xref: /openbmc/linux/fs/udf/balloc.c (revision a17627ef)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
32 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
36 
37 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
38 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
39 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
40 #define uintBPL_t uint(BITS_PER_LONG)
41 #define uint(x) xuint(x)
42 #define xuint(x) __le ## x
43 
44 static inline int find_next_one_bit (void * addr, int size, int offset)
45 {
46 	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
47 	int result = offset & ~(BITS_PER_LONG-1);
48 	unsigned long tmp;
49 
50 	if (offset >= size)
51 		return size;
52 	size -= result;
53 	offset &= (BITS_PER_LONG-1);
54 	if (offset)
55 	{
56 		tmp = leBPL_to_cpup(p++);
57 		tmp &= ~0UL << offset;
58 		if (size < BITS_PER_LONG)
59 			goto found_first;
60 		if (tmp)
61 			goto found_middle;
62 		size -= BITS_PER_LONG;
63 		result += BITS_PER_LONG;
64 	}
65 	while (size & ~(BITS_PER_LONG-1))
66 	{
67 		if ((tmp = leBPL_to_cpup(p++)))
68 			goto found_middle;
69 		result += BITS_PER_LONG;
70 		size -= BITS_PER_LONG;
71 	}
72 	if (!size)
73 		return result;
74 	tmp = leBPL_to_cpup(p);
75 found_first:
76 	tmp &= ~0UL >> (BITS_PER_LONG-size);
77 found_middle:
78 	return result + ffz(~tmp);
79 }
80 
81 #define find_first_one_bit(addr, size)\
82 	find_next_one_bit((addr), (size), 0)
83 
84 static int read_block_bitmap(struct super_block * sb,
85 	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
86 {
87 	struct buffer_head *bh = NULL;
88 	int retval = 0;
89 	kernel_lb_addr loc;
90 
91 	loc.logicalBlockNum = bitmap->s_extPosition;
92 	loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
93 
94 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
95 	if (!bh)
96 	{
97 		retval = -EIO;
98 	}
99 	bitmap->s_block_bitmap[bitmap_nr] = bh;
100 	return retval;
101 }
102 
103 static int __load_block_bitmap(struct super_block * sb,
104 	struct udf_bitmap *bitmap, unsigned int block_group)
105 {
106 	int retval = 0;
107 	int nr_groups = bitmap->s_nr_groups;
108 
109 	if (block_group >= nr_groups)
110 	{
111 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
112 	}
113 
114 	if (bitmap->s_block_bitmap[block_group])
115 		return block_group;
116 	else
117 	{
118 		retval = read_block_bitmap(sb, bitmap, block_group, block_group);
119 		if (retval < 0)
120 			return retval;
121 		return block_group;
122 	}
123 }
124 
125 static inline int load_block_bitmap(struct super_block * sb,
126 	struct udf_bitmap *bitmap, unsigned int block_group)
127 {
128 	int slot;
129 
130 	slot = __load_block_bitmap(sb, bitmap, block_group);
131 
132 	if (slot < 0)
133 		return slot;
134 
135 	if (!bitmap->s_block_bitmap[slot])
136 		return -EIO;
137 
138 	return slot;
139 }
140 
141 static void udf_bitmap_free_blocks(struct super_block * sb,
142 	struct inode * inode,
143 	struct udf_bitmap *bitmap,
144 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
145 {
146 	struct udf_sb_info *sbi = UDF_SB(sb);
147 	struct buffer_head * bh = NULL;
148 	unsigned long block;
149 	unsigned long block_group;
150 	unsigned long bit;
151 	unsigned long i;
152 	int bitmap_nr;
153 	unsigned long overflow;
154 
155 	mutex_lock(&sbi->s_alloc_mutex);
156 	if (bloc.logicalBlockNum < 0 ||
157 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
158 	{
159 		udf_debug("%d < %d || %d + %d > %d\n",
160 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
161 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
162 		goto error_return;
163 	}
164 
165 	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
166 
167 do_more:
168 	overflow = 0;
169 	block_group = block >> (sb->s_blocksize_bits + 3);
170 	bit = block % (sb->s_blocksize << 3);
171 
172 	/*
173 	 * Check to see if we are freeing blocks across a group boundary.
174 	 */
175 	if (bit + count > (sb->s_blocksize << 3))
176 	{
177 		overflow = bit + count - (sb->s_blocksize << 3);
178 		count -= overflow;
179 	}
180 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
181 	if (bitmap_nr < 0)
182 		goto error_return;
183 
184 	bh = bitmap->s_block_bitmap[bitmap_nr];
185 	for (i=0; i < count; i++)
186 	{
187 		if (udf_set_bit(bit + i, bh->b_data))
188 		{
189 			udf_debug("bit %ld already set\n", bit + i);
190 			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
191 		}
192 		else
193 		{
194 			if (inode)
195 				DQUOT_FREE_BLOCK(inode, 1);
196 			if (UDF_SB_LVIDBH(sb))
197 			{
198 				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
199 					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
200 			}
201 		}
202 	}
203 	mark_buffer_dirty(bh);
204 	if (overflow)
205 	{
206 		block += count;
207 		count = overflow;
208 		goto do_more;
209 	}
210 error_return:
211 	sb->s_dirt = 1;
212 	if (UDF_SB_LVIDBH(sb))
213 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
214 	mutex_unlock(&sbi->s_alloc_mutex);
215 	return;
216 }
217 
218 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
219 	struct inode * inode,
220 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
221 	uint32_t block_count)
222 {
223 	struct udf_sb_info *sbi = UDF_SB(sb);
224 	int alloc_count = 0;
225 	int bit, block, block_group, group_start;
226 	int nr_groups, bitmap_nr;
227 	struct buffer_head *bh;
228 
229 	mutex_lock(&sbi->s_alloc_mutex);
230 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
231 		goto out;
232 
233 	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
234 		block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
235 
236 repeat:
237 	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
238 		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
239 	block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
240 	block_group = block >> (sb->s_blocksize_bits + 3);
241 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
242 
243 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
244 	if (bitmap_nr < 0)
245 		goto out;
246 	bh = bitmap->s_block_bitmap[bitmap_nr];
247 
248 	bit = block % (sb->s_blocksize << 3);
249 
250 	while (bit < (sb->s_blocksize << 3) && block_count > 0)
251 	{
252 		if (!udf_test_bit(bit, bh->b_data))
253 			goto out;
254 		else if (DQUOT_PREALLOC_BLOCK(inode, 1))
255 			goto out;
256 		else if (!udf_clear_bit(bit, bh->b_data))
257 		{
258 			udf_debug("bit already cleared for block %d\n", bit);
259 			DQUOT_FREE_BLOCK(inode, 1);
260 			goto out;
261 		}
262 		block_count --;
263 		alloc_count ++;
264 		bit ++;
265 		block ++;
266 	}
267 	mark_buffer_dirty(bh);
268 	if (block_count > 0)
269 		goto repeat;
270 out:
271 	if (UDF_SB_LVIDBH(sb))
272 	{
273 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
274 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
275 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
276 	}
277 	sb->s_dirt = 1;
278 	mutex_unlock(&sbi->s_alloc_mutex);
279 	return alloc_count;
280 }
281 
282 static int udf_bitmap_new_block(struct super_block * sb,
283 	struct inode * inode,
284 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
285 {
286 	struct udf_sb_info *sbi = UDF_SB(sb);
287 	int newbit, bit=0, block, block_group, group_start;
288 	int end_goal, nr_groups, bitmap_nr, i;
289 	struct buffer_head *bh = NULL;
290 	char *ptr;
291 	int newblock = 0;
292 
293 	*err = -ENOSPC;
294 	mutex_lock(&sbi->s_alloc_mutex);
295 
296 repeat:
297 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
298 		goal = 0;
299 
300 	nr_groups = bitmap->s_nr_groups;
301 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
302 	block_group = block >> (sb->s_blocksize_bits + 3);
303 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
304 
305 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
306 	if (bitmap_nr < 0)
307 		goto error_return;
308 	bh = bitmap->s_block_bitmap[bitmap_nr];
309 	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
310 
311 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
312 	{
313 		bit = block % (sb->s_blocksize << 3);
314 
315 		if (udf_test_bit(bit, bh->b_data))
316 		{
317 			goto got_block;
318 		}
319 		end_goal = (bit + 63) & ~63;
320 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
321 		if (bit < end_goal)
322 			goto got_block;
323 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
324 		newbit = (ptr - ((char *)bh->b_data)) << 3;
325 		if (newbit < sb->s_blocksize << 3)
326 		{
327 			bit = newbit;
328 			goto search_back;
329 		}
330 		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
331 		if (newbit < sb->s_blocksize << 3)
332 		{
333 			bit = newbit;
334 			goto got_block;
335 		}
336 	}
337 
338 	for (i=0; i<(nr_groups*2); i++)
339 	{
340 		block_group ++;
341 		if (block_group >= nr_groups)
342 			block_group = 0;
343 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
344 
345 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
346 		if (bitmap_nr < 0)
347 			goto error_return;
348 		bh = bitmap->s_block_bitmap[bitmap_nr];
349 		if (i < nr_groups)
350 		{
351 			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
352 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
353 			{
354 				bit = (ptr - ((char *)bh->b_data)) << 3;
355 				break;
356 			}
357 		}
358 		else
359 		{
360 			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
361 			if (bit < sb->s_blocksize << 3)
362 				break;
363 		}
364 	}
365 	if (i >= (nr_groups*2))
366 	{
367 		mutex_unlock(&sbi->s_alloc_mutex);
368 		return newblock;
369 	}
370 	if (bit < sb->s_blocksize << 3)
371 		goto search_back;
372 	else
373 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
374 	if (bit >= sb->s_blocksize << 3)
375 	{
376 		mutex_unlock(&sbi->s_alloc_mutex);
377 		return 0;
378 	}
379 
380 search_back:
381 	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
382 
383 got_block:
384 
385 	/*
386 	 * Check quota for allocation of this block.
387 	 */
388 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
389 	{
390 		mutex_unlock(&sbi->s_alloc_mutex);
391 		*err = -EDQUOT;
392 		return 0;
393 	}
394 
395 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
396 		(sizeof(struct spaceBitmapDesc) << 3);
397 
398 	if (!udf_clear_bit(bit, bh->b_data))
399 	{
400 		udf_debug("bit already cleared for block %d\n", bit);
401 		goto repeat;
402 	}
403 
404 	mark_buffer_dirty(bh);
405 
406 	if (UDF_SB_LVIDBH(sb))
407 	{
408 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
409 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
410 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
411 	}
412 	sb->s_dirt = 1;
413 	mutex_unlock(&sbi->s_alloc_mutex);
414 	*err = 0;
415 	return newblock;
416 
417 error_return:
418 	*err = -EIO;
419 	mutex_unlock(&sbi->s_alloc_mutex);
420 	return 0;
421 }
422 
423 static void udf_table_free_blocks(struct super_block * sb,
424 	struct inode * inode,
425 	struct inode * table,
426 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
427 {
428 	struct udf_sb_info *sbi = UDF_SB(sb);
429 	uint32_t start, end;
430 	uint32_t elen;
431 	kernel_lb_addr eloc;
432 	struct extent_position oepos, epos;
433 	int8_t etype;
434 	int i;
435 
436 	mutex_lock(&sbi->s_alloc_mutex);
437 	if (bloc.logicalBlockNum < 0 ||
438 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
439 	{
440 		udf_debug("%d < %d || %d + %d > %d\n",
441 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
442 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
443 		goto error_return;
444 	}
445 
446 	/* We do this up front - There are some error conditions that could occure,
447 	   but.. oh well */
448 	if (inode)
449 		DQUOT_FREE_BLOCK(inode, count);
450 	if (UDF_SB_LVIDBH(sb))
451 	{
452 		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
453 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
454 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
455 	}
456 
457 	start = bloc.logicalBlockNum + offset;
458 	end = bloc.logicalBlockNum + offset + count - 1;
459 
460 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
461 	elen = 0;
462 	epos.block = oepos.block = UDF_I_LOCATION(table);
463 	epos.bh = oepos.bh = NULL;
464 
465 	while (count && (etype =
466 		udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
467 	{
468 		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
469 			start))
470 		{
471 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
472 			{
473 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
474 				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
475 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
476 			}
477 			else
478 			{
479 				elen = (etype << 30) |
480 					(elen + (count << sb->s_blocksize_bits));
481 				start += count;
482 				count = 0;
483 			}
484 			udf_write_aext(table, &oepos, eloc, elen, 1);
485 		}
486 		else if (eloc.logicalBlockNum == (end + 1))
487 		{
488 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
489 			{
490 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
491 				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
492 				eloc.logicalBlockNum -=
493 					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
494 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
495 			}
496 			else
497 			{
498 				eloc.logicalBlockNum = start;
499 				elen = (etype << 30) |
500 					(elen + (count << sb->s_blocksize_bits));
501 				end -= count;
502 				count = 0;
503 			}
504 			udf_write_aext(table, &oepos, eloc, elen, 1);
505 		}
506 
507 		if (epos.bh != oepos.bh)
508 		{
509 			i = -1;
510 			oepos.block = epos.block;
511 			brelse(oepos.bh);
512 			get_bh(epos.bh);
513 			oepos.bh = epos.bh;
514 			oepos.offset = 0;
515 		}
516 		else
517 			oepos.offset = epos.offset;
518 	}
519 
520 	if (count)
521 	{
522 		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
523 				 a new block, and since we hold the super block lock already
524 				 very bad things would happen :)
525 
526 				 We copy the behavior of udf_add_aext, but instead of
527 				 trying to allocate a new block close to the existing one,
528 				 we just steal a block from the extent we are trying to add.
529 
530 				 It would be nice if the blocks were close together, but it
531 				 isn't required.
532 		*/
533 
534 		int adsize;
535 		short_ad *sad = NULL;
536 		long_ad *lad = NULL;
537 		struct allocExtDesc *aed;
538 
539 		eloc.logicalBlockNum = start;
540 		elen = EXT_RECORDED_ALLOCATED |
541 			(count << sb->s_blocksize_bits);
542 
543 		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
544 			adsize = sizeof(short_ad);
545 		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
546 			adsize = sizeof(long_ad);
547 		else
548 		{
549 			brelse(oepos.bh);
550 			brelse(epos.bh);
551 			goto error_return;
552 		}
553 
554 		if (epos.offset + (2 * adsize) > sb->s_blocksize)
555 		{
556 			char *sptr, *dptr;
557 			int loffset;
558 
559 			brelse(oepos.bh);
560 			oepos = epos;
561 
562 			/* Steal a block from the extent being free'd */
563 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
564 			eloc.logicalBlockNum ++;
565 			elen -= sb->s_blocksize;
566 
567 			if (!(epos.bh = udf_tread(sb,
568 				udf_get_lb_pblock(sb, epos.block, 0))))
569 			{
570 				brelse(oepos.bh);
571 				goto error_return;
572 			}
573 			aed = (struct allocExtDesc *)(epos.bh->b_data);
574 			aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum);
575 			if (epos.offset + adsize > sb->s_blocksize)
576 			{
577 				loffset = epos.offset;
578 				aed->lengthAllocDescs = cpu_to_le32(adsize);
579 				sptr = UDF_I_DATA(inode) + epos.offset -
580 					udf_file_entry_alloc_offset(inode) +
581 					UDF_I_LENEATTR(inode) - adsize;
582 				dptr = epos.bh->b_data + sizeof(struct allocExtDesc);
583 				memcpy(dptr, sptr, adsize);
584 				epos.offset = sizeof(struct allocExtDesc) + adsize;
585 			}
586 			else
587 			{
588 				loffset = epos.offset + adsize;
589 				aed->lengthAllocDescs = cpu_to_le32(0);
590 				sptr = oepos.bh->b_data + epos.offset;
591 				epos.offset = sizeof(struct allocExtDesc);
592 
593 				if (oepos.bh)
594 				{
595 					aed = (struct allocExtDesc *)oepos.bh->b_data;
596 					aed->lengthAllocDescs =
597 						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
598 				}
599 				else
600 				{
601 					UDF_I_LENALLOC(table) += adsize;
602 					mark_inode_dirty(table);
603 				}
604 			}
605 			if (UDF_SB_UDFREV(sb) >= 0x0200)
606 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1,
607 					epos.block.logicalBlockNum, sizeof(tag));
608 			else
609 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1,
610 					epos.block.logicalBlockNum, sizeof(tag));
611 			switch (UDF_I_ALLOCTYPE(table))
612 			{
613 				case ICBTAG_FLAG_AD_SHORT:
614 				{
615 					sad = (short_ad *)sptr;
616 					sad->extLength = cpu_to_le32(
617 						EXT_NEXT_EXTENT_ALLOCDECS |
618 						sb->s_blocksize);
619 					sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum);
620 					break;
621 				}
622 				case ICBTAG_FLAG_AD_LONG:
623 				{
624 					lad = (long_ad *)sptr;
625 					lad->extLength = cpu_to_le32(
626 						EXT_NEXT_EXTENT_ALLOCDECS |
627 						sb->s_blocksize);
628 					lad->extLocation = cpu_to_lelb(epos.block);
629 					break;
630 				}
631 			}
632 			if (oepos.bh)
633 			{
634 				udf_update_tag(oepos.bh->b_data, loffset);
635 				mark_buffer_dirty(oepos.bh);
636 			}
637 			else
638 				mark_inode_dirty(table);
639 		}
640 
641 		if (elen) /* It's possible that stealing the block emptied the extent */
642 		{
643 			udf_write_aext(table, &epos, eloc, elen, 1);
644 
645 			if (!epos.bh)
646 			{
647 				UDF_I_LENALLOC(table) += adsize;
648 				mark_inode_dirty(table);
649 			}
650 			else
651 			{
652 				aed = (struct allocExtDesc *)epos.bh->b_data;
653 				aed->lengthAllocDescs =
654 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
655 				udf_update_tag(epos.bh->b_data, epos.offset);
656 				mark_buffer_dirty(epos.bh);
657 			}
658 		}
659 	}
660 
661 	brelse(epos.bh);
662 	brelse(oepos.bh);
663 
664 error_return:
665 	sb->s_dirt = 1;
666 	mutex_unlock(&sbi->s_alloc_mutex);
667 	return;
668 }
669 
670 static int udf_table_prealloc_blocks(struct super_block * sb,
671 	struct inode * inode,
672 	struct inode *table, uint16_t partition, uint32_t first_block,
673 	uint32_t block_count)
674 {
675 	struct udf_sb_info *sbi = UDF_SB(sb);
676 	int alloc_count = 0;
677 	uint32_t elen, adsize;
678 	kernel_lb_addr eloc;
679 	struct extent_position epos;
680 	int8_t etype = -1;
681 
682 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
683 		return 0;
684 
685 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
686 		adsize = sizeof(short_ad);
687 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
688 		adsize = sizeof(long_ad);
689 	else
690 		return 0;
691 
692 	mutex_lock(&sbi->s_alloc_mutex);
693 	epos.offset = sizeof(struct unallocSpaceEntry);
694 	epos.block = UDF_I_LOCATION(table);
695 	epos.bh = NULL;
696 	eloc.logicalBlockNum = 0xFFFFFFFF;
697 
698 	while (first_block != eloc.logicalBlockNum && (etype =
699 		udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
700 	{
701 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
702 			eloc.logicalBlockNum, elen, first_block);
703 		; /* empty loop body */
704 	}
705 
706 	if (first_block == eloc.logicalBlockNum)
707 	{
708 		epos.offset -= adsize;
709 
710 		alloc_count = (elen >> sb->s_blocksize_bits);
711 		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
712 			alloc_count = 0;
713 		else if (alloc_count > block_count)
714 		{
715 			alloc_count = block_count;
716 			eloc.logicalBlockNum += alloc_count;
717 			elen -= (alloc_count << sb->s_blocksize_bits);
718 			udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1);
719 		}
720 		else
721 			udf_delete_aext(table, epos, eloc, (etype << 30) | elen);
722 	}
723 	else
724 		alloc_count = 0;
725 
726 	brelse(epos.bh);
727 
728 	if (alloc_count && UDF_SB_LVIDBH(sb))
729 	{
730 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
731 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
732 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
733 		sb->s_dirt = 1;
734 	}
735 	mutex_unlock(&sbi->s_alloc_mutex);
736 	return alloc_count;
737 }
738 
739 static int udf_table_new_block(struct super_block * sb,
740 	struct inode * inode,
741 	struct inode *table, uint16_t partition, uint32_t goal, int *err)
742 {
743 	struct udf_sb_info *sbi = UDF_SB(sb);
744 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
745 	uint32_t newblock = 0, adsize;
746 	uint32_t elen, goal_elen = 0;
747 	kernel_lb_addr eloc, goal_eloc;
748 	struct extent_position epos, goal_epos;
749 	int8_t etype;
750 
751 	*err = -ENOSPC;
752 
753 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
754 		adsize = sizeof(short_ad);
755 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
756 		adsize = sizeof(long_ad);
757 	else
758 		return newblock;
759 
760 	mutex_lock(&sbi->s_alloc_mutex);
761 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
762 		goal = 0;
763 
764 	/* We search for the closest matching block to goal. If we find a exact hit,
765 	   we stop. Otherwise we keep going till we run out of extents.
766 	   We store the buffer_head, bloc, and extoffset of the current closest
767 	   match and use that when we are done.
768 	*/
769 	epos.offset = sizeof(struct unallocSpaceEntry);
770 	epos.block = UDF_I_LOCATION(table);
771 	epos.bh = goal_epos.bh = NULL;
772 
773 	while (spread && (etype =
774 		udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
775 	{
776 		if (goal >= eloc.logicalBlockNum)
777 		{
778 			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
779 				nspread = 0;
780 			else
781 				nspread = goal - eloc.logicalBlockNum -
782 					(elen >> sb->s_blocksize_bits);
783 		}
784 		else
785 			nspread = eloc.logicalBlockNum - goal;
786 
787 		if (nspread < spread)
788 		{
789 			spread = nspread;
790 			if (goal_epos.bh != epos.bh)
791 			{
792 				brelse(goal_epos.bh);
793 				goal_epos.bh = epos.bh;
794 				get_bh(goal_epos.bh);
795 			}
796 			goal_epos.block = epos.block;
797 			goal_epos.offset = epos.offset - adsize;
798 			goal_eloc = eloc;
799 			goal_elen = (etype << 30) | elen;
800 		}
801 	}
802 
803 	brelse(epos.bh);
804 
805 	if (spread == 0xFFFFFFFF)
806 	{
807 		brelse(goal_epos.bh);
808 		mutex_unlock(&sbi->s_alloc_mutex);
809 		return 0;
810 	}
811 
812 	/* Only allocate blocks from the beginning of the extent.
813 	   That way, we only delete (empty) extents, never have to insert an
814 	   extent because of splitting */
815 	/* This works, but very poorly.... */
816 
817 	newblock = goal_eloc.logicalBlockNum;
818 	goal_eloc.logicalBlockNum ++;
819 	goal_elen -= sb->s_blocksize;
820 
821 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
822 	{
823 		brelse(goal_epos.bh);
824 		mutex_unlock(&sbi->s_alloc_mutex);
825 		*err = -EDQUOT;
826 		return 0;
827 	}
828 
829 	if (goal_elen)
830 		udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
831 	else
832 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
833 	brelse(goal_epos.bh);
834 
835 	if (UDF_SB_LVIDBH(sb))
836 	{
837 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
838 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
839 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
840 	}
841 
842 	sb->s_dirt = 1;
843 	mutex_unlock(&sbi->s_alloc_mutex);
844 	*err = 0;
845 	return newblock;
846 }
847 
848 inline void udf_free_blocks(struct super_block * sb,
849 	struct inode * inode,
850 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
851 {
852 	uint16_t partition = bloc.partitionReferenceNum;
853 
854 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
855 	{
856 		return udf_bitmap_free_blocks(sb, inode,
857 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
858 			bloc, offset, count);
859 	}
860 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
861 	{
862 		return udf_table_free_blocks(sb, inode,
863 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
864 			bloc, offset, count);
865 	}
866 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
867 	{
868 		return udf_bitmap_free_blocks(sb, inode,
869 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
870 			bloc, offset, count);
871 	}
872 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
873 	{
874 		return udf_table_free_blocks(sb, inode,
875 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
876 			bloc, offset, count);
877 	}
878 	else
879 		return;
880 }
881 
882 inline int udf_prealloc_blocks(struct super_block * sb,
883 	struct inode * inode,
884 	uint16_t partition, uint32_t first_block, uint32_t block_count)
885 {
886 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
887 	{
888 		return udf_bitmap_prealloc_blocks(sb, inode,
889 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
890 			partition, first_block, block_count);
891 	}
892 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
893 	{
894 		return udf_table_prealloc_blocks(sb, inode,
895 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
896 			partition, first_block, block_count);
897 	}
898 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
899 	{
900 		return udf_bitmap_prealloc_blocks(sb, inode,
901 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
902 			partition, first_block, block_count);
903 	}
904 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
905 	{
906 		return udf_table_prealloc_blocks(sb, inode,
907 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
908 			partition, first_block, block_count);
909 	}
910 	else
911 		return 0;
912 }
913 
914 inline int udf_new_block(struct super_block * sb,
915 	struct inode * inode,
916 	uint16_t partition, uint32_t goal, int *err)
917 {
918 	int ret;
919 
920 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
921 	{
922 		ret = udf_bitmap_new_block(sb, inode,
923 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
924 			partition, goal, err);
925 		return ret;
926 	}
927 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
928 	{
929 		return udf_table_new_block(sb, inode,
930 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
931 			partition, goal, err);
932 	}
933 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
934 	{
935 		return udf_bitmap_new_block(sb, inode,
936 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
937 			partition, goal, err);
938 	}
939 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
940 	{
941 		return udf_table_new_block(sb, inode,
942 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
943 			partition, goal, err);
944 	}
945 	else
946 	{
947 		*err = -EIO;
948 		return 0;
949 	}
950 }
951