xref: /openbmc/linux/fs/udf/balloc.c (revision a06c488d)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/bitops.h>
25 
26 #include "udf_i.h"
27 #include "udf_sb.h"
28 
29 #define udf_clear_bit	__test_and_clear_bit_le
30 #define udf_set_bit	__test_and_set_bit_le
31 #define udf_test_bit	test_bit_le
32 #define udf_find_next_one_bit	find_next_bit_le
33 
34 static int read_block_bitmap(struct super_block *sb,
35 			     struct udf_bitmap *bitmap, unsigned int block,
36 			     unsigned long bitmap_nr)
37 {
38 	struct buffer_head *bh = NULL;
39 	int retval = 0;
40 	struct kernel_lb_addr loc;
41 
42 	loc.logicalBlockNum = bitmap->s_extPosition;
43 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
44 
45 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
46 	if (!bh)
47 		retval = -EIO;
48 
49 	bitmap->s_block_bitmap[bitmap_nr] = bh;
50 	return retval;
51 }
52 
53 static int __load_block_bitmap(struct super_block *sb,
54 			       struct udf_bitmap *bitmap,
55 			       unsigned int block_group)
56 {
57 	int retval = 0;
58 	int nr_groups = bitmap->s_nr_groups;
59 
60 	if (block_group >= nr_groups) {
61 		udf_debug("block_group (%d) > nr_groups (%d)\n",
62 			  block_group, nr_groups);
63 	}
64 
65 	if (bitmap->s_block_bitmap[block_group])
66 		return block_group;
67 
68 	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
69 	if (retval < 0)
70 		return retval;
71 
72 	return block_group;
73 }
74 
75 static inline int load_block_bitmap(struct super_block *sb,
76 				    struct udf_bitmap *bitmap,
77 				    unsigned int block_group)
78 {
79 	int slot;
80 
81 	slot = __load_block_bitmap(sb, bitmap, block_group);
82 
83 	if (slot < 0)
84 		return slot;
85 
86 	if (!bitmap->s_block_bitmap[slot])
87 		return -EIO;
88 
89 	return slot;
90 }
91 
92 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
93 {
94 	struct udf_sb_info *sbi = UDF_SB(sb);
95 	struct logicalVolIntegrityDesc *lvid;
96 
97 	if (!sbi->s_lvid_bh)
98 		return;
99 
100 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102 	udf_updated_lvid(sb);
103 }
104 
105 static void udf_bitmap_free_blocks(struct super_block *sb,
106 				   struct udf_bitmap *bitmap,
107 				   struct kernel_lb_addr *bloc,
108 				   uint32_t offset,
109 				   uint32_t count)
110 {
111 	struct udf_sb_info *sbi = UDF_SB(sb);
112 	struct buffer_head *bh = NULL;
113 	struct udf_part_map *partmap;
114 	unsigned long block;
115 	unsigned long block_group;
116 	unsigned long bit;
117 	unsigned long i;
118 	int bitmap_nr;
119 	unsigned long overflow;
120 
121 	mutex_lock(&sbi->s_alloc_mutex);
122 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123 	if (bloc->logicalBlockNum + count < count ||
124 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125 		udf_debug("%d < %d || %d + %d > %d\n",
126 			  bloc->logicalBlockNum, 0,
127 			  bloc->logicalBlockNum, count,
128 			  partmap->s_partition_len);
129 		goto error_return;
130 	}
131 
132 	block = bloc->logicalBlockNum + offset +
133 		(sizeof(struct spaceBitmapDesc) << 3);
134 
135 	do {
136 		overflow = 0;
137 		block_group = block >> (sb->s_blocksize_bits + 3);
138 		bit = block % (sb->s_blocksize << 3);
139 
140 		/*
141 		* Check to see if we are freeing blocks across a group boundary.
142 		*/
143 		if (bit + count > (sb->s_blocksize << 3)) {
144 			overflow = bit + count - (sb->s_blocksize << 3);
145 			count -= overflow;
146 		}
147 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148 		if (bitmap_nr < 0)
149 			goto error_return;
150 
151 		bh = bitmap->s_block_bitmap[bitmap_nr];
152 		for (i = 0; i < count; i++) {
153 			if (udf_set_bit(bit + i, bh->b_data)) {
154 				udf_debug("bit %ld already set\n", bit + i);
155 				udf_debug("byte=%2x\n",
156 					  ((char *)bh->b_data)[(bit + i) >> 3]);
157 			}
158 		}
159 		udf_add_free_space(sb, sbi->s_partition, count);
160 		mark_buffer_dirty(bh);
161 		if (overflow) {
162 			block += count;
163 			count = overflow;
164 		}
165 	} while (overflow);
166 
167 error_return:
168 	mutex_unlock(&sbi->s_alloc_mutex);
169 }
170 
171 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
172 				      struct udf_bitmap *bitmap,
173 				      uint16_t partition, uint32_t first_block,
174 				      uint32_t block_count)
175 {
176 	struct udf_sb_info *sbi = UDF_SB(sb);
177 	int alloc_count = 0;
178 	int bit, block, block_group, group_start;
179 	int nr_groups, bitmap_nr;
180 	struct buffer_head *bh;
181 	__u32 part_len;
182 
183 	mutex_lock(&sbi->s_alloc_mutex);
184 	part_len = sbi->s_partmaps[partition].s_partition_len;
185 	if (first_block >= part_len)
186 		goto out;
187 
188 	if (first_block + block_count > part_len)
189 		block_count = part_len - first_block;
190 
191 	do {
192 		nr_groups = udf_compute_nr_groups(sb, partition);
193 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
194 		block_group = block >> (sb->s_blocksize_bits + 3);
195 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
196 
197 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198 		if (bitmap_nr < 0)
199 			goto out;
200 		bh = bitmap->s_block_bitmap[bitmap_nr];
201 
202 		bit = block % (sb->s_blocksize << 3);
203 
204 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
205 			if (!udf_clear_bit(bit, bh->b_data))
206 				goto out;
207 			block_count--;
208 			alloc_count++;
209 			bit++;
210 			block++;
211 		}
212 		mark_buffer_dirty(bh);
213 	} while (block_count > 0);
214 
215 out:
216 	udf_add_free_space(sb, partition, -alloc_count);
217 	mutex_unlock(&sbi->s_alloc_mutex);
218 	return alloc_count;
219 }
220 
221 static int udf_bitmap_new_block(struct super_block *sb,
222 				struct udf_bitmap *bitmap, uint16_t partition,
223 				uint32_t goal, int *err)
224 {
225 	struct udf_sb_info *sbi = UDF_SB(sb);
226 	int newbit, bit = 0, block, block_group, group_start;
227 	int end_goal, nr_groups, bitmap_nr, i;
228 	struct buffer_head *bh = NULL;
229 	char *ptr;
230 	int newblock = 0;
231 
232 	*err = -ENOSPC;
233 	mutex_lock(&sbi->s_alloc_mutex);
234 
235 repeat:
236 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
237 		goal = 0;
238 
239 	nr_groups = bitmap->s_nr_groups;
240 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241 	block_group = block >> (sb->s_blocksize_bits + 3);
242 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243 
244 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245 	if (bitmap_nr < 0)
246 		goto error_return;
247 	bh = bitmap->s_block_bitmap[bitmap_nr];
248 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249 		      sb->s_blocksize - group_start);
250 
251 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252 		bit = block % (sb->s_blocksize << 3);
253 		if (udf_test_bit(bit, bh->b_data))
254 			goto got_block;
255 
256 		end_goal = (bit + 63) & ~63;
257 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258 		if (bit < end_goal)
259 			goto got_block;
260 
261 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262 			      sb->s_blocksize - ((bit + 7) >> 3));
263 		newbit = (ptr - ((char *)bh->b_data)) << 3;
264 		if (newbit < sb->s_blocksize << 3) {
265 			bit = newbit;
266 			goto search_back;
267 		}
268 
269 		newbit = udf_find_next_one_bit(bh->b_data,
270 					       sb->s_blocksize << 3, bit);
271 		if (newbit < sb->s_blocksize << 3) {
272 			bit = newbit;
273 			goto got_block;
274 		}
275 	}
276 
277 	for (i = 0; i < (nr_groups * 2); i++) {
278 		block_group++;
279 		if (block_group >= nr_groups)
280 			block_group = 0;
281 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282 
283 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284 		if (bitmap_nr < 0)
285 			goto error_return;
286 		bh = bitmap->s_block_bitmap[bitmap_nr];
287 		if (i < nr_groups) {
288 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289 				      sb->s_blocksize - group_start);
290 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291 				bit = (ptr - ((char *)bh->b_data)) << 3;
292 				break;
293 			}
294 		} else {
295 			bit = udf_find_next_one_bit(bh->b_data,
296 						    sb->s_blocksize << 3,
297 						    group_start << 3);
298 			if (bit < sb->s_blocksize << 3)
299 				break;
300 		}
301 	}
302 	if (i >= (nr_groups * 2)) {
303 		mutex_unlock(&sbi->s_alloc_mutex);
304 		return newblock;
305 	}
306 	if (bit < sb->s_blocksize << 3)
307 		goto search_back;
308 	else
309 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310 					    group_start << 3);
311 	if (bit >= sb->s_blocksize << 3) {
312 		mutex_unlock(&sbi->s_alloc_mutex);
313 		return 0;
314 	}
315 
316 search_back:
317 	i = 0;
318 	while (i < 7 && bit > (group_start << 3) &&
319 	       udf_test_bit(bit - 1, bh->b_data)) {
320 		++i;
321 		--bit;
322 	}
323 
324 got_block:
325 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326 		(sizeof(struct spaceBitmapDesc) << 3);
327 
328 	if (!udf_clear_bit(bit, bh->b_data)) {
329 		udf_debug("bit already cleared for block %d\n", bit);
330 		goto repeat;
331 	}
332 
333 	mark_buffer_dirty(bh);
334 
335 	udf_add_free_space(sb, partition, -1);
336 	mutex_unlock(&sbi->s_alloc_mutex);
337 	*err = 0;
338 	return newblock;
339 
340 error_return:
341 	*err = -EIO;
342 	mutex_unlock(&sbi->s_alloc_mutex);
343 	return 0;
344 }
345 
346 static void udf_table_free_blocks(struct super_block *sb,
347 				  struct inode *table,
348 				  struct kernel_lb_addr *bloc,
349 				  uint32_t offset,
350 				  uint32_t count)
351 {
352 	struct udf_sb_info *sbi = UDF_SB(sb);
353 	struct udf_part_map *partmap;
354 	uint32_t start, end;
355 	uint32_t elen;
356 	struct kernel_lb_addr eloc;
357 	struct extent_position oepos, epos;
358 	int8_t etype;
359 	struct udf_inode_info *iinfo;
360 
361 	mutex_lock(&sbi->s_alloc_mutex);
362 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
363 	if (bloc->logicalBlockNum + count < count ||
364 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
365 		udf_debug("%d < %d || %d + %d > %d\n",
366 			  bloc->logicalBlockNum, 0,
367 			  bloc->logicalBlockNum, count,
368 			  partmap->s_partition_len);
369 		goto error_return;
370 	}
371 
372 	iinfo = UDF_I(table);
373 	udf_add_free_space(sb, sbi->s_partition, count);
374 
375 	start = bloc->logicalBlockNum + offset;
376 	end = bloc->logicalBlockNum + offset + count - 1;
377 
378 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
379 	elen = 0;
380 	epos.block = oepos.block = iinfo->i_location;
381 	epos.bh = oepos.bh = NULL;
382 
383 	while (count &&
384 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
385 		if (((eloc.logicalBlockNum +
386 			(elen >> sb->s_blocksize_bits)) == start)) {
387 			if ((0x3FFFFFFF - elen) <
388 					(count << sb->s_blocksize_bits)) {
389 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
390 							sb->s_blocksize_bits);
391 				count -= tmp;
392 				start += tmp;
393 				elen = (etype << 30) |
394 					(0x40000000 - sb->s_blocksize);
395 			} else {
396 				elen = (etype << 30) |
397 					(elen +
398 					(count << sb->s_blocksize_bits));
399 				start += count;
400 				count = 0;
401 			}
402 			udf_write_aext(table, &oepos, &eloc, elen, 1);
403 		} else if (eloc.logicalBlockNum == (end + 1)) {
404 			if ((0x3FFFFFFF - elen) <
405 					(count << sb->s_blocksize_bits)) {
406 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
407 						sb->s_blocksize_bits);
408 				count -= tmp;
409 				end -= tmp;
410 				eloc.logicalBlockNum -= tmp;
411 				elen = (etype << 30) |
412 					(0x40000000 - sb->s_blocksize);
413 			} else {
414 				eloc.logicalBlockNum = start;
415 				elen = (etype << 30) |
416 					(elen +
417 					(count << sb->s_blocksize_bits));
418 				end -= count;
419 				count = 0;
420 			}
421 			udf_write_aext(table, &oepos, &eloc, elen, 1);
422 		}
423 
424 		if (epos.bh != oepos.bh) {
425 			oepos.block = epos.block;
426 			brelse(oepos.bh);
427 			get_bh(epos.bh);
428 			oepos.bh = epos.bh;
429 			oepos.offset = 0;
430 		} else {
431 			oepos.offset = epos.offset;
432 		}
433 	}
434 
435 	if (count) {
436 		/*
437 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
438 		 * allocate a new block, and since we hold the super block
439 		 * lock already very bad things would happen :)
440 		 *
441 		 * We copy the behavior of udf_add_aext, but instead of
442 		 * trying to allocate a new block close to the existing one,
443 		 * we just steal a block from the extent we are trying to add.
444 		 *
445 		 * It would be nice if the blocks were close together, but it
446 		 * isn't required.
447 		 */
448 
449 		int adsize;
450 
451 		eloc.logicalBlockNum = start;
452 		elen = EXT_RECORDED_ALLOCATED |
453 			(count << sb->s_blocksize_bits);
454 
455 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
456 			adsize = sizeof(struct short_ad);
457 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
458 			adsize = sizeof(struct long_ad);
459 		else {
460 			brelse(oepos.bh);
461 			brelse(epos.bh);
462 			goto error_return;
463 		}
464 
465 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
466 			/* Steal a block from the extent being free'd */
467 			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
468 						&epos);
469 
470 			eloc.logicalBlockNum++;
471 			elen -= sb->s_blocksize;
472 		}
473 
474 		/* It's possible that stealing the block emptied the extent */
475 		if (elen)
476 			__udf_add_aext(table, &epos, &eloc, elen, 1);
477 	}
478 
479 	brelse(epos.bh);
480 	brelse(oepos.bh);
481 
482 error_return:
483 	mutex_unlock(&sbi->s_alloc_mutex);
484 	return;
485 }
486 
487 static int udf_table_prealloc_blocks(struct super_block *sb,
488 				     struct inode *table, uint16_t partition,
489 				     uint32_t first_block, uint32_t block_count)
490 {
491 	struct udf_sb_info *sbi = UDF_SB(sb);
492 	int alloc_count = 0;
493 	uint32_t elen, adsize;
494 	struct kernel_lb_addr eloc;
495 	struct extent_position epos;
496 	int8_t etype = -1;
497 	struct udf_inode_info *iinfo;
498 
499 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
500 		return 0;
501 
502 	iinfo = UDF_I(table);
503 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
504 		adsize = sizeof(struct short_ad);
505 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
506 		adsize = sizeof(struct long_ad);
507 	else
508 		return 0;
509 
510 	mutex_lock(&sbi->s_alloc_mutex);
511 	epos.offset = sizeof(struct unallocSpaceEntry);
512 	epos.block = iinfo->i_location;
513 	epos.bh = NULL;
514 	eloc.logicalBlockNum = 0xFFFFFFFF;
515 
516 	while (first_block != eloc.logicalBlockNum &&
517 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
518 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
519 			  eloc.logicalBlockNum, elen, first_block);
520 		; /* empty loop body */
521 	}
522 
523 	if (first_block == eloc.logicalBlockNum) {
524 		epos.offset -= adsize;
525 
526 		alloc_count = (elen >> sb->s_blocksize_bits);
527 		if (alloc_count > block_count) {
528 			alloc_count = block_count;
529 			eloc.logicalBlockNum += alloc_count;
530 			elen -= (alloc_count << sb->s_blocksize_bits);
531 			udf_write_aext(table, &epos, &eloc,
532 					(etype << 30) | elen, 1);
533 		} else
534 			udf_delete_aext(table, epos, eloc,
535 					(etype << 30) | elen);
536 	} else {
537 		alloc_count = 0;
538 	}
539 
540 	brelse(epos.bh);
541 
542 	if (alloc_count)
543 		udf_add_free_space(sb, partition, -alloc_count);
544 	mutex_unlock(&sbi->s_alloc_mutex);
545 	return alloc_count;
546 }
547 
548 static int udf_table_new_block(struct super_block *sb,
549 			       struct inode *table, uint16_t partition,
550 			       uint32_t goal, int *err)
551 {
552 	struct udf_sb_info *sbi = UDF_SB(sb);
553 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
554 	uint32_t newblock = 0, adsize;
555 	uint32_t elen, goal_elen = 0;
556 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
557 	struct extent_position epos, goal_epos;
558 	int8_t etype;
559 	struct udf_inode_info *iinfo = UDF_I(table);
560 
561 	*err = -ENOSPC;
562 
563 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
564 		adsize = sizeof(struct short_ad);
565 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
566 		adsize = sizeof(struct long_ad);
567 	else
568 		return newblock;
569 
570 	mutex_lock(&sbi->s_alloc_mutex);
571 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
572 		goal = 0;
573 
574 	/* We search for the closest matching block to goal. If we find
575 	   a exact hit, we stop. Otherwise we keep going till we run out
576 	   of extents. We store the buffer_head, bloc, and extoffset
577 	   of the current closest match and use that when we are done.
578 	 */
579 	epos.offset = sizeof(struct unallocSpaceEntry);
580 	epos.block = iinfo->i_location;
581 	epos.bh = goal_epos.bh = NULL;
582 
583 	while (spread &&
584 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
585 		if (goal >= eloc.logicalBlockNum) {
586 			if (goal < eloc.logicalBlockNum +
587 					(elen >> sb->s_blocksize_bits))
588 				nspread = 0;
589 			else
590 				nspread = goal - eloc.logicalBlockNum -
591 					(elen >> sb->s_blocksize_bits);
592 		} else {
593 			nspread = eloc.logicalBlockNum - goal;
594 		}
595 
596 		if (nspread < spread) {
597 			spread = nspread;
598 			if (goal_epos.bh != epos.bh) {
599 				brelse(goal_epos.bh);
600 				goal_epos.bh = epos.bh;
601 				get_bh(goal_epos.bh);
602 			}
603 			goal_epos.block = epos.block;
604 			goal_epos.offset = epos.offset - adsize;
605 			goal_eloc = eloc;
606 			goal_elen = (etype << 30) | elen;
607 		}
608 	}
609 
610 	brelse(epos.bh);
611 
612 	if (spread == 0xFFFFFFFF) {
613 		brelse(goal_epos.bh);
614 		mutex_unlock(&sbi->s_alloc_mutex);
615 		return 0;
616 	}
617 
618 	/* Only allocate blocks from the beginning of the extent.
619 	   That way, we only delete (empty) extents, never have to insert an
620 	   extent because of splitting */
621 	/* This works, but very poorly.... */
622 
623 	newblock = goal_eloc.logicalBlockNum;
624 	goal_eloc.logicalBlockNum++;
625 	goal_elen -= sb->s_blocksize;
626 
627 	if (goal_elen)
628 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
629 	else
630 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
631 	brelse(goal_epos.bh);
632 
633 	udf_add_free_space(sb, partition, -1);
634 
635 	mutex_unlock(&sbi->s_alloc_mutex);
636 	*err = 0;
637 	return newblock;
638 }
639 
640 void udf_free_blocks(struct super_block *sb, struct inode *inode,
641 		     struct kernel_lb_addr *bloc, uint32_t offset,
642 		     uint32_t count)
643 {
644 	uint16_t partition = bloc->partitionReferenceNum;
645 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
646 
647 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
648 		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
649 				       bloc, offset, count);
650 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
651 		udf_table_free_blocks(sb, map->s_uspace.s_table,
652 				      bloc, offset, count);
653 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
654 		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
655 				       bloc, offset, count);
656 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
657 		udf_table_free_blocks(sb, map->s_fspace.s_table,
658 				      bloc, offset, count);
659 	}
660 
661 	if (inode) {
662 		inode_sub_bytes(inode,
663 				((sector_t)count) << sb->s_blocksize_bits);
664 	}
665 }
666 
667 inline int udf_prealloc_blocks(struct super_block *sb,
668 			       struct inode *inode,
669 			       uint16_t partition, uint32_t first_block,
670 			       uint32_t block_count)
671 {
672 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
673 	int allocated;
674 
675 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
676 		allocated = udf_bitmap_prealloc_blocks(sb,
677 						       map->s_uspace.s_bitmap,
678 						       partition, first_block,
679 						       block_count);
680 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
681 		allocated = udf_table_prealloc_blocks(sb,
682 						      map->s_uspace.s_table,
683 						      partition, first_block,
684 						      block_count);
685 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
686 		allocated = udf_bitmap_prealloc_blocks(sb,
687 						       map->s_fspace.s_bitmap,
688 						       partition, first_block,
689 						       block_count);
690 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
691 		allocated = udf_table_prealloc_blocks(sb,
692 						      map->s_fspace.s_table,
693 						      partition, first_block,
694 						      block_count);
695 	else
696 		return 0;
697 
698 	if (inode && allocated > 0)
699 		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
700 	return allocated;
701 }
702 
703 inline int udf_new_block(struct super_block *sb,
704 			 struct inode *inode,
705 			 uint16_t partition, uint32_t goal, int *err)
706 {
707 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
708 	int block;
709 
710 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
711 		block = udf_bitmap_new_block(sb,
712 					     map->s_uspace.s_bitmap,
713 					     partition, goal, err);
714 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
715 		block = udf_table_new_block(sb,
716 					    map->s_uspace.s_table,
717 					    partition, goal, err);
718 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
719 		block = udf_bitmap_new_block(sb,
720 					     map->s_fspace.s_bitmap,
721 					     partition, goal, err);
722 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
723 		block = udf_table_new_block(sb,
724 					    map->s_fspace.s_table,
725 					    partition, goal, err);
726 	else {
727 		*err = -EIO;
728 		return 0;
729 	}
730 	if (inode && block)
731 		inode_add_bytes(inode, sb->s_blocksize);
732 	return block;
733 }
734