1 /* 2 * balloc.c 3 * 4 * PURPOSE 5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1999-2001 Ben Fennema 14 * (C) 1999 Stelias Computing Inc 15 * 16 * HISTORY 17 * 18 * 02/24/99 blf Created. 19 * 20 */ 21 22 #include "udfdecl.h" 23 24 #include <linux/bitops.h> 25 26 #include "udf_i.h" 27 #include "udf_sb.h" 28 29 #define udf_clear_bit __test_and_clear_bit_le 30 #define udf_set_bit __test_and_set_bit_le 31 #define udf_test_bit test_bit_le 32 #define udf_find_next_one_bit find_next_bit_le 33 34 static int read_block_bitmap(struct super_block *sb, 35 struct udf_bitmap *bitmap, unsigned int block, 36 unsigned long bitmap_nr) 37 { 38 struct buffer_head *bh = NULL; 39 int retval = 0; 40 struct kernel_lb_addr loc; 41 42 loc.logicalBlockNum = bitmap->s_extPosition; 43 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 44 45 bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block)); 46 if (!bh) 47 retval = -EIO; 48 49 bitmap->s_block_bitmap[bitmap_nr] = bh; 50 return retval; 51 } 52 53 static int __load_block_bitmap(struct super_block *sb, 54 struct udf_bitmap *bitmap, 55 unsigned int block_group) 56 { 57 int retval = 0; 58 int nr_groups = bitmap->s_nr_groups; 59 60 if (block_group >= nr_groups) { 61 udf_debug("block_group (%u) > nr_groups (%d)\n", 62 block_group, nr_groups); 63 } 64 65 if (bitmap->s_block_bitmap[block_group]) 66 return block_group; 67 68 retval = read_block_bitmap(sb, bitmap, block_group, block_group); 69 if (retval < 0) 70 return retval; 71 72 return block_group; 73 } 74 75 static inline int load_block_bitmap(struct super_block *sb, 76 struct udf_bitmap *bitmap, 77 unsigned int block_group) 78 { 79 int slot; 80 81 slot = __load_block_bitmap(sb, bitmap, block_group); 82 83 if (slot < 0) 84 return slot; 85 86 if (!bitmap->s_block_bitmap[slot]) 87 return -EIO; 88 89 return slot; 90 } 91 92 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt) 93 { 94 struct udf_sb_info *sbi = UDF_SB(sb); 95 struct logicalVolIntegrityDesc *lvid; 96 97 if (!sbi->s_lvid_bh) 98 return; 99 100 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt); 102 udf_updated_lvid(sb); 103 } 104 105 static void udf_bitmap_free_blocks(struct super_block *sb, 106 struct udf_bitmap *bitmap, 107 struct kernel_lb_addr *bloc, 108 uint32_t offset, 109 uint32_t count) 110 { 111 struct udf_sb_info *sbi = UDF_SB(sb); 112 struct buffer_head *bh = NULL; 113 struct udf_part_map *partmap; 114 unsigned long block; 115 unsigned long block_group; 116 unsigned long bit; 117 unsigned long i; 118 int bitmap_nr; 119 unsigned long overflow; 120 121 mutex_lock(&sbi->s_alloc_mutex); 122 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 123 if (bloc->logicalBlockNum + count < count || 124 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 125 udf_debug("%u < %d || %u + %u > %u\n", 126 bloc->logicalBlockNum, 0, 127 bloc->logicalBlockNum, count, 128 partmap->s_partition_len); 129 goto error_return; 130 } 131 132 block = bloc->logicalBlockNum + offset + 133 (sizeof(struct spaceBitmapDesc) << 3); 134 135 do { 136 overflow = 0; 137 block_group = block >> (sb->s_blocksize_bits + 3); 138 bit = block % (sb->s_blocksize << 3); 139 140 /* 141 * Check to see if we are freeing blocks across a group boundary. 142 */ 143 if (bit + count > (sb->s_blocksize << 3)) { 144 overflow = bit + count - (sb->s_blocksize << 3); 145 count -= overflow; 146 } 147 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 148 if (bitmap_nr < 0) 149 goto error_return; 150 151 bh = bitmap->s_block_bitmap[bitmap_nr]; 152 for (i = 0; i < count; i++) { 153 if (udf_set_bit(bit + i, bh->b_data)) { 154 udf_debug("bit %lu already set\n", bit + i); 155 udf_debug("byte=%2x\n", 156 ((__u8 *)bh->b_data)[(bit + i) >> 3]); 157 } 158 } 159 udf_add_free_space(sb, sbi->s_partition, count); 160 mark_buffer_dirty(bh); 161 if (overflow) { 162 block += count; 163 count = overflow; 164 } 165 } while (overflow); 166 167 error_return: 168 mutex_unlock(&sbi->s_alloc_mutex); 169 } 170 171 static int udf_bitmap_prealloc_blocks(struct super_block *sb, 172 struct udf_bitmap *bitmap, 173 uint16_t partition, uint32_t first_block, 174 uint32_t block_count) 175 { 176 struct udf_sb_info *sbi = UDF_SB(sb); 177 int alloc_count = 0; 178 int bit, block, block_group; 179 int bitmap_nr; 180 struct buffer_head *bh; 181 __u32 part_len; 182 183 mutex_lock(&sbi->s_alloc_mutex); 184 part_len = sbi->s_partmaps[partition].s_partition_len; 185 if (first_block >= part_len) 186 goto out; 187 188 if (first_block + block_count > part_len) 189 block_count = part_len - first_block; 190 191 do { 192 block = first_block + (sizeof(struct spaceBitmapDesc) << 3); 193 block_group = block >> (sb->s_blocksize_bits + 3); 194 195 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 196 if (bitmap_nr < 0) 197 goto out; 198 bh = bitmap->s_block_bitmap[bitmap_nr]; 199 200 bit = block % (sb->s_blocksize << 3); 201 202 while (bit < (sb->s_blocksize << 3) && block_count > 0) { 203 if (!udf_clear_bit(bit, bh->b_data)) 204 goto out; 205 block_count--; 206 alloc_count++; 207 bit++; 208 block++; 209 } 210 mark_buffer_dirty(bh); 211 } while (block_count > 0); 212 213 out: 214 udf_add_free_space(sb, partition, -alloc_count); 215 mutex_unlock(&sbi->s_alloc_mutex); 216 return alloc_count; 217 } 218 219 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb, 220 struct udf_bitmap *bitmap, uint16_t partition, 221 uint32_t goal, int *err) 222 { 223 struct udf_sb_info *sbi = UDF_SB(sb); 224 int newbit, bit = 0; 225 udf_pblk_t block; 226 int block_group, group_start; 227 int end_goal, nr_groups, bitmap_nr, i; 228 struct buffer_head *bh = NULL; 229 char *ptr; 230 udf_pblk_t newblock = 0; 231 232 *err = -ENOSPC; 233 mutex_lock(&sbi->s_alloc_mutex); 234 235 repeat: 236 if (goal >= sbi->s_partmaps[partition].s_partition_len) 237 goal = 0; 238 239 nr_groups = bitmap->s_nr_groups; 240 block = goal + (sizeof(struct spaceBitmapDesc) << 3); 241 block_group = block >> (sb->s_blocksize_bits + 3); 242 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 243 244 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 245 if (bitmap_nr < 0) 246 goto error_return; 247 bh = bitmap->s_block_bitmap[bitmap_nr]; 248 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 249 sb->s_blocksize - group_start); 250 251 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 252 bit = block % (sb->s_blocksize << 3); 253 if (udf_test_bit(bit, bh->b_data)) 254 goto got_block; 255 256 end_goal = (bit + 63) & ~63; 257 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); 258 if (bit < end_goal) 259 goto got_block; 260 261 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, 262 sb->s_blocksize - ((bit + 7) >> 3)); 263 newbit = (ptr - ((char *)bh->b_data)) << 3; 264 if (newbit < sb->s_blocksize << 3) { 265 bit = newbit; 266 goto search_back; 267 } 268 269 newbit = udf_find_next_one_bit(bh->b_data, 270 sb->s_blocksize << 3, bit); 271 if (newbit < sb->s_blocksize << 3) { 272 bit = newbit; 273 goto got_block; 274 } 275 } 276 277 for (i = 0; i < (nr_groups * 2); i++) { 278 block_group++; 279 if (block_group >= nr_groups) 280 block_group = 0; 281 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 282 283 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 284 if (bitmap_nr < 0) 285 goto error_return; 286 bh = bitmap->s_block_bitmap[bitmap_nr]; 287 if (i < nr_groups) { 288 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 289 sb->s_blocksize - group_start); 290 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 291 bit = (ptr - ((char *)bh->b_data)) << 3; 292 break; 293 } 294 } else { 295 bit = udf_find_next_one_bit(bh->b_data, 296 sb->s_blocksize << 3, 297 group_start << 3); 298 if (bit < sb->s_blocksize << 3) 299 break; 300 } 301 } 302 if (i >= (nr_groups * 2)) { 303 mutex_unlock(&sbi->s_alloc_mutex); 304 return newblock; 305 } 306 if (bit < sb->s_blocksize << 3) 307 goto search_back; 308 else 309 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, 310 group_start << 3); 311 if (bit >= sb->s_blocksize << 3) { 312 mutex_unlock(&sbi->s_alloc_mutex); 313 return 0; 314 } 315 316 search_back: 317 i = 0; 318 while (i < 7 && bit > (group_start << 3) && 319 udf_test_bit(bit - 1, bh->b_data)) { 320 ++i; 321 --bit; 322 } 323 324 got_block: 325 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - 326 (sizeof(struct spaceBitmapDesc) << 3); 327 328 if (!udf_clear_bit(bit, bh->b_data)) { 329 udf_debug("bit already cleared for block %d\n", bit); 330 goto repeat; 331 } 332 333 mark_buffer_dirty(bh); 334 335 udf_add_free_space(sb, partition, -1); 336 mutex_unlock(&sbi->s_alloc_mutex); 337 *err = 0; 338 return newblock; 339 340 error_return: 341 *err = -EIO; 342 mutex_unlock(&sbi->s_alloc_mutex); 343 return 0; 344 } 345 346 static void udf_table_free_blocks(struct super_block *sb, 347 struct inode *table, 348 struct kernel_lb_addr *bloc, 349 uint32_t offset, 350 uint32_t count) 351 { 352 struct udf_sb_info *sbi = UDF_SB(sb); 353 struct udf_part_map *partmap; 354 uint32_t start, end; 355 uint32_t elen; 356 struct kernel_lb_addr eloc; 357 struct extent_position oepos, epos; 358 int8_t etype; 359 struct udf_inode_info *iinfo; 360 361 mutex_lock(&sbi->s_alloc_mutex); 362 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 363 if (bloc->logicalBlockNum + count < count || 364 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 365 udf_debug("%u < %d || %u + %u > %u\n", 366 bloc->logicalBlockNum, 0, 367 bloc->logicalBlockNum, count, 368 partmap->s_partition_len); 369 goto error_return; 370 } 371 372 iinfo = UDF_I(table); 373 udf_add_free_space(sb, sbi->s_partition, count); 374 375 start = bloc->logicalBlockNum + offset; 376 end = bloc->logicalBlockNum + offset + count - 1; 377 378 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); 379 elen = 0; 380 epos.block = oepos.block = iinfo->i_location; 381 epos.bh = oepos.bh = NULL; 382 383 while (count && 384 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 385 if (((eloc.logicalBlockNum + 386 (elen >> sb->s_blocksize_bits)) == start)) { 387 if ((0x3FFFFFFF - elen) < 388 (count << sb->s_blocksize_bits)) { 389 uint32_t tmp = ((0x3FFFFFFF - elen) >> 390 sb->s_blocksize_bits); 391 count -= tmp; 392 start += tmp; 393 elen = (etype << 30) | 394 (0x40000000 - sb->s_blocksize); 395 } else { 396 elen = (etype << 30) | 397 (elen + 398 (count << sb->s_blocksize_bits)); 399 start += count; 400 count = 0; 401 } 402 udf_write_aext(table, &oepos, &eloc, elen, 1); 403 } else if (eloc.logicalBlockNum == (end + 1)) { 404 if ((0x3FFFFFFF - elen) < 405 (count << sb->s_blocksize_bits)) { 406 uint32_t tmp = ((0x3FFFFFFF - elen) >> 407 sb->s_blocksize_bits); 408 count -= tmp; 409 end -= tmp; 410 eloc.logicalBlockNum -= tmp; 411 elen = (etype << 30) | 412 (0x40000000 - sb->s_blocksize); 413 } else { 414 eloc.logicalBlockNum = start; 415 elen = (etype << 30) | 416 (elen + 417 (count << sb->s_blocksize_bits)); 418 end -= count; 419 count = 0; 420 } 421 udf_write_aext(table, &oepos, &eloc, elen, 1); 422 } 423 424 if (epos.bh != oepos.bh) { 425 oepos.block = epos.block; 426 brelse(oepos.bh); 427 get_bh(epos.bh); 428 oepos.bh = epos.bh; 429 oepos.offset = 0; 430 } else { 431 oepos.offset = epos.offset; 432 } 433 } 434 435 if (count) { 436 /* 437 * NOTE: we CANNOT use udf_add_aext here, as it can try to 438 * allocate a new block, and since we hold the super block 439 * lock already very bad things would happen :) 440 * 441 * We copy the behavior of udf_add_aext, but instead of 442 * trying to allocate a new block close to the existing one, 443 * we just steal a block from the extent we are trying to add. 444 * 445 * It would be nice if the blocks were close together, but it 446 * isn't required. 447 */ 448 449 int adsize; 450 451 eloc.logicalBlockNum = start; 452 elen = EXT_RECORDED_ALLOCATED | 453 (count << sb->s_blocksize_bits); 454 455 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 456 adsize = sizeof(struct short_ad); 457 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 458 adsize = sizeof(struct long_ad); 459 else { 460 brelse(oepos.bh); 461 brelse(epos.bh); 462 goto error_return; 463 } 464 465 if (epos.offset + (2 * adsize) > sb->s_blocksize) { 466 /* Steal a block from the extent being free'd */ 467 udf_setup_indirect_aext(table, eloc.logicalBlockNum, 468 &epos); 469 470 eloc.logicalBlockNum++; 471 elen -= sb->s_blocksize; 472 } 473 474 /* It's possible that stealing the block emptied the extent */ 475 if (elen) 476 __udf_add_aext(table, &epos, &eloc, elen, 1); 477 } 478 479 brelse(epos.bh); 480 brelse(oepos.bh); 481 482 error_return: 483 mutex_unlock(&sbi->s_alloc_mutex); 484 return; 485 } 486 487 static int udf_table_prealloc_blocks(struct super_block *sb, 488 struct inode *table, uint16_t partition, 489 uint32_t first_block, uint32_t block_count) 490 { 491 struct udf_sb_info *sbi = UDF_SB(sb); 492 int alloc_count = 0; 493 uint32_t elen, adsize; 494 struct kernel_lb_addr eloc; 495 struct extent_position epos; 496 int8_t etype = -1; 497 struct udf_inode_info *iinfo; 498 499 if (first_block >= sbi->s_partmaps[partition].s_partition_len) 500 return 0; 501 502 iinfo = UDF_I(table); 503 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 504 adsize = sizeof(struct short_ad); 505 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 506 adsize = sizeof(struct long_ad); 507 else 508 return 0; 509 510 mutex_lock(&sbi->s_alloc_mutex); 511 epos.offset = sizeof(struct unallocSpaceEntry); 512 epos.block = iinfo->i_location; 513 epos.bh = NULL; 514 eloc.logicalBlockNum = 0xFFFFFFFF; 515 516 while (first_block != eloc.logicalBlockNum && 517 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 518 udf_debug("eloc=%u, elen=%u, first_block=%u\n", 519 eloc.logicalBlockNum, elen, first_block); 520 ; /* empty loop body */ 521 } 522 523 if (first_block == eloc.logicalBlockNum) { 524 epos.offset -= adsize; 525 526 alloc_count = (elen >> sb->s_blocksize_bits); 527 if (alloc_count > block_count) { 528 alloc_count = block_count; 529 eloc.logicalBlockNum += alloc_count; 530 elen -= (alloc_count << sb->s_blocksize_bits); 531 udf_write_aext(table, &epos, &eloc, 532 (etype << 30) | elen, 1); 533 } else 534 udf_delete_aext(table, epos); 535 } else { 536 alloc_count = 0; 537 } 538 539 brelse(epos.bh); 540 541 if (alloc_count) 542 udf_add_free_space(sb, partition, -alloc_count); 543 mutex_unlock(&sbi->s_alloc_mutex); 544 return alloc_count; 545 } 546 547 static udf_pblk_t udf_table_new_block(struct super_block *sb, 548 struct inode *table, uint16_t partition, 549 uint32_t goal, int *err) 550 { 551 struct udf_sb_info *sbi = UDF_SB(sb); 552 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; 553 udf_pblk_t newblock = 0; 554 uint32_t adsize; 555 uint32_t elen, goal_elen = 0; 556 struct kernel_lb_addr eloc, uninitialized_var(goal_eloc); 557 struct extent_position epos, goal_epos; 558 int8_t etype; 559 struct udf_inode_info *iinfo = UDF_I(table); 560 561 *err = -ENOSPC; 562 563 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 564 adsize = sizeof(struct short_ad); 565 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 566 adsize = sizeof(struct long_ad); 567 else 568 return newblock; 569 570 mutex_lock(&sbi->s_alloc_mutex); 571 if (goal >= sbi->s_partmaps[partition].s_partition_len) 572 goal = 0; 573 574 /* We search for the closest matching block to goal. If we find 575 a exact hit, we stop. Otherwise we keep going till we run out 576 of extents. We store the buffer_head, bloc, and extoffset 577 of the current closest match and use that when we are done. 578 */ 579 epos.offset = sizeof(struct unallocSpaceEntry); 580 epos.block = iinfo->i_location; 581 epos.bh = goal_epos.bh = NULL; 582 583 while (spread && 584 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 585 if (goal >= eloc.logicalBlockNum) { 586 if (goal < eloc.logicalBlockNum + 587 (elen >> sb->s_blocksize_bits)) 588 nspread = 0; 589 else 590 nspread = goal - eloc.logicalBlockNum - 591 (elen >> sb->s_blocksize_bits); 592 } else { 593 nspread = eloc.logicalBlockNum - goal; 594 } 595 596 if (nspread < spread) { 597 spread = nspread; 598 if (goal_epos.bh != epos.bh) { 599 brelse(goal_epos.bh); 600 goal_epos.bh = epos.bh; 601 get_bh(goal_epos.bh); 602 } 603 goal_epos.block = epos.block; 604 goal_epos.offset = epos.offset - adsize; 605 goal_eloc = eloc; 606 goal_elen = (etype << 30) | elen; 607 } 608 } 609 610 brelse(epos.bh); 611 612 if (spread == 0xFFFFFFFF) { 613 brelse(goal_epos.bh); 614 mutex_unlock(&sbi->s_alloc_mutex); 615 return 0; 616 } 617 618 /* Only allocate blocks from the beginning of the extent. 619 That way, we only delete (empty) extents, never have to insert an 620 extent because of splitting */ 621 /* This works, but very poorly.... */ 622 623 newblock = goal_eloc.logicalBlockNum; 624 goal_eloc.logicalBlockNum++; 625 goal_elen -= sb->s_blocksize; 626 627 if (goal_elen) 628 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1); 629 else 630 udf_delete_aext(table, goal_epos); 631 brelse(goal_epos.bh); 632 633 udf_add_free_space(sb, partition, -1); 634 635 mutex_unlock(&sbi->s_alloc_mutex); 636 *err = 0; 637 return newblock; 638 } 639 640 void udf_free_blocks(struct super_block *sb, struct inode *inode, 641 struct kernel_lb_addr *bloc, uint32_t offset, 642 uint32_t count) 643 { 644 uint16_t partition = bloc->partitionReferenceNum; 645 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 646 647 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 648 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap, 649 bloc, offset, count); 650 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 651 udf_table_free_blocks(sb, map->s_uspace.s_table, 652 bloc, offset, count); 653 } 654 655 if (inode) { 656 inode_sub_bytes(inode, 657 ((sector_t)count) << sb->s_blocksize_bits); 658 } 659 } 660 661 inline int udf_prealloc_blocks(struct super_block *sb, 662 struct inode *inode, 663 uint16_t partition, uint32_t first_block, 664 uint32_t block_count) 665 { 666 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 667 int allocated; 668 669 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 670 allocated = udf_bitmap_prealloc_blocks(sb, 671 map->s_uspace.s_bitmap, 672 partition, first_block, 673 block_count); 674 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 675 allocated = udf_table_prealloc_blocks(sb, 676 map->s_uspace.s_table, 677 partition, first_block, 678 block_count); 679 else 680 return 0; 681 682 if (inode && allocated > 0) 683 inode_add_bytes(inode, allocated << sb->s_blocksize_bits); 684 return allocated; 685 } 686 687 inline udf_pblk_t udf_new_block(struct super_block *sb, 688 struct inode *inode, 689 uint16_t partition, uint32_t goal, int *err) 690 { 691 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 692 udf_pblk_t block; 693 694 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 695 block = udf_bitmap_new_block(sb, 696 map->s_uspace.s_bitmap, 697 partition, goal, err); 698 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 699 block = udf_table_new_block(sb, 700 map->s_uspace.s_table, 701 partition, goal, err); 702 else { 703 *err = -EIO; 704 return 0; 705 } 706 if (inode && block) 707 inode_add_bytes(inode, sb->s_blocksize); 708 return block; 709 } 710