xref: /openbmc/linux/fs/udf/balloc.c (revision 05bcf503)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/buffer_head.h>
25 #include <linux/bitops.h>
26 
27 #include "udf_i.h"
28 #include "udf_sb.h"
29 
30 #define udf_clear_bit	__test_and_clear_bit_le
31 #define udf_set_bit	__test_and_set_bit_le
32 #define udf_test_bit	test_bit_le
33 #define udf_find_next_one_bit	find_next_bit_le
34 
35 static int read_block_bitmap(struct super_block *sb,
36 			     struct udf_bitmap *bitmap, unsigned int block,
37 			     unsigned long bitmap_nr)
38 {
39 	struct buffer_head *bh = NULL;
40 	int retval = 0;
41 	struct kernel_lb_addr loc;
42 
43 	loc.logicalBlockNum = bitmap->s_extPosition;
44 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
45 
46 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
47 	if (!bh)
48 		retval = -EIO;
49 
50 	bitmap->s_block_bitmap[bitmap_nr] = bh;
51 	return retval;
52 }
53 
54 static int __load_block_bitmap(struct super_block *sb,
55 			       struct udf_bitmap *bitmap,
56 			       unsigned int block_group)
57 {
58 	int retval = 0;
59 	int nr_groups = bitmap->s_nr_groups;
60 
61 	if (block_group >= nr_groups) {
62 		udf_debug("block_group (%d) > nr_groups (%d)\n",
63 			  block_group, nr_groups);
64 	}
65 
66 	if (bitmap->s_block_bitmap[block_group]) {
67 		return block_group;
68 	} else {
69 		retval = read_block_bitmap(sb, bitmap, block_group,
70 					   block_group);
71 		if (retval < 0)
72 			return retval;
73 		return block_group;
74 	}
75 }
76 
77 static inline int load_block_bitmap(struct super_block *sb,
78 				    struct udf_bitmap *bitmap,
79 				    unsigned int block_group)
80 {
81 	int slot;
82 
83 	slot = __load_block_bitmap(sb, bitmap, block_group);
84 
85 	if (slot < 0)
86 		return slot;
87 
88 	if (!bitmap->s_block_bitmap[slot])
89 		return -EIO;
90 
91 	return slot;
92 }
93 
94 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
95 {
96 	struct udf_sb_info *sbi = UDF_SB(sb);
97 	struct logicalVolIntegrityDesc *lvid;
98 
99 	if (!sbi->s_lvid_bh)
100 		return;
101 
102 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104 	udf_updated_lvid(sb);
105 }
106 
107 static void udf_bitmap_free_blocks(struct super_block *sb,
108 				   struct udf_bitmap *bitmap,
109 				   struct kernel_lb_addr *bloc,
110 				   uint32_t offset,
111 				   uint32_t count)
112 {
113 	struct udf_sb_info *sbi = UDF_SB(sb);
114 	struct buffer_head *bh = NULL;
115 	struct udf_part_map *partmap;
116 	unsigned long block;
117 	unsigned long block_group;
118 	unsigned long bit;
119 	unsigned long i;
120 	int bitmap_nr;
121 	unsigned long overflow;
122 
123 	mutex_lock(&sbi->s_alloc_mutex);
124 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
125 	if (bloc->logicalBlockNum + count < count ||
126 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
127 		udf_debug("%d < %d || %d + %d > %d\n",
128 			  bloc->logicalBlockNum, 0,
129 			  bloc->logicalBlockNum, count,
130 			  partmap->s_partition_len);
131 		goto error_return;
132 	}
133 
134 	block = bloc->logicalBlockNum + offset +
135 		(sizeof(struct spaceBitmapDesc) << 3);
136 
137 	do {
138 		overflow = 0;
139 		block_group = block >> (sb->s_blocksize_bits + 3);
140 		bit = block % (sb->s_blocksize << 3);
141 
142 		/*
143 		* Check to see if we are freeing blocks across a group boundary.
144 		*/
145 		if (bit + count > (sb->s_blocksize << 3)) {
146 			overflow = bit + count - (sb->s_blocksize << 3);
147 			count -= overflow;
148 		}
149 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150 		if (bitmap_nr < 0)
151 			goto error_return;
152 
153 		bh = bitmap->s_block_bitmap[bitmap_nr];
154 		for (i = 0; i < count; i++) {
155 			if (udf_set_bit(bit + i, bh->b_data)) {
156 				udf_debug("bit %ld already set\n", bit + i);
157 				udf_debug("byte=%2x\n",
158 					  ((char *)bh->b_data)[(bit + i) >> 3]);
159 			}
160 		}
161 		udf_add_free_space(sb, sbi->s_partition, count);
162 		mark_buffer_dirty(bh);
163 		if (overflow) {
164 			block += count;
165 			count = overflow;
166 		}
167 	} while (overflow);
168 
169 error_return:
170 	mutex_unlock(&sbi->s_alloc_mutex);
171 }
172 
173 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174 				      struct udf_bitmap *bitmap,
175 				      uint16_t partition, uint32_t first_block,
176 				      uint32_t block_count)
177 {
178 	struct udf_sb_info *sbi = UDF_SB(sb);
179 	int alloc_count = 0;
180 	int bit, block, block_group, group_start;
181 	int nr_groups, bitmap_nr;
182 	struct buffer_head *bh;
183 	__u32 part_len;
184 
185 	mutex_lock(&sbi->s_alloc_mutex);
186 	part_len = sbi->s_partmaps[partition].s_partition_len;
187 	if (first_block >= part_len)
188 		goto out;
189 
190 	if (first_block + block_count > part_len)
191 		block_count = part_len - first_block;
192 
193 	do {
194 		nr_groups = udf_compute_nr_groups(sb, partition);
195 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196 		block_group = block >> (sb->s_blocksize_bits + 3);
197 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
198 
199 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200 		if (bitmap_nr < 0)
201 			goto out;
202 		bh = bitmap->s_block_bitmap[bitmap_nr];
203 
204 		bit = block % (sb->s_blocksize << 3);
205 
206 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
207 			if (!udf_clear_bit(bit, bh->b_data))
208 				goto out;
209 			block_count--;
210 			alloc_count++;
211 			bit++;
212 			block++;
213 		}
214 		mark_buffer_dirty(bh);
215 	} while (block_count > 0);
216 
217 out:
218 	udf_add_free_space(sb, partition, -alloc_count);
219 	mutex_unlock(&sbi->s_alloc_mutex);
220 	return alloc_count;
221 }
222 
223 static int udf_bitmap_new_block(struct super_block *sb,
224 				struct udf_bitmap *bitmap, uint16_t partition,
225 				uint32_t goal, int *err)
226 {
227 	struct udf_sb_info *sbi = UDF_SB(sb);
228 	int newbit, bit = 0, block, block_group, group_start;
229 	int end_goal, nr_groups, bitmap_nr, i;
230 	struct buffer_head *bh = NULL;
231 	char *ptr;
232 	int newblock = 0;
233 
234 	*err = -ENOSPC;
235 	mutex_lock(&sbi->s_alloc_mutex);
236 
237 repeat:
238 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
239 		goal = 0;
240 
241 	nr_groups = bitmap->s_nr_groups;
242 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
243 	block_group = block >> (sb->s_blocksize_bits + 3);
244 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
245 
246 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
247 	if (bitmap_nr < 0)
248 		goto error_return;
249 	bh = bitmap->s_block_bitmap[bitmap_nr];
250 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
251 		      sb->s_blocksize - group_start);
252 
253 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
254 		bit = block % (sb->s_blocksize << 3);
255 		if (udf_test_bit(bit, bh->b_data))
256 			goto got_block;
257 
258 		end_goal = (bit + 63) & ~63;
259 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
260 		if (bit < end_goal)
261 			goto got_block;
262 
263 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
264 			      sb->s_blocksize - ((bit + 7) >> 3));
265 		newbit = (ptr - ((char *)bh->b_data)) << 3;
266 		if (newbit < sb->s_blocksize << 3) {
267 			bit = newbit;
268 			goto search_back;
269 		}
270 
271 		newbit = udf_find_next_one_bit(bh->b_data,
272 					       sb->s_blocksize << 3, bit);
273 		if (newbit < sb->s_blocksize << 3) {
274 			bit = newbit;
275 			goto got_block;
276 		}
277 	}
278 
279 	for (i = 0; i < (nr_groups * 2); i++) {
280 		block_group++;
281 		if (block_group >= nr_groups)
282 			block_group = 0;
283 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
284 
285 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
286 		if (bitmap_nr < 0)
287 			goto error_return;
288 		bh = bitmap->s_block_bitmap[bitmap_nr];
289 		if (i < nr_groups) {
290 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
291 				      sb->s_blocksize - group_start);
292 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
293 				bit = (ptr - ((char *)bh->b_data)) << 3;
294 				break;
295 			}
296 		} else {
297 			bit = udf_find_next_one_bit(bh->b_data,
298 						    sb->s_blocksize << 3,
299 						    group_start << 3);
300 			if (bit < sb->s_blocksize << 3)
301 				break;
302 		}
303 	}
304 	if (i >= (nr_groups * 2)) {
305 		mutex_unlock(&sbi->s_alloc_mutex);
306 		return newblock;
307 	}
308 	if (bit < sb->s_blocksize << 3)
309 		goto search_back;
310 	else
311 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
312 					    group_start << 3);
313 	if (bit >= sb->s_blocksize << 3) {
314 		mutex_unlock(&sbi->s_alloc_mutex);
315 		return 0;
316 	}
317 
318 search_back:
319 	i = 0;
320 	while (i < 7 && bit > (group_start << 3) &&
321 	       udf_test_bit(bit - 1, bh->b_data)) {
322 		++i;
323 		--bit;
324 	}
325 
326 got_block:
327 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
328 		(sizeof(struct spaceBitmapDesc) << 3);
329 
330 	if (!udf_clear_bit(bit, bh->b_data)) {
331 		udf_debug("bit already cleared for block %d\n", bit);
332 		goto repeat;
333 	}
334 
335 	mark_buffer_dirty(bh);
336 
337 	udf_add_free_space(sb, partition, -1);
338 	mutex_unlock(&sbi->s_alloc_mutex);
339 	*err = 0;
340 	return newblock;
341 
342 error_return:
343 	*err = -EIO;
344 	mutex_unlock(&sbi->s_alloc_mutex);
345 	return 0;
346 }
347 
348 static void udf_table_free_blocks(struct super_block *sb,
349 				  struct inode *table,
350 				  struct kernel_lb_addr *bloc,
351 				  uint32_t offset,
352 				  uint32_t count)
353 {
354 	struct udf_sb_info *sbi = UDF_SB(sb);
355 	struct udf_part_map *partmap;
356 	uint32_t start, end;
357 	uint32_t elen;
358 	struct kernel_lb_addr eloc;
359 	struct extent_position oepos, epos;
360 	int8_t etype;
361 	int i;
362 	struct udf_inode_info *iinfo;
363 
364 	mutex_lock(&sbi->s_alloc_mutex);
365 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
366 	if (bloc->logicalBlockNum + count < count ||
367 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
368 		udf_debug("%d < %d || %d + %d > %d\n",
369 			  bloc->logicalBlockNum, 0,
370 			  bloc->logicalBlockNum, count,
371 			  partmap->s_partition_len);
372 		goto error_return;
373 	}
374 
375 	iinfo = UDF_I(table);
376 	udf_add_free_space(sb, sbi->s_partition, count);
377 
378 	start = bloc->logicalBlockNum + offset;
379 	end = bloc->logicalBlockNum + offset + count - 1;
380 
381 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
382 	elen = 0;
383 	epos.block = oepos.block = iinfo->i_location;
384 	epos.bh = oepos.bh = NULL;
385 
386 	while (count &&
387 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
388 		if (((eloc.logicalBlockNum +
389 			(elen >> sb->s_blocksize_bits)) == start)) {
390 			if ((0x3FFFFFFF - elen) <
391 					(count << sb->s_blocksize_bits)) {
392 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
393 							sb->s_blocksize_bits);
394 				count -= tmp;
395 				start += tmp;
396 				elen = (etype << 30) |
397 					(0x40000000 - sb->s_blocksize);
398 			} else {
399 				elen = (etype << 30) |
400 					(elen +
401 					(count << sb->s_blocksize_bits));
402 				start += count;
403 				count = 0;
404 			}
405 			udf_write_aext(table, &oepos, &eloc, elen, 1);
406 		} else if (eloc.logicalBlockNum == (end + 1)) {
407 			if ((0x3FFFFFFF - elen) <
408 					(count << sb->s_blocksize_bits)) {
409 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
410 						sb->s_blocksize_bits);
411 				count -= tmp;
412 				end -= tmp;
413 				eloc.logicalBlockNum -= tmp;
414 				elen = (etype << 30) |
415 					(0x40000000 - sb->s_blocksize);
416 			} else {
417 				eloc.logicalBlockNum = start;
418 				elen = (etype << 30) |
419 					(elen +
420 					(count << sb->s_blocksize_bits));
421 				end -= count;
422 				count = 0;
423 			}
424 			udf_write_aext(table, &oepos, &eloc, elen, 1);
425 		}
426 
427 		if (epos.bh != oepos.bh) {
428 			i = -1;
429 			oepos.block = epos.block;
430 			brelse(oepos.bh);
431 			get_bh(epos.bh);
432 			oepos.bh = epos.bh;
433 			oepos.offset = 0;
434 		} else {
435 			oepos.offset = epos.offset;
436 		}
437 	}
438 
439 	if (count) {
440 		/*
441 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
442 		 * allocate a new block, and since we hold the super block
443 		 * lock already very bad things would happen :)
444 		 *
445 		 * We copy the behavior of udf_add_aext, but instead of
446 		 * trying to allocate a new block close to the existing one,
447 		 * we just steal a block from the extent we are trying to add.
448 		 *
449 		 * It would be nice if the blocks were close together, but it
450 		 * isn't required.
451 		 */
452 
453 		int adsize;
454 		struct short_ad *sad = NULL;
455 		struct long_ad *lad = NULL;
456 		struct allocExtDesc *aed;
457 
458 		eloc.logicalBlockNum = start;
459 		elen = EXT_RECORDED_ALLOCATED |
460 			(count << sb->s_blocksize_bits);
461 
462 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
463 			adsize = sizeof(struct short_ad);
464 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
465 			adsize = sizeof(struct long_ad);
466 		else {
467 			brelse(oepos.bh);
468 			brelse(epos.bh);
469 			goto error_return;
470 		}
471 
472 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
473 			unsigned char *sptr, *dptr;
474 			int loffset;
475 
476 			brelse(oepos.bh);
477 			oepos = epos;
478 
479 			/* Steal a block from the extent being free'd */
480 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
481 			eloc.logicalBlockNum++;
482 			elen -= sb->s_blocksize;
483 
484 			epos.bh = udf_tread(sb,
485 					udf_get_lb_pblock(sb, &epos.block, 0));
486 			if (!epos.bh) {
487 				brelse(oepos.bh);
488 				goto error_return;
489 			}
490 			aed = (struct allocExtDesc *)(epos.bh->b_data);
491 			aed->previousAllocExtLocation =
492 				cpu_to_le32(oepos.block.logicalBlockNum);
493 			if (epos.offset + adsize > sb->s_blocksize) {
494 				loffset = epos.offset;
495 				aed->lengthAllocDescs = cpu_to_le32(adsize);
496 				sptr = iinfo->i_ext.i_data + epos.offset
497 								- adsize;
498 				dptr = epos.bh->b_data +
499 					sizeof(struct allocExtDesc);
500 				memcpy(dptr, sptr, adsize);
501 				epos.offset = sizeof(struct allocExtDesc) +
502 						adsize;
503 			} else {
504 				loffset = epos.offset + adsize;
505 				aed->lengthAllocDescs = cpu_to_le32(0);
506 				if (oepos.bh) {
507 					sptr = oepos.bh->b_data + epos.offset;
508 					aed = (struct allocExtDesc *)
509 						oepos.bh->b_data;
510 					le32_add_cpu(&aed->lengthAllocDescs,
511 							adsize);
512 				} else {
513 					sptr = iinfo->i_ext.i_data +
514 								epos.offset;
515 					iinfo->i_lenAlloc += adsize;
516 					mark_inode_dirty(table);
517 				}
518 				epos.offset = sizeof(struct allocExtDesc);
519 			}
520 			if (sbi->s_udfrev >= 0x0200)
521 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
522 					    3, 1, epos.block.logicalBlockNum,
523 					    sizeof(struct tag));
524 			else
525 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
526 					    2, 1, epos.block.logicalBlockNum,
527 					    sizeof(struct tag));
528 
529 			switch (iinfo->i_alloc_type) {
530 			case ICBTAG_FLAG_AD_SHORT:
531 				sad = (struct short_ad *)sptr;
532 				sad->extLength = cpu_to_le32(
533 					EXT_NEXT_EXTENT_ALLOCDECS |
534 					sb->s_blocksize);
535 				sad->extPosition =
536 					cpu_to_le32(epos.block.logicalBlockNum);
537 				break;
538 			case ICBTAG_FLAG_AD_LONG:
539 				lad = (struct long_ad *)sptr;
540 				lad->extLength = cpu_to_le32(
541 					EXT_NEXT_EXTENT_ALLOCDECS |
542 					sb->s_blocksize);
543 				lad->extLocation =
544 					cpu_to_lelb(epos.block);
545 				break;
546 			}
547 			if (oepos.bh) {
548 				udf_update_tag(oepos.bh->b_data, loffset);
549 				mark_buffer_dirty(oepos.bh);
550 			} else {
551 				mark_inode_dirty(table);
552 			}
553 		}
554 
555 		/* It's possible that stealing the block emptied the extent */
556 		if (elen) {
557 			udf_write_aext(table, &epos, &eloc, elen, 1);
558 
559 			if (!epos.bh) {
560 				iinfo->i_lenAlloc += adsize;
561 				mark_inode_dirty(table);
562 			} else {
563 				aed = (struct allocExtDesc *)epos.bh->b_data;
564 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
565 				udf_update_tag(epos.bh->b_data, epos.offset);
566 				mark_buffer_dirty(epos.bh);
567 			}
568 		}
569 	}
570 
571 	brelse(epos.bh);
572 	brelse(oepos.bh);
573 
574 error_return:
575 	mutex_unlock(&sbi->s_alloc_mutex);
576 	return;
577 }
578 
579 static int udf_table_prealloc_blocks(struct super_block *sb,
580 				     struct inode *table, uint16_t partition,
581 				     uint32_t first_block, uint32_t block_count)
582 {
583 	struct udf_sb_info *sbi = UDF_SB(sb);
584 	int alloc_count = 0;
585 	uint32_t elen, adsize;
586 	struct kernel_lb_addr eloc;
587 	struct extent_position epos;
588 	int8_t etype = -1;
589 	struct udf_inode_info *iinfo;
590 
591 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
592 		return 0;
593 
594 	iinfo = UDF_I(table);
595 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596 		adsize = sizeof(struct short_ad);
597 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598 		adsize = sizeof(struct long_ad);
599 	else
600 		return 0;
601 
602 	mutex_lock(&sbi->s_alloc_mutex);
603 	epos.offset = sizeof(struct unallocSpaceEntry);
604 	epos.block = iinfo->i_location;
605 	epos.bh = NULL;
606 	eloc.logicalBlockNum = 0xFFFFFFFF;
607 
608 	while (first_block != eloc.logicalBlockNum &&
609 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
610 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
611 			  eloc.logicalBlockNum, elen, first_block);
612 		; /* empty loop body */
613 	}
614 
615 	if (first_block == eloc.logicalBlockNum) {
616 		epos.offset -= adsize;
617 
618 		alloc_count = (elen >> sb->s_blocksize_bits);
619 		if (alloc_count > block_count) {
620 			alloc_count = block_count;
621 			eloc.logicalBlockNum += alloc_count;
622 			elen -= (alloc_count << sb->s_blocksize_bits);
623 			udf_write_aext(table, &epos, &eloc,
624 					(etype << 30) | elen, 1);
625 		} else
626 			udf_delete_aext(table, epos, eloc,
627 					(etype << 30) | elen);
628 	} else {
629 		alloc_count = 0;
630 	}
631 
632 	brelse(epos.bh);
633 
634 	if (alloc_count)
635 		udf_add_free_space(sb, partition, -alloc_count);
636 	mutex_unlock(&sbi->s_alloc_mutex);
637 	return alloc_count;
638 }
639 
640 static int udf_table_new_block(struct super_block *sb,
641 			       struct inode *table, uint16_t partition,
642 			       uint32_t goal, int *err)
643 {
644 	struct udf_sb_info *sbi = UDF_SB(sb);
645 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
646 	uint32_t newblock = 0, adsize;
647 	uint32_t elen, goal_elen = 0;
648 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
649 	struct extent_position epos, goal_epos;
650 	int8_t etype;
651 	struct udf_inode_info *iinfo = UDF_I(table);
652 
653 	*err = -ENOSPC;
654 
655 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
656 		adsize = sizeof(struct short_ad);
657 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
658 		adsize = sizeof(struct long_ad);
659 	else
660 		return newblock;
661 
662 	mutex_lock(&sbi->s_alloc_mutex);
663 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
664 		goal = 0;
665 
666 	/* We search for the closest matching block to goal. If we find
667 	   a exact hit, we stop. Otherwise we keep going till we run out
668 	   of extents. We store the buffer_head, bloc, and extoffset
669 	   of the current closest match and use that when we are done.
670 	 */
671 	epos.offset = sizeof(struct unallocSpaceEntry);
672 	epos.block = iinfo->i_location;
673 	epos.bh = goal_epos.bh = NULL;
674 
675 	while (spread &&
676 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
677 		if (goal >= eloc.logicalBlockNum) {
678 			if (goal < eloc.logicalBlockNum +
679 					(elen >> sb->s_blocksize_bits))
680 				nspread = 0;
681 			else
682 				nspread = goal - eloc.logicalBlockNum -
683 					(elen >> sb->s_blocksize_bits);
684 		} else {
685 			nspread = eloc.logicalBlockNum - goal;
686 		}
687 
688 		if (nspread < spread) {
689 			spread = nspread;
690 			if (goal_epos.bh != epos.bh) {
691 				brelse(goal_epos.bh);
692 				goal_epos.bh = epos.bh;
693 				get_bh(goal_epos.bh);
694 			}
695 			goal_epos.block = epos.block;
696 			goal_epos.offset = epos.offset - adsize;
697 			goal_eloc = eloc;
698 			goal_elen = (etype << 30) | elen;
699 		}
700 	}
701 
702 	brelse(epos.bh);
703 
704 	if (spread == 0xFFFFFFFF) {
705 		brelse(goal_epos.bh);
706 		mutex_unlock(&sbi->s_alloc_mutex);
707 		return 0;
708 	}
709 
710 	/* Only allocate blocks from the beginning of the extent.
711 	   That way, we only delete (empty) extents, never have to insert an
712 	   extent because of splitting */
713 	/* This works, but very poorly.... */
714 
715 	newblock = goal_eloc.logicalBlockNum;
716 	goal_eloc.logicalBlockNum++;
717 	goal_elen -= sb->s_blocksize;
718 
719 	if (goal_elen)
720 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
721 	else
722 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
723 	brelse(goal_epos.bh);
724 
725 	udf_add_free_space(sb, partition, -1);
726 
727 	mutex_unlock(&sbi->s_alloc_mutex);
728 	*err = 0;
729 	return newblock;
730 }
731 
732 void udf_free_blocks(struct super_block *sb, struct inode *inode,
733 		     struct kernel_lb_addr *bloc, uint32_t offset,
734 		     uint32_t count)
735 {
736 	uint16_t partition = bloc->partitionReferenceNum;
737 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
738 
739 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
740 		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
741 				       bloc, offset, count);
742 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
743 		udf_table_free_blocks(sb, map->s_uspace.s_table,
744 				      bloc, offset, count);
745 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
746 		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
747 				       bloc, offset, count);
748 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
749 		udf_table_free_blocks(sb, map->s_fspace.s_table,
750 				      bloc, offset, count);
751 	}
752 
753 	if (inode) {
754 		inode_sub_bytes(inode,
755 				((sector_t)count) << sb->s_blocksize_bits);
756 	}
757 }
758 
759 inline int udf_prealloc_blocks(struct super_block *sb,
760 			       struct inode *inode,
761 			       uint16_t partition, uint32_t first_block,
762 			       uint32_t block_count)
763 {
764 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
765 	sector_t allocated;
766 
767 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
768 		allocated = udf_bitmap_prealloc_blocks(sb,
769 						       map->s_uspace.s_bitmap,
770 						       partition, first_block,
771 						       block_count);
772 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
773 		allocated = udf_table_prealloc_blocks(sb,
774 						      map->s_uspace.s_table,
775 						      partition, first_block,
776 						      block_count);
777 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
778 		allocated = udf_bitmap_prealloc_blocks(sb,
779 						       map->s_fspace.s_bitmap,
780 						       partition, first_block,
781 						       block_count);
782 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
783 		allocated = udf_table_prealloc_blocks(sb,
784 						      map->s_fspace.s_table,
785 						      partition, first_block,
786 						      block_count);
787 	else
788 		return 0;
789 
790 	if (inode && allocated > 0)
791 		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
792 	return allocated;
793 }
794 
795 inline int udf_new_block(struct super_block *sb,
796 			 struct inode *inode,
797 			 uint16_t partition, uint32_t goal, int *err)
798 {
799 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
800 	int block;
801 
802 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
803 		block = udf_bitmap_new_block(sb,
804 					     map->s_uspace.s_bitmap,
805 					     partition, goal, err);
806 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
807 		block = udf_table_new_block(sb,
808 					    map->s_uspace.s_table,
809 					    partition, goal, err);
810 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
811 		block = udf_bitmap_new_block(sb,
812 					     map->s_fspace.s_bitmap,
813 					     partition, goal, err);
814 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
815 		block = udf_table_new_block(sb,
816 					    map->s_fspace.s_table,
817 					    partition, goal, err);
818 	else {
819 		*err = -EIO;
820 		return 0;
821 	}
822 	if (inode && block)
823 		inode_add_bytes(inode, sb->s_blocksize);
824 	return block;
825 }
826