xref: /openbmc/linux/fs/udf/inode.c (revision 05bcf503)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_evict_inode(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 	int want_delete = 0;
75 
76 	if (!inode->i_nlink && !is_bad_inode(inode)) {
77 		want_delete = 1;
78 		udf_setsize(inode, 0);
79 		udf_update_inode(inode, IS_SYNC(inode));
80 	} else
81 		truncate_inode_pages(&inode->i_data, 0);
82 	invalidate_inode_buffers(inode);
83 	clear_inode(inode);
84 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 	    inode->i_size != iinfo->i_lenExtents) {
86 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 			 inode->i_ino, inode->i_mode,
88 			 (unsigned long long)inode->i_size,
89 			 (unsigned long long)iinfo->i_lenExtents);
90 	}
91 	kfree(iinfo->i_ext.i_data);
92 	iinfo->i_ext.i_data = NULL;
93 	if (want_delete) {
94 		udf_free_inode(inode);
95 	}
96 }
97 
98 static void udf_write_failed(struct address_space *mapping, loff_t to)
99 {
100 	struct inode *inode = mapping->host;
101 	struct udf_inode_info *iinfo = UDF_I(inode);
102 	loff_t isize = inode->i_size;
103 
104 	if (to > isize) {
105 		truncate_pagecache(inode, to, isize);
106 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
107 			down_write(&iinfo->i_data_sem);
108 			udf_truncate_extents(inode);
109 			up_write(&iinfo->i_data_sem);
110 		}
111 	}
112 }
113 
114 static int udf_writepage(struct page *page, struct writeback_control *wbc)
115 {
116 	return block_write_full_page(page, udf_get_block, wbc);
117 }
118 
119 static int udf_writepages(struct address_space *mapping,
120 			struct writeback_control *wbc)
121 {
122 	return mpage_writepages(mapping, wbc, udf_get_block);
123 }
124 
125 static int udf_readpage(struct file *file, struct page *page)
126 {
127 	return mpage_readpage(page, udf_get_block);
128 }
129 
130 static int udf_readpages(struct file *file, struct address_space *mapping,
131 			struct list_head *pages, unsigned nr_pages)
132 {
133 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
134 }
135 
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137 			loff_t pos, unsigned len, unsigned flags,
138 			struct page **pagep, void **fsdata)
139 {
140 	int ret;
141 
142 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
143 	if (unlikely(ret))
144 		udf_write_failed(mapping, pos + len);
145 	return ret;
146 }
147 
148 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
149 			     const struct iovec *iov,
150 			     loff_t offset, unsigned long nr_segs)
151 {
152 	struct file *file = iocb->ki_filp;
153 	struct address_space *mapping = file->f_mapping;
154 	struct inode *inode = mapping->host;
155 	ssize_t ret;
156 
157 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
158 				  udf_get_block);
159 	if (unlikely(ret < 0 && (rw & WRITE)))
160 		udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
161 	return ret;
162 }
163 
164 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
165 {
166 	return generic_block_bmap(mapping, block, udf_get_block);
167 }
168 
169 const struct address_space_operations udf_aops = {
170 	.readpage	= udf_readpage,
171 	.readpages	= udf_readpages,
172 	.writepage	= udf_writepage,
173 	.writepages	= udf_writepages,
174 	.write_begin	= udf_write_begin,
175 	.write_end	= generic_write_end,
176 	.direct_IO	= udf_direct_IO,
177 	.bmap		= udf_bmap,
178 };
179 
180 /*
181  * Expand file stored in ICB to a normal one-block-file
182  *
183  * This function requires i_data_sem for writing and releases it.
184  * This function requires i_mutex held
185  */
186 int udf_expand_file_adinicb(struct inode *inode)
187 {
188 	struct page *page;
189 	char *kaddr;
190 	struct udf_inode_info *iinfo = UDF_I(inode);
191 	int err;
192 	struct writeback_control udf_wbc = {
193 		.sync_mode = WB_SYNC_NONE,
194 		.nr_to_write = 1,
195 	};
196 
197 	if (!iinfo->i_lenAlloc) {
198 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
199 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
200 		else
201 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
202 		/* from now on we have normal address_space methods */
203 		inode->i_data.a_ops = &udf_aops;
204 		up_write(&iinfo->i_data_sem);
205 		mark_inode_dirty(inode);
206 		return 0;
207 	}
208 	/*
209 	 * Release i_data_sem so that we can lock a page - page lock ranks
210 	 * above i_data_sem. i_mutex still protects us against file changes.
211 	 */
212 	up_write(&iinfo->i_data_sem);
213 
214 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
215 	if (!page)
216 		return -ENOMEM;
217 
218 	if (!PageUptodate(page)) {
219 		kaddr = kmap(page);
220 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
221 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
222 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
223 			iinfo->i_lenAlloc);
224 		flush_dcache_page(page);
225 		SetPageUptodate(page);
226 		kunmap(page);
227 	}
228 	down_write(&iinfo->i_data_sem);
229 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
230 	       iinfo->i_lenAlloc);
231 	iinfo->i_lenAlloc = 0;
232 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
233 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
234 	else
235 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
236 	/* from now on we have normal address_space methods */
237 	inode->i_data.a_ops = &udf_aops;
238 	up_write(&iinfo->i_data_sem);
239 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
240 	if (err) {
241 		/* Restore everything back so that we don't lose data... */
242 		lock_page(page);
243 		kaddr = kmap(page);
244 		down_write(&iinfo->i_data_sem);
245 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
246 		       inode->i_size);
247 		kunmap(page);
248 		unlock_page(page);
249 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
250 		inode->i_data.a_ops = &udf_adinicb_aops;
251 		up_write(&iinfo->i_data_sem);
252 	}
253 	page_cache_release(page);
254 	mark_inode_dirty(inode);
255 
256 	return err;
257 }
258 
259 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
260 					   int *err)
261 {
262 	int newblock;
263 	struct buffer_head *dbh = NULL;
264 	struct kernel_lb_addr eloc;
265 	uint8_t alloctype;
266 	struct extent_position epos;
267 
268 	struct udf_fileident_bh sfibh, dfibh;
269 	loff_t f_pos = udf_ext0_offset(inode);
270 	int size = udf_ext0_offset(inode) + inode->i_size;
271 	struct fileIdentDesc cfi, *sfi, *dfi;
272 	struct udf_inode_info *iinfo = UDF_I(inode);
273 
274 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
275 		alloctype = ICBTAG_FLAG_AD_SHORT;
276 	else
277 		alloctype = ICBTAG_FLAG_AD_LONG;
278 
279 	if (!inode->i_size) {
280 		iinfo->i_alloc_type = alloctype;
281 		mark_inode_dirty(inode);
282 		return NULL;
283 	}
284 
285 	/* alloc block, and copy data to it */
286 	*block = udf_new_block(inode->i_sb, inode,
287 			       iinfo->i_location.partitionReferenceNum,
288 			       iinfo->i_location.logicalBlockNum, err);
289 	if (!(*block))
290 		return NULL;
291 	newblock = udf_get_pblock(inode->i_sb, *block,
292 				  iinfo->i_location.partitionReferenceNum,
293 				0);
294 	if (!newblock)
295 		return NULL;
296 	dbh = udf_tgetblk(inode->i_sb, newblock);
297 	if (!dbh)
298 		return NULL;
299 	lock_buffer(dbh);
300 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
301 	set_buffer_uptodate(dbh);
302 	unlock_buffer(dbh);
303 	mark_buffer_dirty_inode(dbh, inode);
304 
305 	sfibh.soffset = sfibh.eoffset =
306 			f_pos & (inode->i_sb->s_blocksize - 1);
307 	sfibh.sbh = sfibh.ebh = NULL;
308 	dfibh.soffset = dfibh.eoffset = 0;
309 	dfibh.sbh = dfibh.ebh = dbh;
310 	while (f_pos < size) {
311 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
312 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
313 					 NULL, NULL, NULL);
314 		if (!sfi) {
315 			brelse(dbh);
316 			return NULL;
317 		}
318 		iinfo->i_alloc_type = alloctype;
319 		sfi->descTag.tagLocation = cpu_to_le32(*block);
320 		dfibh.soffset = dfibh.eoffset;
321 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
322 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
323 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
324 				 sfi->fileIdent +
325 					le16_to_cpu(sfi->lengthOfImpUse))) {
326 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
327 			brelse(dbh);
328 			return NULL;
329 		}
330 	}
331 	mark_buffer_dirty_inode(dbh, inode);
332 
333 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
334 		iinfo->i_lenAlloc);
335 	iinfo->i_lenAlloc = 0;
336 	eloc.logicalBlockNum = *block;
337 	eloc.partitionReferenceNum =
338 				iinfo->i_location.partitionReferenceNum;
339 	iinfo->i_lenExtents = inode->i_size;
340 	epos.bh = NULL;
341 	epos.block = iinfo->i_location;
342 	epos.offset = udf_file_entry_alloc_offset(inode);
343 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
344 	/* UniqueID stuff */
345 
346 	brelse(epos.bh);
347 	mark_inode_dirty(inode);
348 	return dbh;
349 }
350 
351 static int udf_get_block(struct inode *inode, sector_t block,
352 			 struct buffer_head *bh_result, int create)
353 {
354 	int err, new;
355 	sector_t phys = 0;
356 	struct udf_inode_info *iinfo;
357 
358 	if (!create) {
359 		phys = udf_block_map(inode, block);
360 		if (phys)
361 			map_bh(bh_result, inode->i_sb, phys);
362 		return 0;
363 	}
364 
365 	err = -EIO;
366 	new = 0;
367 	iinfo = UDF_I(inode);
368 
369 	down_write(&iinfo->i_data_sem);
370 	if (block == iinfo->i_next_alloc_block + 1) {
371 		iinfo->i_next_alloc_block++;
372 		iinfo->i_next_alloc_goal++;
373 	}
374 
375 
376 	phys = inode_getblk(inode, block, &err, &new);
377 	if (!phys)
378 		goto abort;
379 
380 	if (new)
381 		set_buffer_new(bh_result);
382 	map_bh(bh_result, inode->i_sb, phys);
383 
384 abort:
385 	up_write(&iinfo->i_data_sem);
386 	return err;
387 }
388 
389 static struct buffer_head *udf_getblk(struct inode *inode, long block,
390 				      int create, int *err)
391 {
392 	struct buffer_head *bh;
393 	struct buffer_head dummy;
394 
395 	dummy.b_state = 0;
396 	dummy.b_blocknr = -1000;
397 	*err = udf_get_block(inode, block, &dummy, create);
398 	if (!*err && buffer_mapped(&dummy)) {
399 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
400 		if (buffer_new(&dummy)) {
401 			lock_buffer(bh);
402 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
403 			set_buffer_uptodate(bh);
404 			unlock_buffer(bh);
405 			mark_buffer_dirty_inode(bh, inode);
406 		}
407 		return bh;
408 	}
409 
410 	return NULL;
411 }
412 
413 /* Extend the file by 'blocks' blocks, return the number of extents added */
414 static int udf_do_extend_file(struct inode *inode,
415 			      struct extent_position *last_pos,
416 			      struct kernel_long_ad *last_ext,
417 			      sector_t blocks)
418 {
419 	sector_t add;
420 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
421 	struct super_block *sb = inode->i_sb;
422 	struct kernel_lb_addr prealloc_loc = {};
423 	int prealloc_len = 0;
424 	struct udf_inode_info *iinfo;
425 	int err;
426 
427 	/* The previous extent is fake and we should not extend by anything
428 	 * - there's nothing to do... */
429 	if (!blocks && fake)
430 		return 0;
431 
432 	iinfo = UDF_I(inode);
433 	/* Round the last extent up to a multiple of block size */
434 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
435 		last_ext->extLength =
436 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
437 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
438 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
439 		iinfo->i_lenExtents =
440 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
441 			~(sb->s_blocksize - 1);
442 	}
443 
444 	/* Last extent are just preallocated blocks? */
445 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
446 						EXT_NOT_RECORDED_ALLOCATED) {
447 		/* Save the extent so that we can reattach it to the end */
448 		prealloc_loc = last_ext->extLocation;
449 		prealloc_len = last_ext->extLength;
450 		/* Mark the extent as a hole */
451 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
452 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
453 		last_ext->extLocation.logicalBlockNum = 0;
454 		last_ext->extLocation.partitionReferenceNum = 0;
455 	}
456 
457 	/* Can we merge with the previous extent? */
458 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
459 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
460 		add = ((1 << 30) - sb->s_blocksize -
461 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
462 			sb->s_blocksize_bits;
463 		if (add > blocks)
464 			add = blocks;
465 		blocks -= add;
466 		last_ext->extLength += add << sb->s_blocksize_bits;
467 	}
468 
469 	if (fake) {
470 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
471 			     last_ext->extLength, 1);
472 		count++;
473 	} else
474 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
475 				last_ext->extLength, 1);
476 
477 	/* Managed to do everything necessary? */
478 	if (!blocks)
479 		goto out;
480 
481 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
482 	last_ext->extLocation.logicalBlockNum = 0;
483 	last_ext->extLocation.partitionReferenceNum = 0;
484 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
485 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
486 				(add << sb->s_blocksize_bits);
487 
488 	/* Create enough extents to cover the whole hole */
489 	while (blocks > add) {
490 		blocks -= add;
491 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
492 				   last_ext->extLength, 1);
493 		if (err)
494 			return err;
495 		count++;
496 	}
497 	if (blocks) {
498 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
499 			(blocks << sb->s_blocksize_bits);
500 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
501 				   last_ext->extLength, 1);
502 		if (err)
503 			return err;
504 		count++;
505 	}
506 
507 out:
508 	/* Do we have some preallocated blocks saved? */
509 	if (prealloc_len) {
510 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
511 				   prealloc_len, 1);
512 		if (err)
513 			return err;
514 		last_ext->extLocation = prealloc_loc;
515 		last_ext->extLength = prealloc_len;
516 		count++;
517 	}
518 
519 	/* last_pos should point to the last written extent... */
520 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
521 		last_pos->offset -= sizeof(struct short_ad);
522 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
523 		last_pos->offset -= sizeof(struct long_ad);
524 	else
525 		return -EIO;
526 
527 	return count;
528 }
529 
530 static int udf_extend_file(struct inode *inode, loff_t newsize)
531 {
532 
533 	struct extent_position epos;
534 	struct kernel_lb_addr eloc;
535 	uint32_t elen;
536 	int8_t etype;
537 	struct super_block *sb = inode->i_sb;
538 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
539 	int adsize;
540 	struct udf_inode_info *iinfo = UDF_I(inode);
541 	struct kernel_long_ad extent;
542 	int err;
543 
544 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
545 		adsize = sizeof(struct short_ad);
546 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
547 		adsize = sizeof(struct long_ad);
548 	else
549 		BUG();
550 
551 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
552 
553 	/* File has extent covering the new size (could happen when extending
554 	 * inside a block)? */
555 	if (etype != -1)
556 		return 0;
557 	if (newsize & (sb->s_blocksize - 1))
558 		offset++;
559 	/* Extended file just to the boundary of the last file block? */
560 	if (offset == 0)
561 		return 0;
562 
563 	/* Truncate is extending the file by 'offset' blocks */
564 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
565 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
566 		/* File has no extents at all or has empty last
567 		 * indirect extent! Create a fake extent... */
568 		extent.extLocation.logicalBlockNum = 0;
569 		extent.extLocation.partitionReferenceNum = 0;
570 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571 	} else {
572 		epos.offset -= adsize;
573 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
574 				      &extent.extLength, 0);
575 		extent.extLength |= etype << 30;
576 	}
577 	err = udf_do_extend_file(inode, &epos, &extent, offset);
578 	if (err < 0)
579 		goto out;
580 	err = 0;
581 	iinfo->i_lenExtents = newsize;
582 out:
583 	brelse(epos.bh);
584 	return err;
585 }
586 
587 static sector_t inode_getblk(struct inode *inode, sector_t block,
588 			     int *err, int *new)
589 {
590 	static sector_t last_block;
591 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
592 	struct extent_position prev_epos, cur_epos, next_epos;
593 	int count = 0, startnum = 0, endnum = 0;
594 	uint32_t elen = 0, tmpelen;
595 	struct kernel_lb_addr eloc, tmpeloc;
596 	int c = 1;
597 	loff_t lbcount = 0, b_off = 0;
598 	uint32_t newblocknum, newblock;
599 	sector_t offset = 0;
600 	int8_t etype;
601 	struct udf_inode_info *iinfo = UDF_I(inode);
602 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
603 	int lastblock = 0;
604 
605 	*err = 0;
606 	*new = 0;
607 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
608 	prev_epos.block = iinfo->i_location;
609 	prev_epos.bh = NULL;
610 	cur_epos = next_epos = prev_epos;
611 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
612 
613 	/* find the extent which contains the block we are looking for.
614 	   alternate between laarr[0] and laarr[1] for locations of the
615 	   current extent, and the previous extent */
616 	do {
617 		if (prev_epos.bh != cur_epos.bh) {
618 			brelse(prev_epos.bh);
619 			get_bh(cur_epos.bh);
620 			prev_epos.bh = cur_epos.bh;
621 		}
622 		if (cur_epos.bh != next_epos.bh) {
623 			brelse(cur_epos.bh);
624 			get_bh(next_epos.bh);
625 			cur_epos.bh = next_epos.bh;
626 		}
627 
628 		lbcount += elen;
629 
630 		prev_epos.block = cur_epos.block;
631 		cur_epos.block = next_epos.block;
632 
633 		prev_epos.offset = cur_epos.offset;
634 		cur_epos.offset = next_epos.offset;
635 
636 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
637 		if (etype == -1)
638 			break;
639 
640 		c = !c;
641 
642 		laarr[c].extLength = (etype << 30) | elen;
643 		laarr[c].extLocation = eloc;
644 
645 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
646 			pgoal = eloc.logicalBlockNum +
647 				((elen + inode->i_sb->s_blocksize - 1) >>
648 				 inode->i_sb->s_blocksize_bits);
649 
650 		count++;
651 	} while (lbcount + elen <= b_off);
652 
653 	b_off -= lbcount;
654 	offset = b_off >> inode->i_sb->s_blocksize_bits;
655 	/*
656 	 * Move prev_epos and cur_epos into indirect extent if we are at
657 	 * the pointer to it
658 	 */
659 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
660 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
661 
662 	/* if the extent is allocated and recorded, return the block
663 	   if the extent is not a multiple of the blocksize, round up */
664 
665 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
666 		if (elen & (inode->i_sb->s_blocksize - 1)) {
667 			elen = EXT_RECORDED_ALLOCATED |
668 				((elen + inode->i_sb->s_blocksize - 1) &
669 				 ~(inode->i_sb->s_blocksize - 1));
670 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
671 		}
672 		brelse(prev_epos.bh);
673 		brelse(cur_epos.bh);
674 		brelse(next_epos.bh);
675 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
676 		return newblock;
677 	}
678 
679 	last_block = block;
680 	/* Are we beyond EOF? */
681 	if (etype == -1) {
682 		int ret;
683 
684 		if (count) {
685 			if (c)
686 				laarr[0] = laarr[1];
687 			startnum = 1;
688 		} else {
689 			/* Create a fake extent when there's not one */
690 			memset(&laarr[0].extLocation, 0x00,
691 				sizeof(struct kernel_lb_addr));
692 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
693 			/* Will udf_do_extend_file() create real extent from
694 			   a fake one? */
695 			startnum = (offset > 0);
696 		}
697 		/* Create extents for the hole between EOF and offset */
698 		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
699 		if (ret < 0) {
700 			brelse(prev_epos.bh);
701 			brelse(cur_epos.bh);
702 			brelse(next_epos.bh);
703 			*err = ret;
704 			return 0;
705 		}
706 		c = 0;
707 		offset = 0;
708 		count += ret;
709 		/* We are not covered by a preallocated extent? */
710 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
711 						EXT_NOT_RECORDED_ALLOCATED) {
712 			/* Is there any real extent? - otherwise we overwrite
713 			 * the fake one... */
714 			if (count)
715 				c = !c;
716 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
717 				inode->i_sb->s_blocksize;
718 			memset(&laarr[c].extLocation, 0x00,
719 				sizeof(struct kernel_lb_addr));
720 			count++;
721 			endnum++;
722 		}
723 		endnum = c + 1;
724 		lastblock = 1;
725 	} else {
726 		endnum = startnum = ((count > 2) ? 2 : count);
727 
728 		/* if the current extent is in position 0,
729 		   swap it with the previous */
730 		if (!c && count != 1) {
731 			laarr[2] = laarr[0];
732 			laarr[0] = laarr[1];
733 			laarr[1] = laarr[2];
734 			c = 1;
735 		}
736 
737 		/* if the current block is located in an extent,
738 		   read the next extent */
739 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
740 		if (etype != -1) {
741 			laarr[c + 1].extLength = (etype << 30) | elen;
742 			laarr[c + 1].extLocation = eloc;
743 			count++;
744 			startnum++;
745 			endnum++;
746 		} else
747 			lastblock = 1;
748 	}
749 
750 	/* if the current extent is not recorded but allocated, get the
751 	 * block in the extent corresponding to the requested block */
752 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
753 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
754 	else { /* otherwise, allocate a new block */
755 		if (iinfo->i_next_alloc_block == block)
756 			goal = iinfo->i_next_alloc_goal;
757 
758 		if (!goal) {
759 			if (!(goal = pgoal)) /* XXX: what was intended here? */
760 				goal = iinfo->i_location.logicalBlockNum + 1;
761 		}
762 
763 		newblocknum = udf_new_block(inode->i_sb, inode,
764 				iinfo->i_location.partitionReferenceNum,
765 				goal, err);
766 		if (!newblocknum) {
767 			brelse(prev_epos.bh);
768 			*err = -ENOSPC;
769 			return 0;
770 		}
771 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
772 	}
773 
774 	/* if the extent the requsted block is located in contains multiple
775 	 * blocks, split the extent into at most three extents. blocks prior
776 	 * to requested block, requested block, and blocks after requested
777 	 * block */
778 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
779 
780 #ifdef UDF_PREALLOCATE
781 	/* We preallocate blocks only for regular files. It also makes sense
782 	 * for directories but there's a problem when to drop the
783 	 * preallocation. We might use some delayed work for that but I feel
784 	 * it's overengineering for a filesystem like UDF. */
785 	if (S_ISREG(inode->i_mode))
786 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
787 #endif
788 
789 	/* merge any continuous blocks in laarr */
790 	udf_merge_extents(inode, laarr, &endnum);
791 
792 	/* write back the new extents, inserting new extents if the new number
793 	 * of extents is greater than the old number, and deleting extents if
794 	 * the new number of extents is less than the old number */
795 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
796 
797 	brelse(prev_epos.bh);
798 
799 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
800 				iinfo->i_location.partitionReferenceNum, 0);
801 	if (!newblock) {
802 		*err = -EIO;
803 		return 0;
804 	}
805 	*new = 1;
806 	iinfo->i_next_alloc_block = block;
807 	iinfo->i_next_alloc_goal = newblocknum;
808 	inode->i_ctime = current_fs_time(inode->i_sb);
809 
810 	if (IS_SYNC(inode))
811 		udf_sync_inode(inode);
812 	else
813 		mark_inode_dirty(inode);
814 
815 	return newblock;
816 }
817 
818 static void udf_split_extents(struct inode *inode, int *c, int offset,
819 			      int newblocknum,
820 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
821 			      int *endnum)
822 {
823 	unsigned long blocksize = inode->i_sb->s_blocksize;
824 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
825 
826 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
827 	    (laarr[*c].extLength >> 30) ==
828 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
829 		int curr = *c;
830 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
831 			    blocksize - 1) >> blocksize_bits;
832 		int8_t etype = (laarr[curr].extLength >> 30);
833 
834 		if (blen == 1)
835 			;
836 		else if (!offset || blen == offset + 1) {
837 			laarr[curr + 2] = laarr[curr + 1];
838 			laarr[curr + 1] = laarr[curr];
839 		} else {
840 			laarr[curr + 3] = laarr[curr + 1];
841 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
842 		}
843 
844 		if (offset) {
845 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
846 				udf_free_blocks(inode->i_sb, inode,
847 						&laarr[curr].extLocation,
848 						0, offset);
849 				laarr[curr].extLength =
850 					EXT_NOT_RECORDED_NOT_ALLOCATED |
851 					(offset << blocksize_bits);
852 				laarr[curr].extLocation.logicalBlockNum = 0;
853 				laarr[curr].extLocation.
854 						partitionReferenceNum = 0;
855 			} else
856 				laarr[curr].extLength = (etype << 30) |
857 					(offset << blocksize_bits);
858 			curr++;
859 			(*c)++;
860 			(*endnum)++;
861 		}
862 
863 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
864 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
865 			laarr[curr].extLocation.partitionReferenceNum =
866 				UDF_I(inode)->i_location.partitionReferenceNum;
867 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
868 			blocksize;
869 		curr++;
870 
871 		if (blen != offset + 1) {
872 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
873 				laarr[curr].extLocation.logicalBlockNum +=
874 								offset + 1;
875 			laarr[curr].extLength = (etype << 30) |
876 				((blen - (offset + 1)) << blocksize_bits);
877 			curr++;
878 			(*endnum)++;
879 		}
880 	}
881 }
882 
883 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
884 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
885 				 int *endnum)
886 {
887 	int start, length = 0, currlength = 0, i;
888 
889 	if (*endnum >= (c + 1)) {
890 		if (!lastblock)
891 			return;
892 		else
893 			start = c;
894 	} else {
895 		if ((laarr[c + 1].extLength >> 30) ==
896 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
897 			start = c + 1;
898 			length = currlength =
899 				(((laarr[c + 1].extLength &
900 					UDF_EXTENT_LENGTH_MASK) +
901 				inode->i_sb->s_blocksize - 1) >>
902 				inode->i_sb->s_blocksize_bits);
903 		} else
904 			start = c;
905 	}
906 
907 	for (i = start + 1; i <= *endnum; i++) {
908 		if (i == *endnum) {
909 			if (lastblock)
910 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
911 		} else if ((laarr[i].extLength >> 30) ==
912 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
913 			length += (((laarr[i].extLength &
914 						UDF_EXTENT_LENGTH_MASK) +
915 				    inode->i_sb->s_blocksize - 1) >>
916 				    inode->i_sb->s_blocksize_bits);
917 		} else
918 			break;
919 	}
920 
921 	if (length) {
922 		int next = laarr[start].extLocation.logicalBlockNum +
923 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
924 			  inode->i_sb->s_blocksize - 1) >>
925 			  inode->i_sb->s_blocksize_bits);
926 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
927 				laarr[start].extLocation.partitionReferenceNum,
928 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
929 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
930 				currlength);
931 		if (numalloc) 	{
932 			if (start == (c + 1))
933 				laarr[start].extLength +=
934 					(numalloc <<
935 					 inode->i_sb->s_blocksize_bits);
936 			else {
937 				memmove(&laarr[c + 2], &laarr[c + 1],
938 					sizeof(struct long_ad) * (*endnum - (c + 1)));
939 				(*endnum)++;
940 				laarr[c + 1].extLocation.logicalBlockNum = next;
941 				laarr[c + 1].extLocation.partitionReferenceNum =
942 					laarr[c].extLocation.
943 							partitionReferenceNum;
944 				laarr[c + 1].extLength =
945 					EXT_NOT_RECORDED_ALLOCATED |
946 					(numalloc <<
947 					 inode->i_sb->s_blocksize_bits);
948 				start = c + 1;
949 			}
950 
951 			for (i = start + 1; numalloc && i < *endnum; i++) {
952 				int elen = ((laarr[i].extLength &
953 						UDF_EXTENT_LENGTH_MASK) +
954 					    inode->i_sb->s_blocksize - 1) >>
955 					    inode->i_sb->s_blocksize_bits;
956 
957 				if (elen > numalloc) {
958 					laarr[i].extLength -=
959 						(numalloc <<
960 						 inode->i_sb->s_blocksize_bits);
961 					numalloc = 0;
962 				} else {
963 					numalloc -= elen;
964 					if (*endnum > (i + 1))
965 						memmove(&laarr[i],
966 							&laarr[i + 1],
967 							sizeof(struct long_ad) *
968 							(*endnum - (i + 1)));
969 					i--;
970 					(*endnum)--;
971 				}
972 			}
973 			UDF_I(inode)->i_lenExtents +=
974 				numalloc << inode->i_sb->s_blocksize_bits;
975 		}
976 	}
977 }
978 
979 static void udf_merge_extents(struct inode *inode,
980 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
981 			      int *endnum)
982 {
983 	int i;
984 	unsigned long blocksize = inode->i_sb->s_blocksize;
985 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
986 
987 	for (i = 0; i < (*endnum - 1); i++) {
988 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
989 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
990 
991 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
992 			(((li->extLength >> 30) ==
993 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
994 			((lip1->extLocation.logicalBlockNum -
995 			  li->extLocation.logicalBlockNum) ==
996 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
997 			blocksize - 1) >> blocksize_bits)))) {
998 
999 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1000 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1001 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1002 				lip1->extLength = (lip1->extLength -
1003 						  (li->extLength &
1004 						   UDF_EXTENT_LENGTH_MASK) +
1005 						   UDF_EXTENT_LENGTH_MASK) &
1006 							~(blocksize - 1);
1007 				li->extLength = (li->extLength &
1008 						 UDF_EXTENT_FLAG_MASK) +
1009 						(UDF_EXTENT_LENGTH_MASK + 1) -
1010 						blocksize;
1011 				lip1->extLocation.logicalBlockNum =
1012 					li->extLocation.logicalBlockNum +
1013 					((li->extLength &
1014 						UDF_EXTENT_LENGTH_MASK) >>
1015 						blocksize_bits);
1016 			} else {
1017 				li->extLength = lip1->extLength +
1018 					(((li->extLength &
1019 						UDF_EXTENT_LENGTH_MASK) +
1020 					 blocksize - 1) & ~(blocksize - 1));
1021 				if (*endnum > (i + 2))
1022 					memmove(&laarr[i + 1], &laarr[i + 2],
1023 						sizeof(struct long_ad) *
1024 						(*endnum - (i + 2)));
1025 				i--;
1026 				(*endnum)--;
1027 			}
1028 		} else if (((li->extLength >> 30) ==
1029 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1030 			   ((lip1->extLength >> 30) ==
1031 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1032 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1033 					((li->extLength &
1034 					  UDF_EXTENT_LENGTH_MASK) +
1035 					 blocksize - 1) >> blocksize_bits);
1036 			li->extLocation.logicalBlockNum = 0;
1037 			li->extLocation.partitionReferenceNum = 0;
1038 
1039 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1040 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1041 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1042 				lip1->extLength = (lip1->extLength -
1043 						   (li->extLength &
1044 						   UDF_EXTENT_LENGTH_MASK) +
1045 						   UDF_EXTENT_LENGTH_MASK) &
1046 						   ~(blocksize - 1);
1047 				li->extLength = (li->extLength &
1048 						 UDF_EXTENT_FLAG_MASK) +
1049 						(UDF_EXTENT_LENGTH_MASK + 1) -
1050 						blocksize;
1051 			} else {
1052 				li->extLength = lip1->extLength +
1053 					(((li->extLength &
1054 						UDF_EXTENT_LENGTH_MASK) +
1055 					  blocksize - 1) & ~(blocksize - 1));
1056 				if (*endnum > (i + 2))
1057 					memmove(&laarr[i + 1], &laarr[i + 2],
1058 						sizeof(struct long_ad) *
1059 						(*endnum - (i + 2)));
1060 				i--;
1061 				(*endnum)--;
1062 			}
1063 		} else if ((li->extLength >> 30) ==
1064 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1065 			udf_free_blocks(inode->i_sb, inode,
1066 					&li->extLocation, 0,
1067 					((li->extLength &
1068 						UDF_EXTENT_LENGTH_MASK) +
1069 					 blocksize - 1) >> blocksize_bits);
1070 			li->extLocation.logicalBlockNum = 0;
1071 			li->extLocation.partitionReferenceNum = 0;
1072 			li->extLength = (li->extLength &
1073 						UDF_EXTENT_LENGTH_MASK) |
1074 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1075 		}
1076 	}
1077 }
1078 
1079 static void udf_update_extents(struct inode *inode,
1080 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1081 			       int startnum, int endnum,
1082 			       struct extent_position *epos)
1083 {
1084 	int start = 0, i;
1085 	struct kernel_lb_addr tmploc;
1086 	uint32_t tmplen;
1087 
1088 	if (startnum > endnum) {
1089 		for (i = 0; i < (startnum - endnum); i++)
1090 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1091 					laarr[i].extLength);
1092 	} else if (startnum < endnum) {
1093 		for (i = 0; i < (endnum - startnum); i++) {
1094 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1095 					laarr[i].extLength);
1096 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1097 				      &laarr[i].extLength, 1);
1098 			start++;
1099 		}
1100 	}
1101 
1102 	for (i = start; i < endnum; i++) {
1103 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1104 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1105 			       laarr[i].extLength, 1);
1106 	}
1107 }
1108 
1109 struct buffer_head *udf_bread(struct inode *inode, int block,
1110 			      int create, int *err)
1111 {
1112 	struct buffer_head *bh = NULL;
1113 
1114 	bh = udf_getblk(inode, block, create, err);
1115 	if (!bh)
1116 		return NULL;
1117 
1118 	if (buffer_uptodate(bh))
1119 		return bh;
1120 
1121 	ll_rw_block(READ, 1, &bh);
1122 
1123 	wait_on_buffer(bh);
1124 	if (buffer_uptodate(bh))
1125 		return bh;
1126 
1127 	brelse(bh);
1128 	*err = -EIO;
1129 	return NULL;
1130 }
1131 
1132 int udf_setsize(struct inode *inode, loff_t newsize)
1133 {
1134 	int err;
1135 	struct udf_inode_info *iinfo;
1136 	int bsize = 1 << inode->i_blkbits;
1137 
1138 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1139 	      S_ISLNK(inode->i_mode)))
1140 		return -EINVAL;
1141 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1142 		return -EPERM;
1143 
1144 	iinfo = UDF_I(inode);
1145 	if (newsize > inode->i_size) {
1146 		down_write(&iinfo->i_data_sem);
1147 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1148 			if (bsize <
1149 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1150 				err = udf_expand_file_adinicb(inode);
1151 				if (err)
1152 					return err;
1153 				down_write(&iinfo->i_data_sem);
1154 			} else {
1155 				iinfo->i_lenAlloc = newsize;
1156 				goto set_size;
1157 			}
1158 		}
1159 		err = udf_extend_file(inode, newsize);
1160 		if (err) {
1161 			up_write(&iinfo->i_data_sem);
1162 			return err;
1163 		}
1164 set_size:
1165 		truncate_setsize(inode, newsize);
1166 		up_write(&iinfo->i_data_sem);
1167 	} else {
1168 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1169 			down_write(&iinfo->i_data_sem);
1170 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1171 			       0x00, bsize - newsize -
1172 			       udf_file_entry_alloc_offset(inode));
1173 			iinfo->i_lenAlloc = newsize;
1174 			truncate_setsize(inode, newsize);
1175 			up_write(&iinfo->i_data_sem);
1176 			goto update_time;
1177 		}
1178 		err = block_truncate_page(inode->i_mapping, newsize,
1179 					  udf_get_block);
1180 		if (err)
1181 			return err;
1182 		down_write(&iinfo->i_data_sem);
1183 		truncate_setsize(inode, newsize);
1184 		udf_truncate_extents(inode);
1185 		up_write(&iinfo->i_data_sem);
1186 	}
1187 update_time:
1188 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1189 	if (IS_SYNC(inode))
1190 		udf_sync_inode(inode);
1191 	else
1192 		mark_inode_dirty(inode);
1193 	return 0;
1194 }
1195 
1196 static void __udf_read_inode(struct inode *inode)
1197 {
1198 	struct buffer_head *bh = NULL;
1199 	struct fileEntry *fe;
1200 	uint16_t ident;
1201 	struct udf_inode_info *iinfo = UDF_I(inode);
1202 
1203 	/*
1204 	 * Set defaults, but the inode is still incomplete!
1205 	 * Note: get_new_inode() sets the following on a new inode:
1206 	 *      i_sb = sb
1207 	 *      i_no = ino
1208 	 *      i_flags = sb->s_flags
1209 	 *      i_state = 0
1210 	 * clean_inode(): zero fills and sets
1211 	 *      i_count = 1
1212 	 *      i_nlink = 1
1213 	 *      i_op = NULL;
1214 	 */
1215 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1216 	if (!bh) {
1217 		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1218 		make_bad_inode(inode);
1219 		return;
1220 	}
1221 
1222 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1223 	    ident != TAG_IDENT_USE) {
1224 		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1225 			inode->i_ino, ident);
1226 		brelse(bh);
1227 		make_bad_inode(inode);
1228 		return;
1229 	}
1230 
1231 	fe = (struct fileEntry *)bh->b_data;
1232 
1233 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1234 		struct buffer_head *ibh;
1235 
1236 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1237 					&ident);
1238 		if (ident == TAG_IDENT_IE && ibh) {
1239 			struct buffer_head *nbh = NULL;
1240 			struct kernel_lb_addr loc;
1241 			struct indirectEntry *ie;
1242 
1243 			ie = (struct indirectEntry *)ibh->b_data;
1244 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1245 
1246 			if (ie->indirectICB.extLength &&
1247 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1248 							&ident))) {
1249 				if (ident == TAG_IDENT_FE ||
1250 					ident == TAG_IDENT_EFE) {
1251 					memcpy(&iinfo->i_location,
1252 						&loc,
1253 						sizeof(struct kernel_lb_addr));
1254 					brelse(bh);
1255 					brelse(ibh);
1256 					brelse(nbh);
1257 					__udf_read_inode(inode);
1258 					return;
1259 				}
1260 				brelse(nbh);
1261 			}
1262 		}
1263 		brelse(ibh);
1264 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1265 		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1266 			le16_to_cpu(fe->icbTag.strategyType));
1267 		brelse(bh);
1268 		make_bad_inode(inode);
1269 		return;
1270 	}
1271 	udf_fill_inode(inode, bh);
1272 
1273 	brelse(bh);
1274 }
1275 
1276 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1277 {
1278 	struct fileEntry *fe;
1279 	struct extendedFileEntry *efe;
1280 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1281 	struct udf_inode_info *iinfo = UDF_I(inode);
1282 	unsigned int link_count;
1283 
1284 	fe = (struct fileEntry *)bh->b_data;
1285 	efe = (struct extendedFileEntry *)bh->b_data;
1286 
1287 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1288 		iinfo->i_strat4096 = 0;
1289 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1290 		iinfo->i_strat4096 = 1;
1291 
1292 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1293 							ICBTAG_FLAG_AD_MASK;
1294 	iinfo->i_unique = 0;
1295 	iinfo->i_lenEAttr = 0;
1296 	iinfo->i_lenExtents = 0;
1297 	iinfo->i_lenAlloc = 0;
1298 	iinfo->i_next_alloc_block = 0;
1299 	iinfo->i_next_alloc_goal = 0;
1300 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1301 		iinfo->i_efe = 1;
1302 		iinfo->i_use = 0;
1303 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1304 					sizeof(struct extendedFileEntry))) {
1305 			make_bad_inode(inode);
1306 			return;
1307 		}
1308 		memcpy(iinfo->i_ext.i_data,
1309 		       bh->b_data + sizeof(struct extendedFileEntry),
1310 		       inode->i_sb->s_blocksize -
1311 					sizeof(struct extendedFileEntry));
1312 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1313 		iinfo->i_efe = 0;
1314 		iinfo->i_use = 0;
1315 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1316 						sizeof(struct fileEntry))) {
1317 			make_bad_inode(inode);
1318 			return;
1319 		}
1320 		memcpy(iinfo->i_ext.i_data,
1321 		       bh->b_data + sizeof(struct fileEntry),
1322 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1323 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1324 		iinfo->i_efe = 0;
1325 		iinfo->i_use = 1;
1326 		iinfo->i_lenAlloc = le32_to_cpu(
1327 				((struct unallocSpaceEntry *)bh->b_data)->
1328 				 lengthAllocDescs);
1329 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1330 					sizeof(struct unallocSpaceEntry))) {
1331 			make_bad_inode(inode);
1332 			return;
1333 		}
1334 		memcpy(iinfo->i_ext.i_data,
1335 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1336 		       inode->i_sb->s_blocksize -
1337 					sizeof(struct unallocSpaceEntry));
1338 		return;
1339 	}
1340 
1341 	read_lock(&sbi->s_cred_lock);
1342 	i_uid_write(inode, le32_to_cpu(fe->uid));
1343 	if (!uid_valid(inode->i_uid) ||
1344 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1345 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1346 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1347 
1348 	i_gid_write(inode, le32_to_cpu(fe->gid));
1349 	if (!gid_valid(inode->i_gid) ||
1350 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1351 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1352 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1353 
1354 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1355 			sbi->s_fmode != UDF_INVALID_MODE)
1356 		inode->i_mode = sbi->s_fmode;
1357 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1358 			sbi->s_dmode != UDF_INVALID_MODE)
1359 		inode->i_mode = sbi->s_dmode;
1360 	else
1361 		inode->i_mode = udf_convert_permissions(fe);
1362 	inode->i_mode &= ~sbi->s_umask;
1363 	read_unlock(&sbi->s_cred_lock);
1364 
1365 	link_count = le16_to_cpu(fe->fileLinkCount);
1366 	if (!link_count)
1367 		link_count = 1;
1368 	set_nlink(inode, link_count);
1369 
1370 	inode->i_size = le64_to_cpu(fe->informationLength);
1371 	iinfo->i_lenExtents = inode->i_size;
1372 
1373 	if (iinfo->i_efe == 0) {
1374 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1375 			(inode->i_sb->s_blocksize_bits - 9);
1376 
1377 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1378 			inode->i_atime = sbi->s_record_time;
1379 
1380 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1381 					    fe->modificationTime))
1382 			inode->i_mtime = sbi->s_record_time;
1383 
1384 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1385 			inode->i_ctime = sbi->s_record_time;
1386 
1387 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1388 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1389 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1390 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1391 	} else {
1392 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1393 		    (inode->i_sb->s_blocksize_bits - 9);
1394 
1395 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1396 			inode->i_atime = sbi->s_record_time;
1397 
1398 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1399 					    efe->modificationTime))
1400 			inode->i_mtime = sbi->s_record_time;
1401 
1402 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1403 			iinfo->i_crtime = sbi->s_record_time;
1404 
1405 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1406 			inode->i_ctime = sbi->s_record_time;
1407 
1408 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1409 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1410 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1411 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1412 	}
1413 
1414 	switch (fe->icbTag.fileType) {
1415 	case ICBTAG_FILE_TYPE_DIRECTORY:
1416 		inode->i_op = &udf_dir_inode_operations;
1417 		inode->i_fop = &udf_dir_operations;
1418 		inode->i_mode |= S_IFDIR;
1419 		inc_nlink(inode);
1420 		break;
1421 	case ICBTAG_FILE_TYPE_REALTIME:
1422 	case ICBTAG_FILE_TYPE_REGULAR:
1423 	case ICBTAG_FILE_TYPE_UNDEF:
1424 	case ICBTAG_FILE_TYPE_VAT20:
1425 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1426 			inode->i_data.a_ops = &udf_adinicb_aops;
1427 		else
1428 			inode->i_data.a_ops = &udf_aops;
1429 		inode->i_op = &udf_file_inode_operations;
1430 		inode->i_fop = &udf_file_operations;
1431 		inode->i_mode |= S_IFREG;
1432 		break;
1433 	case ICBTAG_FILE_TYPE_BLOCK:
1434 		inode->i_mode |= S_IFBLK;
1435 		break;
1436 	case ICBTAG_FILE_TYPE_CHAR:
1437 		inode->i_mode |= S_IFCHR;
1438 		break;
1439 	case ICBTAG_FILE_TYPE_FIFO:
1440 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1441 		break;
1442 	case ICBTAG_FILE_TYPE_SOCKET:
1443 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1444 		break;
1445 	case ICBTAG_FILE_TYPE_SYMLINK:
1446 		inode->i_data.a_ops = &udf_symlink_aops;
1447 		inode->i_op = &udf_symlink_inode_operations;
1448 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1449 		break;
1450 	case ICBTAG_FILE_TYPE_MAIN:
1451 		udf_debug("METADATA FILE-----\n");
1452 		break;
1453 	case ICBTAG_FILE_TYPE_MIRROR:
1454 		udf_debug("METADATA MIRROR FILE-----\n");
1455 		break;
1456 	case ICBTAG_FILE_TYPE_BITMAP:
1457 		udf_debug("METADATA BITMAP FILE-----\n");
1458 		break;
1459 	default:
1460 		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1461 			inode->i_ino, fe->icbTag.fileType);
1462 		make_bad_inode(inode);
1463 		return;
1464 	}
1465 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1466 		struct deviceSpec *dsea =
1467 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1468 		if (dsea) {
1469 			init_special_inode(inode, inode->i_mode,
1470 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1471 				      le32_to_cpu(dsea->minorDeviceIdent)));
1472 			/* Developer ID ??? */
1473 		} else
1474 			make_bad_inode(inode);
1475 	}
1476 }
1477 
1478 static int udf_alloc_i_data(struct inode *inode, size_t size)
1479 {
1480 	struct udf_inode_info *iinfo = UDF_I(inode);
1481 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1482 
1483 	if (!iinfo->i_ext.i_data) {
1484 		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1485 			inode->i_ino);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static umode_t udf_convert_permissions(struct fileEntry *fe)
1493 {
1494 	umode_t mode;
1495 	uint32_t permissions;
1496 	uint32_t flags;
1497 
1498 	permissions = le32_to_cpu(fe->permissions);
1499 	flags = le16_to_cpu(fe->icbTag.flags);
1500 
1501 	mode =	((permissions) & S_IRWXO) |
1502 		((permissions >> 2) & S_IRWXG) |
1503 		((permissions >> 4) & S_IRWXU) |
1504 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1505 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1506 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1507 
1508 	return mode;
1509 }
1510 
1511 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1512 {
1513 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1514 }
1515 
1516 static int udf_sync_inode(struct inode *inode)
1517 {
1518 	return udf_update_inode(inode, 1);
1519 }
1520 
1521 static int udf_update_inode(struct inode *inode, int do_sync)
1522 {
1523 	struct buffer_head *bh = NULL;
1524 	struct fileEntry *fe;
1525 	struct extendedFileEntry *efe;
1526 	uint64_t lb_recorded;
1527 	uint32_t udfperms;
1528 	uint16_t icbflags;
1529 	uint16_t crclen;
1530 	int err = 0;
1531 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1532 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1533 	struct udf_inode_info *iinfo = UDF_I(inode);
1534 
1535 	bh = udf_tgetblk(inode->i_sb,
1536 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1537 	if (!bh) {
1538 		udf_debug("getblk failure\n");
1539 		return -ENOMEM;
1540 	}
1541 
1542 	lock_buffer(bh);
1543 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1544 	fe = (struct fileEntry *)bh->b_data;
1545 	efe = (struct extendedFileEntry *)bh->b_data;
1546 
1547 	if (iinfo->i_use) {
1548 		struct unallocSpaceEntry *use =
1549 			(struct unallocSpaceEntry *)bh->b_data;
1550 
1551 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1552 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1553 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1554 					sizeof(struct unallocSpaceEntry));
1555 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1556 		use->descTag.tagLocation =
1557 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1558 		crclen = sizeof(struct unallocSpaceEntry) +
1559 				iinfo->i_lenAlloc - sizeof(struct tag);
1560 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1561 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1562 							   sizeof(struct tag),
1563 							   crclen));
1564 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1565 
1566 		goto out;
1567 	}
1568 
1569 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1570 		fe->uid = cpu_to_le32(-1);
1571 	else
1572 		fe->uid = cpu_to_le32(i_uid_read(inode));
1573 
1574 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1575 		fe->gid = cpu_to_le32(-1);
1576 	else
1577 		fe->gid = cpu_to_le32(i_gid_read(inode));
1578 
1579 	udfperms = ((inode->i_mode & S_IRWXO)) |
1580 		   ((inode->i_mode & S_IRWXG) << 2) |
1581 		   ((inode->i_mode & S_IRWXU) << 4);
1582 
1583 	udfperms |= (le32_to_cpu(fe->permissions) &
1584 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1585 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1586 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1587 	fe->permissions = cpu_to_le32(udfperms);
1588 
1589 	if (S_ISDIR(inode->i_mode))
1590 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1591 	else
1592 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1593 
1594 	fe->informationLength = cpu_to_le64(inode->i_size);
1595 
1596 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1597 		struct regid *eid;
1598 		struct deviceSpec *dsea =
1599 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600 		if (!dsea) {
1601 			dsea = (struct deviceSpec *)
1602 				udf_add_extendedattr(inode,
1603 						     sizeof(struct deviceSpec) +
1604 						     sizeof(struct regid), 12, 0x3);
1605 			dsea->attrType = cpu_to_le32(12);
1606 			dsea->attrSubtype = 1;
1607 			dsea->attrLength = cpu_to_le32(
1608 						sizeof(struct deviceSpec) +
1609 						sizeof(struct regid));
1610 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1611 		}
1612 		eid = (struct regid *)dsea->impUse;
1613 		memset(eid, 0, sizeof(struct regid));
1614 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1615 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1616 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1617 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1618 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1619 	}
1620 
1621 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1622 		lb_recorded = 0; /* No extents => no blocks! */
1623 	else
1624 		lb_recorded =
1625 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1626 			(blocksize_bits - 9);
1627 
1628 	if (iinfo->i_efe == 0) {
1629 		memcpy(bh->b_data + sizeof(struct fileEntry),
1630 		       iinfo->i_ext.i_data,
1631 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1632 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1633 
1634 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1635 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1636 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1637 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1638 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1639 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1640 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1641 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1642 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1643 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1644 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1645 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1646 		crclen = sizeof(struct fileEntry);
1647 	} else {
1648 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1649 		       iinfo->i_ext.i_data,
1650 		       inode->i_sb->s_blocksize -
1651 					sizeof(struct extendedFileEntry));
1652 		efe->objectSize = cpu_to_le64(inode->i_size);
1653 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1654 
1655 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1656 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1657 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1658 			iinfo->i_crtime = inode->i_atime;
1659 
1660 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1661 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1662 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1663 			iinfo->i_crtime = inode->i_mtime;
1664 
1665 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1666 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1667 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1668 			iinfo->i_crtime = inode->i_ctime;
1669 
1670 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1671 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1672 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1673 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1674 
1675 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1676 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1677 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1678 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1679 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1680 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1681 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1682 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1683 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1684 		crclen = sizeof(struct extendedFileEntry);
1685 	}
1686 	if (iinfo->i_strat4096) {
1687 		fe->icbTag.strategyType = cpu_to_le16(4096);
1688 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1689 		fe->icbTag.numEntries = cpu_to_le16(2);
1690 	} else {
1691 		fe->icbTag.strategyType = cpu_to_le16(4);
1692 		fe->icbTag.numEntries = cpu_to_le16(1);
1693 	}
1694 
1695 	if (S_ISDIR(inode->i_mode))
1696 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1697 	else if (S_ISREG(inode->i_mode))
1698 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1699 	else if (S_ISLNK(inode->i_mode))
1700 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1701 	else if (S_ISBLK(inode->i_mode))
1702 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1703 	else if (S_ISCHR(inode->i_mode))
1704 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1705 	else if (S_ISFIFO(inode->i_mode))
1706 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1707 	else if (S_ISSOCK(inode->i_mode))
1708 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1709 
1710 	icbflags =	iinfo->i_alloc_type |
1711 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1712 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1713 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1714 			(le16_to_cpu(fe->icbTag.flags) &
1715 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1716 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1717 
1718 	fe->icbTag.flags = cpu_to_le16(icbflags);
1719 	if (sbi->s_udfrev >= 0x0200)
1720 		fe->descTag.descVersion = cpu_to_le16(3);
1721 	else
1722 		fe->descTag.descVersion = cpu_to_le16(2);
1723 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1724 	fe->descTag.tagLocation = cpu_to_le32(
1725 					iinfo->i_location.logicalBlockNum);
1726 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1727 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1728 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1729 						  crclen));
1730 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1731 
1732 out:
1733 	set_buffer_uptodate(bh);
1734 	unlock_buffer(bh);
1735 
1736 	/* write the data blocks */
1737 	mark_buffer_dirty(bh);
1738 	if (do_sync) {
1739 		sync_dirty_buffer(bh);
1740 		if (buffer_write_io_error(bh)) {
1741 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1742 				 inode->i_ino);
1743 			err = -EIO;
1744 		}
1745 	}
1746 	brelse(bh);
1747 
1748 	return err;
1749 }
1750 
1751 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1752 {
1753 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1754 	struct inode *inode = iget_locked(sb, block);
1755 
1756 	if (!inode)
1757 		return NULL;
1758 
1759 	if (inode->i_state & I_NEW) {
1760 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1761 		__udf_read_inode(inode);
1762 		unlock_new_inode(inode);
1763 	}
1764 
1765 	if (is_bad_inode(inode))
1766 		goto out_iput;
1767 
1768 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1769 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1770 		udf_debug("block=%d, partition=%d out of range\n",
1771 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1772 		make_bad_inode(inode);
1773 		goto out_iput;
1774 	}
1775 
1776 	return inode;
1777 
1778  out_iput:
1779 	iput(inode);
1780 	return NULL;
1781 }
1782 
1783 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1784 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1785 {
1786 	int adsize;
1787 	struct short_ad *sad = NULL;
1788 	struct long_ad *lad = NULL;
1789 	struct allocExtDesc *aed;
1790 	uint8_t *ptr;
1791 	struct udf_inode_info *iinfo = UDF_I(inode);
1792 
1793 	if (!epos->bh)
1794 		ptr = iinfo->i_ext.i_data + epos->offset -
1795 			udf_file_entry_alloc_offset(inode) +
1796 			iinfo->i_lenEAttr;
1797 	else
1798 		ptr = epos->bh->b_data + epos->offset;
1799 
1800 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1801 		adsize = sizeof(struct short_ad);
1802 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1803 		adsize = sizeof(struct long_ad);
1804 	else
1805 		return -EIO;
1806 
1807 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1808 		unsigned char *sptr, *dptr;
1809 		struct buffer_head *nbh;
1810 		int err, loffset;
1811 		struct kernel_lb_addr obloc = epos->block;
1812 
1813 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1814 						obloc.partitionReferenceNum,
1815 						obloc.logicalBlockNum, &err);
1816 		if (!epos->block.logicalBlockNum)
1817 			return -ENOSPC;
1818 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1819 								 &epos->block,
1820 								 0));
1821 		if (!nbh)
1822 			return -EIO;
1823 		lock_buffer(nbh);
1824 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1825 		set_buffer_uptodate(nbh);
1826 		unlock_buffer(nbh);
1827 		mark_buffer_dirty_inode(nbh, inode);
1828 
1829 		aed = (struct allocExtDesc *)(nbh->b_data);
1830 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1831 			aed->previousAllocExtLocation =
1832 					cpu_to_le32(obloc.logicalBlockNum);
1833 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1834 			loffset = epos->offset;
1835 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1836 			sptr = ptr - adsize;
1837 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1838 			memcpy(dptr, sptr, adsize);
1839 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1840 		} else {
1841 			loffset = epos->offset + adsize;
1842 			aed->lengthAllocDescs = cpu_to_le32(0);
1843 			sptr = ptr;
1844 			epos->offset = sizeof(struct allocExtDesc);
1845 
1846 			if (epos->bh) {
1847 				aed = (struct allocExtDesc *)epos->bh->b_data;
1848 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1849 			} else {
1850 				iinfo->i_lenAlloc += adsize;
1851 				mark_inode_dirty(inode);
1852 			}
1853 		}
1854 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1855 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1856 				    epos->block.logicalBlockNum, sizeof(struct tag));
1857 		else
1858 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1859 				    epos->block.logicalBlockNum, sizeof(struct tag));
1860 		switch (iinfo->i_alloc_type) {
1861 		case ICBTAG_FLAG_AD_SHORT:
1862 			sad = (struct short_ad *)sptr;
1863 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1864 						     inode->i_sb->s_blocksize);
1865 			sad->extPosition =
1866 				cpu_to_le32(epos->block.logicalBlockNum);
1867 			break;
1868 		case ICBTAG_FLAG_AD_LONG:
1869 			lad = (struct long_ad *)sptr;
1870 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1871 						     inode->i_sb->s_blocksize);
1872 			lad->extLocation = cpu_to_lelb(epos->block);
1873 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1874 			break;
1875 		}
1876 		if (epos->bh) {
1877 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1878 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1879 				udf_update_tag(epos->bh->b_data, loffset);
1880 			else
1881 				udf_update_tag(epos->bh->b_data,
1882 						sizeof(struct allocExtDesc));
1883 			mark_buffer_dirty_inode(epos->bh, inode);
1884 			brelse(epos->bh);
1885 		} else {
1886 			mark_inode_dirty(inode);
1887 		}
1888 		epos->bh = nbh;
1889 	}
1890 
1891 	udf_write_aext(inode, epos, eloc, elen, inc);
1892 
1893 	if (!epos->bh) {
1894 		iinfo->i_lenAlloc += adsize;
1895 		mark_inode_dirty(inode);
1896 	} else {
1897 		aed = (struct allocExtDesc *)epos->bh->b_data;
1898 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1899 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1901 			udf_update_tag(epos->bh->b_data,
1902 					epos->offset + (inc ? 0 : adsize));
1903 		else
1904 			udf_update_tag(epos->bh->b_data,
1905 					sizeof(struct allocExtDesc));
1906 		mark_buffer_dirty_inode(epos->bh, inode);
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1913 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1914 {
1915 	int adsize;
1916 	uint8_t *ptr;
1917 	struct short_ad *sad;
1918 	struct long_ad *lad;
1919 	struct udf_inode_info *iinfo = UDF_I(inode);
1920 
1921 	if (!epos->bh)
1922 		ptr = iinfo->i_ext.i_data + epos->offset -
1923 			udf_file_entry_alloc_offset(inode) +
1924 			iinfo->i_lenEAttr;
1925 	else
1926 		ptr = epos->bh->b_data + epos->offset;
1927 
1928 	switch (iinfo->i_alloc_type) {
1929 	case ICBTAG_FLAG_AD_SHORT:
1930 		sad = (struct short_ad *)ptr;
1931 		sad->extLength = cpu_to_le32(elen);
1932 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1933 		adsize = sizeof(struct short_ad);
1934 		break;
1935 	case ICBTAG_FLAG_AD_LONG:
1936 		lad = (struct long_ad *)ptr;
1937 		lad->extLength = cpu_to_le32(elen);
1938 		lad->extLocation = cpu_to_lelb(*eloc);
1939 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1940 		adsize = sizeof(struct long_ad);
1941 		break;
1942 	default:
1943 		return;
1944 	}
1945 
1946 	if (epos->bh) {
1947 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1948 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1949 			struct allocExtDesc *aed =
1950 				(struct allocExtDesc *)epos->bh->b_data;
1951 			udf_update_tag(epos->bh->b_data,
1952 				       le32_to_cpu(aed->lengthAllocDescs) +
1953 				       sizeof(struct allocExtDesc));
1954 		}
1955 		mark_buffer_dirty_inode(epos->bh, inode);
1956 	} else {
1957 		mark_inode_dirty(inode);
1958 	}
1959 
1960 	if (inc)
1961 		epos->offset += adsize;
1962 }
1963 
1964 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1965 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1966 {
1967 	int8_t etype;
1968 
1969 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1970 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1971 		int block;
1972 		epos->block = *eloc;
1973 		epos->offset = sizeof(struct allocExtDesc);
1974 		brelse(epos->bh);
1975 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1976 		epos->bh = udf_tread(inode->i_sb, block);
1977 		if (!epos->bh) {
1978 			udf_debug("reading block %d failed!\n", block);
1979 			return -1;
1980 		}
1981 	}
1982 
1983 	return etype;
1984 }
1985 
1986 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1987 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1988 {
1989 	int alen;
1990 	int8_t etype;
1991 	uint8_t *ptr;
1992 	struct short_ad *sad;
1993 	struct long_ad *lad;
1994 	struct udf_inode_info *iinfo = UDF_I(inode);
1995 
1996 	if (!epos->bh) {
1997 		if (!epos->offset)
1998 			epos->offset = udf_file_entry_alloc_offset(inode);
1999 		ptr = iinfo->i_ext.i_data + epos->offset -
2000 			udf_file_entry_alloc_offset(inode) +
2001 			iinfo->i_lenEAttr;
2002 		alen = udf_file_entry_alloc_offset(inode) +
2003 							iinfo->i_lenAlloc;
2004 	} else {
2005 		if (!epos->offset)
2006 			epos->offset = sizeof(struct allocExtDesc);
2007 		ptr = epos->bh->b_data + epos->offset;
2008 		alen = sizeof(struct allocExtDesc) +
2009 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2010 							lengthAllocDescs);
2011 	}
2012 
2013 	switch (iinfo->i_alloc_type) {
2014 	case ICBTAG_FLAG_AD_SHORT:
2015 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2016 		if (!sad)
2017 			return -1;
2018 		etype = le32_to_cpu(sad->extLength) >> 30;
2019 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2020 		eloc->partitionReferenceNum =
2021 				iinfo->i_location.partitionReferenceNum;
2022 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2023 		break;
2024 	case ICBTAG_FLAG_AD_LONG:
2025 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2026 		if (!lad)
2027 			return -1;
2028 		etype = le32_to_cpu(lad->extLength) >> 30;
2029 		*eloc = lelb_to_cpu(lad->extLocation);
2030 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2031 		break;
2032 	default:
2033 		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2034 		return -1;
2035 	}
2036 
2037 	return etype;
2038 }
2039 
2040 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2041 			      struct kernel_lb_addr neloc, uint32_t nelen)
2042 {
2043 	struct kernel_lb_addr oeloc;
2044 	uint32_t oelen;
2045 	int8_t etype;
2046 
2047 	if (epos.bh)
2048 		get_bh(epos.bh);
2049 
2050 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2051 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2052 		neloc = oeloc;
2053 		nelen = (etype << 30) | oelen;
2054 	}
2055 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2056 	brelse(epos.bh);
2057 
2058 	return (nelen >> 30);
2059 }
2060 
2061 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2062 		       struct kernel_lb_addr eloc, uint32_t elen)
2063 {
2064 	struct extent_position oepos;
2065 	int adsize;
2066 	int8_t etype;
2067 	struct allocExtDesc *aed;
2068 	struct udf_inode_info *iinfo;
2069 
2070 	if (epos.bh) {
2071 		get_bh(epos.bh);
2072 		get_bh(epos.bh);
2073 	}
2074 
2075 	iinfo = UDF_I(inode);
2076 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2077 		adsize = sizeof(struct short_ad);
2078 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2079 		adsize = sizeof(struct long_ad);
2080 	else
2081 		adsize = 0;
2082 
2083 	oepos = epos;
2084 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2085 		return -1;
2086 
2087 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2088 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2089 		if (oepos.bh != epos.bh) {
2090 			oepos.block = epos.block;
2091 			brelse(oepos.bh);
2092 			get_bh(epos.bh);
2093 			oepos.bh = epos.bh;
2094 			oepos.offset = epos.offset - adsize;
2095 		}
2096 	}
2097 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2098 	elen = 0;
2099 
2100 	if (epos.bh != oepos.bh) {
2101 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2102 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2103 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2104 		if (!oepos.bh) {
2105 			iinfo->i_lenAlloc -= (adsize * 2);
2106 			mark_inode_dirty(inode);
2107 		} else {
2108 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2109 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2110 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2111 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2112 				udf_update_tag(oepos.bh->b_data,
2113 						oepos.offset - (2 * adsize));
2114 			else
2115 				udf_update_tag(oepos.bh->b_data,
2116 						sizeof(struct allocExtDesc));
2117 			mark_buffer_dirty_inode(oepos.bh, inode);
2118 		}
2119 	} else {
2120 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2121 		if (!oepos.bh) {
2122 			iinfo->i_lenAlloc -= adsize;
2123 			mark_inode_dirty(inode);
2124 		} else {
2125 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2126 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2127 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2128 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2129 				udf_update_tag(oepos.bh->b_data,
2130 						epos.offset - adsize);
2131 			else
2132 				udf_update_tag(oepos.bh->b_data,
2133 						sizeof(struct allocExtDesc));
2134 			mark_buffer_dirty_inode(oepos.bh, inode);
2135 		}
2136 	}
2137 
2138 	brelse(epos.bh);
2139 	brelse(oepos.bh);
2140 
2141 	return (elen >> 30);
2142 }
2143 
2144 int8_t inode_bmap(struct inode *inode, sector_t block,
2145 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2146 		  uint32_t *elen, sector_t *offset)
2147 {
2148 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2149 	loff_t lbcount = 0, bcount =
2150 	    (loff_t) block << blocksize_bits;
2151 	int8_t etype;
2152 	struct udf_inode_info *iinfo;
2153 
2154 	iinfo = UDF_I(inode);
2155 	pos->offset = 0;
2156 	pos->block = iinfo->i_location;
2157 	pos->bh = NULL;
2158 	*elen = 0;
2159 
2160 	do {
2161 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2162 		if (etype == -1) {
2163 			*offset = (bcount - lbcount) >> blocksize_bits;
2164 			iinfo->i_lenExtents = lbcount;
2165 			return -1;
2166 		}
2167 		lbcount += *elen;
2168 	} while (lbcount <= bcount);
2169 
2170 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2171 
2172 	return etype;
2173 }
2174 
2175 long udf_block_map(struct inode *inode, sector_t block)
2176 {
2177 	struct kernel_lb_addr eloc;
2178 	uint32_t elen;
2179 	sector_t offset;
2180 	struct extent_position epos = {};
2181 	int ret;
2182 
2183 	down_read(&UDF_I(inode)->i_data_sem);
2184 
2185 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2186 						(EXT_RECORDED_ALLOCATED >> 30))
2187 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2188 	else
2189 		ret = 0;
2190 
2191 	up_read(&UDF_I(inode)->i_data_sem);
2192 	brelse(epos.bh);
2193 
2194 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2195 		return udf_fixed_to_variable(ret);
2196 	else
2197 		return ret;
2198 }
2199