(struct allocExtDesc));
2350 			mark_buffer_dirty_inode(oepos.bh, inode);
2351 		}
2352 	}
2353 
2354 	brelse(epos.bh);
2355 	brelse(oepos.bh);
2356 
2357 	return (elen >> 30);
2358 }
2359 
2360 int8_t inode_bmap(struct inode *inode, sector_t block,
2361 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2362 		  uint32_t *elen, sector_t *offset)
2363 {
2364 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2365 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2366 	int8_t etype;
2367 	struct udf_inode_info *iinfo;
2368 
2369 	iinfo = UDF_I(inode);
2370 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2371 		pos->offset = 0;
2372 		pos->block = iinfo->i_location;
2373 		pos->bh = NULL;
2374 	}
2375 	*elen = 0;
2376 	do {
2377 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2378 		if (etype == -1) {
2379 			*offset = (bcount - lbcount) >> blocksize_bits;
2380 			iinfo->i_lenExtents = lbcount;
2381 			return -1;
2382 		}
2383 		lbcount += *elen;
2384 	} while (lbcount <= bcount);
2385 	/* update extent cache */
2386 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2387 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2388 
2389 	return etype;
2390 }
2391