xref: /openbmc/linux/fs/udf/balloc.c (revision acc6a093)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 		find_next_one_bit(addr, size, offset)
37 
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
44 
45 static inline int find_next_one_bit(void *addr, int size, int offset)
46 {
47 	uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 	int result = offset & ~(BITS_PER_LONG - 1);
49 	unsigned long tmp;
50 
51 	if (offset >= size)
52 		return size;
53 	size -= result;
54 	offset &= (BITS_PER_LONG - 1);
55 	if (offset) {
56 		tmp = leBPL_to_cpup(p++);
57 		tmp &= ~0UL << offset;
58 		if (size < BITS_PER_LONG)
59 			goto found_first;
60 		if (tmp)
61 			goto found_middle;
62 		size -= BITS_PER_LONG;
63 		result += BITS_PER_LONG;
64 	}
65 	while (size & ~(BITS_PER_LONG - 1)) {
66 		tmp = leBPL_to_cpup(p++);
67 		if (tmp)
68 			goto found_middle;
69 		result += BITS_PER_LONG;
70 		size -= BITS_PER_LONG;
71 	}
72 	if (!size)
73 		return result;
74 	tmp = leBPL_to_cpup(p);
75 found_first:
76 	tmp &= ~0UL >> (BITS_PER_LONG - size);
77 found_middle:
78 	return result + ffz(~tmp);
79 }
80 
81 #define find_first_one_bit(addr, size)\
82 	find_next_one_bit((addr), (size), 0)
83 
84 static int read_block_bitmap(struct super_block *sb,
85 			     struct udf_bitmap *bitmap, unsigned int block,
86 			     unsigned long bitmap_nr)
87 {
88 	struct buffer_head *bh = NULL;
89 	int retval = 0;
90 	struct kernel_lb_addr loc;
91 
92 	loc.logicalBlockNum = bitmap->s_extPosition;
93 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
94 
95 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
96 	if (!bh)
97 		retval = -EIO;
98 
99 	bitmap->s_block_bitmap[bitmap_nr] = bh;
100 	return retval;
101 }
102 
103 static int __load_block_bitmap(struct super_block *sb,
104 			       struct udf_bitmap *bitmap,
105 			       unsigned int block_group)
106 {
107 	int retval = 0;
108 	int nr_groups = bitmap->s_nr_groups;
109 
110 	if (block_group >= nr_groups) {
111 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
112 			  nr_groups);
113 	}
114 
115 	if (bitmap->s_block_bitmap[block_group]) {
116 		return block_group;
117 	} else {
118 		retval = read_block_bitmap(sb, bitmap, block_group,
119 					   block_group);
120 		if (retval < 0)
121 			return retval;
122 		return block_group;
123 	}
124 }
125 
126 static inline int load_block_bitmap(struct super_block *sb,
127 				    struct udf_bitmap *bitmap,
128 				    unsigned int block_group)
129 {
130 	int slot;
131 
132 	slot = __load_block_bitmap(sb, bitmap, block_group);
133 
134 	if (slot < 0)
135 		return slot;
136 
137 	if (!bitmap->s_block_bitmap[slot])
138 		return -EIO;
139 
140 	return slot;
141 }
142 
143 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
144 {
145 	struct udf_sb_info *sbi = UDF_SB(sb);
146 	struct logicalVolIntegrityDesc *lvid;
147 
148 	if (!sbi->s_lvid_bh)
149 		return;
150 
151 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
153 	udf_updated_lvid(sb);
154 }
155 
156 static void udf_bitmap_free_blocks(struct super_block *sb,
157 				   struct inode *inode,
158 				   struct udf_bitmap *bitmap,
159 				   struct kernel_lb_addr *bloc,
160 				   uint32_t offset,
161 				   uint32_t count)
162 {
163 	struct udf_sb_info *sbi = UDF_SB(sb);
164 	struct buffer_head *bh = NULL;
165 	struct udf_part_map *partmap;
166 	unsigned long block;
167 	unsigned long block_group;
168 	unsigned long bit;
169 	unsigned long i;
170 	int bitmap_nr;
171 	unsigned long overflow;
172 
173 	mutex_lock(&sbi->s_alloc_mutex);
174 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
175 	if (bloc->logicalBlockNum < 0 ||
176 	    (bloc->logicalBlockNum + count) >
177 		partmap->s_partition_len) {
178 		udf_debug("%d < %d || %d + %d > %d\n",
179 			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
180 			  count, partmap->s_partition_len);
181 		goto error_return;
182 	}
183 
184 	block = bloc->logicalBlockNum + offset +
185 		(sizeof(struct spaceBitmapDesc) << 3);
186 
187 	do {
188 		overflow = 0;
189 		block_group = block >> (sb->s_blocksize_bits + 3);
190 		bit = block % (sb->s_blocksize << 3);
191 
192 		/*
193 		* Check to see if we are freeing blocks across a group boundary.
194 		*/
195 		if (bit + count > (sb->s_blocksize << 3)) {
196 			overflow = bit + count - (sb->s_blocksize << 3);
197 			count -= overflow;
198 		}
199 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200 		if (bitmap_nr < 0)
201 			goto error_return;
202 
203 		bh = bitmap->s_block_bitmap[bitmap_nr];
204 		for (i = 0; i < count; i++) {
205 			if (udf_set_bit(bit + i, bh->b_data)) {
206 				udf_debug("bit %ld already set\n", bit + i);
207 				udf_debug("byte=%2x\n",
208 					((char *)bh->b_data)[(bit + i) >> 3]);
209 			} else {
210 				if (inode)
211 					dquot_free_block(inode, 1);
212 				udf_add_free_space(sb, sbi->s_partition, 1);
213 			}
214 		}
215 		mark_buffer_dirty(bh);
216 		if (overflow) {
217 			block += count;
218 			count = overflow;
219 		}
220 	} while (overflow);
221 
222 error_return:
223 	mutex_unlock(&sbi->s_alloc_mutex);
224 }
225 
226 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
227 				      struct inode *inode,
228 				      struct udf_bitmap *bitmap,
229 				      uint16_t partition, uint32_t first_block,
230 				      uint32_t block_count)
231 {
232 	struct udf_sb_info *sbi = UDF_SB(sb);
233 	int alloc_count = 0;
234 	int bit, block, block_group, group_start;
235 	int nr_groups, bitmap_nr;
236 	struct buffer_head *bh;
237 	__u32 part_len;
238 
239 	mutex_lock(&sbi->s_alloc_mutex);
240 	part_len = sbi->s_partmaps[partition].s_partition_len;
241 	if (first_block >= part_len)
242 		goto out;
243 
244 	if (first_block + block_count > part_len)
245 		block_count = part_len - first_block;
246 
247 	do {
248 		nr_groups = udf_compute_nr_groups(sb, partition);
249 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
250 		block_group = block >> (sb->s_blocksize_bits + 3);
251 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
252 
253 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
254 		if (bitmap_nr < 0)
255 			goto out;
256 		bh = bitmap->s_block_bitmap[bitmap_nr];
257 
258 		bit = block % (sb->s_blocksize << 3);
259 
260 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
261 			if (!udf_test_bit(bit, bh->b_data))
262 				goto out;
263 			else if (dquot_prealloc_block(inode, 1))
264 				goto out;
265 			else if (!udf_clear_bit(bit, bh->b_data)) {
266 				udf_debug("bit already cleared for block %d\n", bit);
267 				dquot_free_block(inode, 1);
268 				goto out;
269 			}
270 			block_count--;
271 			alloc_count++;
272 			bit++;
273 			block++;
274 		}
275 		mark_buffer_dirty(bh);
276 	} while (block_count > 0);
277 
278 out:
279 	udf_add_free_space(sb, partition, -alloc_count);
280 	mutex_unlock(&sbi->s_alloc_mutex);
281 	return alloc_count;
282 }
283 
284 static int udf_bitmap_new_block(struct super_block *sb,
285 				struct inode *inode,
286 				struct udf_bitmap *bitmap, uint16_t partition,
287 				uint32_t goal, int *err)
288 {
289 	struct udf_sb_info *sbi = UDF_SB(sb);
290 	int newbit, bit = 0, block, block_group, group_start;
291 	int end_goal, nr_groups, bitmap_nr, i;
292 	struct buffer_head *bh = NULL;
293 	char *ptr;
294 	int newblock = 0;
295 
296 	*err = -ENOSPC;
297 	mutex_lock(&sbi->s_alloc_mutex);
298 
299 repeat:
300 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
301 		goal = 0;
302 
303 	nr_groups = bitmap->s_nr_groups;
304 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
305 	block_group = block >> (sb->s_blocksize_bits + 3);
306 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
307 
308 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
309 	if (bitmap_nr < 0)
310 		goto error_return;
311 	bh = bitmap->s_block_bitmap[bitmap_nr];
312 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
313 		      sb->s_blocksize - group_start);
314 
315 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
316 		bit = block % (sb->s_blocksize << 3);
317 		if (udf_test_bit(bit, bh->b_data))
318 			goto got_block;
319 
320 		end_goal = (bit + 63) & ~63;
321 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
322 		if (bit < end_goal)
323 			goto got_block;
324 
325 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
326 			      sb->s_blocksize - ((bit + 7) >> 3));
327 		newbit = (ptr - ((char *)bh->b_data)) << 3;
328 		if (newbit < sb->s_blocksize << 3) {
329 			bit = newbit;
330 			goto search_back;
331 		}
332 
333 		newbit = udf_find_next_one_bit(bh->b_data,
334 					       sb->s_blocksize << 3, bit);
335 		if (newbit < sb->s_blocksize << 3) {
336 			bit = newbit;
337 			goto got_block;
338 		}
339 	}
340 
341 	for (i = 0; i < (nr_groups * 2); i++) {
342 		block_group++;
343 		if (block_group >= nr_groups)
344 			block_group = 0;
345 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
346 
347 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
348 		if (bitmap_nr < 0)
349 			goto error_return;
350 		bh = bitmap->s_block_bitmap[bitmap_nr];
351 		if (i < nr_groups) {
352 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
353 				      sb->s_blocksize - group_start);
354 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
355 				bit = (ptr - ((char *)bh->b_data)) << 3;
356 				break;
357 			}
358 		} else {
359 			bit = udf_find_next_one_bit((char *)bh->b_data,
360 						    sb->s_blocksize << 3,
361 						    group_start << 3);
362 			if (bit < sb->s_blocksize << 3)
363 				break;
364 		}
365 	}
366 	if (i >= (nr_groups * 2)) {
367 		mutex_unlock(&sbi->s_alloc_mutex);
368 		return newblock;
369 	}
370 	if (bit < sb->s_blocksize << 3)
371 		goto search_back;
372 	else
373 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
374 					    group_start << 3);
375 	if (bit >= sb->s_blocksize << 3) {
376 		mutex_unlock(&sbi->s_alloc_mutex);
377 		return 0;
378 	}
379 
380 search_back:
381 	i = 0;
382 	while (i < 7 && bit > (group_start << 3) &&
383 	       udf_test_bit(bit - 1, bh->b_data)) {
384 		++i;
385 		--bit;
386 	}
387 
388 got_block:
389 
390 	/*
391 	 * Check quota for allocation of this block.
392 	 */
393 	if (inode) {
394 		int ret = dquot_alloc_block(inode, 1);
395 
396 		if (ret) {
397 			mutex_unlock(&sbi->s_alloc_mutex);
398 			*err = ret;
399 			return 0;
400 		}
401 	}
402 
403 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
404 		(sizeof(struct spaceBitmapDesc) << 3);
405 
406 	if (!udf_clear_bit(bit, bh->b_data)) {
407 		udf_debug("bit already cleared for block %d\n", bit);
408 		goto repeat;
409 	}
410 
411 	mark_buffer_dirty(bh);
412 
413 	udf_add_free_space(sb, partition, -1);
414 	mutex_unlock(&sbi->s_alloc_mutex);
415 	*err = 0;
416 	return newblock;
417 
418 error_return:
419 	*err = -EIO;
420 	mutex_unlock(&sbi->s_alloc_mutex);
421 	return 0;
422 }
423 
424 static void udf_table_free_blocks(struct super_block *sb,
425 				  struct inode *inode,
426 				  struct inode *table,
427 				  struct kernel_lb_addr *bloc,
428 				  uint32_t offset,
429 				  uint32_t count)
430 {
431 	struct udf_sb_info *sbi = UDF_SB(sb);
432 	struct udf_part_map *partmap;
433 	uint32_t start, end;
434 	uint32_t elen;
435 	struct kernel_lb_addr eloc;
436 	struct extent_position oepos, epos;
437 	int8_t etype;
438 	int i;
439 	struct udf_inode_info *iinfo;
440 
441 	mutex_lock(&sbi->s_alloc_mutex);
442 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
443 	if (bloc->logicalBlockNum < 0 ||
444 	    (bloc->logicalBlockNum + count) >
445 		partmap->s_partition_len) {
446 		udf_debug("%d < %d || %d + %d > %d\n",
447 			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum, count,
448 			  partmap->s_partition_len);
449 		goto error_return;
450 	}
451 
452 	iinfo = UDF_I(table);
453 	/* We do this up front - There are some error conditions that
454 	   could occure, but.. oh well */
455 	if (inode)
456 		dquot_free_block(inode, count);
457 	udf_add_free_space(sb, sbi->s_partition, count);
458 
459 	start = bloc->logicalBlockNum + offset;
460 	end = bloc->logicalBlockNum + offset + count - 1;
461 
462 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
463 	elen = 0;
464 	epos.block = oepos.block = iinfo->i_location;
465 	epos.bh = oepos.bh = NULL;
466 
467 	while (count &&
468 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
469 		if (((eloc.logicalBlockNum +
470 			(elen >> sb->s_blocksize_bits)) == start)) {
471 			if ((0x3FFFFFFF - elen) <
472 					(count << sb->s_blocksize_bits)) {
473 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
474 							sb->s_blocksize_bits);
475 				count -= tmp;
476 				start += tmp;
477 				elen = (etype << 30) |
478 					(0x40000000 - sb->s_blocksize);
479 			} else {
480 				elen = (etype << 30) |
481 					(elen +
482 					(count << sb->s_blocksize_bits));
483 				start += count;
484 				count = 0;
485 			}
486 			udf_write_aext(table, &oepos, &eloc, elen, 1);
487 		} else if (eloc.logicalBlockNum == (end + 1)) {
488 			if ((0x3FFFFFFF - elen) <
489 					(count << sb->s_blocksize_bits)) {
490 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
491 						sb->s_blocksize_bits);
492 				count -= tmp;
493 				end -= tmp;
494 				eloc.logicalBlockNum -= tmp;
495 				elen = (etype << 30) |
496 					(0x40000000 - sb->s_blocksize);
497 			} else {
498 				eloc.logicalBlockNum = start;
499 				elen = (etype << 30) |
500 					(elen +
501 					(count << sb->s_blocksize_bits));
502 				end -= count;
503 				count = 0;
504 			}
505 			udf_write_aext(table, &oepos, &eloc, elen, 1);
506 		}
507 
508 		if (epos.bh != oepos.bh) {
509 			i = -1;
510 			oepos.block = epos.block;
511 			brelse(oepos.bh);
512 			get_bh(epos.bh);
513 			oepos.bh = epos.bh;
514 			oepos.offset = 0;
515 		} else {
516 			oepos.offset = epos.offset;
517 		}
518 	}
519 
520 	if (count) {
521 		/*
522 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
523 		 * allocate a new block, and since we hold the super block
524 		 * lock already very bad things would happen :)
525 		 *
526 		 * We copy the behavior of udf_add_aext, but instead of
527 		 * trying to allocate a new block close to the existing one,
528 		 * we just steal a block from the extent we are trying to add.
529 		 *
530 		 * It would be nice if the blocks were close together, but it
531 		 * isn't required.
532 		 */
533 
534 		int adsize;
535 		struct short_ad *sad = NULL;
536 		struct long_ad *lad = NULL;
537 		struct allocExtDesc *aed;
538 
539 		eloc.logicalBlockNum = start;
540 		elen = EXT_RECORDED_ALLOCATED |
541 			(count << sb->s_blocksize_bits);
542 
543 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
544 			adsize = sizeof(struct short_ad);
545 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
546 			adsize = sizeof(struct long_ad);
547 		else {
548 			brelse(oepos.bh);
549 			brelse(epos.bh);
550 			goto error_return;
551 		}
552 
553 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
554 			unsigned char *sptr, *dptr;
555 			int loffset;
556 
557 			brelse(oepos.bh);
558 			oepos = epos;
559 
560 			/* Steal a block from the extent being free'd */
561 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
562 			eloc.logicalBlockNum++;
563 			elen -= sb->s_blocksize;
564 
565 			epos.bh = udf_tread(sb,
566 					udf_get_lb_pblock(sb, &epos.block, 0));
567 			if (!epos.bh) {
568 				brelse(oepos.bh);
569 				goto error_return;
570 			}
571 			aed = (struct allocExtDesc *)(epos.bh->b_data);
572 			aed->previousAllocExtLocation =
573 				cpu_to_le32(oepos.block.logicalBlockNum);
574 			if (epos.offset + adsize > sb->s_blocksize) {
575 				loffset = epos.offset;
576 				aed->lengthAllocDescs = cpu_to_le32(adsize);
577 				sptr = iinfo->i_ext.i_data + epos.offset
578 								- adsize;
579 				dptr = epos.bh->b_data +
580 					sizeof(struct allocExtDesc);
581 				memcpy(dptr, sptr, adsize);
582 				epos.offset = sizeof(struct allocExtDesc) +
583 						adsize;
584 			} else {
585 				loffset = epos.offset + adsize;
586 				aed->lengthAllocDescs = cpu_to_le32(0);
587 				if (oepos.bh) {
588 					sptr = oepos.bh->b_data + epos.offset;
589 					aed = (struct allocExtDesc *)
590 						oepos.bh->b_data;
591 					le32_add_cpu(&aed->lengthAllocDescs,
592 							adsize);
593 				} else {
594 					sptr = iinfo->i_ext.i_data +
595 								epos.offset;
596 					iinfo->i_lenAlloc += adsize;
597 					mark_inode_dirty(table);
598 				}
599 				epos.offset = sizeof(struct allocExtDesc);
600 			}
601 			if (sbi->s_udfrev >= 0x0200)
602 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
603 					    3, 1, epos.block.logicalBlockNum,
604 					    sizeof(struct tag));
605 			else
606 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
607 					    2, 1, epos.block.logicalBlockNum,
608 					    sizeof(struct tag));
609 
610 			switch (iinfo->i_alloc_type) {
611 			case ICBTAG_FLAG_AD_SHORT:
612 				sad = (struct short_ad *)sptr;
613 				sad->extLength = cpu_to_le32(
614 					EXT_NEXT_EXTENT_ALLOCDECS |
615 					sb->s_blocksize);
616 				sad->extPosition =
617 					cpu_to_le32(epos.block.logicalBlockNum);
618 				break;
619 			case ICBTAG_FLAG_AD_LONG:
620 				lad = (struct long_ad *)sptr;
621 				lad->extLength = cpu_to_le32(
622 					EXT_NEXT_EXTENT_ALLOCDECS |
623 					sb->s_blocksize);
624 				lad->extLocation =
625 					cpu_to_lelb(epos.block);
626 				break;
627 			}
628 			if (oepos.bh) {
629 				udf_update_tag(oepos.bh->b_data, loffset);
630 				mark_buffer_dirty(oepos.bh);
631 			} else {
632 				mark_inode_dirty(table);
633 			}
634 		}
635 
636 		/* It's possible that stealing the block emptied the extent */
637 		if (elen) {
638 			udf_write_aext(table, &epos, &eloc, elen, 1);
639 
640 			if (!epos.bh) {
641 				iinfo->i_lenAlloc += adsize;
642 				mark_inode_dirty(table);
643 			} else {
644 				aed = (struct allocExtDesc *)epos.bh->b_data;
645 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
646 				udf_update_tag(epos.bh->b_data, epos.offset);
647 				mark_buffer_dirty(epos.bh);
648 			}
649 		}
650 	}
651 
652 	brelse(epos.bh);
653 	brelse(oepos.bh);
654 
655 error_return:
656 	mutex_unlock(&sbi->s_alloc_mutex);
657 	return;
658 }
659 
660 static int udf_table_prealloc_blocks(struct super_block *sb,
661 				     struct inode *inode,
662 				     struct inode *table, uint16_t partition,
663 				     uint32_t first_block, uint32_t block_count)
664 {
665 	struct udf_sb_info *sbi = UDF_SB(sb);
666 	int alloc_count = 0;
667 	uint32_t elen, adsize;
668 	struct kernel_lb_addr eloc;
669 	struct extent_position epos;
670 	int8_t etype = -1;
671 	struct udf_inode_info *iinfo;
672 
673 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
674 		return 0;
675 
676 	iinfo = UDF_I(table);
677 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
678 		adsize = sizeof(struct short_ad);
679 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
680 		adsize = sizeof(struct long_ad);
681 	else
682 		return 0;
683 
684 	mutex_lock(&sbi->s_alloc_mutex);
685 	epos.offset = sizeof(struct unallocSpaceEntry);
686 	epos.block = iinfo->i_location;
687 	epos.bh = NULL;
688 	eloc.logicalBlockNum = 0xFFFFFFFF;
689 
690 	while (first_block != eloc.logicalBlockNum &&
691 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
692 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
693 			  eloc.logicalBlockNum, elen, first_block);
694 		; /* empty loop body */
695 	}
696 
697 	if (first_block == eloc.logicalBlockNum) {
698 		epos.offset -= adsize;
699 
700 		alloc_count = (elen >> sb->s_blocksize_bits);
701 		if (inode && dquot_prealloc_block(inode,
702 			alloc_count > block_count ? block_count : alloc_count))
703 			alloc_count = 0;
704 		else if (alloc_count > block_count) {
705 			alloc_count = block_count;
706 			eloc.logicalBlockNum += alloc_count;
707 			elen -= (alloc_count << sb->s_blocksize_bits);
708 			udf_write_aext(table, &epos, &eloc,
709 					(etype << 30) | elen, 1);
710 		} else
711 			udf_delete_aext(table, epos, eloc,
712 					(etype << 30) | elen);
713 	} else {
714 		alloc_count = 0;
715 	}
716 
717 	brelse(epos.bh);
718 
719 	if (alloc_count)
720 		udf_add_free_space(sb, partition, -alloc_count);
721 	mutex_unlock(&sbi->s_alloc_mutex);
722 	return alloc_count;
723 }
724 
725 static int udf_table_new_block(struct super_block *sb,
726 			       struct inode *inode,
727 			       struct inode *table, uint16_t partition,
728 			       uint32_t goal, int *err)
729 {
730 	struct udf_sb_info *sbi = UDF_SB(sb);
731 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
732 	uint32_t newblock = 0, adsize;
733 	uint32_t elen, goal_elen = 0;
734 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
735 	struct extent_position epos, goal_epos;
736 	int8_t etype;
737 	struct udf_inode_info *iinfo = UDF_I(table);
738 
739 	*err = -ENOSPC;
740 
741 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
742 		adsize = sizeof(struct short_ad);
743 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
744 		adsize = sizeof(struct long_ad);
745 	else
746 		return newblock;
747 
748 	mutex_lock(&sbi->s_alloc_mutex);
749 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
750 		goal = 0;
751 
752 	/* We search for the closest matching block to goal. If we find
753 	   a exact hit, we stop. Otherwise we keep going till we run out
754 	   of extents. We store the buffer_head, bloc, and extoffset
755 	   of the current closest match and use that when we are done.
756 	 */
757 	epos.offset = sizeof(struct unallocSpaceEntry);
758 	epos.block = iinfo->i_location;
759 	epos.bh = goal_epos.bh = NULL;
760 
761 	while (spread &&
762 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
763 		if (goal >= eloc.logicalBlockNum) {
764 			if (goal < eloc.logicalBlockNum +
765 					(elen >> sb->s_blocksize_bits))
766 				nspread = 0;
767 			else
768 				nspread = goal - eloc.logicalBlockNum -
769 					(elen >> sb->s_blocksize_bits);
770 		} else {
771 			nspread = eloc.logicalBlockNum - goal;
772 		}
773 
774 		if (nspread < spread) {
775 			spread = nspread;
776 			if (goal_epos.bh != epos.bh) {
777 				brelse(goal_epos.bh);
778 				goal_epos.bh = epos.bh;
779 				get_bh(goal_epos.bh);
780 			}
781 			goal_epos.block = epos.block;
782 			goal_epos.offset = epos.offset - adsize;
783 			goal_eloc = eloc;
784 			goal_elen = (etype << 30) | elen;
785 		}
786 	}
787 
788 	brelse(epos.bh);
789 
790 	if (spread == 0xFFFFFFFF) {
791 		brelse(goal_epos.bh);
792 		mutex_unlock(&sbi->s_alloc_mutex);
793 		return 0;
794 	}
795 
796 	/* Only allocate blocks from the beginning of the extent.
797 	   That way, we only delete (empty) extents, never have to insert an
798 	   extent because of splitting */
799 	/* This works, but very poorly.... */
800 
801 	newblock = goal_eloc.logicalBlockNum;
802 	goal_eloc.logicalBlockNum++;
803 	goal_elen -= sb->s_blocksize;
804 	if (inode) {
805 		*err = dquot_alloc_block(inode, 1);
806 		if (*err) {
807 			brelse(goal_epos.bh);
808 			mutex_unlock(&sbi->s_alloc_mutex);
809 			return 0;
810 		}
811 	}
812 
813 	if (goal_elen)
814 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
815 	else
816 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
817 	brelse(goal_epos.bh);
818 
819 	udf_add_free_space(sb, partition, -1);
820 
821 	mutex_unlock(&sbi->s_alloc_mutex);
822 	*err = 0;
823 	return newblock;
824 }
825 
826 void udf_free_blocks(struct super_block *sb, struct inode *inode,
827 		     struct kernel_lb_addr *bloc, uint32_t offset,
828 		     uint32_t count)
829 {
830 	uint16_t partition = bloc->partitionReferenceNum;
831 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
832 
833 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
834 		udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
835 				       bloc, offset, count);
836 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
837 		udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
838 				      bloc, offset, count);
839 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
840 		udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
841 				       bloc, offset, count);
842 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
843 		udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
844 				      bloc, offset, count);
845 	}
846 }
847 
848 inline int udf_prealloc_blocks(struct super_block *sb,
849 			       struct inode *inode,
850 			       uint16_t partition, uint32_t first_block,
851 			       uint32_t block_count)
852 {
853 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
854 
855 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
856 		return udf_bitmap_prealloc_blocks(sb, inode,
857 						  map->s_uspace.s_bitmap,
858 						  partition, first_block,
859 						  block_count);
860 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
861 		return udf_table_prealloc_blocks(sb, inode,
862 						 map->s_uspace.s_table,
863 						 partition, first_block,
864 						 block_count);
865 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
866 		return udf_bitmap_prealloc_blocks(sb, inode,
867 						  map->s_fspace.s_bitmap,
868 						  partition, first_block,
869 						  block_count);
870 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
871 		return udf_table_prealloc_blocks(sb, inode,
872 						 map->s_fspace.s_table,
873 						 partition, first_block,
874 						 block_count);
875 	else
876 		return 0;
877 }
878 
879 inline int udf_new_block(struct super_block *sb,
880 			 struct inode *inode,
881 			 uint16_t partition, uint32_t goal, int *err)
882 {
883 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
884 
885 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
886 		return udf_bitmap_new_block(sb, inode,
887 					   map->s_uspace.s_bitmap,
888 					   partition, goal, err);
889 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
890 		return udf_table_new_block(sb, inode,
891 					   map->s_uspace.s_table,
892 					   partition, goal, err);
893 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
894 		return udf_bitmap_new_block(sb, inode,
895 					    map->s_fspace.s_bitmap,
896 					    partition, goal, err);
897 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
898 		return udf_table_new_block(sb, inode,
899 					   map->s_fspace.s_table,
900 					   partition, goal, err);
901 	else {
902 		*err = -EIO;
903 		return 0;
904 	}
905 }
906