xref: /openbmc/linux/fs/udf/balloc.c (revision a1e58bbd)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 		find_next_one_bit(addr, size, offset)
37 
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
44 
45 static inline int find_next_one_bit(void *addr, int size, int offset)
46 {
47 	uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 	int result = offset & ~(BITS_PER_LONG - 1);
49 	unsigned long tmp;
50 
51 	if (offset >= size)
52 		return size;
53 	size -= result;
54 	offset &= (BITS_PER_LONG - 1);
55 	if (offset) {
56 		tmp = leBPL_to_cpup(p++);
57 		tmp &= ~0UL << offset;
58 		if (size < BITS_PER_LONG)
59 			goto found_first;
60 		if (tmp)
61 			goto found_middle;
62 		size -= BITS_PER_LONG;
63 		result += BITS_PER_LONG;
64 	}
65 	while (size & ~(BITS_PER_LONG - 1)) {
66 		tmp = leBPL_to_cpup(p++);
67 		if (tmp)
68 			goto found_middle;
69 		result += BITS_PER_LONG;
70 		size -= BITS_PER_LONG;
71 	}
72 	if (!size)
73 		return result;
74 	tmp = leBPL_to_cpup(p);
75 found_first:
76 	tmp &= ~0UL >> (BITS_PER_LONG - size);
77 found_middle:
78 	return result + ffz(~tmp);
79 }
80 
81 #define find_first_one_bit(addr, size)\
82 	find_next_one_bit((addr), (size), 0)
83 
84 static int read_block_bitmap(struct super_block *sb,
85 			     struct udf_bitmap *bitmap, unsigned int block,
86 			     unsigned long bitmap_nr)
87 {
88 	struct buffer_head *bh = NULL;
89 	int retval = 0;
90 	kernel_lb_addr loc;
91 
92 	loc.logicalBlockNum = bitmap->s_extPosition;
93 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
94 
95 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
96 	if (!bh)
97 		retval = -EIO;
98 
99 	bitmap->s_block_bitmap[bitmap_nr] = bh;
100 	return retval;
101 }
102 
103 static int __load_block_bitmap(struct super_block *sb,
104 			       struct udf_bitmap *bitmap,
105 			       unsigned int block_group)
106 {
107 	int retval = 0;
108 	int nr_groups = bitmap->s_nr_groups;
109 
110 	if (block_group >= nr_groups) {
111 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
112 			  nr_groups);
113 	}
114 
115 	if (bitmap->s_block_bitmap[block_group]) {
116 		return block_group;
117 	} else {
118 		retval = read_block_bitmap(sb, bitmap, block_group,
119 					   block_group);
120 		if (retval < 0)
121 			return retval;
122 		return block_group;
123 	}
124 }
125 
126 static inline int load_block_bitmap(struct super_block *sb,
127 				    struct udf_bitmap *bitmap,
128 				    unsigned int block_group)
129 {
130 	int slot;
131 
132 	slot = __load_block_bitmap(sb, bitmap, block_group);
133 
134 	if (slot < 0)
135 		return slot;
136 
137 	if (!bitmap->s_block_bitmap[slot])
138 		return -EIO;
139 
140 	return slot;
141 }
142 
143 static bool udf_add_free_space(struct udf_sb_info *sbi,
144 				u16 partition, u32 cnt)
145 {
146 	struct logicalVolIntegrityDesc *lvid;
147 
148 	if (sbi->s_lvid_bh == NULL)
149 		return false;
150 
151 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 	lvid->freeSpaceTable[partition] = cpu_to_le32(le32_to_cpu(
153 					lvid->freeSpaceTable[partition]) + cnt);
154 	return true;
155 }
156 
157 static void udf_bitmap_free_blocks(struct super_block *sb,
158 				   struct inode *inode,
159 				   struct udf_bitmap *bitmap,
160 				   kernel_lb_addr bloc, uint32_t offset,
161 				   uint32_t count)
162 {
163 	struct udf_sb_info *sbi = UDF_SB(sb);
164 	struct buffer_head *bh = NULL;
165 	unsigned long block;
166 	unsigned long block_group;
167 	unsigned long bit;
168 	unsigned long i;
169 	int bitmap_nr;
170 	unsigned long overflow;
171 
172 	mutex_lock(&sbi->s_alloc_mutex);
173 	if (bloc.logicalBlockNum < 0 ||
174 	    (bloc.logicalBlockNum + count) >
175 		sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
176 		udf_debug("%d < %d || %d + %d > %d\n",
177 			  bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
178 			  sbi->s_partmaps[bloc.partitionReferenceNum].
179 							s_partition_len);
180 		goto error_return;
181 	}
182 
183 	block = bloc.logicalBlockNum + offset +
184 		(sizeof(struct spaceBitmapDesc) << 3);
185 
186 	do {
187 		overflow = 0;
188 		block_group = block >> (sb->s_blocksize_bits + 3);
189 		bit = block % (sb->s_blocksize << 3);
190 
191 		/*
192 		* Check to see if we are freeing blocks across a group boundary.
193 		*/
194 		if (bit + count > (sb->s_blocksize << 3)) {
195 			overflow = bit + count - (sb->s_blocksize << 3);
196 			count -= overflow;
197 		}
198 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199 		if (bitmap_nr < 0)
200 			goto error_return;
201 
202 		bh = bitmap->s_block_bitmap[bitmap_nr];
203 		for (i = 0; i < count; i++) {
204 			if (udf_set_bit(bit + i, bh->b_data)) {
205 				udf_debug("bit %ld already set\n", bit + i);
206 				udf_debug("byte=%2x\n",
207 					((char *)bh->b_data)[(bit + i) >> 3]);
208 			} else {
209 				if (inode)
210 					DQUOT_FREE_BLOCK(inode, 1);
211 				udf_add_free_space(sbi, sbi->s_partition, 1);
212 			}
213 		}
214 		mark_buffer_dirty(bh);
215 		if (overflow) {
216 			block += count;
217 			count = overflow;
218 		}
219 	} while (overflow);
220 
221 error_return:
222 	sb->s_dirt = 1;
223 	if (sbi->s_lvid_bh)
224 		mark_buffer_dirty(sbi->s_lvid_bh);
225 	mutex_unlock(&sbi->s_alloc_mutex);
226 }
227 
228 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
229 				      struct inode *inode,
230 				      struct udf_bitmap *bitmap,
231 				      uint16_t partition, uint32_t first_block,
232 				      uint32_t block_count)
233 {
234 	struct udf_sb_info *sbi = UDF_SB(sb);
235 	int alloc_count = 0;
236 	int bit, block, block_group, group_start;
237 	int nr_groups, bitmap_nr;
238 	struct buffer_head *bh;
239 	__u32 part_len;
240 
241 	mutex_lock(&sbi->s_alloc_mutex);
242 	part_len = sbi->s_partmaps[partition].s_partition_len;
243 	if (first_block < 0 || first_block >= part_len)
244 		goto out;
245 
246 	if (first_block + block_count > part_len)
247 		block_count = part_len - first_block;
248 
249 	do {
250 		nr_groups = udf_compute_nr_groups(sb, partition);
251 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
252 		block_group = block >> (sb->s_blocksize_bits + 3);
253 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
254 
255 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
256 		if (bitmap_nr < 0)
257 			goto out;
258 		bh = bitmap->s_block_bitmap[bitmap_nr];
259 
260 		bit = block % (sb->s_blocksize << 3);
261 
262 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
263 			if (!udf_test_bit(bit, bh->b_data))
264 				goto out;
265 			else if (DQUOT_PREALLOC_BLOCK(inode, 1))
266 				goto out;
267 			else if (!udf_clear_bit(bit, bh->b_data)) {
268 				udf_debug("bit already cleared for block %d\n", bit);
269 				DQUOT_FREE_BLOCK(inode, 1);
270 				goto out;
271 			}
272 			block_count--;
273 			alloc_count++;
274 			bit++;
275 			block++;
276 		}
277 		mark_buffer_dirty(bh);
278 	} while (block_count > 0);
279 
280 out:
281 	if (udf_add_free_space(sbi, partition, -alloc_count))
282 		mark_buffer_dirty(sbi->s_lvid_bh);
283 	sb->s_dirt = 1;
284 	mutex_unlock(&sbi->s_alloc_mutex);
285 	return alloc_count;
286 }
287 
288 static int udf_bitmap_new_block(struct super_block *sb,
289 				struct inode *inode,
290 				struct udf_bitmap *bitmap, uint16_t partition,
291 				uint32_t goal, int *err)
292 {
293 	struct udf_sb_info *sbi = UDF_SB(sb);
294 	int newbit, bit = 0, block, block_group, group_start;
295 	int end_goal, nr_groups, bitmap_nr, i;
296 	struct buffer_head *bh = NULL;
297 	char *ptr;
298 	int newblock = 0;
299 
300 	*err = -ENOSPC;
301 	mutex_lock(&sbi->s_alloc_mutex);
302 
303 repeat:
304 	if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
305 		goal = 0;
306 
307 	nr_groups = bitmap->s_nr_groups;
308 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
309 	block_group = block >> (sb->s_blocksize_bits + 3);
310 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
311 
312 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
313 	if (bitmap_nr < 0)
314 		goto error_return;
315 	bh = bitmap->s_block_bitmap[bitmap_nr];
316 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
317 		      sb->s_blocksize - group_start);
318 
319 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
320 		bit = block % (sb->s_blocksize << 3);
321 		if (udf_test_bit(bit, bh->b_data))
322 			goto got_block;
323 
324 		end_goal = (bit + 63) & ~63;
325 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
326 		if (bit < end_goal)
327 			goto got_block;
328 
329 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
330 			      sb->s_blocksize - ((bit + 7) >> 3));
331 		newbit = (ptr - ((char *)bh->b_data)) << 3;
332 		if (newbit < sb->s_blocksize << 3) {
333 			bit = newbit;
334 			goto search_back;
335 		}
336 
337 		newbit = udf_find_next_one_bit(bh->b_data,
338 					       sb->s_blocksize << 3, bit);
339 		if (newbit < sb->s_blocksize << 3) {
340 			bit = newbit;
341 			goto got_block;
342 		}
343 	}
344 
345 	for (i = 0; i < (nr_groups * 2); i++) {
346 		block_group++;
347 		if (block_group >= nr_groups)
348 			block_group = 0;
349 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
350 
351 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
352 		if (bitmap_nr < 0)
353 			goto error_return;
354 		bh = bitmap->s_block_bitmap[bitmap_nr];
355 		if (i < nr_groups) {
356 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
357 				      sb->s_blocksize - group_start);
358 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
359 				bit = (ptr - ((char *)bh->b_data)) << 3;
360 				break;
361 			}
362 		} else {
363 			bit = udf_find_next_one_bit((char *)bh->b_data,
364 						    sb->s_blocksize << 3,
365 						    group_start << 3);
366 			if (bit < sb->s_blocksize << 3)
367 				break;
368 		}
369 	}
370 	if (i >= (nr_groups * 2)) {
371 		mutex_unlock(&sbi->s_alloc_mutex);
372 		return newblock;
373 	}
374 	if (bit < sb->s_blocksize << 3)
375 		goto search_back;
376 	else
377 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
378 					    group_start << 3);
379 	if (bit >= sb->s_blocksize << 3) {
380 		mutex_unlock(&sbi->s_alloc_mutex);
381 		return 0;
382 	}
383 
384 search_back:
385 	i = 0;
386 	while (i < 7 && bit > (group_start << 3) &&
387 	       udf_test_bit(bit - 1, bh->b_data)) {
388 		++i;
389 		--bit;
390 	}
391 
392 got_block:
393 
394 	/*
395 	 * Check quota for allocation of this block.
396 	 */
397 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
398 		mutex_unlock(&sbi->s_alloc_mutex);
399 		*err = -EDQUOT;
400 		return 0;
401 	}
402 
403 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
404 		(sizeof(struct spaceBitmapDesc) << 3);
405 
406 	if (!udf_clear_bit(bit, bh->b_data)) {
407 		udf_debug("bit already cleared for block %d\n", bit);
408 		goto repeat;
409 	}
410 
411 	mark_buffer_dirty(bh);
412 
413 	if (udf_add_free_space(sbi, partition, -1))
414 		mark_buffer_dirty(sbi->s_lvid_bh);
415 	sb->s_dirt = 1;
416 	mutex_unlock(&sbi->s_alloc_mutex);
417 	*err = 0;
418 	return newblock;
419 
420 error_return:
421 	*err = -EIO;
422 	mutex_unlock(&sbi->s_alloc_mutex);
423 	return 0;
424 }
425 
426 static void udf_table_free_blocks(struct super_block *sb,
427 				  struct inode *inode,
428 				  struct inode *table,
429 				  kernel_lb_addr bloc, uint32_t offset,
430 				  uint32_t count)
431 {
432 	struct udf_sb_info *sbi = UDF_SB(sb);
433 	uint32_t start, end;
434 	uint32_t elen;
435 	kernel_lb_addr eloc;
436 	struct extent_position oepos, epos;
437 	int8_t etype;
438 	int i;
439 	struct udf_inode_info *iinfo;
440 
441 	mutex_lock(&sbi->s_alloc_mutex);
442 	if (bloc.logicalBlockNum < 0 ||
443 	    (bloc.logicalBlockNum + count) >
444 		sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
445 		udf_debug("%d < %d || %d + %d > %d\n",
446 			  bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
447 			  sbi->s_partmaps[bloc.partitionReferenceNum].
448 							s_partition_len);
449 		goto error_return;
450 	}
451 
452 	iinfo = UDF_I(table);
453 	/* We do this up front - There are some error conditions that
454 	   could occure, but.. oh well */
455 	if (inode)
456 		DQUOT_FREE_BLOCK(inode, count);
457 	if (udf_add_free_space(sbi, sbi->s_partition, count))
458 		mark_buffer_dirty(sbi->s_lvid_bh);
459 
460 	start = bloc.logicalBlockNum + offset;
461 	end = bloc.logicalBlockNum + offset + count - 1;
462 
463 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
464 	elen = 0;
465 	epos.block = oepos.block = iinfo->i_location;
466 	epos.bh = oepos.bh = NULL;
467 
468 	while (count &&
469 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
470 		if (((eloc.logicalBlockNum +
471 			(elen >> sb->s_blocksize_bits)) == start)) {
472 			if ((0x3FFFFFFF - elen) <
473 					(count << sb->s_blocksize_bits)) {
474 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
475 							sb->s_blocksize_bits);
476 				count -= tmp;
477 				start += tmp;
478 				elen = (etype << 30) |
479 					(0x40000000 - sb->s_blocksize);
480 			} else {
481 				elen = (etype << 30) |
482 					(elen +
483 					(count << sb->s_blocksize_bits));
484 				start += count;
485 				count = 0;
486 			}
487 			udf_write_aext(table, &oepos, eloc, elen, 1);
488 		} else if (eloc.logicalBlockNum == (end + 1)) {
489 			if ((0x3FFFFFFF - elen) <
490 					(count << sb->s_blocksize_bits)) {
491 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
492 						sb->s_blocksize_bits);
493 				count -= tmp;
494 				end -= tmp;
495 				eloc.logicalBlockNum -= tmp;
496 				elen = (etype << 30) |
497 					(0x40000000 - sb->s_blocksize);
498 			} else {
499 				eloc.logicalBlockNum = start;
500 				elen = (etype << 30) |
501 					(elen +
502 					(count << sb->s_blocksize_bits));
503 				end -= count;
504 				count = 0;
505 			}
506 			udf_write_aext(table, &oepos, eloc, elen, 1);
507 		}
508 
509 		if (epos.bh != oepos.bh) {
510 			i = -1;
511 			oepos.block = epos.block;
512 			brelse(oepos.bh);
513 			get_bh(epos.bh);
514 			oepos.bh = epos.bh;
515 			oepos.offset = 0;
516 		} else {
517 			oepos.offset = epos.offset;
518 		}
519 	}
520 
521 	if (count) {
522 		/*
523 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
524 		 * allocate a new block, and since we hold the super block
525 		 * lock already very bad things would happen :)
526 		 *
527 		 * We copy the behavior of udf_add_aext, but instead of
528 		 * trying to allocate a new block close to the existing one,
529 		 * we just steal a block from the extent we are trying to add.
530 		 *
531 		 * It would be nice if the blocks were close together, but it
532 		 * isn't required.
533 		 */
534 
535 		int adsize;
536 		short_ad *sad = NULL;
537 		long_ad *lad = NULL;
538 		struct allocExtDesc *aed;
539 
540 		eloc.logicalBlockNum = start;
541 		elen = EXT_RECORDED_ALLOCATED |
542 			(count << sb->s_blocksize_bits);
543 
544 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
545 			adsize = sizeof(short_ad);
546 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
547 			adsize = sizeof(long_ad);
548 		else {
549 			brelse(oepos.bh);
550 			brelse(epos.bh);
551 			goto error_return;
552 		}
553 
554 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
555 			char *sptr, *dptr;
556 			int loffset;
557 
558 			brelse(oepos.bh);
559 			oepos = epos;
560 
561 			/* Steal a block from the extent being free'd */
562 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
563 			eloc.logicalBlockNum++;
564 			elen -= sb->s_blocksize;
565 
566 			epos.bh = udf_tread(sb,
567 					udf_get_lb_pblock(sb, epos.block, 0));
568 			if (!epos.bh) {
569 				brelse(oepos.bh);
570 				goto error_return;
571 			}
572 			aed = (struct allocExtDesc *)(epos.bh->b_data);
573 			aed->previousAllocExtLocation =
574 				cpu_to_le32(oepos.block.logicalBlockNum);
575 			if (epos.offset + adsize > sb->s_blocksize) {
576 				loffset = epos.offset;
577 				aed->lengthAllocDescs = cpu_to_le32(adsize);
578 				sptr = iinfo->i_ext.i_data + epos.offset
579 								- adsize;
580 				dptr = epos.bh->b_data +
581 					sizeof(struct allocExtDesc);
582 				memcpy(dptr, sptr, adsize);
583 				epos.offset = sizeof(struct allocExtDesc) +
584 						adsize;
585 			} else {
586 				loffset = epos.offset + adsize;
587 				aed->lengthAllocDescs = cpu_to_le32(0);
588 				if (oepos.bh) {
589 					sptr = oepos.bh->b_data + epos.offset;
590 					aed = (struct allocExtDesc *)
591 						oepos.bh->b_data;
592 					aed->lengthAllocDescs =
593 						cpu_to_le32(le32_to_cpu(
594 							aed->lengthAllocDescs) +
595 								adsize);
596 				} else {
597 					sptr = iinfo->i_ext.i_data +
598 								epos.offset;
599 					iinfo->i_lenAlloc += adsize;
600 					mark_inode_dirty(table);
601 				}
602 				epos.offset = sizeof(struct allocExtDesc);
603 			}
604 			if (sbi->s_udfrev >= 0x0200)
605 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
606 					    3, 1, epos.block.logicalBlockNum,
607 					    sizeof(tag));
608 			else
609 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
610 					    2, 1, epos.block.logicalBlockNum,
611 					    sizeof(tag));
612 
613 			switch (iinfo->i_alloc_type) {
614 			case ICBTAG_FLAG_AD_SHORT:
615 				sad = (short_ad *)sptr;
616 				sad->extLength = cpu_to_le32(
617 					EXT_NEXT_EXTENT_ALLOCDECS |
618 					sb->s_blocksize);
619 				sad->extPosition =
620 					cpu_to_le32(epos.block.logicalBlockNum);
621 				break;
622 			case ICBTAG_FLAG_AD_LONG:
623 				lad = (long_ad *)sptr;
624 				lad->extLength = cpu_to_le32(
625 					EXT_NEXT_EXTENT_ALLOCDECS |
626 					sb->s_blocksize);
627 				lad->extLocation =
628 					cpu_to_lelb(epos.block);
629 				break;
630 			}
631 			if (oepos.bh) {
632 				udf_update_tag(oepos.bh->b_data, loffset);
633 				mark_buffer_dirty(oepos.bh);
634 			} else {
635 				mark_inode_dirty(table);
636 			}
637 		}
638 
639 		/* It's possible that stealing the block emptied the extent */
640 		if (elen) {
641 			udf_write_aext(table, &epos, eloc, elen, 1);
642 
643 			if (!epos.bh) {
644 				iinfo->i_lenAlloc += adsize;
645 				mark_inode_dirty(table);
646 			} else {
647 				aed = (struct allocExtDesc *)epos.bh->b_data;
648 				aed->lengthAllocDescs =
649 					cpu_to_le32(le32_to_cpu(
650 					    aed->lengthAllocDescs) + adsize);
651 				udf_update_tag(epos.bh->b_data, epos.offset);
652 				mark_buffer_dirty(epos.bh);
653 			}
654 		}
655 	}
656 
657 	brelse(epos.bh);
658 	brelse(oepos.bh);
659 
660 error_return:
661 	sb->s_dirt = 1;
662 	mutex_unlock(&sbi->s_alloc_mutex);
663 	return;
664 }
665 
666 static int udf_table_prealloc_blocks(struct super_block *sb,
667 				     struct inode *inode,
668 				     struct inode *table, uint16_t partition,
669 				     uint32_t first_block, uint32_t block_count)
670 {
671 	struct udf_sb_info *sbi = UDF_SB(sb);
672 	int alloc_count = 0;
673 	uint32_t elen, adsize;
674 	kernel_lb_addr eloc;
675 	struct extent_position epos;
676 	int8_t etype = -1;
677 	struct udf_inode_info *iinfo;
678 
679 	if (first_block < 0 ||
680 		first_block >= sbi->s_partmaps[partition].s_partition_len)
681 		return 0;
682 
683 	iinfo = UDF_I(table);
684 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
685 		adsize = sizeof(short_ad);
686 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
687 		adsize = sizeof(long_ad);
688 	else
689 		return 0;
690 
691 	mutex_lock(&sbi->s_alloc_mutex);
692 	epos.offset = sizeof(struct unallocSpaceEntry);
693 	epos.block = iinfo->i_location;
694 	epos.bh = NULL;
695 	eloc.logicalBlockNum = 0xFFFFFFFF;
696 
697 	while (first_block != eloc.logicalBlockNum &&
698 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
699 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
700 			  eloc.logicalBlockNum, elen, first_block);
701 		; /* empty loop body */
702 	}
703 
704 	if (first_block == eloc.logicalBlockNum) {
705 		epos.offset -= adsize;
706 
707 		alloc_count = (elen >> sb->s_blocksize_bits);
708 		if (inode && DQUOT_PREALLOC_BLOCK(inode,
709 			alloc_count > block_count ? block_count : alloc_count))
710 			alloc_count = 0;
711 		else if (alloc_count > block_count) {
712 			alloc_count = block_count;
713 			eloc.logicalBlockNum += alloc_count;
714 			elen -= (alloc_count << sb->s_blocksize_bits);
715 			udf_write_aext(table, &epos, eloc,
716 					(etype << 30) | elen, 1);
717 		} else
718 			udf_delete_aext(table, epos, eloc,
719 					(etype << 30) | elen);
720 	} else {
721 		alloc_count = 0;
722 	}
723 
724 	brelse(epos.bh);
725 
726 	if (alloc_count && udf_add_free_space(sbi, partition, -alloc_count)) {
727 		mark_buffer_dirty(sbi->s_lvid_bh);
728 		sb->s_dirt = 1;
729 	}
730 	mutex_unlock(&sbi->s_alloc_mutex);
731 	return alloc_count;
732 }
733 
734 static int udf_table_new_block(struct super_block *sb,
735 			       struct inode *inode,
736 			       struct inode *table, uint16_t partition,
737 			       uint32_t goal, int *err)
738 {
739 	struct udf_sb_info *sbi = UDF_SB(sb);
740 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
741 	uint32_t newblock = 0, adsize;
742 	uint32_t elen, goal_elen = 0;
743 	kernel_lb_addr eloc, uninitialized_var(goal_eloc);
744 	struct extent_position epos, goal_epos;
745 	int8_t etype;
746 	struct udf_inode_info *iinfo = UDF_I(table);
747 
748 	*err = -ENOSPC;
749 
750 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
751 		adsize = sizeof(short_ad);
752 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
753 		adsize = sizeof(long_ad);
754 	else
755 		return newblock;
756 
757 	mutex_lock(&sbi->s_alloc_mutex);
758 	if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
759 		goal = 0;
760 
761 	/* We search for the closest matching block to goal. If we find
762 	   a exact hit, we stop. Otherwise we keep going till we run out
763 	   of extents. We store the buffer_head, bloc, and extoffset
764 	   of the current closest match and use that when we are done.
765 	 */
766 	epos.offset = sizeof(struct unallocSpaceEntry);
767 	epos.block = iinfo->i_location;
768 	epos.bh = goal_epos.bh = NULL;
769 
770 	while (spread &&
771 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
772 		if (goal >= eloc.logicalBlockNum) {
773 			if (goal < eloc.logicalBlockNum +
774 					(elen >> sb->s_blocksize_bits))
775 				nspread = 0;
776 			else
777 				nspread = goal - eloc.logicalBlockNum -
778 					(elen >> sb->s_blocksize_bits);
779 		} else {
780 			nspread = eloc.logicalBlockNum - goal;
781 		}
782 
783 		if (nspread < spread) {
784 			spread = nspread;
785 			if (goal_epos.bh != epos.bh) {
786 				brelse(goal_epos.bh);
787 				goal_epos.bh = epos.bh;
788 				get_bh(goal_epos.bh);
789 			}
790 			goal_epos.block = epos.block;
791 			goal_epos.offset = epos.offset - adsize;
792 			goal_eloc = eloc;
793 			goal_elen = (etype << 30) | elen;
794 		}
795 	}
796 
797 	brelse(epos.bh);
798 
799 	if (spread == 0xFFFFFFFF) {
800 		brelse(goal_epos.bh);
801 		mutex_unlock(&sbi->s_alloc_mutex);
802 		return 0;
803 	}
804 
805 	/* Only allocate blocks from the beginning of the extent.
806 	   That way, we only delete (empty) extents, never have to insert an
807 	   extent because of splitting */
808 	/* This works, but very poorly.... */
809 
810 	newblock = goal_eloc.logicalBlockNum;
811 	goal_eloc.logicalBlockNum++;
812 	goal_elen -= sb->s_blocksize;
813 
814 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
815 		brelse(goal_epos.bh);
816 		mutex_unlock(&sbi->s_alloc_mutex);
817 		*err = -EDQUOT;
818 		return 0;
819 	}
820 
821 	if (goal_elen)
822 		udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
823 	else
824 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
825 	brelse(goal_epos.bh);
826 
827 	if (udf_add_free_space(sbi, partition, -1))
828 		mark_buffer_dirty(sbi->s_lvid_bh);
829 
830 	sb->s_dirt = 1;
831 	mutex_unlock(&sbi->s_alloc_mutex);
832 	*err = 0;
833 	return newblock;
834 }
835 
836 inline void udf_free_blocks(struct super_block *sb,
837 			    struct inode *inode,
838 			    kernel_lb_addr bloc, uint32_t offset,
839 			    uint32_t count)
840 {
841 	uint16_t partition = bloc.partitionReferenceNum;
842 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
843 
844 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
845 		return udf_bitmap_free_blocks(sb, inode,
846 					      map->s_uspace.s_bitmap,
847 					      bloc, offset, count);
848 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
849 		return udf_table_free_blocks(sb, inode,
850 					     map->s_uspace.s_table,
851 					     bloc, offset, count);
852 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
853 		return udf_bitmap_free_blocks(sb, inode,
854 					      map->s_fspace.s_bitmap,
855 					      bloc, offset, count);
856 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
857 		return udf_table_free_blocks(sb, inode,
858 					     map->s_fspace.s_table,
859 					     bloc, offset, count);
860 	} else {
861 		return;
862 	}
863 }
864 
865 inline int udf_prealloc_blocks(struct super_block *sb,
866 			       struct inode *inode,
867 			       uint16_t partition, uint32_t first_block,
868 			       uint32_t block_count)
869 {
870 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
871 
872 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
873 		return udf_bitmap_prealloc_blocks(sb, inode,
874 						  map->s_uspace.s_bitmap,
875 						  partition, first_block,
876 						  block_count);
877 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
878 		return udf_table_prealloc_blocks(sb, inode,
879 						 map->s_uspace.s_table,
880 						 partition, first_block,
881 						 block_count);
882 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
883 		return udf_bitmap_prealloc_blocks(sb, inode,
884 						  map->s_fspace.s_bitmap,
885 						  partition, first_block,
886 						  block_count);
887 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
888 		return udf_table_prealloc_blocks(sb, inode,
889 						 map->s_fspace.s_table,
890 						 partition, first_block,
891 						 block_count);
892 	else
893 		return 0;
894 }
895 
896 inline int udf_new_block(struct super_block *sb,
897 			 struct inode *inode,
898 			 uint16_t partition, uint32_t goal, int *err)
899 {
900 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
901 
902 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
903 		return udf_bitmap_new_block(sb, inode,
904 					   map->s_uspace.s_bitmap,
905 					   partition, goal, err);
906 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
907 		return udf_table_new_block(sb, inode,
908 					   map->s_uspace.s_table,
909 					   partition, goal, err);
910 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
911 		return udf_bitmap_new_block(sb, inode,
912 					    map->s_fspace.s_bitmap,
913 					    partition, goal, err);
914 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
915 		return udf_table_new_block(sb, inode,
916 					   map->s_fspace.s_table,
917 					   partition, goal, err);
918 	else {
919 		*err = -EIO;
920 		return 0;
921 	}
922 }
923