xref: /openbmc/linux/fs/udf/balloc.c (revision 4bedea94)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * CONTACTS
8  *	E-mail regarding any portion of the Linux UDF file system should be
9  *	directed to the development team mailing list (run by majordomo):
10  *		linux_udf@hpesjro.fc.hp.com
11  *
12  * COPYRIGHT
13  *	This file is distributed under the terms of the GNU General Public
14  *	License (GPL). Copies of the GPL can be obtained from:
15  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
16  *	Each contributing author retains all rights to their own work.
17  *
18  *  (C) 1999-2001 Ben Fennema
19  *  (C) 1999 Stelias Computing Inc
20  *
21  * HISTORY
22  *
23  *  02/24/99 blf  Created.
24  *
25  */
26 
27 #include "udfdecl.h"
28 
29 #include <linux/quotaops.h>
30 #include <linux/buffer_head.h>
31 #include <linux/bitops.h>
32 
33 #include "udf_i.h"
34 #include "udf_sb.h"
35 
36 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
37 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
38 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
39 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
40 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
41 
42 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
43 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
44 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
45 #define uintBPL_t uint(BITS_PER_LONG)
46 #define uint(x) xuint(x)
47 #define xuint(x) __le ## x
48 
49 extern inline int find_next_one_bit (void * addr, int size, int offset)
50 {
51 	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
52 	int result = offset & ~(BITS_PER_LONG-1);
53 	unsigned long tmp;
54 
55 	if (offset >= size)
56 		return size;
57 	size -= result;
58 	offset &= (BITS_PER_LONG-1);
59 	if (offset)
60 	{
61 		tmp = leBPL_to_cpup(p++);
62 		tmp &= ~0UL << offset;
63 		if (size < BITS_PER_LONG)
64 			goto found_first;
65 		if (tmp)
66 			goto found_middle;
67 		size -= BITS_PER_LONG;
68 		result += BITS_PER_LONG;
69 	}
70 	while (size & ~(BITS_PER_LONG-1))
71 	{
72 		if ((tmp = leBPL_to_cpup(p++)))
73 			goto found_middle;
74 		result += BITS_PER_LONG;
75 		size -= BITS_PER_LONG;
76 	}
77 	if (!size)
78 		return result;
79 	tmp = leBPL_to_cpup(p);
80 found_first:
81 	tmp &= ~0UL >> (BITS_PER_LONG-size);
82 found_middle:
83 	return result + ffz(~tmp);
84 }
85 
86 #define find_first_one_bit(addr, size)\
87 	find_next_one_bit((addr), (size), 0)
88 
89 static int read_block_bitmap(struct super_block * sb,
90 	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
91 {
92 	struct buffer_head *bh = NULL;
93 	int retval = 0;
94 	kernel_lb_addr loc;
95 
96 	loc.logicalBlockNum = bitmap->s_extPosition;
97 	loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
98 
99 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
100 	if (!bh)
101 	{
102 		retval = -EIO;
103 	}
104 	bitmap->s_block_bitmap[bitmap_nr] = bh;
105 	return retval;
106 }
107 
108 static int __load_block_bitmap(struct super_block * sb,
109 	struct udf_bitmap *bitmap, unsigned int block_group)
110 {
111 	int retval = 0;
112 	int nr_groups = bitmap->s_nr_groups;
113 
114 	if (block_group >= nr_groups)
115 	{
116 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
117 	}
118 
119 	if (bitmap->s_block_bitmap[block_group])
120 		return block_group;
121 	else
122 	{
123 		retval = read_block_bitmap(sb, bitmap, block_group, block_group);
124 		if (retval < 0)
125 			return retval;
126 		return block_group;
127 	}
128 }
129 
130 static inline int load_block_bitmap(struct super_block * sb,
131 	struct udf_bitmap *bitmap, unsigned int block_group)
132 {
133 	int slot;
134 
135 	slot = __load_block_bitmap(sb, bitmap, block_group);
136 
137 	if (slot < 0)
138 		return slot;
139 
140 	if (!bitmap->s_block_bitmap[slot])
141 		return -EIO;
142 
143 	return slot;
144 }
145 
146 static void udf_bitmap_free_blocks(struct super_block * sb,
147 	struct inode * inode,
148 	struct udf_bitmap *bitmap,
149 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
150 {
151 	struct udf_sb_info *sbi = UDF_SB(sb);
152 	struct buffer_head * bh = NULL;
153 	unsigned long block;
154 	unsigned long block_group;
155 	unsigned long bit;
156 	unsigned long i;
157 	int bitmap_nr;
158 	unsigned long overflow;
159 
160 	down(&sbi->s_alloc_sem);
161 	if (bloc.logicalBlockNum < 0 ||
162 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
163 	{
164 		udf_debug("%d < %d || %d + %d > %d\n",
165 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
166 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
167 		goto error_return;
168 	}
169 
170 	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
171 
172 do_more:
173 	overflow = 0;
174 	block_group = block >> (sb->s_blocksize_bits + 3);
175 	bit = block % (sb->s_blocksize << 3);
176 
177 	/*
178 	 * Check to see if we are freeing blocks across a group boundary.
179 	 */
180 	if (bit + count > (sb->s_blocksize << 3))
181 	{
182 		overflow = bit + count - (sb->s_blocksize << 3);
183 		count -= overflow;
184 	}
185 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
186 	if (bitmap_nr < 0)
187 		goto error_return;
188 
189 	bh = bitmap->s_block_bitmap[bitmap_nr];
190 	for (i=0; i < count; i++)
191 	{
192 		if (udf_set_bit(bit + i, bh->b_data))
193 		{
194 			udf_debug("bit %ld already set\n", bit + i);
195 			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
196 		}
197 		else
198 		{
199 			if (inode)
200 				DQUOT_FREE_BLOCK(inode, 1);
201 			if (UDF_SB_LVIDBH(sb))
202 			{
203 				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
204 					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
205 			}
206 		}
207 	}
208 	mark_buffer_dirty(bh);
209 	if (overflow)
210 	{
211 		block += count;
212 		count = overflow;
213 		goto do_more;
214 	}
215 error_return:
216 	sb->s_dirt = 1;
217 	if (UDF_SB_LVIDBH(sb))
218 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
219 	up(&sbi->s_alloc_sem);
220 	return;
221 }
222 
223 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
224 	struct inode * inode,
225 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
226 	uint32_t block_count)
227 {
228 	struct udf_sb_info *sbi = UDF_SB(sb);
229 	int alloc_count = 0;
230 	int bit, block, block_group, group_start;
231 	int nr_groups, bitmap_nr;
232 	struct buffer_head *bh;
233 
234 	down(&sbi->s_alloc_sem);
235 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
236 		goto out;
237 
238 	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
239 		block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
240 
241 repeat:
242 	nr_groups = (UDF_SB_PARTLEN(sb, partition) +
243 		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
244 	block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
245 	block_group = block >> (sb->s_blocksize_bits + 3);
246 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
247 
248 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
249 	if (bitmap_nr < 0)
250 		goto out;
251 	bh = bitmap->s_block_bitmap[bitmap_nr];
252 
253 	bit = block % (sb->s_blocksize << 3);
254 
255 	while (bit < (sb->s_blocksize << 3) && block_count > 0)
256 	{
257 		if (!udf_test_bit(bit, bh->b_data))
258 			goto out;
259 		else if (DQUOT_PREALLOC_BLOCK(inode, 1))
260 			goto out;
261 		else if (!udf_clear_bit(bit, bh->b_data))
262 		{
263 			udf_debug("bit already cleared for block %d\n", bit);
264 			DQUOT_FREE_BLOCK(inode, 1);
265 			goto out;
266 		}
267 		block_count --;
268 		alloc_count ++;
269 		bit ++;
270 		block ++;
271 	}
272 	mark_buffer_dirty(bh);
273 	if (block_count > 0)
274 		goto repeat;
275 out:
276 	if (UDF_SB_LVIDBH(sb))
277 	{
278 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
279 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
280 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
281 	}
282 	sb->s_dirt = 1;
283 	up(&sbi->s_alloc_sem);
284 	return alloc_count;
285 }
286 
287 static int udf_bitmap_new_block(struct super_block * sb,
288 	struct inode * inode,
289 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
290 {
291 	struct udf_sb_info *sbi = UDF_SB(sb);
292 	int newbit, bit=0, block, block_group, group_start;
293 	int end_goal, nr_groups, bitmap_nr, i;
294 	struct buffer_head *bh = NULL;
295 	char *ptr;
296 	int newblock = 0;
297 
298 	*err = -ENOSPC;
299 	down(&sbi->s_alloc_sem);
300 
301 repeat:
302 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
303 		goal = 0;
304 
305 	nr_groups = bitmap->s_nr_groups;
306 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
307 	block_group = block >> (sb->s_blocksize_bits + 3);
308 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
309 
310 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
311 	if (bitmap_nr < 0)
312 		goto error_return;
313 	bh = bitmap->s_block_bitmap[bitmap_nr];
314 	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
315 
316 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
317 	{
318 		bit = block % (sb->s_blocksize << 3);
319 
320 		if (udf_test_bit(bit, bh->b_data))
321 		{
322 			goto got_block;
323 		}
324 		end_goal = (bit + 63) & ~63;
325 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
326 		if (bit < end_goal)
327 			goto got_block;
328 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
329 		newbit = (ptr - ((char *)bh->b_data)) << 3;
330 		if (newbit < sb->s_blocksize << 3)
331 		{
332 			bit = newbit;
333 			goto search_back;
334 		}
335 		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
336 		if (newbit < sb->s_blocksize << 3)
337 		{
338 			bit = newbit;
339 			goto got_block;
340 		}
341 	}
342 
343 	for (i=0; i<(nr_groups*2); i++)
344 	{
345 		block_group ++;
346 		if (block_group >= nr_groups)
347 			block_group = 0;
348 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
349 
350 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
351 		if (bitmap_nr < 0)
352 			goto error_return;
353 		bh = bitmap->s_block_bitmap[bitmap_nr];
354 		if (i < nr_groups)
355 		{
356 			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
357 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
358 			{
359 				bit = (ptr - ((char *)bh->b_data)) << 3;
360 				break;
361 			}
362 		}
363 		else
364 		{
365 			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
366 			if (bit < sb->s_blocksize << 3)
367 				break;
368 		}
369 	}
370 	if (i >= (nr_groups*2))
371 	{
372 		up(&sbi->s_alloc_sem);
373 		return newblock;
374 	}
375 	if (bit < sb->s_blocksize << 3)
376 		goto search_back;
377 	else
378 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
379 	if (bit >= sb->s_blocksize << 3)
380 	{
381 		up(&sbi->s_alloc_sem);
382 		return 0;
383 	}
384 
385 search_back:
386 	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
387 
388 got_block:
389 
390 	/*
391 	 * Check quota for allocation of this block.
392 	 */
393 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
394 	{
395 		up(&sbi->s_alloc_sem);
396 		*err = -EDQUOT;
397 		return 0;
398 	}
399 
400 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
401 		(sizeof(struct spaceBitmapDesc) << 3);
402 
403 	if (!udf_clear_bit(bit, bh->b_data))
404 	{
405 		udf_debug("bit already cleared for block %d\n", bit);
406 		goto repeat;
407 	}
408 
409 	mark_buffer_dirty(bh);
410 
411 	if (UDF_SB_LVIDBH(sb))
412 	{
413 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
414 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
415 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
416 	}
417 	sb->s_dirt = 1;
418 	up(&sbi->s_alloc_sem);
419 	*err = 0;
420 	return newblock;
421 
422 error_return:
423 	*err = -EIO;
424 	up(&sbi->s_alloc_sem);
425 	return 0;
426 }
427 
428 static void udf_table_free_blocks(struct super_block * sb,
429 	struct inode * inode,
430 	struct inode * table,
431 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
432 {
433 	struct udf_sb_info *sbi = UDF_SB(sb);
434 	uint32_t start, end;
435 	uint32_t nextoffset, oextoffset, elen;
436 	kernel_lb_addr nbloc, obloc, eloc;
437 	struct buffer_head *obh, *nbh;
438 	int8_t etype;
439 	int i;
440 
441 	down(&sbi->s_alloc_sem);
442 	if (bloc.logicalBlockNum < 0 ||
443 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
444 	{
445 		udf_debug("%d < %d || %d + %d > %d\n",
446 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
447 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
448 		goto error_return;
449 	}
450 
451 	/* We do this up front - There are some error conditions that could occure,
452 	   but.. oh well */
453 	if (inode)
454 		DQUOT_FREE_BLOCK(inode, count);
455 	if (UDF_SB_LVIDBH(sb))
456 	{
457 		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
458 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
459 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
460 	}
461 
462 	start = bloc.logicalBlockNum + offset;
463 	end = bloc.logicalBlockNum + offset + count - 1;
464 
465 	oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
466 	elen = 0;
467 	obloc = nbloc = UDF_I_LOCATION(table);
468 
469 	obh = nbh = NULL;
470 
471 	while (count && (etype =
472 		udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
473 	{
474 		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
475 			start))
476 		{
477 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
478 			{
479 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
480 				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
481 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
482 			}
483 			else
484 			{
485 				elen = (etype << 30) |
486 					(elen + (count << sb->s_blocksize_bits));
487 				start += count;
488 				count = 0;
489 			}
490 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
491 		}
492 		else if (eloc.logicalBlockNum == (end + 1))
493 		{
494 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
495 			{
496 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
497 				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
498 				eloc.logicalBlockNum -=
499 					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
500 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
501 			}
502 			else
503 			{
504 				eloc.logicalBlockNum = start;
505 				elen = (etype << 30) |
506 					(elen + (count << sb->s_blocksize_bits));
507 				end -= count;
508 				count = 0;
509 			}
510 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
511 		}
512 
513 		if (nbh != obh)
514 		{
515 			i = -1;
516 			obloc = nbloc;
517 			udf_release_data(obh);
518 			atomic_inc(&nbh->b_count);
519 			obh = nbh;
520 			oextoffset = 0;
521 		}
522 		else
523 			oextoffset = nextoffset;
524 	}
525 
526 	if (count)
527 	{
528 		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
529 				 a new block, and since we hold the super block lock already
530 				 very bad things would happen :)
531 
532 				 We copy the behavior of udf_add_aext, but instead of
533 				 trying to allocate a new block close to the existing one,
534 				 we just steal a block from the extent we are trying to add.
535 
536 				 It would be nice if the blocks were close together, but it
537 				 isn't required.
538 		*/
539 
540 		int adsize;
541 		short_ad *sad = NULL;
542 		long_ad *lad = NULL;
543 		struct allocExtDesc *aed;
544 
545 		eloc.logicalBlockNum = start;
546 		elen = EXT_RECORDED_ALLOCATED |
547 			(count << sb->s_blocksize_bits);
548 
549 		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
550 			adsize = sizeof(short_ad);
551 		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
552 			adsize = sizeof(long_ad);
553 		else
554 		{
555 			udf_release_data(obh);
556 			udf_release_data(nbh);
557 			goto error_return;
558 		}
559 
560 		if (nextoffset + (2 * adsize) > sb->s_blocksize)
561 		{
562 			char *sptr, *dptr;
563 			int loffset;
564 
565 			udf_release_data(obh);
566 			obh = nbh;
567 			obloc = nbloc;
568 			oextoffset = nextoffset;
569 
570 			/* Steal a block from the extent being free'd */
571 			nbloc.logicalBlockNum = eloc.logicalBlockNum;
572 			eloc.logicalBlockNum ++;
573 			elen -= sb->s_blocksize;
574 
575 			if (!(nbh = udf_tread(sb,
576 				udf_get_lb_pblock(sb, nbloc, 0))))
577 			{
578 				udf_release_data(obh);
579 				goto error_return;
580 			}
581 			aed = (struct allocExtDesc *)(nbh->b_data);
582 			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
583 			if (nextoffset + adsize > sb->s_blocksize)
584 			{
585 				loffset = nextoffset;
586 				aed->lengthAllocDescs = cpu_to_le32(adsize);
587 				if (obh)
588 					sptr = UDF_I_DATA(inode) + nextoffset -  udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize;
589 				else
590 					sptr = obh->b_data + nextoffset - adsize;
591 				dptr = nbh->b_data + sizeof(struct allocExtDesc);
592 				memcpy(dptr, sptr, adsize);
593 				nextoffset = sizeof(struct allocExtDesc) + adsize;
594 			}
595 			else
596 			{
597 				loffset = nextoffset + adsize;
598 				aed->lengthAllocDescs = cpu_to_le32(0);
599 				sptr = (obh)->b_data + nextoffset;
600 				nextoffset = sizeof(struct allocExtDesc);
601 
602 				if (obh)
603 				{
604 					aed = (struct allocExtDesc *)(obh)->b_data;
605 					aed->lengthAllocDescs =
606 						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
607 				}
608 				else
609 				{
610 					UDF_I_LENALLOC(table) += adsize;
611 					mark_inode_dirty(table);
612 				}
613 			}
614 			if (UDF_SB_UDFREV(sb) >= 0x0200)
615 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
616 					nbloc.logicalBlockNum, sizeof(tag));
617 			else
618 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
619 					nbloc.logicalBlockNum, sizeof(tag));
620 			switch (UDF_I_ALLOCTYPE(table))
621 			{
622 				case ICBTAG_FLAG_AD_SHORT:
623 				{
624 					sad = (short_ad *)sptr;
625 					sad->extLength = cpu_to_le32(
626 						EXT_NEXT_EXTENT_ALLOCDECS |
627 						sb->s_blocksize);
628 					sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
629 					break;
630 				}
631 				case ICBTAG_FLAG_AD_LONG:
632 				{
633 					lad = (long_ad *)sptr;
634 					lad->extLength = cpu_to_le32(
635 						EXT_NEXT_EXTENT_ALLOCDECS |
636 						sb->s_blocksize);
637 					lad->extLocation = cpu_to_lelb(nbloc);
638 					break;
639 				}
640 			}
641 			if (obh)
642 			{
643 				udf_update_tag(obh->b_data, loffset);
644 				mark_buffer_dirty(obh);
645 			}
646 			else
647 				mark_inode_dirty(table);
648 		}
649 
650 		if (elen) /* It's possible that stealing the block emptied the extent */
651 		{
652 			udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
653 
654 			if (!nbh)
655 			{
656 				UDF_I_LENALLOC(table) += adsize;
657 				mark_inode_dirty(table);
658 			}
659 			else
660 			{
661 				aed = (struct allocExtDesc *)nbh->b_data;
662 				aed->lengthAllocDescs =
663 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
664 				udf_update_tag(nbh->b_data, nextoffset);
665 				mark_buffer_dirty(nbh);
666 			}
667 		}
668 	}
669 
670 	udf_release_data(nbh);
671 	udf_release_data(obh);
672 
673 error_return:
674 	sb->s_dirt = 1;
675 	up(&sbi->s_alloc_sem);
676 	return;
677 }
678 
679 static int udf_table_prealloc_blocks(struct super_block * sb,
680 	struct inode * inode,
681 	struct inode *table, uint16_t partition, uint32_t first_block,
682 	uint32_t block_count)
683 {
684 	struct udf_sb_info *sbi = UDF_SB(sb);
685 	int alloc_count = 0;
686 	uint32_t extoffset, elen, adsize;
687 	kernel_lb_addr bloc, eloc;
688 	struct buffer_head *bh;
689 	int8_t etype = -1;
690 
691 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
692 		return 0;
693 
694 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
695 		adsize = sizeof(short_ad);
696 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
697 		adsize = sizeof(long_ad);
698 	else
699 		return 0;
700 
701 	down(&sbi->s_alloc_sem);
702 	extoffset = sizeof(struct unallocSpaceEntry);
703 	bloc = UDF_I_LOCATION(table);
704 
705 	bh = NULL;
706 	eloc.logicalBlockNum = 0xFFFFFFFF;
707 
708 	while (first_block != eloc.logicalBlockNum && (etype =
709 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
710 	{
711 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
712 			eloc.logicalBlockNum, elen, first_block);
713 		; /* empty loop body */
714 	}
715 
716 	if (first_block == eloc.logicalBlockNum)
717 	{
718 		extoffset -= adsize;
719 
720 		alloc_count = (elen >> sb->s_blocksize_bits);
721 		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
722 			alloc_count = 0;
723 		else if (alloc_count > block_count)
724 		{
725 			alloc_count = block_count;
726 			eloc.logicalBlockNum += alloc_count;
727 			elen -= (alloc_count << sb->s_blocksize_bits);
728 			udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
729 		}
730 		else
731 			udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
732 	}
733 	else
734 		alloc_count = 0;
735 
736 	udf_release_data(bh);
737 
738 	if (alloc_count && UDF_SB_LVIDBH(sb))
739 	{
740 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
741 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
742 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
743 		sb->s_dirt = 1;
744 	}
745 	up(&sbi->s_alloc_sem);
746 	return alloc_count;
747 }
748 
749 static int udf_table_new_block(struct super_block * sb,
750 	struct inode * inode,
751 	struct inode *table, uint16_t partition, uint32_t goal, int *err)
752 {
753 	struct udf_sb_info *sbi = UDF_SB(sb);
754 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
755 	uint32_t newblock = 0, adsize;
756 	uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
757 	kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
758 	struct buffer_head *bh, *goal_bh;
759 	int8_t etype;
760 
761 	*err = -ENOSPC;
762 
763 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
764 		adsize = sizeof(short_ad);
765 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
766 		adsize = sizeof(long_ad);
767 	else
768 		return newblock;
769 
770 	down(&sbi->s_alloc_sem);
771 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
772 		goal = 0;
773 
774 	/* We search for the closest matching block to goal. If we find a exact hit,
775 	   we stop. Otherwise we keep going till we run out of extents.
776 	   We store the buffer_head, bloc, and extoffset of the current closest
777 	   match and use that when we are done.
778 	*/
779 
780 	extoffset = sizeof(struct unallocSpaceEntry);
781 	bloc = UDF_I_LOCATION(table);
782 
783 	goal_bh = bh = NULL;
784 
785 	while (spread && (etype =
786 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
787 	{
788 		if (goal >= eloc.logicalBlockNum)
789 		{
790 			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
791 				nspread = 0;
792 			else
793 				nspread = goal - eloc.logicalBlockNum -
794 					(elen >> sb->s_blocksize_bits);
795 		}
796 		else
797 			nspread = eloc.logicalBlockNum - goal;
798 
799 		if (nspread < spread)
800 		{
801 			spread = nspread;
802 			if (goal_bh != bh)
803 			{
804 				udf_release_data(goal_bh);
805 				goal_bh = bh;
806 				atomic_inc(&goal_bh->b_count);
807 			}
808 			goal_bloc = bloc;
809 			goal_extoffset = extoffset - adsize;
810 			goal_eloc = eloc;
811 			goal_elen = (etype << 30) | elen;
812 		}
813 	}
814 
815 	udf_release_data(bh);
816 
817 	if (spread == 0xFFFFFFFF)
818 	{
819 		udf_release_data(goal_bh);
820 		up(&sbi->s_alloc_sem);
821 		return 0;
822 	}
823 
824 	/* Only allocate blocks from the beginning of the extent.
825 	   That way, we only delete (empty) extents, never have to insert an
826 	   extent because of splitting */
827 	/* This works, but very poorly.... */
828 
829 	newblock = goal_eloc.logicalBlockNum;
830 	goal_eloc.logicalBlockNum ++;
831 	goal_elen -= sb->s_blocksize;
832 
833 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
834 	{
835 		udf_release_data(goal_bh);
836 		up(&sbi->s_alloc_sem);
837 		*err = -EDQUOT;
838 		return 0;
839 	}
840 
841 	if (goal_elen)
842 		udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
843 	else
844 		udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
845 	udf_release_data(goal_bh);
846 
847 	if (UDF_SB_LVIDBH(sb))
848 	{
849 		UDF_SB_LVID(sb)->freeSpaceTable[partition] =
850 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
851 		mark_buffer_dirty(UDF_SB_LVIDBH(sb));
852 	}
853 
854 	sb->s_dirt = 1;
855 	up(&sbi->s_alloc_sem);
856 	*err = 0;
857 	return newblock;
858 }
859 
860 inline void udf_free_blocks(struct super_block * sb,
861 	struct inode * inode,
862 	kernel_lb_addr bloc, uint32_t offset, uint32_t count)
863 {
864 	uint16_t partition = bloc.partitionReferenceNum;
865 
866 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
867 	{
868 		return udf_bitmap_free_blocks(sb, inode,
869 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
870 			bloc, offset, count);
871 	}
872 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
873 	{
874 		return udf_table_free_blocks(sb, inode,
875 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
876 			bloc, offset, count);
877 	}
878 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
879 	{
880 		return udf_bitmap_free_blocks(sb, inode,
881 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
882 			bloc, offset, count);
883 	}
884 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
885 	{
886 		return udf_table_free_blocks(sb, inode,
887 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
888 			bloc, offset, count);
889 	}
890 	else
891 		return;
892 }
893 
894 inline int udf_prealloc_blocks(struct super_block * sb,
895 	struct inode * inode,
896 	uint16_t partition, uint32_t first_block, uint32_t block_count)
897 {
898 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
899 	{
900 		return udf_bitmap_prealloc_blocks(sb, inode,
901 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
902 			partition, first_block, block_count);
903 	}
904 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
905 	{
906 		return udf_table_prealloc_blocks(sb, inode,
907 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
908 			partition, first_block, block_count);
909 	}
910 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
911 	{
912 		return udf_bitmap_prealloc_blocks(sb, inode,
913 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
914 			partition, first_block, block_count);
915 	}
916 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
917 	{
918 		return udf_table_prealloc_blocks(sb, inode,
919 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
920 			partition, first_block, block_count);
921 	}
922 	else
923 		return 0;
924 }
925 
926 inline int udf_new_block(struct super_block * sb,
927 	struct inode * inode,
928 	uint16_t partition, uint32_t goal, int *err)
929 {
930 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
931 	{
932 		return udf_bitmap_new_block(sb, inode,
933 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
934 			partition, goal, err);
935 	}
936 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
937 	{
938 		return udf_table_new_block(sb, inode,
939 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
940 			partition, goal, err);
941 	}
942 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
943 	{
944 		return udf_bitmap_new_block(sb, inode,
945 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
946 			partition, goal, err);
947 	}
948 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
949 	{
950 		return udf_table_new_block(sb, inode,
951 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
952 			partition, goal, err);
953 	}
954 	else
955 	{
956 		*err = -EIO;
957 		return 0;
958 	}
959 }
960