xref: /openbmc/linux/fs/udf/balloc.c (revision c0e297dc)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/bitops.h>
25 
26 #include "udf_i.h"
27 #include "udf_sb.h"
28 
29 #define udf_clear_bit	__test_and_clear_bit_le
30 #define udf_set_bit	__test_and_set_bit_le
31 #define udf_test_bit	test_bit_le
32 #define udf_find_next_one_bit	find_next_bit_le
33 
34 static int read_block_bitmap(struct super_block *sb,
35 			     struct udf_bitmap *bitmap, unsigned int block,
36 			     unsigned long bitmap_nr)
37 {
38 	struct buffer_head *bh = NULL;
39 	int retval = 0;
40 	struct kernel_lb_addr loc;
41 
42 	loc.logicalBlockNum = bitmap->s_extPosition;
43 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
44 
45 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
46 	if (!bh)
47 		retval = -EIO;
48 
49 	bitmap->s_block_bitmap[bitmap_nr] = bh;
50 	return retval;
51 }
52 
53 static int __load_block_bitmap(struct super_block *sb,
54 			       struct udf_bitmap *bitmap,
55 			       unsigned int block_group)
56 {
57 	int retval = 0;
58 	int nr_groups = bitmap->s_nr_groups;
59 
60 	if (block_group >= nr_groups) {
61 		udf_debug("block_group (%d) > nr_groups (%d)\n",
62 			  block_group, nr_groups);
63 	}
64 
65 	if (bitmap->s_block_bitmap[block_group])
66 		return block_group;
67 
68 	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
69 	if (retval < 0)
70 		return retval;
71 
72 	return block_group;
73 }
74 
75 static inline int load_block_bitmap(struct super_block *sb,
76 				    struct udf_bitmap *bitmap,
77 				    unsigned int block_group)
78 {
79 	int slot;
80 
81 	slot = __load_block_bitmap(sb, bitmap, block_group);
82 
83 	if (slot < 0)
84 		return slot;
85 
86 	if (!bitmap->s_block_bitmap[slot])
87 		return -EIO;
88 
89 	return slot;
90 }
91 
92 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
93 {
94 	struct udf_sb_info *sbi = UDF_SB(sb);
95 	struct logicalVolIntegrityDesc *lvid;
96 
97 	if (!sbi->s_lvid_bh)
98 		return;
99 
100 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102 	udf_updated_lvid(sb);
103 }
104 
105 static void udf_bitmap_free_blocks(struct super_block *sb,
106 				   struct udf_bitmap *bitmap,
107 				   struct kernel_lb_addr *bloc,
108 				   uint32_t offset,
109 				   uint32_t count)
110 {
111 	struct udf_sb_info *sbi = UDF_SB(sb);
112 	struct buffer_head *bh = NULL;
113 	struct udf_part_map *partmap;
114 	unsigned long block;
115 	unsigned long block_group;
116 	unsigned long bit;
117 	unsigned long i;
118 	int bitmap_nr;
119 	unsigned long overflow;
120 
121 	mutex_lock(&sbi->s_alloc_mutex);
122 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123 	if (bloc->logicalBlockNum + count < count ||
124 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125 		udf_debug("%d < %d || %d + %d > %d\n",
126 			  bloc->logicalBlockNum, 0,
127 			  bloc->logicalBlockNum, count,
128 			  partmap->s_partition_len);
129 		goto error_return;
130 	}
131 
132 	block = bloc->logicalBlockNum + offset +
133 		(sizeof(struct spaceBitmapDesc) << 3);
134 
135 	do {
136 		overflow = 0;
137 		block_group = block >> (sb->s_blocksize_bits + 3);
138 		bit = block % (sb->s_blocksize << 3);
139 
140 		/*
141 		* Check to see if we are freeing blocks across a group boundary.
142 		*/
143 		if (bit + count > (sb->s_blocksize << 3)) {
144 			overflow = bit + count - (sb->s_blocksize << 3);
145 			count -= overflow;
146 		}
147 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148 		if (bitmap_nr < 0)
149 			goto error_return;
150 
151 		bh = bitmap->s_block_bitmap[bitmap_nr];
152 		for (i = 0; i < count; i++) {
153 			if (udf_set_bit(bit + i, bh->b_data)) {
154 				udf_debug("bit %ld already set\n", bit + i);
155 				udf_debug("byte=%2x\n",
156 					  ((char *)bh->b_data)[(bit + i) >> 3]);
157 			}
158 		}
159 		udf_add_free_space(sb, sbi->s_partition, count);
160 		mark_buffer_dirty(bh);
161 		if (overflow) {
162 			block += count;
163 			count = overflow;
164 		}
165 	} while (overflow);
166 
167 error_return:
168 	mutex_unlock(&sbi->s_alloc_mutex);
169 }
170 
171 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172 				      struct udf_bitmap *bitmap,
173 				      uint16_t partition, uint32_t first_block,
174 				      uint32_t block_count)
175 {
176 	struct udf_sb_info *sbi = UDF_SB(sb);
177 	int alloc_count = 0;
178 	int bit, block, block_group, group_start;
179 	int nr_groups, bitmap_nr;
180 	struct buffer_head *bh;
181 	__u32 part_len;
182 
183 	mutex_lock(&sbi->s_alloc_mutex);
184 	part_len = sbi->s_partmaps[partition].s_partition_len;
185 	if (first_block >= part_len)
186 		goto out;
187 
188 	if (first_block + block_count > part_len)
189 		block_count = part_len - first_block;
190 
191 	do {
192 		nr_groups = udf_compute_nr_groups(sb, partition);
193 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194 		block_group = block >> (sb->s_blocksize_bits + 3);
195 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196 
197 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198 		if (bitmap_nr < 0)
199 			goto out;
200 		bh = bitmap->s_block_bitmap[bitmap_nr];
201 
202 		bit = block % (sb->s_blocksize << 3);
203 
204 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205 			if (!udf_clear_bit(bit, bh->b_data))
206 				goto out;
207 			block_count--;
208 			alloc_count++;
209 			bit++;
210 			block++;
211 		}
212 		mark_buffer_dirty(bh);
213 	} while (block_count > 0);
214 
215 out:
216 	udf_add_free_space(sb, partition, -alloc_count);
217 	mutex_unlock(&sbi->s_alloc_mutex);
218 	return alloc_count;
219 }
220 
221 static int udf_bitmap_new_block(struct super_block *sb,
222 				struct udf_bitmap *bitmap, uint16_t partition,
223 				uint32_t goal, int *err)
224 {
225 	struct udf_sb_info *sbi = UDF_SB(sb);
226 	int newbit, bit = 0, block, block_group, group_start;
227 	int end_goal, nr_groups, bitmap_nr, i;
228 	struct buffer_head *bh = NULL;
229 	char *ptr;
230 	int newblock = 0;
231 
232 	*err = -ENOSPC;
233 	mutex_lock(&sbi->s_alloc_mutex);
234 
235 repeat:
236 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
237 		goal = 0;
238 
239 	nr_groups = bitmap->s_nr_groups;
240 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241 	block_group = block >> (sb->s_blocksize_bits + 3);
242 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243 
244 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245 	if (bitmap_nr < 0)
246 		goto error_return;
247 	bh = bitmap->s_block_bitmap[bitmap_nr];
248 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249 		      sb->s_blocksize - group_start);
250 
251 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252 		bit = block % (sb->s_blocksize << 3);
253 		if (udf_test_bit(bit, bh->b_data))
254 			goto got_block;
255 
256 		end_goal = (bit + 63) & ~63;
257 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258 		if (bit < end_goal)
259 			goto got_block;
260 
261 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262 			      sb->s_blocksize - ((bit + 7) >> 3));
263 		newbit = (ptr - ((char *)bh->b_data)) << 3;
264 		if (newbit < sb->s_blocksize << 3) {
265 			bit = newbit;
266 			goto search_back;
267 		}
268 
269 		newbit = udf_find_next_one_bit(bh->b_data,
270 					       sb->s_blocksize << 3, bit);
271 		if (newbit < sb->s_blocksize << 3) {
272 			bit = newbit;
273 			goto got_block;
274 		}
275 	}
276 
277 	for (i = 0; i < (nr_groups * 2); i++) {
278 		block_group++;
279 		if (block_group >= nr_groups)
280 			block_group = 0;
281 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282 
283 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284 		if (bitmap_nr < 0)
285 			goto error_return;
286 		bh = bitmap->s_block_bitmap[bitmap_nr];
287 		if (i < nr_groups) {
288 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289 				      sb->s_blocksize - group_start);
290 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291 				bit = (ptr - ((char *)bh->b_data)) << 3;
292 				break;
293 			}
294 		} else {
295 			bit = udf_find_next_one_bit(bh->b_data,
296 						    sb->s_blocksize << 3,
297 						    group_start << 3);
298 			if (bit < sb->s_blocksize << 3)
299 				break;
300 		}
301 	}
302 	if (i >= (nr_groups * 2)) {
303 		mutex_unlock(&sbi->s_alloc_mutex);
304 		return newblock;
305 	}
306 	if (bit < sb->s_blocksize << 3)
307 		goto search_back;
308 	else
309 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310 					    group_start << 3);
311 	if (bit >= sb->s_blocksize << 3) {
312 		mutex_unlock(&sbi->s_alloc_mutex);
313 		return 0;
314 	}
315 
316 search_back:
317 	i = 0;
318 	while (i < 7 && bit > (group_start << 3) &&
319 	       udf_test_bit(bit - 1, bh->b_data)) {
320 		++i;
321 		--bit;
322 	}
323 
324 got_block:
325 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326 		(sizeof(struct spaceBitmapDesc) << 3);
327 
328 	if (!udf_clear_bit(bit, bh->b_data)) {
329 		udf_debug("bit already cleared for block %d\n", bit);
330 		goto repeat;
331 	}
332 
333 	mark_buffer_dirty(bh);
334 
335 	udf_add_free_space(sb, partition, -1);
336 	mutex_unlock(&sbi->s_alloc_mutex);
337 	*err = 0;
338 	return newblock;
339 
340 error_return:
341 	*err = -EIO;
342 	mutex_unlock(&sbi->s_alloc_mutex);
343 	return 0;
344 }
345 
346 static void udf_table_free_blocks(struct super_block *sb,
347 				  struct inode *table,
348 				  struct kernel_lb_addr *bloc,
349 				  uint32_t offset,
350 				  uint32_t count)
351 {
352 	struct udf_sb_info *sbi = UDF_SB(sb);
353 	struct udf_part_map *partmap;
354 	uint32_t start, end;
355 	uint32_t elen;
356 	struct kernel_lb_addr eloc;
357 	struct extent_position oepos, epos;
358 	int8_t etype;
359 	struct udf_inode_info *iinfo;
360 
361 	mutex_lock(&sbi->s_alloc_mutex);
362 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
363 	if (bloc->logicalBlockNum + count < count ||
364 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
365 		udf_debug("%d < %d || %d + %d > %d\n",
366 			  bloc->logicalBlockNum, 0,
367 			  bloc->logicalBlockNum, count,
368 			  partmap->s_partition_len);
369 		goto error_return;
370 	}
371 
372 	iinfo = UDF_I(table);
373 	udf_add_free_space(sb, sbi->s_partition, count);
374 
375 	start = bloc->logicalBlockNum + offset;
376 	end = bloc->logicalBlockNum + offset + count - 1;
377 
378 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
379 	elen = 0;
380 	epos.block = oepos.block = iinfo->i_location;
381 	epos.bh = oepos.bh = NULL;
382 
383 	while (count &&
384 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
385 		if (((eloc.logicalBlockNum +
386 			(elen >> sb->s_blocksize_bits)) == start)) {
387 			if ((0x3FFFFFFF - elen) <
388 					(count << sb->s_blocksize_bits)) {
389 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
390 							sb->s_blocksize_bits);
391 				count -= tmp;
392 				start += tmp;
393 				elen = (etype << 30) |
394 					(0x40000000 - sb->s_blocksize);
395 			} else {
396 				elen = (etype << 30) |
397 					(elen +
398 					(count << sb->s_blocksize_bits));
399 				start += count;
400 				count = 0;
401 			}
402 			udf_write_aext(table, &oepos, &eloc, elen, 1);
403 		} else if (eloc.logicalBlockNum == (end + 1)) {
404 			if ((0x3FFFFFFF - elen) <
405 					(count << sb->s_blocksize_bits)) {
406 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
407 						sb->s_blocksize_bits);
408 				count -= tmp;
409 				end -= tmp;
410 				eloc.logicalBlockNum -= tmp;
411 				elen = (etype << 30) |
412 					(0x40000000 - sb->s_blocksize);
413 			} else {
414 				eloc.logicalBlockNum = start;
415 				elen = (etype << 30) |
416 					(elen +
417 					(count << sb->s_blocksize_bits));
418 				end -= count;
419 				count = 0;
420 			}
421 			udf_write_aext(table, &oepos, &eloc, elen, 1);
422 		}
423 
424 		if (epos.bh != oepos.bh) {
425 			oepos.block = epos.block;
426 			brelse(oepos.bh);
427 			get_bh(epos.bh);
428 			oepos.bh = epos.bh;
429 			oepos.offset = 0;
430 		} else {
431 			oepos.offset = epos.offset;
432 		}
433 	}
434 
435 	if (count) {
436 		/*
437 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
438 		 * allocate a new block, and since we hold the super block
439 		 * lock already very bad things would happen :)
440 		 *
441 		 * We copy the behavior of udf_add_aext, but instead of
442 		 * trying to allocate a new block close to the existing one,
443 		 * we just steal a block from the extent we are trying to add.
444 		 *
445 		 * It would be nice if the blocks were close together, but it
446 		 * isn't required.
447 		 */
448 
449 		int adsize;
450 		struct short_ad *sad = NULL;
451 		struct long_ad *lad = NULL;
452 		struct allocExtDesc *aed;
453 
454 		eloc.logicalBlockNum = start;
455 		elen = EXT_RECORDED_ALLOCATED |
456 			(count << sb->s_blocksize_bits);
457 
458 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
459 			adsize = sizeof(struct short_ad);
460 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
461 			adsize = sizeof(struct long_ad);
462 		else {
463 			brelse(oepos.bh);
464 			brelse(epos.bh);
465 			goto error_return;
466 		}
467 
468 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
469 			unsigned char *sptr, *dptr;
470 			int loffset;
471 
472 			brelse(oepos.bh);
473 			oepos = epos;
474 
475 			/* Steal a block from the extent being free'd */
476 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
477 			eloc.logicalBlockNum++;
478 			elen -= sb->s_blocksize;
479 
480 			epos.bh = udf_tread(sb,
481 					udf_get_lb_pblock(sb, &epos.block, 0));
482 			if (!epos.bh) {
483 				brelse(oepos.bh);
484 				goto error_return;
485 			}
486 			aed = (struct allocExtDesc *)(epos.bh->b_data);
487 			aed->previousAllocExtLocation =
488 				cpu_to_le32(oepos.block.logicalBlockNum);
489 			if (epos.offset + adsize > sb->s_blocksize) {
490 				loffset = epos.offset;
491 				aed->lengthAllocDescs = cpu_to_le32(adsize);
492 				sptr = iinfo->i_ext.i_data + epos.offset
493 								- adsize;
494 				dptr = epos.bh->b_data +
495 					sizeof(struct allocExtDesc);
496 				memcpy(dptr, sptr, adsize);
497 				epos.offset = sizeof(struct allocExtDesc) +
498 						adsize;
499 			} else {
500 				loffset = epos.offset + adsize;
501 				aed->lengthAllocDescs = cpu_to_le32(0);
502 				if (oepos.bh) {
503 					sptr = oepos.bh->b_data + epos.offset;
504 					aed = (struct allocExtDesc *)
505 						oepos.bh->b_data;
506 					le32_add_cpu(&aed->lengthAllocDescs,
507 							adsize);
508 				} else {
509 					sptr = iinfo->i_ext.i_data +
510 								epos.offset;
511 					iinfo->i_lenAlloc += adsize;
512 					mark_inode_dirty(table);
513 				}
514 				epos.offset = sizeof(struct allocExtDesc);
515 			}
516 			if (sbi->s_udfrev >= 0x0200)
517 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
518 					    3, 1, epos.block.logicalBlockNum,
519 					    sizeof(struct tag));
520 			else
521 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
522 					    2, 1, epos.block.logicalBlockNum,
523 					    sizeof(struct tag));
524 
525 			switch (iinfo->i_alloc_type) {
526 			case ICBTAG_FLAG_AD_SHORT:
527 				sad = (struct short_ad *)sptr;
528 				sad->extLength = cpu_to_le32(
529 					EXT_NEXT_EXTENT_ALLOCDECS |
530 					sb->s_blocksize);
531 				sad->extPosition =
532 					cpu_to_le32(epos.block.logicalBlockNum);
533 				break;
534 			case ICBTAG_FLAG_AD_LONG:
535 				lad = (struct long_ad *)sptr;
536 				lad->extLength = cpu_to_le32(
537 					EXT_NEXT_EXTENT_ALLOCDECS |
538 					sb->s_blocksize);
539 				lad->extLocation =
540 					cpu_to_lelb(epos.block);
541 				break;
542 			}
543 			if (oepos.bh) {
544 				udf_update_tag(oepos.bh->b_data, loffset);
545 				mark_buffer_dirty(oepos.bh);
546 			} else {
547 				mark_inode_dirty(table);
548 			}
549 		}
550 
551 		/* It's possible that stealing the block emptied the extent */
552 		if (elen) {
553 			udf_write_aext(table, &epos, &eloc, elen, 1);
554 
555 			if (!epos.bh) {
556 				iinfo->i_lenAlloc += adsize;
557 				mark_inode_dirty(table);
558 			} else {
559 				aed = (struct allocExtDesc *)epos.bh->b_data;
560 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
561 				udf_update_tag(epos.bh->b_data, epos.offset);
562 				mark_buffer_dirty(epos.bh);
563 			}
564 		}
565 	}
566 
567 	brelse(epos.bh);
568 	brelse(oepos.bh);
569 
570 error_return:
571 	mutex_unlock(&sbi->s_alloc_mutex);
572 	return;
573 }
574 
575 static int udf_table_prealloc_blocks(struct super_block *sb,
576 				     struct inode *table, uint16_t partition,
577 				     uint32_t first_block, uint32_t block_count)
578 {
579 	struct udf_sb_info *sbi = UDF_SB(sb);
580 	int alloc_count = 0;
581 	uint32_t elen, adsize;
582 	struct kernel_lb_addr eloc;
583 	struct extent_position epos;
584 	int8_t etype = -1;
585 	struct udf_inode_info *iinfo;
586 
587 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
588 		return 0;
589 
590 	iinfo = UDF_I(table);
591 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
592 		adsize = sizeof(struct short_ad);
593 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
594 		adsize = sizeof(struct long_ad);
595 	else
596 		return 0;
597 
598 	mutex_lock(&sbi->s_alloc_mutex);
599 	epos.offset = sizeof(struct unallocSpaceEntry);
600 	epos.block = iinfo->i_location;
601 	epos.bh = NULL;
602 	eloc.logicalBlockNum = 0xFFFFFFFF;
603 
604 	while (first_block != eloc.logicalBlockNum &&
605 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
606 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
607 			  eloc.logicalBlockNum, elen, first_block);
608 		; /* empty loop body */
609 	}
610 
611 	if (first_block == eloc.logicalBlockNum) {
612 		epos.offset -= adsize;
613 
614 		alloc_count = (elen >> sb->s_blocksize_bits);
615 		if (alloc_count > block_count) {
616 			alloc_count = block_count;
617 			eloc.logicalBlockNum += alloc_count;
618 			elen -= (alloc_count << sb->s_blocksize_bits);
619 			udf_write_aext(table, &epos, &eloc,
620 					(etype << 30) | elen, 1);
621 		} else
622 			udf_delete_aext(table, epos, eloc,
623 					(etype << 30) | elen);
624 	} else {
625 		alloc_count = 0;
626 	}
627 
628 	brelse(epos.bh);
629 
630 	if (alloc_count)
631 		udf_add_free_space(sb, partition, -alloc_count);
632 	mutex_unlock(&sbi->s_alloc_mutex);
633 	return alloc_count;
634 }
635 
636 static int udf_table_new_block(struct super_block *sb,
637 			       struct inode *table, uint16_t partition,
638 			       uint32_t goal, int *err)
639 {
640 	struct udf_sb_info *sbi = UDF_SB(sb);
641 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
642 	uint32_t newblock = 0, adsize;
643 	uint32_t elen, goal_elen = 0;
644 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
645 	struct extent_position epos, goal_epos;
646 	int8_t etype;
647 	struct udf_inode_info *iinfo = UDF_I(table);
648 
649 	*err = -ENOSPC;
650 
651 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
652 		adsize = sizeof(struct short_ad);
653 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
654 		adsize = sizeof(struct long_ad);
655 	else
656 		return newblock;
657 
658 	mutex_lock(&sbi->s_alloc_mutex);
659 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
660 		goal = 0;
661 
662 	/* We search for the closest matching block to goal. If we find
663 	   a exact hit, we stop. Otherwise we keep going till we run out
664 	   of extents. We store the buffer_head, bloc, and extoffset
665 	   of the current closest match and use that when we are done.
666 	 */
667 	epos.offset = sizeof(struct unallocSpaceEntry);
668 	epos.block = iinfo->i_location;
669 	epos.bh = goal_epos.bh = NULL;
670 
671 	while (spread &&
672 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
673 		if (goal >= eloc.logicalBlockNum) {
674 			if (goal < eloc.logicalBlockNum +
675 					(elen >> sb->s_blocksize_bits))
676 				nspread = 0;
677 			else
678 				nspread = goal - eloc.logicalBlockNum -
679 					(elen >> sb->s_blocksize_bits);
680 		} else {
681 			nspread = eloc.logicalBlockNum - goal;
682 		}
683 
684 		if (nspread < spread) {
685 			spread = nspread;
686 			if (goal_epos.bh != epos.bh) {
687 				brelse(goal_epos.bh);
688 				goal_epos.bh = epos.bh;
689 				get_bh(goal_epos.bh);
690 			}
691 			goal_epos.block = epos.block;
692 			goal_epos.offset = epos.offset - adsize;
693 			goal_eloc = eloc;
694 			goal_elen = (etype << 30) | elen;
695 		}
696 	}
697 
698 	brelse(epos.bh);
699 
700 	if (spread == 0xFFFFFFFF) {
701 		brelse(goal_epos.bh);
702 		mutex_unlock(&sbi->s_alloc_mutex);
703 		return 0;
704 	}
705 
706 	/* Only allocate blocks from the beginning of the extent.
707 	   That way, we only delete (empty) extents, never have to insert an
708 	   extent because of splitting */
709 	/* This works, but very poorly.... */
710 
711 	newblock = goal_eloc.logicalBlockNum;
712 	goal_eloc.logicalBlockNum++;
713 	goal_elen -= sb->s_blocksize;
714 
715 	if (goal_elen)
716 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
717 	else
718 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
719 	brelse(goal_epos.bh);
720 
721 	udf_add_free_space(sb, partition, -1);
722 
723 	mutex_unlock(&sbi->s_alloc_mutex);
724 	*err = 0;
725 	return newblock;
726 }
727 
728 void udf_free_blocks(struct super_block *sb, struct inode *inode,
729 		     struct kernel_lb_addr *bloc, uint32_t offset,
730 		     uint32_t count)
731 {
732 	uint16_t partition = bloc->partitionReferenceNum;
733 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
734 
735 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
736 		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
737 				       bloc, offset, count);
738 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
739 		udf_table_free_blocks(sb, map->s_uspace.s_table,
740 				      bloc, offset, count);
741 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
742 		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
743 				       bloc, offset, count);
744 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
745 		udf_table_free_blocks(sb, map->s_fspace.s_table,
746 				      bloc, offset, count);
747 	}
748 
749 	if (inode) {
750 		inode_sub_bytes(inode,
751 				((sector_t)count) << sb->s_blocksize_bits);
752 	}
753 }
754 
755 inline int udf_prealloc_blocks(struct super_block *sb,
756 			       struct inode *inode,
757 			       uint16_t partition, uint32_t first_block,
758 			       uint32_t block_count)
759 {
760 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
761 	int allocated;
762 
763 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
764 		allocated = udf_bitmap_prealloc_blocks(sb,
765 						       map->s_uspace.s_bitmap,
766 						       partition, first_block,
767 						       block_count);
768 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
769 		allocated = udf_table_prealloc_blocks(sb,
770 						      map->s_uspace.s_table,
771 						      partition, first_block,
772 						      block_count);
773 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
774 		allocated = udf_bitmap_prealloc_blocks(sb,
775 						       map->s_fspace.s_bitmap,
776 						       partition, first_block,
777 						       block_count);
778 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
779 		allocated = udf_table_prealloc_blocks(sb,
780 						      map->s_fspace.s_table,
781 						      partition, first_block,
782 						      block_count);
783 	else
784 		return 0;
785 
786 	if (inode && allocated > 0)
787 		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
788 	return allocated;
789 }
790 
791 inline int udf_new_block(struct super_block *sb,
792 			 struct inode *inode,
793 			 uint16_t partition, uint32_t goal, int *err)
794 {
795 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
796 	int block;
797 
798 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
799 		block = udf_bitmap_new_block(sb,
800 					     map->s_uspace.s_bitmap,
801 					     partition, goal, err);
802 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
803 		block = udf_table_new_block(sb,
804 					    map->s_uspace.s_table,
805 					    partition, goal, err);
806 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
807 		block = udf_bitmap_new_block(sb,
808 					     map->s_fspace.s_bitmap,
809 					     partition, goal, err);
810 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
811 		block = udf_table_new_block(sb,
812 					    map->s_fspace.s_table,
813 					    partition, goal, err);
814 	else {
815 		*err = -EIO;
816 		return 0;
817 	}
818 	if (inode && block)
819 		inode_add_bytes(inode, sb->s_blocksize);
820 	return block;
821 }
822