1 /* 2 * balloc.c 3 * 4 * PURPOSE 5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1999-2001 Ben Fennema 14 * (C) 1999 Stelias Computing Inc 15 * 16 * HISTORY 17 * 18 * 02/24/99 blf Created. 19 * 20 */ 21 22 #include "udfdecl.h" 23 24 #include <linux/bitops.h> 25 26 #include "udf_i.h" 27 #include "udf_sb.h" 28 29 #define udf_clear_bit __test_and_clear_bit_le 30 #define udf_set_bit __test_and_set_bit_le 31 #define udf_test_bit test_bit_le 32 #define udf_find_next_one_bit find_next_bit_le 33 34 static int read_block_bitmap(struct super_block *sb, 35 struct udf_bitmap *bitmap, unsigned int block, 36 unsigned long bitmap_nr) 37 { 38 struct buffer_head *bh = NULL; 39 int retval = 0; 40 struct kernel_lb_addr loc; 41 42 loc.logicalBlockNum = bitmap->s_extPosition; 43 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 44 45 bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block)); 46 if (!bh) 47 retval = -EIO; 48 49 bitmap->s_block_bitmap[bitmap_nr] = bh; 50 return retval; 51 } 52 53 static int __load_block_bitmap(struct super_block *sb, 54 struct udf_bitmap *bitmap, 55 unsigned int block_group) 56 { 57 int retval = 0; 58 int nr_groups = bitmap->s_nr_groups; 59 60 if (block_group >= nr_groups) { 61 udf_debug("block_group (%u) > nr_groups (%d)\n", 62 block_group, nr_groups); 63 } 64 65 if (bitmap->s_block_bitmap[block_group]) 66 return block_group; 67 68 retval = read_block_bitmap(sb, bitmap, block_group, block_group); 69 if (retval < 0) 70 return retval; 71 72 return block_group; 73 } 74 75 static inline int load_block_bitmap(struct super_block *sb, 76 struct udf_bitmap *bitmap, 77 unsigned int block_group) 78 { 79 int slot; 80 81 slot = __load_block_bitmap(sb, bitmap, block_group); 82 83 if (slot < 0) 84 return slot; 85 86 if (!bitmap->s_block_bitmap[slot]) 87 return -EIO; 88 89 return slot; 90 } 91 92 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt) 93 { 94 struct udf_sb_info *sbi = UDF_SB(sb); 95 struct logicalVolIntegrityDesc *lvid; 96 97 if (!sbi->s_lvid_bh) 98 return; 99 100 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt); 102 udf_updated_lvid(sb); 103 } 104 105 static void udf_bitmap_free_blocks(struct super_block *sb, 106 struct udf_bitmap *bitmap, 107 struct kernel_lb_addr *bloc, 108 uint32_t offset, 109 uint32_t count) 110 { 111 struct udf_sb_info *sbi = UDF_SB(sb); 112 struct buffer_head *bh = NULL; 113 struct udf_part_map *partmap; 114 unsigned long block; 115 unsigned long block_group; 116 unsigned long bit; 117 unsigned long i; 118 int bitmap_nr; 119 unsigned long overflow; 120 121 mutex_lock(&sbi->s_alloc_mutex); 122 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 123 if (bloc->logicalBlockNum + count < count || 124 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 125 udf_debug("%u < %d || %u + %u > %u\n", 126 bloc->logicalBlockNum, 0, 127 bloc->logicalBlockNum, count, 128 partmap->s_partition_len); 129 goto error_return; 130 } 131 132 block = bloc->logicalBlockNum + offset + 133 (sizeof(struct spaceBitmapDesc) << 3); 134 135 do { 136 overflow = 0; 137 block_group = block >> (sb->s_blocksize_bits + 3); 138 bit = block % (sb->s_blocksize << 3); 139 140 /* 141 * Check to see if we are freeing blocks across a group boundary. 142 */ 143 if (bit + count > (sb->s_blocksize << 3)) { 144 overflow = bit + count - (sb->s_blocksize << 3); 145 count -= overflow; 146 } 147 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 148 if (bitmap_nr < 0) 149 goto error_return; 150 151 bh = bitmap->s_block_bitmap[bitmap_nr]; 152 for (i = 0; i < count; i++) { 153 if (udf_set_bit(bit + i, bh->b_data)) { 154 udf_debug("bit %lu already set\n", bit + i); 155 udf_debug("byte=%2x\n", 156 ((__u8 *)bh->b_data)[(bit + i) >> 3]); 157 } 158 } 159 udf_add_free_space(sb, sbi->s_partition, count); 160 mark_buffer_dirty(bh); 161 if (overflow) { 162 block += count; 163 count = overflow; 164 } 165 } while (overflow); 166 167 error_return: 168 mutex_unlock(&sbi->s_alloc_mutex); 169 } 170 171 static int udf_bitmap_prealloc_blocks(struct super_block *sb, 172 struct udf_bitmap *bitmap, 173 uint16_t partition, uint32_t first_block, 174 uint32_t block_count) 175 { 176 struct udf_sb_info *sbi = UDF_SB(sb); 177 int alloc_count = 0; 178 int bit, block, block_group; 179 int bitmap_nr; 180 struct buffer_head *bh; 181 __u32 part_len; 182 183 mutex_lock(&sbi->s_alloc_mutex); 184 part_len = sbi->s_partmaps[partition].s_partition_len; 185 if (first_block >= part_len) 186 goto out; 187 188 if (first_block + block_count > part_len) 189 block_count = part_len - first_block; 190 191 do { 192 block = first_block + (sizeof(struct spaceBitmapDesc) << 3); 193 block_group = block >> (sb->s_blocksize_bits + 3); 194 195 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 196 if (bitmap_nr < 0) 197 goto out; 198 bh = bitmap->s_block_bitmap[bitmap_nr]; 199 200 bit = block % (sb->s_blocksize << 3); 201 202 while (bit < (sb->s_blocksize << 3) && block_count > 0) { 203 if (!udf_clear_bit(bit, bh->b_data)) 204 goto out; 205 block_count--; 206 alloc_count++; 207 bit++; 208 block++; 209 } 210 mark_buffer_dirty(bh); 211 } while (block_count > 0); 212 213 out: 214 udf_add_free_space(sb, partition, -alloc_count); 215 mutex_unlock(&sbi->s_alloc_mutex); 216 return alloc_count; 217 } 218 219 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb, 220 struct udf_bitmap *bitmap, uint16_t partition, 221 uint32_t goal, int *err) 222 { 223 struct udf_sb_info *sbi = UDF_SB(sb); 224 int newbit, bit = 0; 225 udf_pblk_t block; 226 int block_group, group_start; 227 int end_goal, nr_groups, bitmap_nr, i; 228 struct buffer_head *bh = NULL; 229 char *ptr; 230 udf_pblk_t newblock = 0; 231 232 *err = -ENOSPC; 233 mutex_lock(&sbi->s_alloc_mutex); 234 235 repeat: 236 if (goal >= sbi->s_partmaps[partition].s_partition_len) 237 goal = 0; 238 239 nr_groups = bitmap->s_nr_groups; 240 block = goal + (sizeof(struct spaceBitmapDesc) << 3); 241 block_group = block >> (sb->s_blocksize_bits + 3); 242 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 243 244 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 245 if (bitmap_nr < 0) 246 goto error_return; 247 bh = bitmap->s_block_bitmap[bitmap_nr]; 248 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 249 sb->s_blocksize - group_start); 250 251 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 252 bit = block % (sb->s_blocksize << 3); 253 if (udf_test_bit(bit, bh->b_data)) 254 goto got_block; 255 256 end_goal = (bit + 63) & ~63; 257 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); 258 if (bit < end_goal) 259 goto got_block; 260 261 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, 262 sb->s_blocksize - ((bit + 7) >> 3)); 263 newbit = (ptr - ((char *)bh->b_data)) << 3; 264 if (newbit < sb->s_blocksize << 3) { 265 bit = newbit; 266 goto search_back; 267 } 268 269 newbit = udf_find_next_one_bit(bh->b_data, 270 sb->s_blocksize << 3, bit); 271 if (newbit < sb->s_blocksize << 3) { 272 bit = newbit; 273 goto got_block; 274 } 275 } 276 277 for (i = 0; i < (nr_groups * 2); i++) { 278 block_group++; 279 if (block_group >= nr_groups) 280 block_group = 0; 281 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 282 283 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 284 if (bitmap_nr < 0) 285 goto error_return; 286 bh = bitmap->s_block_bitmap[bitmap_nr]; 287 if (i < nr_groups) { 288 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 289 sb->s_blocksize - group_start); 290 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 291 bit = (ptr - ((char *)bh->b_data)) << 3; 292 break; 293 } 294 } else { 295 bit = udf_find_next_one_bit(bh->b_data, 296 sb->s_blocksize << 3, 297 group_start << 3); 298 if (bit < sb->s_blocksize << 3) 299 break; 300 } 301 } 302 if (i >= (nr_groups * 2)) { 303 mutex_unlock(&sbi->s_alloc_mutex); 304 return newblock; 305 } 306 if (bit < sb->s_blocksize << 3) 307 goto search_back; 308 else 309 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, 310 group_start << 3); 311 if (bit >= sb->s_blocksize << 3) { 312 mutex_unlock(&sbi->s_alloc_mutex); 313 return 0; 314 } 315 316 search_back: 317 i = 0; 318 while (i < 7 && bit > (group_start << 3) && 319 udf_test_bit(bit - 1, bh->b_data)) { 320 ++i; 321 --bit; 322 } 323 324 got_block: 325 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - 326 (sizeof(struct spaceBitmapDesc) << 3); 327 328 if (newblock >= sbi->s_partmaps[partition].s_partition_len) { 329 /* 330 * Ran off the end of the bitmap, and bits following are 331 * non-compliant (not all zero) 332 */ 333 udf_err(sb, "bitmap for partition %d corrupted (block %u marked" 334 " as free, partition length is %u)\n", partition, 335 newblock, sbi->s_partmaps[partition].s_partition_len); 336 goto error_return; 337 } 338 339 if (!udf_clear_bit(bit, bh->b_data)) { 340 udf_debug("bit already cleared for block %d\n", bit); 341 goto repeat; 342 } 343 344 mark_buffer_dirty(bh); 345 346 udf_add_free_space(sb, partition, -1); 347 mutex_unlock(&sbi->s_alloc_mutex); 348 *err = 0; 349 return newblock; 350 351 error_return: 352 *err = -EIO; 353 mutex_unlock(&sbi->s_alloc_mutex); 354 return 0; 355 } 356 357 static void udf_table_free_blocks(struct super_block *sb, 358 struct inode *table, 359 struct kernel_lb_addr *bloc, 360 uint32_t offset, 361 uint32_t count) 362 { 363 struct udf_sb_info *sbi = UDF_SB(sb); 364 struct udf_part_map *partmap; 365 uint32_t start, end; 366 uint32_t elen; 367 struct kernel_lb_addr eloc; 368 struct extent_position oepos, epos; 369 int8_t etype; 370 struct udf_inode_info *iinfo; 371 372 mutex_lock(&sbi->s_alloc_mutex); 373 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 374 if (bloc->logicalBlockNum + count < count || 375 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 376 udf_debug("%u < %d || %u + %u > %u\n", 377 bloc->logicalBlockNum, 0, 378 bloc->logicalBlockNum, count, 379 partmap->s_partition_len); 380 goto error_return; 381 } 382 383 iinfo = UDF_I(table); 384 udf_add_free_space(sb, sbi->s_partition, count); 385 386 start = bloc->logicalBlockNum + offset; 387 end = bloc->logicalBlockNum + offset + count - 1; 388 389 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); 390 elen = 0; 391 epos.block = oepos.block = iinfo->i_location; 392 epos.bh = oepos.bh = NULL; 393 394 while (count && 395 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 396 if (((eloc.logicalBlockNum + 397 (elen >> sb->s_blocksize_bits)) == start)) { 398 if ((0x3FFFFFFF - elen) < 399 (count << sb->s_blocksize_bits)) { 400 uint32_t tmp = ((0x3FFFFFFF - elen) >> 401 sb->s_blocksize_bits); 402 count -= tmp; 403 start += tmp; 404 elen = (etype << 30) | 405 (0x40000000 - sb->s_blocksize); 406 } else { 407 elen = (etype << 30) | 408 (elen + 409 (count << sb->s_blocksize_bits)); 410 start += count; 411 count = 0; 412 } 413 udf_write_aext(table, &oepos, &eloc, elen, 1); 414 } else if (eloc.logicalBlockNum == (end + 1)) { 415 if ((0x3FFFFFFF - elen) < 416 (count << sb->s_blocksize_bits)) { 417 uint32_t tmp = ((0x3FFFFFFF - elen) >> 418 sb->s_blocksize_bits); 419 count -= tmp; 420 end -= tmp; 421 eloc.logicalBlockNum -= tmp; 422 elen = (etype << 30) | 423 (0x40000000 - sb->s_blocksize); 424 } else { 425 eloc.logicalBlockNum = start; 426 elen = (etype << 30) | 427 (elen + 428 (count << sb->s_blocksize_bits)); 429 end -= count; 430 count = 0; 431 } 432 udf_write_aext(table, &oepos, &eloc, elen, 1); 433 } 434 435 if (epos.bh != oepos.bh) { 436 oepos.block = epos.block; 437 brelse(oepos.bh); 438 get_bh(epos.bh); 439 oepos.bh = epos.bh; 440 oepos.offset = 0; 441 } else { 442 oepos.offset = epos.offset; 443 } 444 } 445 446 if (count) { 447 /* 448 * NOTE: we CANNOT use udf_add_aext here, as it can try to 449 * allocate a new block, and since we hold the super block 450 * lock already very bad things would happen :) 451 * 452 * We copy the behavior of udf_add_aext, but instead of 453 * trying to allocate a new block close to the existing one, 454 * we just steal a block from the extent we are trying to add. 455 * 456 * It would be nice if the blocks were close together, but it 457 * isn't required. 458 */ 459 460 int adsize; 461 462 eloc.logicalBlockNum = start; 463 elen = EXT_RECORDED_ALLOCATED | 464 (count << sb->s_blocksize_bits); 465 466 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 467 adsize = sizeof(struct short_ad); 468 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 469 adsize = sizeof(struct long_ad); 470 else { 471 brelse(oepos.bh); 472 brelse(epos.bh); 473 goto error_return; 474 } 475 476 if (epos.offset + (2 * adsize) > sb->s_blocksize) { 477 /* Steal a block from the extent being free'd */ 478 udf_setup_indirect_aext(table, eloc.logicalBlockNum, 479 &epos); 480 481 eloc.logicalBlockNum++; 482 elen -= sb->s_blocksize; 483 } 484 485 /* It's possible that stealing the block emptied the extent */ 486 if (elen) 487 __udf_add_aext(table, &epos, &eloc, elen, 1); 488 } 489 490 brelse(epos.bh); 491 brelse(oepos.bh); 492 493 error_return: 494 mutex_unlock(&sbi->s_alloc_mutex); 495 return; 496 } 497 498 static int udf_table_prealloc_blocks(struct super_block *sb, 499 struct inode *table, uint16_t partition, 500 uint32_t first_block, uint32_t block_count) 501 { 502 struct udf_sb_info *sbi = UDF_SB(sb); 503 int alloc_count = 0; 504 uint32_t elen, adsize; 505 struct kernel_lb_addr eloc; 506 struct extent_position epos; 507 int8_t etype = -1; 508 struct udf_inode_info *iinfo; 509 510 if (first_block >= sbi->s_partmaps[partition].s_partition_len) 511 return 0; 512 513 iinfo = UDF_I(table); 514 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 515 adsize = sizeof(struct short_ad); 516 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 517 adsize = sizeof(struct long_ad); 518 else 519 return 0; 520 521 mutex_lock(&sbi->s_alloc_mutex); 522 epos.offset = sizeof(struct unallocSpaceEntry); 523 epos.block = iinfo->i_location; 524 epos.bh = NULL; 525 eloc.logicalBlockNum = 0xFFFFFFFF; 526 527 while (first_block != eloc.logicalBlockNum && 528 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 529 udf_debug("eloc=%u, elen=%u, first_block=%u\n", 530 eloc.logicalBlockNum, elen, first_block); 531 ; /* empty loop body */ 532 } 533 534 if (first_block == eloc.logicalBlockNum) { 535 epos.offset -= adsize; 536 537 alloc_count = (elen >> sb->s_blocksize_bits); 538 if (alloc_count > block_count) { 539 alloc_count = block_count; 540 eloc.logicalBlockNum += alloc_count; 541 elen -= (alloc_count << sb->s_blocksize_bits); 542 udf_write_aext(table, &epos, &eloc, 543 (etype << 30) | elen, 1); 544 } else 545 udf_delete_aext(table, epos); 546 } else { 547 alloc_count = 0; 548 } 549 550 brelse(epos.bh); 551 552 if (alloc_count) 553 udf_add_free_space(sb, partition, -alloc_count); 554 mutex_unlock(&sbi->s_alloc_mutex); 555 return alloc_count; 556 } 557 558 static udf_pblk_t udf_table_new_block(struct super_block *sb, 559 struct inode *table, uint16_t partition, 560 uint32_t goal, int *err) 561 { 562 struct udf_sb_info *sbi = UDF_SB(sb); 563 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; 564 udf_pblk_t newblock = 0; 565 uint32_t adsize; 566 uint32_t elen, goal_elen = 0; 567 struct kernel_lb_addr eloc, goal_eloc; 568 struct extent_position epos, goal_epos; 569 int8_t etype; 570 struct udf_inode_info *iinfo = UDF_I(table); 571 572 *err = -ENOSPC; 573 574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 575 adsize = sizeof(struct short_ad); 576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 577 adsize = sizeof(struct long_ad); 578 else 579 return newblock; 580 581 mutex_lock(&sbi->s_alloc_mutex); 582 if (goal >= sbi->s_partmaps[partition].s_partition_len) 583 goal = 0; 584 585 /* We search for the closest matching block to goal. If we find 586 a exact hit, we stop. Otherwise we keep going till we run out 587 of extents. We store the buffer_head, bloc, and extoffset 588 of the current closest match and use that when we are done. 589 */ 590 epos.offset = sizeof(struct unallocSpaceEntry); 591 epos.block = iinfo->i_location; 592 epos.bh = goal_epos.bh = NULL; 593 594 while (spread && 595 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 596 if (goal >= eloc.logicalBlockNum) { 597 if (goal < eloc.logicalBlockNum + 598 (elen >> sb->s_blocksize_bits)) 599 nspread = 0; 600 else 601 nspread = goal - eloc.logicalBlockNum - 602 (elen >> sb->s_blocksize_bits); 603 } else { 604 nspread = eloc.logicalBlockNum - goal; 605 } 606 607 if (nspread < spread) { 608 spread = nspread; 609 if (goal_epos.bh != epos.bh) { 610 brelse(goal_epos.bh); 611 goal_epos.bh = epos.bh; 612 get_bh(goal_epos.bh); 613 } 614 goal_epos.block = epos.block; 615 goal_epos.offset = epos.offset - adsize; 616 goal_eloc = eloc; 617 goal_elen = (etype << 30) | elen; 618 } 619 } 620 621 brelse(epos.bh); 622 623 if (spread == 0xFFFFFFFF) { 624 brelse(goal_epos.bh); 625 mutex_unlock(&sbi->s_alloc_mutex); 626 return 0; 627 } 628 629 /* Only allocate blocks from the beginning of the extent. 630 That way, we only delete (empty) extents, never have to insert an 631 extent because of splitting */ 632 /* This works, but very poorly.... */ 633 634 newblock = goal_eloc.logicalBlockNum; 635 goal_eloc.logicalBlockNum++; 636 goal_elen -= sb->s_blocksize; 637 638 if (goal_elen) 639 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1); 640 else 641 udf_delete_aext(table, goal_epos); 642 brelse(goal_epos.bh); 643 644 udf_add_free_space(sb, partition, -1); 645 646 mutex_unlock(&sbi->s_alloc_mutex); 647 *err = 0; 648 return newblock; 649 } 650 651 void udf_free_blocks(struct super_block *sb, struct inode *inode, 652 struct kernel_lb_addr *bloc, uint32_t offset, 653 uint32_t count) 654 { 655 uint16_t partition = bloc->partitionReferenceNum; 656 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 657 658 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 659 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap, 660 bloc, offset, count); 661 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 662 udf_table_free_blocks(sb, map->s_uspace.s_table, 663 bloc, offset, count); 664 } 665 666 if (inode) { 667 inode_sub_bytes(inode, 668 ((sector_t)count) << sb->s_blocksize_bits); 669 } 670 } 671 672 inline int udf_prealloc_blocks(struct super_block *sb, 673 struct inode *inode, 674 uint16_t partition, uint32_t first_block, 675 uint32_t block_count) 676 { 677 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 678 int allocated; 679 680 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 681 allocated = udf_bitmap_prealloc_blocks(sb, 682 map->s_uspace.s_bitmap, 683 partition, first_block, 684 block_count); 685 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 686 allocated = udf_table_prealloc_blocks(sb, 687 map->s_uspace.s_table, 688 partition, first_block, 689 block_count); 690 else 691 return 0; 692 693 if (inode && allocated > 0) 694 inode_add_bytes(inode, allocated << sb->s_blocksize_bits); 695 return allocated; 696 } 697 698 inline udf_pblk_t udf_new_block(struct super_block *sb, 699 struct inode *inode, 700 uint16_t partition, uint32_t goal, int *err) 701 { 702 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 703 udf_pblk_t block; 704 705 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 706 block = udf_bitmap_new_block(sb, 707 map->s_uspace.s_bitmap, 708 partition, goal, err); 709 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 710 block = udf_table_new_block(sb, 711 map->s_uspace.s_table, 712 partition, goal, err); 713 else { 714 *err = -EIO; 715 return 0; 716 } 717 if (inode && block) 718 inode_add_bytes(inode, sb->s_blocksize); 719 return block; 720 } 721