1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_readpage(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 char *kaddr; 215 struct udf_inode_info *iinfo = UDF_I(inode); 216 loff_t isize = i_size_read(inode); 217 218 kaddr = kmap_local_page(page); 219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 220 memset(kaddr + isize, 0, PAGE_SIZE - isize); 221 flush_dcache_page(page); 222 SetPageUptodate(page); 223 kunmap_local(kaddr); 224 } 225 226 static int udf_read_folio(struct file *file, struct folio *folio) 227 { 228 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 229 230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 231 udf_adinicb_readpage(&folio->page); 232 folio_unlock(folio); 233 return 0; 234 } 235 return mpage_read_folio(folio, udf_get_block); 236 } 237 238 static void udf_readahead(struct readahead_control *rac) 239 { 240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 241 242 /* 243 * No readahead needed for in-ICB files and udf_get_block() would get 244 * confused for such file anyway. 245 */ 246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 247 return; 248 249 mpage_readahead(rac, udf_get_block); 250 } 251 252 static int udf_write_begin(struct file *file, struct address_space *mapping, 253 loff_t pos, unsigned len, 254 struct page **pagep, void **fsdata) 255 { 256 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 257 struct page *page; 258 int ret; 259 260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 261 ret = block_write_begin(mapping, pos, len, pagep, 262 udf_get_block); 263 if (unlikely(ret)) 264 udf_write_failed(mapping, pos + len); 265 return ret; 266 } 267 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 268 return -EIO; 269 page = grab_cache_page_write_begin(mapping, 0); 270 if (!page) 271 return -ENOMEM; 272 *pagep = page; 273 if (!PageUptodate(page)) 274 udf_adinicb_readpage(page); 275 return 0; 276 } 277 278 static int udf_write_end(struct file *file, struct address_space *mapping, 279 loff_t pos, unsigned len, unsigned copied, 280 struct page *page, void *fsdata) 281 { 282 struct inode *inode = file_inode(file); 283 loff_t last_pos; 284 285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 286 return generic_write_end(file, mapping, pos, len, copied, page, 287 fsdata); 288 last_pos = pos + copied; 289 if (last_pos > inode->i_size) 290 i_size_write(inode, last_pos); 291 set_page_dirty(page); 292 unlock_page(page); 293 put_page(page); 294 295 return copied; 296 } 297 298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 299 { 300 struct file *file = iocb->ki_filp; 301 struct address_space *mapping = file->f_mapping; 302 struct inode *inode = mapping->host; 303 size_t count = iov_iter_count(iter); 304 ssize_t ret; 305 306 /* Fallback to buffered IO for in-ICB files */ 307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 308 return 0; 309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 311 udf_write_failed(mapping, iocb->ki_pos + count); 312 return ret; 313 } 314 315 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 316 { 317 struct udf_inode_info *iinfo = UDF_I(mapping->host); 318 319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 320 return -EINVAL; 321 return generic_block_bmap(mapping, block, udf_get_block); 322 } 323 324 const struct address_space_operations udf_aops = { 325 .dirty_folio = block_dirty_folio, 326 .invalidate_folio = block_invalidate_folio, 327 .read_folio = udf_read_folio, 328 .readahead = udf_readahead, 329 .writepages = udf_writepages, 330 .write_begin = udf_write_begin, 331 .write_end = udf_write_end, 332 .direct_IO = udf_direct_IO, 333 .bmap = udf_bmap, 334 .migrate_folio = buffer_migrate_folio, 335 }; 336 337 /* 338 * Expand file stored in ICB to a normal one-block-file 339 * 340 * This function requires i_mutex held 341 */ 342 int udf_expand_file_adinicb(struct inode *inode) 343 { 344 struct folio *folio; 345 struct udf_inode_info *iinfo = UDF_I(inode); 346 int err; 347 348 WARN_ON_ONCE(!inode_is_locked(inode)); 349 if (!iinfo->i_lenAlloc) { 350 down_write(&iinfo->i_data_sem); 351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 353 else 354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 355 up_write(&iinfo->i_data_sem); 356 mark_inode_dirty(inode); 357 return 0; 358 } 359 360 folio = __filemap_get_folio(inode->i_mapping, 0, 361 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 362 if (IS_ERR(folio)) 363 return PTR_ERR(folio); 364 365 if (!folio_test_uptodate(folio)) 366 udf_adinicb_readpage(&folio->page); 367 down_write(&iinfo->i_data_sem); 368 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 369 iinfo->i_lenAlloc); 370 iinfo->i_lenAlloc = 0; 371 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 373 else 374 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 375 folio_mark_dirty(folio); 376 folio_unlock(folio); 377 up_write(&iinfo->i_data_sem); 378 err = filemap_fdatawrite(inode->i_mapping); 379 if (err) { 380 /* Restore everything back so that we don't lose data... */ 381 folio_lock(folio); 382 down_write(&iinfo->i_data_sem); 383 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 384 folio, 0, inode->i_size); 385 folio_unlock(folio); 386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 387 iinfo->i_lenAlloc = inode->i_size; 388 up_write(&iinfo->i_data_sem); 389 } 390 folio_put(folio); 391 mark_inode_dirty(inode); 392 393 return err; 394 } 395 396 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 397 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 398 399 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 400 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 401 402 struct udf_map_rq { 403 sector_t lblk; 404 udf_pblk_t pblk; 405 int iflags; /* UDF_MAP_ flags determining behavior */ 406 int oflags; /* UDF_BLK_ flags reporting results */ 407 }; 408 409 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 410 { 411 int err; 412 struct udf_inode_info *iinfo = UDF_I(inode); 413 414 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 415 return -EFSCORRUPTED; 416 417 map->oflags = 0; 418 if (!(map->iflags & UDF_MAP_CREATE)) { 419 struct kernel_lb_addr eloc; 420 uint32_t elen; 421 sector_t offset; 422 struct extent_position epos = {}; 423 424 down_read(&iinfo->i_data_sem); 425 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 426 == (EXT_RECORDED_ALLOCATED >> 30)) { 427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 428 offset); 429 map->oflags |= UDF_BLK_MAPPED; 430 } 431 up_read(&iinfo->i_data_sem); 432 brelse(epos.bh); 433 434 return 0; 435 } 436 437 down_write(&iinfo->i_data_sem); 438 /* 439 * Block beyond EOF and prealloc extents? Just discard preallocation 440 * as it is not useful and complicates things. 441 */ 442 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 443 udf_discard_prealloc(inode); 444 udf_clear_extent_cache(inode); 445 err = inode_getblk(inode, map); 446 up_write(&iinfo->i_data_sem); 447 return err; 448 } 449 450 static int __udf_get_block(struct inode *inode, sector_t block, 451 struct buffer_head *bh_result, int flags) 452 { 453 int err; 454 struct udf_map_rq map = { 455 .lblk = block, 456 .iflags = flags, 457 }; 458 459 err = udf_map_block(inode, &map); 460 if (err < 0) 461 return err; 462 if (map.oflags & UDF_BLK_MAPPED) { 463 map_bh(bh_result, inode->i_sb, map.pblk); 464 if (map.oflags & UDF_BLK_NEW) 465 set_buffer_new(bh_result); 466 } 467 return 0; 468 } 469 470 int udf_get_block(struct inode *inode, sector_t block, 471 struct buffer_head *bh_result, int create) 472 { 473 int flags = create ? UDF_MAP_CREATE : 0; 474 475 /* 476 * We preallocate blocks only for regular files. It also makes sense 477 * for directories but there's a problem when to drop the 478 * preallocation. We might use some delayed work for that but I feel 479 * it's overengineering for a filesystem like UDF. 480 */ 481 if (!S_ISREG(inode->i_mode)) 482 flags |= UDF_MAP_NOPREALLOC; 483 return __udf_get_block(inode, block, bh_result, flags); 484 } 485 486 /* 487 * We shouldn't be allocating blocks on page writeback since we allocate them 488 * on page fault. We can spot dirty buffers without allocated blocks though 489 * when truncate expands file. These however don't have valid data so we can 490 * safely ignore them. So never allocate blocks from page writeback. 491 */ 492 static int udf_get_block_wb(struct inode *inode, sector_t block, 493 struct buffer_head *bh_result, int create) 494 { 495 return __udf_get_block(inode, block, bh_result, 0); 496 } 497 498 /* Extend the file with new blocks totaling 'new_block_bytes', 499 * return the number of extents added 500 */ 501 static int udf_do_extend_file(struct inode *inode, 502 struct extent_position *last_pos, 503 struct kernel_long_ad *last_ext, 504 loff_t new_block_bytes) 505 { 506 uint32_t add; 507 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 508 struct super_block *sb = inode->i_sb; 509 struct udf_inode_info *iinfo; 510 int err; 511 512 /* The previous extent is fake and we should not extend by anything 513 * - there's nothing to do... */ 514 if (!new_block_bytes && fake) 515 return 0; 516 517 iinfo = UDF_I(inode); 518 /* Round the last extent up to a multiple of block size */ 519 if (last_ext->extLength & (sb->s_blocksize - 1)) { 520 last_ext->extLength = 521 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 522 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 523 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 524 iinfo->i_lenExtents = 525 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 526 ~(sb->s_blocksize - 1); 527 } 528 529 add = 0; 530 /* Can we merge with the previous extent? */ 531 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 532 EXT_NOT_RECORDED_NOT_ALLOCATED) { 533 add = (1 << 30) - sb->s_blocksize - 534 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 535 if (add > new_block_bytes) 536 add = new_block_bytes; 537 new_block_bytes -= add; 538 last_ext->extLength += add; 539 } 540 541 if (fake) { 542 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 543 last_ext->extLength, 1); 544 if (err < 0) 545 goto out_err; 546 count++; 547 } else { 548 struct kernel_lb_addr tmploc; 549 uint32_t tmplen; 550 551 udf_write_aext(inode, last_pos, &last_ext->extLocation, 552 last_ext->extLength, 1); 553 554 /* 555 * We've rewritten the last extent. If we are going to add 556 * more extents, we may need to enter possible following 557 * empty indirect extent. 558 */ 559 if (new_block_bytes) 560 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 561 } 562 iinfo->i_lenExtents += add; 563 564 /* Managed to do everything necessary? */ 565 if (!new_block_bytes) 566 goto out; 567 568 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 569 last_ext->extLocation.logicalBlockNum = 0; 570 last_ext->extLocation.partitionReferenceNum = 0; 571 add = (1 << 30) - sb->s_blocksize; 572 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 573 574 /* Create enough extents to cover the whole hole */ 575 while (new_block_bytes > add) { 576 new_block_bytes -= add; 577 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 578 last_ext->extLength, 1); 579 if (err) 580 goto out_err; 581 iinfo->i_lenExtents += add; 582 count++; 583 } 584 if (new_block_bytes) { 585 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 586 new_block_bytes; 587 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 588 last_ext->extLength, 1); 589 if (err) 590 goto out_err; 591 iinfo->i_lenExtents += new_block_bytes; 592 count++; 593 } 594 595 out: 596 /* last_pos should point to the last written extent... */ 597 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 598 last_pos->offset -= sizeof(struct short_ad); 599 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 600 last_pos->offset -= sizeof(struct long_ad); 601 else 602 return -EIO; 603 604 return count; 605 out_err: 606 /* Remove extents we've created so far */ 607 udf_clear_extent_cache(inode); 608 udf_truncate_extents(inode); 609 return err; 610 } 611 612 /* Extend the final block of the file to final_block_len bytes */ 613 static void udf_do_extend_final_block(struct inode *inode, 614 struct extent_position *last_pos, 615 struct kernel_long_ad *last_ext, 616 uint32_t new_elen) 617 { 618 uint32_t added_bytes; 619 620 /* 621 * Extent already large enough? It may be already rounded up to block 622 * size... 623 */ 624 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 625 return; 626 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 627 last_ext->extLength += added_bytes; 628 UDF_I(inode)->i_lenExtents += added_bytes; 629 630 udf_write_aext(inode, last_pos, &last_ext->extLocation, 631 last_ext->extLength, 1); 632 } 633 634 static int udf_extend_file(struct inode *inode, loff_t newsize) 635 { 636 637 struct extent_position epos; 638 struct kernel_lb_addr eloc; 639 uint32_t elen; 640 int8_t etype; 641 struct super_block *sb = inode->i_sb; 642 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 643 loff_t new_elen; 644 int adsize; 645 struct udf_inode_info *iinfo = UDF_I(inode); 646 struct kernel_long_ad extent; 647 int err = 0; 648 bool within_last_ext; 649 650 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 651 adsize = sizeof(struct short_ad); 652 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 653 adsize = sizeof(struct long_ad); 654 else 655 BUG(); 656 657 down_write(&iinfo->i_data_sem); 658 /* 659 * When creating hole in file, just don't bother with preserving 660 * preallocation. It likely won't be very useful anyway. 661 */ 662 udf_discard_prealloc(inode); 663 664 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 665 within_last_ext = (etype != -1); 666 /* We don't expect extents past EOF... */ 667 WARN_ON_ONCE(within_last_ext && 668 elen > ((loff_t)offset + 1) << inode->i_blkbits); 669 670 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 671 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 672 /* File has no extents at all or has empty last 673 * indirect extent! Create a fake extent... */ 674 extent.extLocation.logicalBlockNum = 0; 675 extent.extLocation.partitionReferenceNum = 0; 676 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 677 } else { 678 epos.offset -= adsize; 679 etype = udf_next_aext(inode, &epos, &extent.extLocation, 680 &extent.extLength, 0); 681 extent.extLength |= etype << 30; 682 } 683 684 new_elen = ((loff_t)offset << inode->i_blkbits) | 685 (newsize & (sb->s_blocksize - 1)); 686 687 /* File has extent covering the new size (could happen when extending 688 * inside a block)? 689 */ 690 if (within_last_ext) { 691 /* Extending file within the last file block */ 692 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 693 } else { 694 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 695 } 696 697 if (err < 0) 698 goto out; 699 err = 0; 700 out: 701 brelse(epos.bh); 702 up_write(&iinfo->i_data_sem); 703 return err; 704 } 705 706 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 707 { 708 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 709 struct extent_position prev_epos, cur_epos, next_epos; 710 int count = 0, startnum = 0, endnum = 0; 711 uint32_t elen = 0, tmpelen; 712 struct kernel_lb_addr eloc, tmpeloc; 713 int c = 1; 714 loff_t lbcount = 0, b_off = 0; 715 udf_pblk_t newblocknum; 716 sector_t offset = 0; 717 int8_t etype; 718 struct udf_inode_info *iinfo = UDF_I(inode); 719 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 720 int lastblock = 0; 721 bool isBeyondEOF; 722 int ret = 0; 723 724 prev_epos.offset = udf_file_entry_alloc_offset(inode); 725 prev_epos.block = iinfo->i_location; 726 prev_epos.bh = NULL; 727 cur_epos = next_epos = prev_epos; 728 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 729 730 /* find the extent which contains the block we are looking for. 731 alternate between laarr[0] and laarr[1] for locations of the 732 current extent, and the previous extent */ 733 do { 734 if (prev_epos.bh != cur_epos.bh) { 735 brelse(prev_epos.bh); 736 get_bh(cur_epos.bh); 737 prev_epos.bh = cur_epos.bh; 738 } 739 if (cur_epos.bh != next_epos.bh) { 740 brelse(cur_epos.bh); 741 get_bh(next_epos.bh); 742 cur_epos.bh = next_epos.bh; 743 } 744 745 lbcount += elen; 746 747 prev_epos.block = cur_epos.block; 748 cur_epos.block = next_epos.block; 749 750 prev_epos.offset = cur_epos.offset; 751 cur_epos.offset = next_epos.offset; 752 753 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 754 if (etype == -1) 755 break; 756 757 c = !c; 758 759 laarr[c].extLength = (etype << 30) | elen; 760 laarr[c].extLocation = eloc; 761 762 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 763 pgoal = eloc.logicalBlockNum + 764 ((elen + inode->i_sb->s_blocksize - 1) >> 765 inode->i_sb->s_blocksize_bits); 766 767 count++; 768 } while (lbcount + elen <= b_off); 769 770 b_off -= lbcount; 771 offset = b_off >> inode->i_sb->s_blocksize_bits; 772 /* 773 * Move prev_epos and cur_epos into indirect extent if we are at 774 * the pointer to it 775 */ 776 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 777 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 778 779 /* if the extent is allocated and recorded, return the block 780 if the extent is not a multiple of the blocksize, round up */ 781 782 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 783 if (elen & (inode->i_sb->s_blocksize - 1)) { 784 elen = EXT_RECORDED_ALLOCATED | 785 ((elen + inode->i_sb->s_blocksize - 1) & 786 ~(inode->i_sb->s_blocksize - 1)); 787 iinfo->i_lenExtents = 788 ALIGN(iinfo->i_lenExtents, 789 inode->i_sb->s_blocksize); 790 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 791 } 792 map->oflags = UDF_BLK_MAPPED; 793 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 794 goto out_free; 795 } 796 797 /* Are we beyond EOF and preallocated extent? */ 798 if (etype == -1) { 799 loff_t hole_len; 800 801 isBeyondEOF = true; 802 if (count) { 803 if (c) 804 laarr[0] = laarr[1]; 805 startnum = 1; 806 } else { 807 /* Create a fake extent when there's not one */ 808 memset(&laarr[0].extLocation, 0x00, 809 sizeof(struct kernel_lb_addr)); 810 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 811 /* Will udf_do_extend_file() create real extent from 812 a fake one? */ 813 startnum = (offset > 0); 814 } 815 /* Create extents for the hole between EOF and offset */ 816 hole_len = (loff_t)offset << inode->i_blkbits; 817 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 818 if (ret < 0) 819 goto out_free; 820 c = 0; 821 offset = 0; 822 count += ret; 823 /* 824 * Is there any real extent? - otherwise we overwrite the fake 825 * one... 826 */ 827 if (count) 828 c = !c; 829 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 830 inode->i_sb->s_blocksize; 831 memset(&laarr[c].extLocation, 0x00, 832 sizeof(struct kernel_lb_addr)); 833 count++; 834 endnum = c + 1; 835 lastblock = 1; 836 } else { 837 isBeyondEOF = false; 838 endnum = startnum = ((count > 2) ? 2 : count); 839 840 /* if the current extent is in position 0, 841 swap it with the previous */ 842 if (!c && count != 1) { 843 laarr[2] = laarr[0]; 844 laarr[0] = laarr[1]; 845 laarr[1] = laarr[2]; 846 c = 1; 847 } 848 849 /* if the current block is located in an extent, 850 read the next extent */ 851 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 852 if (etype != -1) { 853 laarr[c + 1].extLength = (etype << 30) | elen; 854 laarr[c + 1].extLocation = eloc; 855 count++; 856 startnum++; 857 endnum++; 858 } else 859 lastblock = 1; 860 } 861 862 /* if the current extent is not recorded but allocated, get the 863 * block in the extent corresponding to the requested block */ 864 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 865 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 866 else { /* otherwise, allocate a new block */ 867 if (iinfo->i_next_alloc_block == map->lblk) 868 goal = iinfo->i_next_alloc_goal; 869 870 if (!goal) { 871 if (!(goal = pgoal)) /* XXX: what was intended here? */ 872 goal = iinfo->i_location.logicalBlockNum + 1; 873 } 874 875 newblocknum = udf_new_block(inode->i_sb, inode, 876 iinfo->i_location.partitionReferenceNum, 877 goal, &ret); 878 if (!newblocknum) 879 goto out_free; 880 if (isBeyondEOF) 881 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 882 } 883 884 /* if the extent the requsted block is located in contains multiple 885 * blocks, split the extent into at most three extents. blocks prior 886 * to requested block, requested block, and blocks after requested 887 * block */ 888 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 889 890 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 891 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 892 893 /* merge any continuous blocks in laarr */ 894 udf_merge_extents(inode, laarr, &endnum); 895 896 /* write back the new extents, inserting new extents if the new number 897 * of extents is greater than the old number, and deleting extents if 898 * the new number of extents is less than the old number */ 899 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 900 if (ret < 0) 901 goto out_free; 902 903 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 904 iinfo->i_location.partitionReferenceNum, 0); 905 if (!map->pblk) { 906 ret = -EFSCORRUPTED; 907 goto out_free; 908 } 909 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 910 iinfo->i_next_alloc_block = map->lblk + 1; 911 iinfo->i_next_alloc_goal = newblocknum + 1; 912 inode_set_ctime_current(inode); 913 914 if (IS_SYNC(inode)) 915 udf_sync_inode(inode); 916 else 917 mark_inode_dirty(inode); 918 ret = 0; 919 out_free: 920 brelse(prev_epos.bh); 921 brelse(cur_epos.bh); 922 brelse(next_epos.bh); 923 return ret; 924 } 925 926 static void udf_split_extents(struct inode *inode, int *c, int offset, 927 udf_pblk_t newblocknum, 928 struct kernel_long_ad *laarr, int *endnum) 929 { 930 unsigned long blocksize = inode->i_sb->s_blocksize; 931 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 932 933 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 934 (laarr[*c].extLength >> 30) == 935 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 936 int curr = *c; 937 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 938 blocksize - 1) >> blocksize_bits; 939 int8_t etype = (laarr[curr].extLength >> 30); 940 941 if (blen == 1) 942 ; 943 else if (!offset || blen == offset + 1) { 944 laarr[curr + 2] = laarr[curr + 1]; 945 laarr[curr + 1] = laarr[curr]; 946 } else { 947 laarr[curr + 3] = laarr[curr + 1]; 948 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 949 } 950 951 if (offset) { 952 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 953 udf_free_blocks(inode->i_sb, inode, 954 &laarr[curr].extLocation, 955 0, offset); 956 laarr[curr].extLength = 957 EXT_NOT_RECORDED_NOT_ALLOCATED | 958 (offset << blocksize_bits); 959 laarr[curr].extLocation.logicalBlockNum = 0; 960 laarr[curr].extLocation. 961 partitionReferenceNum = 0; 962 } else 963 laarr[curr].extLength = (etype << 30) | 964 (offset << blocksize_bits); 965 curr++; 966 (*c)++; 967 (*endnum)++; 968 } 969 970 laarr[curr].extLocation.logicalBlockNum = newblocknum; 971 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 972 laarr[curr].extLocation.partitionReferenceNum = 973 UDF_I(inode)->i_location.partitionReferenceNum; 974 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 975 blocksize; 976 curr++; 977 978 if (blen != offset + 1) { 979 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 980 laarr[curr].extLocation.logicalBlockNum += 981 offset + 1; 982 laarr[curr].extLength = (etype << 30) | 983 ((blen - (offset + 1)) << blocksize_bits); 984 curr++; 985 (*endnum)++; 986 } 987 } 988 } 989 990 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 991 struct kernel_long_ad *laarr, 992 int *endnum) 993 { 994 int start, length = 0, currlength = 0, i; 995 996 if (*endnum >= (c + 1)) { 997 if (!lastblock) 998 return; 999 else 1000 start = c; 1001 } else { 1002 if ((laarr[c + 1].extLength >> 30) == 1003 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1004 start = c + 1; 1005 length = currlength = 1006 (((laarr[c + 1].extLength & 1007 UDF_EXTENT_LENGTH_MASK) + 1008 inode->i_sb->s_blocksize - 1) >> 1009 inode->i_sb->s_blocksize_bits); 1010 } else 1011 start = c; 1012 } 1013 1014 for (i = start + 1; i <= *endnum; i++) { 1015 if (i == *endnum) { 1016 if (lastblock) 1017 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1018 } else if ((laarr[i].extLength >> 30) == 1019 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1020 length += (((laarr[i].extLength & 1021 UDF_EXTENT_LENGTH_MASK) + 1022 inode->i_sb->s_blocksize - 1) >> 1023 inode->i_sb->s_blocksize_bits); 1024 } else 1025 break; 1026 } 1027 1028 if (length) { 1029 int next = laarr[start].extLocation.logicalBlockNum + 1030 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1031 inode->i_sb->s_blocksize - 1) >> 1032 inode->i_sb->s_blocksize_bits); 1033 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1034 laarr[start].extLocation.partitionReferenceNum, 1035 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1036 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1037 currlength); 1038 if (numalloc) { 1039 if (start == (c + 1)) 1040 laarr[start].extLength += 1041 (numalloc << 1042 inode->i_sb->s_blocksize_bits); 1043 else { 1044 memmove(&laarr[c + 2], &laarr[c + 1], 1045 sizeof(struct long_ad) * (*endnum - (c + 1))); 1046 (*endnum)++; 1047 laarr[c + 1].extLocation.logicalBlockNum = next; 1048 laarr[c + 1].extLocation.partitionReferenceNum = 1049 laarr[c].extLocation. 1050 partitionReferenceNum; 1051 laarr[c + 1].extLength = 1052 EXT_NOT_RECORDED_ALLOCATED | 1053 (numalloc << 1054 inode->i_sb->s_blocksize_bits); 1055 start = c + 1; 1056 } 1057 1058 for (i = start + 1; numalloc && i < *endnum; i++) { 1059 int elen = ((laarr[i].extLength & 1060 UDF_EXTENT_LENGTH_MASK) + 1061 inode->i_sb->s_blocksize - 1) >> 1062 inode->i_sb->s_blocksize_bits; 1063 1064 if (elen > numalloc) { 1065 laarr[i].extLength -= 1066 (numalloc << 1067 inode->i_sb->s_blocksize_bits); 1068 numalloc = 0; 1069 } else { 1070 numalloc -= elen; 1071 if (*endnum > (i + 1)) 1072 memmove(&laarr[i], 1073 &laarr[i + 1], 1074 sizeof(struct long_ad) * 1075 (*endnum - (i + 1))); 1076 i--; 1077 (*endnum)--; 1078 } 1079 } 1080 UDF_I(inode)->i_lenExtents += 1081 numalloc << inode->i_sb->s_blocksize_bits; 1082 } 1083 } 1084 } 1085 1086 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1087 int *endnum) 1088 { 1089 int i; 1090 unsigned long blocksize = inode->i_sb->s_blocksize; 1091 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1092 1093 for (i = 0; i < (*endnum - 1); i++) { 1094 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1095 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1096 1097 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1098 (((li->extLength >> 30) == 1099 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1100 ((lip1->extLocation.logicalBlockNum - 1101 li->extLocation.logicalBlockNum) == 1102 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1103 blocksize - 1) >> blocksize_bits)))) { 1104 1105 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1106 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1107 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1108 li->extLength = lip1->extLength + 1109 (((li->extLength & 1110 UDF_EXTENT_LENGTH_MASK) + 1111 blocksize - 1) & ~(blocksize - 1)); 1112 if (*endnum > (i + 2)) 1113 memmove(&laarr[i + 1], &laarr[i + 2], 1114 sizeof(struct long_ad) * 1115 (*endnum - (i + 2))); 1116 i--; 1117 (*endnum)--; 1118 } 1119 } else if (((li->extLength >> 30) == 1120 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1121 ((lip1->extLength >> 30) == 1122 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1123 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1124 ((li->extLength & 1125 UDF_EXTENT_LENGTH_MASK) + 1126 blocksize - 1) >> blocksize_bits); 1127 li->extLocation.logicalBlockNum = 0; 1128 li->extLocation.partitionReferenceNum = 0; 1129 1130 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1131 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1132 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1133 lip1->extLength = (lip1->extLength - 1134 (li->extLength & 1135 UDF_EXTENT_LENGTH_MASK) + 1136 UDF_EXTENT_LENGTH_MASK) & 1137 ~(blocksize - 1); 1138 li->extLength = (li->extLength & 1139 UDF_EXTENT_FLAG_MASK) + 1140 (UDF_EXTENT_LENGTH_MASK + 1) - 1141 blocksize; 1142 } else { 1143 li->extLength = lip1->extLength + 1144 (((li->extLength & 1145 UDF_EXTENT_LENGTH_MASK) + 1146 blocksize - 1) & ~(blocksize - 1)); 1147 if (*endnum > (i + 2)) 1148 memmove(&laarr[i + 1], &laarr[i + 2], 1149 sizeof(struct long_ad) * 1150 (*endnum - (i + 2))); 1151 i--; 1152 (*endnum)--; 1153 } 1154 } else if ((li->extLength >> 30) == 1155 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1156 udf_free_blocks(inode->i_sb, inode, 1157 &li->extLocation, 0, 1158 ((li->extLength & 1159 UDF_EXTENT_LENGTH_MASK) + 1160 blocksize - 1) >> blocksize_bits); 1161 li->extLocation.logicalBlockNum = 0; 1162 li->extLocation.partitionReferenceNum = 0; 1163 li->extLength = (li->extLength & 1164 UDF_EXTENT_LENGTH_MASK) | 1165 EXT_NOT_RECORDED_NOT_ALLOCATED; 1166 } 1167 } 1168 } 1169 1170 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1171 int startnum, int endnum, 1172 struct extent_position *epos) 1173 { 1174 int start = 0, i; 1175 struct kernel_lb_addr tmploc; 1176 uint32_t tmplen; 1177 int err; 1178 1179 if (startnum > endnum) { 1180 for (i = 0; i < (startnum - endnum); i++) 1181 udf_delete_aext(inode, *epos); 1182 } else if (startnum < endnum) { 1183 for (i = 0; i < (endnum - startnum); i++) { 1184 err = udf_insert_aext(inode, *epos, 1185 laarr[i].extLocation, 1186 laarr[i].extLength); 1187 /* 1188 * If we fail here, we are likely corrupting the extent 1189 * list and leaking blocks. At least stop early to 1190 * limit the damage. 1191 */ 1192 if (err < 0) 1193 return err; 1194 udf_next_aext(inode, epos, &laarr[i].extLocation, 1195 &laarr[i].extLength, 1); 1196 start++; 1197 } 1198 } 1199 1200 for (i = start; i < endnum; i++) { 1201 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1202 udf_write_aext(inode, epos, &laarr[i].extLocation, 1203 laarr[i].extLength, 1); 1204 } 1205 return 0; 1206 } 1207 1208 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1209 int create, int *err) 1210 { 1211 struct buffer_head *bh = NULL; 1212 struct udf_map_rq map = { 1213 .lblk = block, 1214 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1215 }; 1216 1217 *err = udf_map_block(inode, &map); 1218 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1219 return NULL; 1220 1221 bh = sb_getblk(inode->i_sb, map.pblk); 1222 if (!bh) { 1223 *err = -ENOMEM; 1224 return NULL; 1225 } 1226 if (map.oflags & UDF_BLK_NEW) { 1227 lock_buffer(bh); 1228 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1229 set_buffer_uptodate(bh); 1230 unlock_buffer(bh); 1231 mark_buffer_dirty_inode(bh, inode); 1232 return bh; 1233 } 1234 1235 if (bh_read(bh, 0) >= 0) 1236 return bh; 1237 1238 brelse(bh); 1239 *err = -EIO; 1240 return NULL; 1241 } 1242 1243 int udf_setsize(struct inode *inode, loff_t newsize) 1244 { 1245 int err = 0; 1246 struct udf_inode_info *iinfo; 1247 unsigned int bsize = i_blocksize(inode); 1248 1249 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1250 S_ISLNK(inode->i_mode))) 1251 return -EINVAL; 1252 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1253 return -EPERM; 1254 1255 iinfo = UDF_I(inode); 1256 if (newsize > inode->i_size) { 1257 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1258 if (bsize >= 1259 (udf_file_entry_alloc_offset(inode) + newsize)) { 1260 down_write(&iinfo->i_data_sem); 1261 iinfo->i_lenAlloc = newsize; 1262 up_write(&iinfo->i_data_sem); 1263 goto set_size; 1264 } 1265 err = udf_expand_file_adinicb(inode); 1266 if (err) 1267 return err; 1268 } 1269 err = udf_extend_file(inode, newsize); 1270 if (err) 1271 return err; 1272 set_size: 1273 truncate_setsize(inode, newsize); 1274 } else { 1275 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1276 down_write(&iinfo->i_data_sem); 1277 udf_clear_extent_cache(inode); 1278 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1279 0x00, bsize - newsize - 1280 udf_file_entry_alloc_offset(inode)); 1281 iinfo->i_lenAlloc = newsize; 1282 truncate_setsize(inode, newsize); 1283 up_write(&iinfo->i_data_sem); 1284 goto update_time; 1285 } 1286 err = block_truncate_page(inode->i_mapping, newsize, 1287 udf_get_block); 1288 if (err) 1289 return err; 1290 truncate_setsize(inode, newsize); 1291 down_write(&iinfo->i_data_sem); 1292 udf_clear_extent_cache(inode); 1293 err = udf_truncate_extents(inode); 1294 up_write(&iinfo->i_data_sem); 1295 if (err) 1296 return err; 1297 } 1298 update_time: 1299 inode->i_mtime = inode_set_ctime_current(inode); 1300 if (IS_SYNC(inode)) 1301 udf_sync_inode(inode); 1302 else 1303 mark_inode_dirty(inode); 1304 return err; 1305 } 1306 1307 /* 1308 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1309 * arbitrary - just that we hopefully don't limit any real use of rewritten 1310 * inode on write-once media but avoid looping for too long on corrupted media. 1311 */ 1312 #define UDF_MAX_ICB_NESTING 1024 1313 1314 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1315 { 1316 struct buffer_head *bh = NULL; 1317 struct fileEntry *fe; 1318 struct extendedFileEntry *efe; 1319 uint16_t ident; 1320 struct udf_inode_info *iinfo = UDF_I(inode); 1321 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1322 struct kernel_lb_addr *iloc = &iinfo->i_location; 1323 unsigned int link_count; 1324 unsigned int indirections = 0; 1325 int bs = inode->i_sb->s_blocksize; 1326 int ret = -EIO; 1327 uint32_t uid, gid; 1328 struct timespec64 ctime; 1329 1330 reread: 1331 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1332 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1333 iloc->partitionReferenceNum, sbi->s_partitions); 1334 return -EIO; 1335 } 1336 1337 if (iloc->logicalBlockNum >= 1338 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1339 udf_debug("block=%u, partition=%u out of range\n", 1340 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1341 return -EIO; 1342 } 1343 1344 /* 1345 * Set defaults, but the inode is still incomplete! 1346 * Note: get_new_inode() sets the following on a new inode: 1347 * i_sb = sb 1348 * i_no = ino 1349 * i_flags = sb->s_flags 1350 * i_state = 0 1351 * clean_inode(): zero fills and sets 1352 * i_count = 1 1353 * i_nlink = 1 1354 * i_op = NULL; 1355 */ 1356 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1357 if (!bh) { 1358 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1359 return -EIO; 1360 } 1361 1362 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1363 ident != TAG_IDENT_USE) { 1364 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1365 inode->i_ino, ident); 1366 goto out; 1367 } 1368 1369 fe = (struct fileEntry *)bh->b_data; 1370 efe = (struct extendedFileEntry *)bh->b_data; 1371 1372 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1373 struct buffer_head *ibh; 1374 1375 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1376 if (ident == TAG_IDENT_IE && ibh) { 1377 struct kernel_lb_addr loc; 1378 struct indirectEntry *ie; 1379 1380 ie = (struct indirectEntry *)ibh->b_data; 1381 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1382 1383 if (ie->indirectICB.extLength) { 1384 brelse(ibh); 1385 memcpy(&iinfo->i_location, &loc, 1386 sizeof(struct kernel_lb_addr)); 1387 if (++indirections > UDF_MAX_ICB_NESTING) { 1388 udf_err(inode->i_sb, 1389 "too many ICBs in ICB hierarchy" 1390 " (max %d supported)\n", 1391 UDF_MAX_ICB_NESTING); 1392 goto out; 1393 } 1394 brelse(bh); 1395 goto reread; 1396 } 1397 } 1398 brelse(ibh); 1399 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1400 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1401 le16_to_cpu(fe->icbTag.strategyType)); 1402 goto out; 1403 } 1404 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1405 iinfo->i_strat4096 = 0; 1406 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1407 iinfo->i_strat4096 = 1; 1408 1409 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1410 ICBTAG_FLAG_AD_MASK; 1411 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1412 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1413 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1414 ret = -EIO; 1415 goto out; 1416 } 1417 iinfo->i_hidden = hidden_inode; 1418 iinfo->i_unique = 0; 1419 iinfo->i_lenEAttr = 0; 1420 iinfo->i_lenExtents = 0; 1421 iinfo->i_lenAlloc = 0; 1422 iinfo->i_next_alloc_block = 0; 1423 iinfo->i_next_alloc_goal = 0; 1424 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1425 iinfo->i_efe = 1; 1426 iinfo->i_use = 0; 1427 ret = udf_alloc_i_data(inode, bs - 1428 sizeof(struct extendedFileEntry)); 1429 if (ret) 1430 goto out; 1431 memcpy(iinfo->i_data, 1432 bh->b_data + sizeof(struct extendedFileEntry), 1433 bs - sizeof(struct extendedFileEntry)); 1434 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1435 iinfo->i_efe = 0; 1436 iinfo->i_use = 0; 1437 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1438 if (ret) 1439 goto out; 1440 memcpy(iinfo->i_data, 1441 bh->b_data + sizeof(struct fileEntry), 1442 bs - sizeof(struct fileEntry)); 1443 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1444 iinfo->i_efe = 0; 1445 iinfo->i_use = 1; 1446 iinfo->i_lenAlloc = le32_to_cpu( 1447 ((struct unallocSpaceEntry *)bh->b_data)-> 1448 lengthAllocDescs); 1449 ret = udf_alloc_i_data(inode, bs - 1450 sizeof(struct unallocSpaceEntry)); 1451 if (ret) 1452 goto out; 1453 memcpy(iinfo->i_data, 1454 bh->b_data + sizeof(struct unallocSpaceEntry), 1455 bs - sizeof(struct unallocSpaceEntry)); 1456 return 0; 1457 } 1458 1459 ret = -EIO; 1460 read_lock(&sbi->s_cred_lock); 1461 uid = le32_to_cpu(fe->uid); 1462 if (uid == UDF_INVALID_ID || 1463 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1464 inode->i_uid = sbi->s_uid; 1465 else 1466 i_uid_write(inode, uid); 1467 1468 gid = le32_to_cpu(fe->gid); 1469 if (gid == UDF_INVALID_ID || 1470 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1471 inode->i_gid = sbi->s_gid; 1472 else 1473 i_gid_write(inode, gid); 1474 1475 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1476 sbi->s_fmode != UDF_INVALID_MODE) 1477 inode->i_mode = sbi->s_fmode; 1478 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1479 sbi->s_dmode != UDF_INVALID_MODE) 1480 inode->i_mode = sbi->s_dmode; 1481 else 1482 inode->i_mode = udf_convert_permissions(fe); 1483 inode->i_mode &= ~sbi->s_umask; 1484 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1485 1486 read_unlock(&sbi->s_cred_lock); 1487 1488 link_count = le16_to_cpu(fe->fileLinkCount); 1489 if (!link_count) { 1490 if (!hidden_inode) { 1491 ret = -ESTALE; 1492 goto out; 1493 } 1494 link_count = 1; 1495 } 1496 set_nlink(inode, link_count); 1497 1498 inode->i_size = le64_to_cpu(fe->informationLength); 1499 iinfo->i_lenExtents = inode->i_size; 1500 1501 if (iinfo->i_efe == 0) { 1502 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1503 (inode->i_sb->s_blocksize_bits - 9); 1504 1505 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1506 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1507 udf_disk_stamp_to_time(&ctime, fe->attrTime); 1508 inode_set_ctime_to_ts(inode, ctime); 1509 1510 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1511 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1512 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1513 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1514 iinfo->i_streamdir = 0; 1515 iinfo->i_lenStreams = 0; 1516 } else { 1517 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1518 (inode->i_sb->s_blocksize_bits - 9); 1519 1520 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1521 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1522 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1523 udf_disk_stamp_to_time(&ctime, efe->attrTime); 1524 inode_set_ctime_to_ts(inode, ctime); 1525 1526 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1527 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1528 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1529 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1530 1531 /* Named streams */ 1532 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1533 iinfo->i_locStreamdir = 1534 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1535 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1536 if (iinfo->i_lenStreams >= inode->i_size) 1537 iinfo->i_lenStreams -= inode->i_size; 1538 else 1539 iinfo->i_lenStreams = 0; 1540 } 1541 inode->i_generation = iinfo->i_unique; 1542 1543 /* 1544 * Sanity check length of allocation descriptors and extended attrs to 1545 * avoid integer overflows 1546 */ 1547 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1548 goto out; 1549 /* Now do exact checks */ 1550 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1551 goto out; 1552 /* Sanity checks for files in ICB so that we don't get confused later */ 1553 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1554 /* 1555 * For file in ICB data is stored in allocation descriptor 1556 * so sizes should match 1557 */ 1558 if (iinfo->i_lenAlloc != inode->i_size) 1559 goto out; 1560 /* File in ICB has to fit in there... */ 1561 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1562 goto out; 1563 } 1564 1565 switch (fe->icbTag.fileType) { 1566 case ICBTAG_FILE_TYPE_DIRECTORY: 1567 inode->i_op = &udf_dir_inode_operations; 1568 inode->i_fop = &udf_dir_operations; 1569 inode->i_mode |= S_IFDIR; 1570 inc_nlink(inode); 1571 break; 1572 case ICBTAG_FILE_TYPE_REALTIME: 1573 case ICBTAG_FILE_TYPE_REGULAR: 1574 case ICBTAG_FILE_TYPE_UNDEF: 1575 case ICBTAG_FILE_TYPE_VAT20: 1576 inode->i_data.a_ops = &udf_aops; 1577 inode->i_op = &udf_file_inode_operations; 1578 inode->i_fop = &udf_file_operations; 1579 inode->i_mode |= S_IFREG; 1580 break; 1581 case ICBTAG_FILE_TYPE_BLOCK: 1582 inode->i_mode |= S_IFBLK; 1583 break; 1584 case ICBTAG_FILE_TYPE_CHAR: 1585 inode->i_mode |= S_IFCHR; 1586 break; 1587 case ICBTAG_FILE_TYPE_FIFO: 1588 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1589 break; 1590 case ICBTAG_FILE_TYPE_SOCKET: 1591 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1592 break; 1593 case ICBTAG_FILE_TYPE_SYMLINK: 1594 inode->i_data.a_ops = &udf_symlink_aops; 1595 inode->i_op = &udf_symlink_inode_operations; 1596 inode_nohighmem(inode); 1597 inode->i_mode = S_IFLNK | 0777; 1598 break; 1599 case ICBTAG_FILE_TYPE_MAIN: 1600 udf_debug("METADATA FILE-----\n"); 1601 break; 1602 case ICBTAG_FILE_TYPE_MIRROR: 1603 udf_debug("METADATA MIRROR FILE-----\n"); 1604 break; 1605 case ICBTAG_FILE_TYPE_BITMAP: 1606 udf_debug("METADATA BITMAP FILE-----\n"); 1607 break; 1608 default: 1609 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1610 inode->i_ino, fe->icbTag.fileType); 1611 goto out; 1612 } 1613 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1614 struct deviceSpec *dsea = 1615 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1616 if (dsea) { 1617 init_special_inode(inode, inode->i_mode, 1618 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1619 le32_to_cpu(dsea->minorDeviceIdent))); 1620 /* Developer ID ??? */ 1621 } else 1622 goto out; 1623 } 1624 ret = 0; 1625 out: 1626 brelse(bh); 1627 return ret; 1628 } 1629 1630 static int udf_alloc_i_data(struct inode *inode, size_t size) 1631 { 1632 struct udf_inode_info *iinfo = UDF_I(inode); 1633 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1634 if (!iinfo->i_data) 1635 return -ENOMEM; 1636 return 0; 1637 } 1638 1639 static umode_t udf_convert_permissions(struct fileEntry *fe) 1640 { 1641 umode_t mode; 1642 uint32_t permissions; 1643 uint32_t flags; 1644 1645 permissions = le32_to_cpu(fe->permissions); 1646 flags = le16_to_cpu(fe->icbTag.flags); 1647 1648 mode = ((permissions) & 0007) | 1649 ((permissions >> 2) & 0070) | 1650 ((permissions >> 4) & 0700) | 1651 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1652 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1653 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1654 1655 return mode; 1656 } 1657 1658 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1659 { 1660 struct udf_inode_info *iinfo = UDF_I(inode); 1661 1662 /* 1663 * UDF 2.01 sec. 3.3.3.3 Note 2: 1664 * In Unix, delete permission tracks write 1665 */ 1666 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1667 if (mode & 0200) 1668 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1669 if (mode & 0020) 1670 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1671 if (mode & 0002) 1672 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1673 } 1674 1675 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1676 { 1677 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1678 } 1679 1680 static int udf_sync_inode(struct inode *inode) 1681 { 1682 return udf_update_inode(inode, 1); 1683 } 1684 1685 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1686 { 1687 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1688 (iinfo->i_crtime.tv_sec == time.tv_sec && 1689 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1690 iinfo->i_crtime = time; 1691 } 1692 1693 static int udf_update_inode(struct inode *inode, int do_sync) 1694 { 1695 struct buffer_head *bh = NULL; 1696 struct fileEntry *fe; 1697 struct extendedFileEntry *efe; 1698 uint64_t lb_recorded; 1699 uint32_t udfperms; 1700 uint16_t icbflags; 1701 uint16_t crclen; 1702 int err = 0; 1703 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1704 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1705 struct udf_inode_info *iinfo = UDF_I(inode); 1706 1707 bh = sb_getblk(inode->i_sb, 1708 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1709 if (!bh) { 1710 udf_debug("getblk failure\n"); 1711 return -EIO; 1712 } 1713 1714 lock_buffer(bh); 1715 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1716 fe = (struct fileEntry *)bh->b_data; 1717 efe = (struct extendedFileEntry *)bh->b_data; 1718 1719 if (iinfo->i_use) { 1720 struct unallocSpaceEntry *use = 1721 (struct unallocSpaceEntry *)bh->b_data; 1722 1723 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1724 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1725 iinfo->i_data, inode->i_sb->s_blocksize - 1726 sizeof(struct unallocSpaceEntry)); 1727 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1728 crclen = sizeof(struct unallocSpaceEntry); 1729 1730 goto finish; 1731 } 1732 1733 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1734 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1735 else 1736 fe->uid = cpu_to_le32(i_uid_read(inode)); 1737 1738 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1739 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1740 else 1741 fe->gid = cpu_to_le32(i_gid_read(inode)); 1742 1743 udfperms = ((inode->i_mode & 0007)) | 1744 ((inode->i_mode & 0070) << 2) | 1745 ((inode->i_mode & 0700) << 4); 1746 1747 udfperms |= iinfo->i_extraPerms; 1748 fe->permissions = cpu_to_le32(udfperms); 1749 1750 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1751 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1752 else { 1753 if (iinfo->i_hidden) 1754 fe->fileLinkCount = cpu_to_le16(0); 1755 else 1756 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1757 } 1758 1759 fe->informationLength = cpu_to_le64(inode->i_size); 1760 1761 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1762 struct regid *eid; 1763 struct deviceSpec *dsea = 1764 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1765 if (!dsea) { 1766 dsea = (struct deviceSpec *) 1767 udf_add_extendedattr(inode, 1768 sizeof(struct deviceSpec) + 1769 sizeof(struct regid), 12, 0x3); 1770 dsea->attrType = cpu_to_le32(12); 1771 dsea->attrSubtype = 1; 1772 dsea->attrLength = cpu_to_le32( 1773 sizeof(struct deviceSpec) + 1774 sizeof(struct regid)); 1775 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1776 } 1777 eid = (struct regid *)dsea->impUse; 1778 memset(eid, 0, sizeof(*eid)); 1779 strcpy(eid->ident, UDF_ID_DEVELOPER); 1780 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1781 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1782 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1783 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1784 } 1785 1786 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1787 lb_recorded = 0; /* No extents => no blocks! */ 1788 else 1789 lb_recorded = 1790 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1791 (blocksize_bits - 9); 1792 1793 if (iinfo->i_efe == 0) { 1794 memcpy(bh->b_data + sizeof(struct fileEntry), 1795 iinfo->i_data, 1796 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1797 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1798 1799 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1800 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1801 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1802 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1803 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1804 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1805 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1806 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1807 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1808 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1809 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1810 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1811 crclen = sizeof(struct fileEntry); 1812 } else { 1813 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1814 iinfo->i_data, 1815 inode->i_sb->s_blocksize - 1816 sizeof(struct extendedFileEntry)); 1817 efe->objectSize = 1818 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1819 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1820 1821 if (iinfo->i_streamdir) { 1822 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1823 1824 icb_lad->extLocation = 1825 cpu_to_lelb(iinfo->i_locStreamdir); 1826 icb_lad->extLength = 1827 cpu_to_le32(inode->i_sb->s_blocksize); 1828 } 1829 1830 udf_adjust_time(iinfo, inode->i_atime); 1831 udf_adjust_time(iinfo, inode->i_mtime); 1832 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1833 1834 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1835 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1836 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1837 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1838 1839 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1840 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1841 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1842 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1843 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1844 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1845 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1846 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1847 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1848 crclen = sizeof(struct extendedFileEntry); 1849 } 1850 1851 finish: 1852 if (iinfo->i_strat4096) { 1853 fe->icbTag.strategyType = cpu_to_le16(4096); 1854 fe->icbTag.strategyParameter = cpu_to_le16(1); 1855 fe->icbTag.numEntries = cpu_to_le16(2); 1856 } else { 1857 fe->icbTag.strategyType = cpu_to_le16(4); 1858 fe->icbTag.numEntries = cpu_to_le16(1); 1859 } 1860 1861 if (iinfo->i_use) 1862 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1863 else if (S_ISDIR(inode->i_mode)) 1864 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1865 else if (S_ISREG(inode->i_mode)) 1866 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1867 else if (S_ISLNK(inode->i_mode)) 1868 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1869 else if (S_ISBLK(inode->i_mode)) 1870 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1871 else if (S_ISCHR(inode->i_mode)) 1872 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1873 else if (S_ISFIFO(inode->i_mode)) 1874 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1875 else if (S_ISSOCK(inode->i_mode)) 1876 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1877 1878 icbflags = iinfo->i_alloc_type | 1879 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1880 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1881 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1882 (le16_to_cpu(fe->icbTag.flags) & 1883 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1884 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1885 1886 fe->icbTag.flags = cpu_to_le16(icbflags); 1887 if (sbi->s_udfrev >= 0x0200) 1888 fe->descTag.descVersion = cpu_to_le16(3); 1889 else 1890 fe->descTag.descVersion = cpu_to_le16(2); 1891 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1892 fe->descTag.tagLocation = cpu_to_le32( 1893 iinfo->i_location.logicalBlockNum); 1894 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1895 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1896 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1897 crclen)); 1898 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1899 1900 set_buffer_uptodate(bh); 1901 unlock_buffer(bh); 1902 1903 /* write the data blocks */ 1904 mark_buffer_dirty(bh); 1905 if (do_sync) { 1906 sync_dirty_buffer(bh); 1907 if (buffer_write_io_error(bh)) { 1908 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1909 inode->i_ino); 1910 err = -EIO; 1911 } 1912 } 1913 brelse(bh); 1914 1915 return err; 1916 } 1917 1918 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1919 bool hidden_inode) 1920 { 1921 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1922 struct inode *inode = iget_locked(sb, block); 1923 int err; 1924 1925 if (!inode) 1926 return ERR_PTR(-ENOMEM); 1927 1928 if (!(inode->i_state & I_NEW)) { 1929 if (UDF_I(inode)->i_hidden != hidden_inode) { 1930 iput(inode); 1931 return ERR_PTR(-EFSCORRUPTED); 1932 } 1933 return inode; 1934 } 1935 1936 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1937 err = udf_read_inode(inode, hidden_inode); 1938 if (err < 0) { 1939 iget_failed(inode); 1940 return ERR_PTR(err); 1941 } 1942 unlock_new_inode(inode); 1943 1944 return inode; 1945 } 1946 1947 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1948 struct extent_position *epos) 1949 { 1950 struct super_block *sb = inode->i_sb; 1951 struct buffer_head *bh; 1952 struct allocExtDesc *aed; 1953 struct extent_position nepos; 1954 struct kernel_lb_addr neloc; 1955 int ver, adsize; 1956 1957 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1958 adsize = sizeof(struct short_ad); 1959 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1960 adsize = sizeof(struct long_ad); 1961 else 1962 return -EIO; 1963 1964 neloc.logicalBlockNum = block; 1965 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1966 1967 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1968 if (!bh) 1969 return -EIO; 1970 lock_buffer(bh); 1971 memset(bh->b_data, 0x00, sb->s_blocksize); 1972 set_buffer_uptodate(bh); 1973 unlock_buffer(bh); 1974 mark_buffer_dirty_inode(bh, inode); 1975 1976 aed = (struct allocExtDesc *)(bh->b_data); 1977 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1978 aed->previousAllocExtLocation = 1979 cpu_to_le32(epos->block.logicalBlockNum); 1980 } 1981 aed->lengthAllocDescs = cpu_to_le32(0); 1982 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1983 ver = 3; 1984 else 1985 ver = 2; 1986 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1987 sizeof(struct tag)); 1988 1989 nepos.block = neloc; 1990 nepos.offset = sizeof(struct allocExtDesc); 1991 nepos.bh = bh; 1992 1993 /* 1994 * Do we have to copy current last extent to make space for indirect 1995 * one? 1996 */ 1997 if (epos->offset + adsize > sb->s_blocksize) { 1998 struct kernel_lb_addr cp_loc; 1999 uint32_t cp_len; 2000 int cp_type; 2001 2002 epos->offset -= adsize; 2003 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2004 cp_len |= ((uint32_t)cp_type) << 30; 2005 2006 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2007 udf_write_aext(inode, epos, &nepos.block, 2008 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2009 } else { 2010 __udf_add_aext(inode, epos, &nepos.block, 2011 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2012 } 2013 2014 brelse(epos->bh); 2015 *epos = nepos; 2016 2017 return 0; 2018 } 2019 2020 /* 2021 * Append extent at the given position - should be the first free one in inode 2022 * / indirect extent. This function assumes there is enough space in the inode 2023 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2024 */ 2025 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2026 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2027 { 2028 struct udf_inode_info *iinfo = UDF_I(inode); 2029 struct allocExtDesc *aed; 2030 int adsize; 2031 2032 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2033 adsize = sizeof(struct short_ad); 2034 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2035 adsize = sizeof(struct long_ad); 2036 else 2037 return -EIO; 2038 2039 if (!epos->bh) { 2040 WARN_ON(iinfo->i_lenAlloc != 2041 epos->offset - udf_file_entry_alloc_offset(inode)); 2042 } else { 2043 aed = (struct allocExtDesc *)epos->bh->b_data; 2044 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2045 epos->offset - sizeof(struct allocExtDesc)); 2046 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2047 } 2048 2049 udf_write_aext(inode, epos, eloc, elen, inc); 2050 2051 if (!epos->bh) { 2052 iinfo->i_lenAlloc += adsize; 2053 mark_inode_dirty(inode); 2054 } else { 2055 aed = (struct allocExtDesc *)epos->bh->b_data; 2056 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2057 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2058 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2059 udf_update_tag(epos->bh->b_data, 2060 epos->offset + (inc ? 0 : adsize)); 2061 else 2062 udf_update_tag(epos->bh->b_data, 2063 sizeof(struct allocExtDesc)); 2064 mark_buffer_dirty_inode(epos->bh, inode); 2065 } 2066 2067 return 0; 2068 } 2069 2070 /* 2071 * Append extent at given position - should be the first free one in inode 2072 * / indirect extent. Takes care of allocating and linking indirect blocks. 2073 */ 2074 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2075 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2076 { 2077 int adsize; 2078 struct super_block *sb = inode->i_sb; 2079 2080 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2081 adsize = sizeof(struct short_ad); 2082 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2083 adsize = sizeof(struct long_ad); 2084 else 2085 return -EIO; 2086 2087 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2088 int err; 2089 udf_pblk_t new_block; 2090 2091 new_block = udf_new_block(sb, NULL, 2092 epos->block.partitionReferenceNum, 2093 epos->block.logicalBlockNum, &err); 2094 if (!new_block) 2095 return -ENOSPC; 2096 2097 err = udf_setup_indirect_aext(inode, new_block, epos); 2098 if (err) 2099 return err; 2100 } 2101 2102 return __udf_add_aext(inode, epos, eloc, elen, inc); 2103 } 2104 2105 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2106 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2107 { 2108 int adsize; 2109 uint8_t *ptr; 2110 struct short_ad *sad; 2111 struct long_ad *lad; 2112 struct udf_inode_info *iinfo = UDF_I(inode); 2113 2114 if (!epos->bh) 2115 ptr = iinfo->i_data + epos->offset - 2116 udf_file_entry_alloc_offset(inode) + 2117 iinfo->i_lenEAttr; 2118 else 2119 ptr = epos->bh->b_data + epos->offset; 2120 2121 switch (iinfo->i_alloc_type) { 2122 case ICBTAG_FLAG_AD_SHORT: 2123 sad = (struct short_ad *)ptr; 2124 sad->extLength = cpu_to_le32(elen); 2125 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2126 adsize = sizeof(struct short_ad); 2127 break; 2128 case ICBTAG_FLAG_AD_LONG: 2129 lad = (struct long_ad *)ptr; 2130 lad->extLength = cpu_to_le32(elen); 2131 lad->extLocation = cpu_to_lelb(*eloc); 2132 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2133 adsize = sizeof(struct long_ad); 2134 break; 2135 default: 2136 return; 2137 } 2138 2139 if (epos->bh) { 2140 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2141 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2142 struct allocExtDesc *aed = 2143 (struct allocExtDesc *)epos->bh->b_data; 2144 udf_update_tag(epos->bh->b_data, 2145 le32_to_cpu(aed->lengthAllocDescs) + 2146 sizeof(struct allocExtDesc)); 2147 } 2148 mark_buffer_dirty_inode(epos->bh, inode); 2149 } else { 2150 mark_inode_dirty(inode); 2151 } 2152 2153 if (inc) 2154 epos->offset += adsize; 2155 } 2156 2157 /* 2158 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2159 * someone does some weird stuff. 2160 */ 2161 #define UDF_MAX_INDIR_EXTS 16 2162 2163 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2164 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2165 { 2166 int8_t etype; 2167 unsigned int indirections = 0; 2168 2169 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2170 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2171 udf_pblk_t block; 2172 2173 if (++indirections > UDF_MAX_INDIR_EXTS) { 2174 udf_err(inode->i_sb, 2175 "too many indirect extents in inode %lu\n", 2176 inode->i_ino); 2177 return -1; 2178 } 2179 2180 epos->block = *eloc; 2181 epos->offset = sizeof(struct allocExtDesc); 2182 brelse(epos->bh); 2183 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2184 epos->bh = sb_bread(inode->i_sb, block); 2185 if (!epos->bh) { 2186 udf_debug("reading block %u failed!\n", block); 2187 return -1; 2188 } 2189 } 2190 2191 return etype; 2192 } 2193 2194 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2195 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2196 { 2197 int alen; 2198 int8_t etype; 2199 uint8_t *ptr; 2200 struct short_ad *sad; 2201 struct long_ad *lad; 2202 struct udf_inode_info *iinfo = UDF_I(inode); 2203 2204 if (!epos->bh) { 2205 if (!epos->offset) 2206 epos->offset = udf_file_entry_alloc_offset(inode); 2207 ptr = iinfo->i_data + epos->offset - 2208 udf_file_entry_alloc_offset(inode) + 2209 iinfo->i_lenEAttr; 2210 alen = udf_file_entry_alloc_offset(inode) + 2211 iinfo->i_lenAlloc; 2212 } else { 2213 if (!epos->offset) 2214 epos->offset = sizeof(struct allocExtDesc); 2215 ptr = epos->bh->b_data + epos->offset; 2216 alen = sizeof(struct allocExtDesc) + 2217 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2218 lengthAllocDescs); 2219 } 2220 2221 switch (iinfo->i_alloc_type) { 2222 case ICBTAG_FLAG_AD_SHORT: 2223 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2224 if (!sad) 2225 return -1; 2226 etype = le32_to_cpu(sad->extLength) >> 30; 2227 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2228 eloc->partitionReferenceNum = 2229 iinfo->i_location.partitionReferenceNum; 2230 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2231 break; 2232 case ICBTAG_FLAG_AD_LONG: 2233 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2234 if (!lad) 2235 return -1; 2236 etype = le32_to_cpu(lad->extLength) >> 30; 2237 *eloc = lelb_to_cpu(lad->extLocation); 2238 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2239 break; 2240 default: 2241 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2242 return -1; 2243 } 2244 2245 return etype; 2246 } 2247 2248 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2249 struct kernel_lb_addr neloc, uint32_t nelen) 2250 { 2251 struct kernel_lb_addr oeloc; 2252 uint32_t oelen; 2253 int8_t etype; 2254 int err; 2255 2256 if (epos.bh) 2257 get_bh(epos.bh); 2258 2259 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2260 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2261 neloc = oeloc; 2262 nelen = (etype << 30) | oelen; 2263 } 2264 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2265 brelse(epos.bh); 2266 2267 return err; 2268 } 2269 2270 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2271 { 2272 struct extent_position oepos; 2273 int adsize; 2274 int8_t etype; 2275 struct allocExtDesc *aed; 2276 struct udf_inode_info *iinfo; 2277 struct kernel_lb_addr eloc; 2278 uint32_t elen; 2279 2280 if (epos.bh) { 2281 get_bh(epos.bh); 2282 get_bh(epos.bh); 2283 } 2284 2285 iinfo = UDF_I(inode); 2286 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2287 adsize = sizeof(struct short_ad); 2288 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2289 adsize = sizeof(struct long_ad); 2290 else 2291 adsize = 0; 2292 2293 oepos = epos; 2294 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2295 return -1; 2296 2297 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2298 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2299 if (oepos.bh != epos.bh) { 2300 oepos.block = epos.block; 2301 brelse(oepos.bh); 2302 get_bh(epos.bh); 2303 oepos.bh = epos.bh; 2304 oepos.offset = epos.offset - adsize; 2305 } 2306 } 2307 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2308 elen = 0; 2309 2310 if (epos.bh != oepos.bh) { 2311 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2312 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2313 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2314 if (!oepos.bh) { 2315 iinfo->i_lenAlloc -= (adsize * 2); 2316 mark_inode_dirty(inode); 2317 } else { 2318 aed = (struct allocExtDesc *)oepos.bh->b_data; 2319 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2320 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2321 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2322 udf_update_tag(oepos.bh->b_data, 2323 oepos.offset - (2 * adsize)); 2324 else 2325 udf_update_tag(oepos.bh->b_data, 2326 sizeof(struct allocExtDesc)); 2327 mark_buffer_dirty_inode(oepos.bh, inode); 2328 } 2329 } else { 2330 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2331 if (!oepos.bh) { 2332 iinfo->i_lenAlloc -= adsize; 2333 mark_inode_dirty(inode); 2334 } else { 2335 aed = (struct allocExtDesc *)oepos.bh->b_data; 2336 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2337 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2338 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2339 udf_update_tag(oepos.bh->b_data, 2340 epos.offset - adsize); 2341 else 2342 udf_update_tag(oepos.bh->b_data, 2343 sizeof(struct allocExtDesc)); 2344 mark_buffer_dirty_inode(oepos.bh, inode); 2345 } 2346 } 2347 2348 brelse(epos.bh); 2349 brelse(oepos.bh); 2350 2351 return (elen >> 30); 2352 } 2353 2354 int8_t inode_bmap(struct inode *inode, sector_t block, 2355 struct extent_position *pos, struct kernel_lb_addr *eloc, 2356 uint32_t *elen, sector_t *offset) 2357 { 2358 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2359 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2360 int8_t etype; 2361 struct udf_inode_info *iinfo; 2362 2363 iinfo = UDF_I(inode); 2364 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2365 pos->offset = 0; 2366 pos->block = iinfo->i_location; 2367 pos->bh = NULL; 2368 } 2369 *elen = 0; 2370 do { 2371 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2372 if (etype == -1) { 2373 *offset = (bcount - lbcount) >> blocksize_bits; 2374 iinfo->i_lenExtents = lbcount; 2375 return -1; 2376 } 2377 lbcount += *elen; 2378 } while (lbcount <= bcount); 2379 /* update extent cache */ 2380 udf_update_extent_cache(inode, lbcount - *elen, pos); 2381 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2382 2383 return etype; 2384 } 2385