xref: /openbmc/linux/fs/ubifs/ubifs.h (revision 95298d63)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 #ifndef __UBIFS_H__
12 #define __UBIFS_H__
13 
14 #include <asm/div64.h>
15 #include <linux/statfs.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/spinlock.h>
22 #include <linux/mutex.h>
23 #include <linux/rwsem.h>
24 #include <linux/mtd/ubi.h>
25 #include <linux/pagemap.h>
26 #include <linux/backing-dev.h>
27 #include <linux/security.h>
28 #include <linux/xattr.h>
29 #include <linux/random.h>
30 #include <crypto/hash_info.h>
31 #include <crypto/hash.h>
32 #include <crypto/algapi.h>
33 
34 #include <linux/fscrypt.h>
35 
36 #include "ubifs-media.h"
37 
38 /* Version of this UBIFS implementation */
39 #define UBIFS_VERSION 1
40 
41 /* UBIFS file system VFS magic number */
42 #define UBIFS_SUPER_MAGIC 0x24051905
43 
44 /* Number of UBIFS blocks per VFS page */
45 #define UBIFS_BLOCKS_PER_PAGE (PAGE_SIZE / UBIFS_BLOCK_SIZE)
46 #define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_SHIFT - UBIFS_BLOCK_SHIFT)
47 
48 /* "File system end of life" sequence number watermark */
49 #define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL
50 #define SQNUM_WATERMARK      0xFFFFFFFFFF000000ULL
51 
52 /*
53  * Minimum amount of LEBs reserved for the index. At present the index needs at
54  * least 2 LEBs: one for the index head and one for in-the-gaps method (which
55  * currently does not cater for the index head and so excludes it from
56  * consideration).
57  */
58 #define MIN_INDEX_LEBS 2
59 
60 /* Minimum amount of data UBIFS writes to the flash */
61 #define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8)
62 
63 /*
64  * Currently we do not support inode number overlapping and re-using, so this
65  * watermark defines dangerous inode number level. This should be fixed later,
66  * although it is difficult to exceed current limit. Another option is to use
67  * 64-bit inode numbers, but this means more overhead.
68  */
69 #define INUM_WARN_WATERMARK 0xFFF00000
70 #define INUM_WATERMARK      0xFFFFFF00
71 
72 /* Maximum number of entries in each LPT (LEB category) heap */
73 #define LPT_HEAP_SZ 256
74 
75 /*
76  * Background thread name pattern. The numbers are UBI device and volume
77  * numbers.
78  */
79 #define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
80 
81 /* Maximum possible inode number (only 32-bit inodes are supported now) */
82 #define MAX_INUM 0xFFFFFFFF
83 
84 /* Number of non-data journal heads */
85 #define NONDATA_JHEADS_CNT 2
86 
87 /* Shorter names for journal head numbers for internal usage */
88 #define GCHD   UBIFS_GC_HEAD
89 #define BASEHD UBIFS_BASE_HEAD
90 #define DATAHD UBIFS_DATA_HEAD
91 
92 /* 'No change' value for 'ubifs_change_lp()' */
93 #define LPROPS_NC 0x80000001
94 
95 /*
96  * There is no notion of truncation key because truncation nodes do not exist
97  * in TNC. However, when replaying, it is handy to introduce fake "truncation"
98  * keys for truncation nodes because the code becomes simpler. So we define
99  * %UBIFS_TRUN_KEY type.
100  *
101  * But otherwise, out of the journal reply scope, the truncation keys are
102  * invalid.
103  */
104 #define UBIFS_TRUN_KEY    UBIFS_KEY_TYPES_CNT
105 #define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
106 
107 /*
108  * How much a directory entry/extended attribute entry adds to the parent/host
109  * inode.
110  */
111 #define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8)
112 
113 /* How much an extended attribute adds to the host inode */
114 #define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8)
115 
116 /*
117  * Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered
118  * "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are
119  * considered "young". This is used by shrinker when selecting znode to trim
120  * off.
121  */
122 #define OLD_ZNODE_AGE 20
123 #define YOUNG_ZNODE_AGE 5
124 
125 /*
126  * Some compressors, like LZO, may end up with more data then the input buffer.
127  * So UBIFS always allocates larger output buffer, to be sure the compressor
128  * will not corrupt memory in case of worst case compression.
129  */
130 #define WORST_COMPR_FACTOR 2
131 
132 #ifdef CONFIG_FS_ENCRYPTION
133 #define UBIFS_CIPHER_BLOCK_SIZE FS_CRYPTO_BLOCK_SIZE
134 #else
135 #define UBIFS_CIPHER_BLOCK_SIZE 0
136 #endif
137 
138 /*
139  * How much memory is needed for a buffer where we compress a data node.
140  */
141 #define COMPRESSED_DATA_NODE_BUF_SZ \
142 	(UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
143 
144 /* Maximum expected tree height for use by bottom_up_buf */
145 #define BOTTOM_UP_HEIGHT 64
146 
147 /* Maximum number of data nodes to bulk-read */
148 #define UBIFS_MAX_BULK_READ 32
149 
150 #ifdef CONFIG_UBIFS_FS_AUTHENTICATION
151 #define UBIFS_HASH_ARR_SZ UBIFS_MAX_HASH_LEN
152 #define UBIFS_HMAC_ARR_SZ UBIFS_MAX_HMAC_LEN
153 #else
154 #define UBIFS_HASH_ARR_SZ 0
155 #define UBIFS_HMAC_ARR_SZ 0
156 #endif
157 
158 /*
159  * Lockdep classes for UBIFS inode @ui_mutex.
160  */
161 enum {
162 	WB_MUTEX_1 = 0,
163 	WB_MUTEX_2 = 1,
164 	WB_MUTEX_3 = 2,
165 	WB_MUTEX_4 = 3,
166 };
167 
168 /*
169  * Znode flags (actually, bit numbers which store the flags).
170  *
171  * DIRTY_ZNODE: znode is dirty
172  * COW_ZNODE: znode is being committed and a new instance of this znode has to
173  *            be created before changing this znode
174  * OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is
175  *                 still in the commit list and the ongoing commit operation
176  *                 will commit it, and delete this znode after it is done
177  */
178 enum {
179 	DIRTY_ZNODE    = 0,
180 	COW_ZNODE      = 1,
181 	OBSOLETE_ZNODE = 2,
182 };
183 
184 /*
185  * Commit states.
186  *
187  * COMMIT_RESTING: commit is not wanted
188  * COMMIT_BACKGROUND: background commit has been requested
189  * COMMIT_REQUIRED: commit is required
190  * COMMIT_RUNNING_BACKGROUND: background commit is running
191  * COMMIT_RUNNING_REQUIRED: commit is running and it is required
192  * COMMIT_BROKEN: commit failed
193  */
194 enum {
195 	COMMIT_RESTING = 0,
196 	COMMIT_BACKGROUND,
197 	COMMIT_REQUIRED,
198 	COMMIT_RUNNING_BACKGROUND,
199 	COMMIT_RUNNING_REQUIRED,
200 	COMMIT_BROKEN,
201 };
202 
203 /*
204  * 'ubifs_scan_a_node()' return values.
205  *
206  * SCANNED_GARBAGE:  scanned garbage
207  * SCANNED_EMPTY_SPACE: scanned empty space
208  * SCANNED_A_NODE: scanned a valid node
209  * SCANNED_A_CORRUPT_NODE: scanned a corrupted node
210  * SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length
211  *
212  * Greater than zero means: 'scanned that number of padding bytes'
213  */
214 enum {
215 	SCANNED_GARBAGE        = 0,
216 	SCANNED_EMPTY_SPACE    = -1,
217 	SCANNED_A_NODE         = -2,
218 	SCANNED_A_CORRUPT_NODE = -3,
219 	SCANNED_A_BAD_PAD_NODE = -4,
220 };
221 
222 /*
223  * LPT cnode flag bits.
224  *
225  * DIRTY_CNODE: cnode is dirty
226  * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted),
227  *                 so it can (and must) be freed when the commit is finished
228  * COW_CNODE: cnode is being committed and must be copied before writing
229  */
230 enum {
231 	DIRTY_CNODE    = 0,
232 	OBSOLETE_CNODE = 1,
233 	COW_CNODE      = 2,
234 };
235 
236 /*
237  * Dirty flag bits (lpt_drty_flgs) for LPT special nodes.
238  *
239  * LTAB_DIRTY: ltab node is dirty
240  * LSAVE_DIRTY: lsave node is dirty
241  */
242 enum {
243 	LTAB_DIRTY  = 1,
244 	LSAVE_DIRTY = 2,
245 };
246 
247 /*
248  * Return codes used by the garbage collector.
249  * @LEB_FREED: the logical eraseblock was freed and is ready to use
250  * @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit
251  * @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes
252  */
253 enum {
254 	LEB_FREED,
255 	LEB_FREED_IDX,
256 	LEB_RETAINED,
257 };
258 
259 /*
260  * Action taken upon a failed ubifs_assert().
261  * @ASSACT_REPORT: just report the failed assertion
262  * @ASSACT_RO: switch to read-only mode
263  * @ASSACT_PANIC: call BUG() and possible panic the kernel
264  */
265 enum {
266 	ASSACT_REPORT = 0,
267 	ASSACT_RO,
268 	ASSACT_PANIC,
269 };
270 
271 /**
272  * struct ubifs_old_idx - index node obsoleted since last commit start.
273  * @rb: rb-tree node
274  * @lnum: LEB number of obsoleted index node
275  * @offs: offset of obsoleted index node
276  */
277 struct ubifs_old_idx {
278 	struct rb_node rb;
279 	int lnum;
280 	int offs;
281 };
282 
283 /* The below union makes it easier to deal with keys */
284 union ubifs_key {
285 	uint8_t u8[UBIFS_SK_LEN];
286 	uint32_t u32[UBIFS_SK_LEN/4];
287 	uint64_t u64[UBIFS_SK_LEN/8];
288 	__le32 j32[UBIFS_SK_LEN/4];
289 };
290 
291 /**
292  * struct ubifs_scan_node - UBIFS scanned node information.
293  * @list: list of scanned nodes
294  * @key: key of node scanned (if it has one)
295  * @sqnum: sequence number
296  * @type: type of node scanned
297  * @offs: offset with LEB of node scanned
298  * @len: length of node scanned
299  * @node: raw node
300  */
301 struct ubifs_scan_node {
302 	struct list_head list;
303 	union ubifs_key key;
304 	unsigned long long sqnum;
305 	int type;
306 	int offs;
307 	int len;
308 	void *node;
309 };
310 
311 /**
312  * struct ubifs_scan_leb - UBIFS scanned LEB information.
313  * @lnum: logical eraseblock number
314  * @nodes_cnt: number of nodes scanned
315  * @nodes: list of struct ubifs_scan_node
316  * @endpt: end point (and therefore the start of empty space)
317  * @buf: buffer containing entire LEB scanned
318  */
319 struct ubifs_scan_leb {
320 	int lnum;
321 	int nodes_cnt;
322 	struct list_head nodes;
323 	int endpt;
324 	void *buf;
325 };
326 
327 /**
328  * struct ubifs_gced_idx_leb - garbage-collected indexing LEB.
329  * @list: list
330  * @lnum: LEB number
331  * @unmap: OK to unmap this LEB
332  *
333  * This data structure is used to temporary store garbage-collected indexing
334  * LEBs - they are not released immediately, but only after the next commit.
335  * This is needed to guarantee recoverability.
336  */
337 struct ubifs_gced_idx_leb {
338 	struct list_head list;
339 	int lnum;
340 	int unmap;
341 };
342 
343 /**
344  * struct ubifs_inode - UBIFS in-memory inode description.
345  * @vfs_inode: VFS inode description object
346  * @creat_sqnum: sequence number at time of creation
347  * @del_cmtno: commit number corresponding to the time the inode was deleted,
348  *             protected by @c->commit_sem;
349  * @xattr_size: summarized size of all extended attributes in bytes
350  * @xattr_cnt: count of extended attributes this inode has
351  * @xattr_names: sum of lengths of all extended attribute names belonging to
352  *               this inode
353  * @dirty: non-zero if the inode is dirty
354  * @xattr: non-zero if this is an extended attribute inode
355  * @bulk_read: non-zero if bulk-read should be used
356  * @ui_mutex: serializes inode write-back with the rest of VFS operations,
357  *            serializes "clean <-> dirty" state changes, serializes bulk-read,
358  *            protects @dirty, @bulk_read, @ui_size, and @xattr_size
359  * @ui_lock: protects @synced_i_size
360  * @synced_i_size: synchronized size of inode, i.e. the value of inode size
361  *                 currently stored on the flash; used only for regular file
362  *                 inodes
363  * @ui_size: inode size used by UBIFS when writing to flash
364  * @flags: inode flags (@UBIFS_COMPR_FL, etc)
365  * @compr_type: default compression type used for this inode
366  * @last_page_read: page number of last page read (for bulk read)
367  * @read_in_a_row: number of consecutive pages read in a row (for bulk read)
368  * @data_len: length of the data attached to the inode
369  * @data: inode's data
370  *
371  * @ui_mutex exists for two main reasons. At first it prevents inodes from
372  * being written back while UBIFS changing them, being in the middle of an VFS
373  * operation. This way UBIFS makes sure the inode fields are consistent. For
374  * example, in 'ubifs_rename()' we change 3 inodes simultaneously, and
375  * write-back must not write any of them before we have finished.
376  *
377  * The second reason is budgeting - UBIFS has to budget all operations. If an
378  * operation is going to mark an inode dirty, it has to allocate budget for
379  * this. It cannot just mark it dirty because there is no guarantee there will
380  * be enough flash space to write the inode back later. This means UBIFS has
381  * to have full control over inode "clean <-> dirty" transitions (and pages
382  * actually). But unfortunately, VFS marks inodes dirty in many places, and it
383  * does not ask the file-system if it is allowed to do so (there is a notifier,
384  * but it is not enough), i.e., there is no mechanism to synchronize with this.
385  * So UBIFS has its own inode dirty flag and its own mutex to serialize
386  * "clean <-> dirty" transitions.
387  *
388  * The @synced_i_size field is used to make sure we never write pages which are
389  * beyond last synchronized inode size. See 'ubifs_writepage()' for more
390  * information.
391  *
392  * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses
393  * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot
394  * make sure @inode->i_size is always changed under @ui_mutex, because it
395  * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would
396  * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields
397  * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one
398  * could consider to rework locking and base it on "shadow" fields.
399  */
400 struct ubifs_inode {
401 	struct inode vfs_inode;
402 	unsigned long long creat_sqnum;
403 	unsigned long long del_cmtno;
404 	unsigned int xattr_size;
405 	unsigned int xattr_cnt;
406 	unsigned int xattr_names;
407 	unsigned int dirty:1;
408 	unsigned int xattr:1;
409 	unsigned int bulk_read:1;
410 	unsigned int compr_type:2;
411 	struct mutex ui_mutex;
412 	spinlock_t ui_lock;
413 	loff_t synced_i_size;
414 	loff_t ui_size;
415 	int flags;
416 	pgoff_t last_page_read;
417 	pgoff_t read_in_a_row;
418 	int data_len;
419 	void *data;
420 };
421 
422 /**
423  * struct ubifs_unclean_leb - records a LEB recovered under read-only mode.
424  * @list: list
425  * @lnum: LEB number of recovered LEB
426  * @endpt: offset where recovery ended
427  *
428  * This structure records a LEB identified during recovery that needs to be
429  * cleaned but was not because UBIFS was mounted read-only. The information
430  * is used to clean the LEB when remounting to read-write mode.
431  */
432 struct ubifs_unclean_leb {
433 	struct list_head list;
434 	int lnum;
435 	int endpt;
436 };
437 
438 /*
439  * LEB properties flags.
440  *
441  * LPROPS_UNCAT: not categorized
442  * LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index
443  * LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index
444  * LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index
445  * LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs
446  * LPROPS_EMPTY: LEB is empty, not taken
447  * LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken
448  * LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken
449  * LPROPS_CAT_MASK: mask for the LEB categories above
450  * LPROPS_TAKEN: LEB was taken (this flag is not saved on the media)
451  * LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash)
452  */
453 enum {
454 	LPROPS_UNCAT     =  0,
455 	LPROPS_DIRTY     =  1,
456 	LPROPS_DIRTY_IDX =  2,
457 	LPROPS_FREE      =  3,
458 	LPROPS_HEAP_CNT  =  3,
459 	LPROPS_EMPTY     =  4,
460 	LPROPS_FREEABLE  =  5,
461 	LPROPS_FRDI_IDX  =  6,
462 	LPROPS_CAT_MASK  = 15,
463 	LPROPS_TAKEN     = 16,
464 	LPROPS_INDEX     = 32,
465 };
466 
467 /**
468  * struct ubifs_lprops - logical eraseblock properties.
469  * @free: amount of free space in bytes
470  * @dirty: amount of dirty space in bytes
471  * @flags: LEB properties flags (see above)
472  * @lnum: LEB number
473  * @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE)
474  * @hpos: heap position in heap of same-category lprops (other categories)
475  */
476 struct ubifs_lprops {
477 	int free;
478 	int dirty;
479 	int flags;
480 	int lnum;
481 	union {
482 		struct list_head list;
483 		int hpos;
484 	};
485 };
486 
487 /**
488  * struct ubifs_lpt_lprops - LPT logical eraseblock properties.
489  * @free: amount of free space in bytes
490  * @dirty: amount of dirty space in bytes
491  * @tgc: trivial GC flag (1 => unmap after commit end)
492  * @cmt: commit flag (1 => reserved for commit)
493  */
494 struct ubifs_lpt_lprops {
495 	int free;
496 	int dirty;
497 	unsigned tgc:1;
498 	unsigned cmt:1;
499 };
500 
501 /**
502  * struct ubifs_lp_stats - statistics of eraseblocks in the main area.
503  * @empty_lebs: number of empty LEBs
504  * @taken_empty_lebs: number of taken LEBs
505  * @idx_lebs: number of indexing LEBs
506  * @total_free: total free space in bytes (includes all LEBs)
507  * @total_dirty: total dirty space in bytes (includes all LEBs)
508  * @total_used: total used space in bytes (does not include index LEBs)
509  * @total_dead: total dead space in bytes (does not include index LEBs)
510  * @total_dark: total dark space in bytes (does not include index LEBs)
511  *
512  * The @taken_empty_lebs field counts the LEBs that are in the transient state
513  * of having been "taken" for use but not yet written to. @taken_empty_lebs is
514  * needed to account correctly for @gc_lnum, otherwise @empty_lebs could be
515  * used by itself (in which case 'unused_lebs' would be a better name). In the
516  * case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained
517  * by GC, but unlike other empty LEBs that are "taken", it may not be written
518  * straight away (i.e. before the next commit start or unmount), so either
519  * @gc_lnum must be specially accounted for, or the current approach followed
520  * i.e. count it under @taken_empty_lebs.
521  *
522  * @empty_lebs includes @taken_empty_lebs.
523  *
524  * @total_used, @total_dead and @total_dark fields do not account indexing
525  * LEBs.
526  */
527 struct ubifs_lp_stats {
528 	int empty_lebs;
529 	int taken_empty_lebs;
530 	int idx_lebs;
531 	long long total_free;
532 	long long total_dirty;
533 	long long total_used;
534 	long long total_dead;
535 	long long total_dark;
536 };
537 
538 struct ubifs_nnode;
539 
540 /**
541  * struct ubifs_cnode - LEB Properties Tree common node.
542  * @parent: parent nnode
543  * @cnext: next cnode to commit
544  * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
545  * @iip: index in parent
546  * @level: level in the tree (zero for pnodes, greater than zero for nnodes)
547  * @num: node number
548  */
549 struct ubifs_cnode {
550 	struct ubifs_nnode *parent;
551 	struct ubifs_cnode *cnext;
552 	unsigned long flags;
553 	int iip;
554 	int level;
555 	int num;
556 };
557 
558 /**
559  * struct ubifs_pnode - LEB Properties Tree leaf node.
560  * @parent: parent nnode
561  * @cnext: next cnode to commit
562  * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
563  * @iip: index in parent
564  * @level: level in the tree (always zero for pnodes)
565  * @num: node number
566  * @lprops: LEB properties array
567  */
568 struct ubifs_pnode {
569 	struct ubifs_nnode *parent;
570 	struct ubifs_cnode *cnext;
571 	unsigned long flags;
572 	int iip;
573 	int level;
574 	int num;
575 	struct ubifs_lprops lprops[UBIFS_LPT_FANOUT];
576 };
577 
578 /**
579  * struct ubifs_nbranch - LEB Properties Tree internal node branch.
580  * @lnum: LEB number of child
581  * @offs: offset of child
582  * @nnode: nnode child
583  * @pnode: pnode child
584  * @cnode: cnode child
585  */
586 struct ubifs_nbranch {
587 	int lnum;
588 	int offs;
589 	union {
590 		struct ubifs_nnode *nnode;
591 		struct ubifs_pnode *pnode;
592 		struct ubifs_cnode *cnode;
593 	};
594 };
595 
596 /**
597  * struct ubifs_nnode - LEB Properties Tree internal node.
598  * @parent: parent nnode
599  * @cnext: next cnode to commit
600  * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
601  * @iip: index in parent
602  * @level: level in the tree (always greater than zero for nnodes)
603  * @num: node number
604  * @nbranch: branches to child nodes
605  */
606 struct ubifs_nnode {
607 	struct ubifs_nnode *parent;
608 	struct ubifs_cnode *cnext;
609 	unsigned long flags;
610 	int iip;
611 	int level;
612 	int num;
613 	struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT];
614 };
615 
616 /**
617  * struct ubifs_lpt_heap - heap of categorized lprops.
618  * @arr: heap array
619  * @cnt: number in heap
620  * @max_cnt: maximum number allowed in heap
621  *
622  * There are %LPROPS_HEAP_CNT heaps.
623  */
624 struct ubifs_lpt_heap {
625 	struct ubifs_lprops **arr;
626 	int cnt;
627 	int max_cnt;
628 };
629 
630 /*
631  * Return codes for LPT scan callback function.
632  *
633  * LPT_SCAN_CONTINUE: continue scanning
634  * LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory
635  * LPT_SCAN_STOP: stop scanning
636  */
637 enum {
638 	LPT_SCAN_CONTINUE = 0,
639 	LPT_SCAN_ADD = 1,
640 	LPT_SCAN_STOP = 2,
641 };
642 
643 struct ubifs_info;
644 
645 /* Callback used by the 'ubifs_lpt_scan_nolock()' function */
646 typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
647 				       const struct ubifs_lprops *lprops,
648 				       int in_tree, void *data);
649 
650 /**
651  * struct ubifs_wbuf - UBIFS write-buffer.
652  * @c: UBIFS file-system description object
653  * @buf: write-buffer (of min. flash I/O unit size)
654  * @lnum: logical eraseblock number the write-buffer points to
655  * @offs: write-buffer offset in this logical eraseblock
656  * @avail: number of bytes available in the write-buffer
657  * @used:  number of used bytes in the write-buffer
658  * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
659  * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
660  *         up by 'mutex_lock_nested()).
661  * @sync_callback: write-buffer synchronization callback
662  * @io_mutex: serializes write-buffer I/O
663  * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes
664  *        fields
665  * @timer: write-buffer timer
666  * @no_timer: non-zero if this write-buffer does not have a timer
667  * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing
668  * @next_ino: points to the next position of the following inode number
669  * @inodes: stores the inode numbers of the nodes which are in wbuf
670  *
671  * The write-buffer synchronization callback is called when the write-buffer is
672  * synchronized in order to notify how much space was wasted due to
673  * write-buffer padding and how much free space is left in the LEB.
674  *
675  * Note: the fields @buf, @lnum, @offs, @avail and @used can be read under
676  * spin-lock or mutex because they are written under both mutex and spin-lock.
677  * @buf is appended to under mutex but overwritten under both mutex and
678  * spin-lock. Thus the data between @buf and @buf + @used can be read under
679  * spinlock.
680  */
681 struct ubifs_wbuf {
682 	struct ubifs_info *c;
683 	void *buf;
684 	int lnum;
685 	int offs;
686 	int avail;
687 	int used;
688 	int size;
689 	int jhead;
690 	int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
691 	struct mutex io_mutex;
692 	spinlock_t lock;
693 	struct hrtimer timer;
694 	unsigned int no_timer:1;
695 	unsigned int need_sync:1;
696 	int next_ino;
697 	ino_t *inodes;
698 };
699 
700 /**
701  * struct ubifs_bud - bud logical eraseblock.
702  * @lnum: logical eraseblock number
703  * @start: where the (uncommitted) bud data starts
704  * @jhead: journal head number this bud belongs to
705  * @list: link in the list buds belonging to the same journal head
706  * @rb: link in the tree of all buds
707  * @log_hash: the log hash from the commit start node up to this bud
708  */
709 struct ubifs_bud {
710 	int lnum;
711 	int start;
712 	int jhead;
713 	struct list_head list;
714 	struct rb_node rb;
715 	struct shash_desc *log_hash;
716 };
717 
718 /**
719  * struct ubifs_jhead - journal head.
720  * @wbuf: head's write-buffer
721  * @buds_list: list of bud LEBs belonging to this journal head
722  * @grouped: non-zero if UBIFS groups nodes when writing to this journal head
723  * @log_hash: the log hash from the commit start node up to this journal head
724  *
725  * Note, the @buds list is protected by the @c->buds_lock.
726  */
727 struct ubifs_jhead {
728 	struct ubifs_wbuf wbuf;
729 	struct list_head buds_list;
730 	unsigned int grouped:1;
731 	struct shash_desc *log_hash;
732 };
733 
734 /**
735  * struct ubifs_zbranch - key/coordinate/length branch stored in znodes.
736  * @key: key
737  * @znode: znode address in memory
738  * @lnum: LEB number of the target node (indexing node or data node)
739  * @offs: target node offset within @lnum
740  * @len: target node length
741  * @hash: the hash of the target node
742  */
743 struct ubifs_zbranch {
744 	union ubifs_key key;
745 	union {
746 		struct ubifs_znode *znode;
747 		void *leaf;
748 	};
749 	int lnum;
750 	int offs;
751 	int len;
752 	u8 hash[UBIFS_HASH_ARR_SZ];
753 };
754 
755 /**
756  * struct ubifs_znode - in-memory representation of an indexing node.
757  * @parent: parent znode or NULL if it is the root
758  * @cnext: next znode to commit
759  * @cparent: parent node for this commit
760  * @ciip: index in cparent's zbranch array
761  * @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE)
762  * @time: last access time (seconds)
763  * @level: level of the entry in the TNC tree
764  * @child_cnt: count of child znodes
765  * @iip: index in parent's zbranch array
766  * @alt: lower bound of key range has altered i.e. child inserted at slot 0
767  * @lnum: LEB number of the corresponding indexing node
768  * @offs: offset of the corresponding indexing node
769  * @len: length  of the corresponding indexing node
770  * @zbranch: array of znode branches (@c->fanout elements)
771  *
772  * Note! The @lnum, @offs, and @len fields are not really needed - we have them
773  * only for internal consistency check. They could be removed to save some RAM.
774  */
775 struct ubifs_znode {
776 	struct ubifs_znode *parent;
777 	struct ubifs_znode *cnext;
778 	struct ubifs_znode *cparent;
779 	int ciip;
780 	unsigned long flags;
781 	time64_t time;
782 	int level;
783 	int child_cnt;
784 	int iip;
785 	int alt;
786 	int lnum;
787 	int offs;
788 	int len;
789 	struct ubifs_zbranch zbranch[];
790 };
791 
792 /**
793  * struct bu_info - bulk-read information.
794  * @key: first data node key
795  * @zbranch: zbranches of data nodes to bulk read
796  * @buf: buffer to read into
797  * @buf_len: buffer length
798  * @gc_seq: GC sequence number to detect races with GC
799  * @cnt: number of data nodes for bulk read
800  * @blk_cnt: number of data blocks including holes
801  * @oef: end of file reached
802  */
803 struct bu_info {
804 	union ubifs_key key;
805 	struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ];
806 	void *buf;
807 	int buf_len;
808 	int gc_seq;
809 	int cnt;
810 	int blk_cnt;
811 	int eof;
812 };
813 
814 /**
815  * struct ubifs_node_range - node length range description data structure.
816  * @len: fixed node length
817  * @min_len: minimum possible node length
818  * @max_len: maximum possible node length
819  *
820  * If @max_len is %0, the node has fixed length @len.
821  */
822 struct ubifs_node_range {
823 	union {
824 		int len;
825 		int min_len;
826 	};
827 	int max_len;
828 };
829 
830 /**
831  * struct ubifs_compressor - UBIFS compressor description structure.
832  * @compr_type: compressor type (%UBIFS_COMPR_LZO, etc)
833  * @cc: cryptoapi compressor handle
834  * @comp_mutex: mutex used during compression
835  * @decomp_mutex: mutex used during decompression
836  * @name: compressor name
837  * @capi_name: cryptoapi compressor name
838  */
839 struct ubifs_compressor {
840 	int compr_type;
841 	struct crypto_comp *cc;
842 	struct mutex *comp_mutex;
843 	struct mutex *decomp_mutex;
844 	const char *name;
845 	const char *capi_name;
846 };
847 
848 /**
849  * struct ubifs_budget_req - budget requirements of an operation.
850  *
851  * @fast: non-zero if the budgeting should try to acquire budget quickly and
852  *        should not try to call write-back
853  * @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields
854  *               have to be re-calculated
855  * @new_page: non-zero if the operation adds a new page
856  * @dirtied_page: non-zero if the operation makes a page dirty
857  * @new_dent: non-zero if the operation adds a new directory entry
858  * @mod_dent: non-zero if the operation removes or modifies an existing
859  *            directory entry
860  * @new_ino: non-zero if the operation adds a new inode
861  * @new_ino_d: how much data newly created inode contains
862  * @dirtied_ino: how many inodes the operation makes dirty
863  * @dirtied_ino_d: how much data dirtied inode contains
864  * @idx_growth: how much the index will supposedly grow
865  * @data_growth: how much new data the operation will supposedly add
866  * @dd_growth: how much data that makes other data dirty the operation will
867  *             supposedly add
868  *
869  * @idx_growth, @data_growth and @dd_growth are not used in budget request. The
870  * budgeting subsystem caches index and data growth values there to avoid
871  * re-calculating them when the budget is released. However, if @idx_growth is
872  * %-1, it is calculated by the release function using other fields.
873  *
874  * An inode may contain 4KiB of data at max., thus the widths of @new_ino_d
875  * is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made
876  * dirty by the re-name operation.
877  *
878  * Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to
879  * make sure the amount of inode data which contribute to @new_ino_d and
880  * @dirtied_ino_d fields are aligned.
881  */
882 struct ubifs_budget_req {
883 	unsigned int fast:1;
884 	unsigned int recalculate:1;
885 #ifndef UBIFS_DEBUG
886 	unsigned int new_page:1;
887 	unsigned int dirtied_page:1;
888 	unsigned int new_dent:1;
889 	unsigned int mod_dent:1;
890 	unsigned int new_ino:1;
891 	unsigned int new_ino_d:13;
892 	unsigned int dirtied_ino:4;
893 	unsigned int dirtied_ino_d:15;
894 #else
895 	/* Not bit-fields to check for overflows */
896 	unsigned int new_page;
897 	unsigned int dirtied_page;
898 	unsigned int new_dent;
899 	unsigned int mod_dent;
900 	unsigned int new_ino;
901 	unsigned int new_ino_d;
902 	unsigned int dirtied_ino;
903 	unsigned int dirtied_ino_d;
904 #endif
905 	int idx_growth;
906 	int data_growth;
907 	int dd_growth;
908 };
909 
910 /**
911  * struct ubifs_orphan - stores the inode number of an orphan.
912  * @rb: rb-tree node of rb-tree of orphans sorted by inode number
913  * @list: list head of list of orphans in order added
914  * @new_list: list head of list of orphans added since the last commit
915  * @child_list: list of xattr childs if this orphan hosts xattrs, list head
916  * if this orphan is a xattr, not used otherwise.
917  * @cnext: next orphan to commit
918  * @dnext: next orphan to delete
919  * @inum: inode number
920  * @new: %1 => added since the last commit, otherwise %0
921  * @cmt: %1 => commit pending, otherwise %0
922  * @del: %1 => delete pending, otherwise %0
923  */
924 struct ubifs_orphan {
925 	struct rb_node rb;
926 	struct list_head list;
927 	struct list_head new_list;
928 	struct list_head child_list;
929 	struct ubifs_orphan *cnext;
930 	struct ubifs_orphan *dnext;
931 	ino_t inum;
932 	unsigned new:1;
933 	unsigned cmt:1;
934 	unsigned del:1;
935 };
936 
937 /**
938  * struct ubifs_mount_opts - UBIFS-specific mount options information.
939  * @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast)
940  * @bulk_read: enable/disable bulk-reads (%0 default, %1 disable, %2 enable)
941  * @chk_data_crc: enable/disable CRC data checking when reading data nodes
942  *                (%0 default, %1 disable, %2 enable)
943  * @override_compr: override default compressor (%0 - do not override and use
944  *                  superblock compressor, %1 - override and use compressor
945  *                  specified in @compr_type)
946  * @compr_type: compressor type to override the superblock compressor with
947  *              (%UBIFS_COMPR_NONE, etc)
948  */
949 struct ubifs_mount_opts {
950 	unsigned int unmount_mode:2;
951 	unsigned int bulk_read:2;
952 	unsigned int chk_data_crc:2;
953 	unsigned int override_compr:1;
954 	unsigned int compr_type:2;
955 };
956 
957 /**
958  * struct ubifs_budg_info - UBIFS budgeting information.
959  * @idx_growth: amount of bytes budgeted for index growth
960  * @data_growth: amount of bytes budgeted for cached data
961  * @dd_growth: amount of bytes budgeted for cached data that will make
962  *             other data dirty
963  * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but
964  *                   which still have to be taken into account because the index
965  *                   has not been committed so far
966  * @old_idx_sz: size of index on flash
967  * @min_idx_lebs: minimum number of LEBs required for the index
968  * @nospace: non-zero if the file-system does not have flash space (used as
969  *           optimization)
970  * @nospace_rp: the same as @nospace, but additionally means that even reserved
971  *              pool is full
972  * @page_budget: budget for a page (constant, never changed after mount)
973  * @inode_budget: budget for an inode (constant, never changed after mount)
974  * @dent_budget: budget for a directory entry (constant, never changed after
975  *               mount)
976  */
977 struct ubifs_budg_info {
978 	long long idx_growth;
979 	long long data_growth;
980 	long long dd_growth;
981 	long long uncommitted_idx;
982 	unsigned long long old_idx_sz;
983 	int min_idx_lebs;
984 	unsigned int nospace:1;
985 	unsigned int nospace_rp:1;
986 	int page_budget;
987 	int inode_budget;
988 	int dent_budget;
989 };
990 
991 struct ubifs_debug_info;
992 
993 /**
994  * struct ubifs_info - UBIFS file-system description data structure
995  * (per-superblock).
996  * @vfs_sb: VFS @struct super_block object
997  * @sup_node: The super block node as read from the device
998  *
999  * @highest_inum: highest used inode number
1000  * @max_sqnum: current global sequence number
1001  * @cmt_no: commit number of the last successfully completed commit, protected
1002  *          by @commit_sem
1003  * @cnt_lock: protects @highest_inum and @max_sqnum counters
1004  * @fmt_version: UBIFS on-flash format version
1005  * @ro_compat_version: R/O compatibility version
1006  * @uuid: UUID from super block
1007  *
1008  * @lhead_lnum: log head logical eraseblock number
1009  * @lhead_offs: log head offset
1010  * @ltail_lnum: log tail logical eraseblock number (offset is always 0)
1011  * @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and
1012  *             @bud_bytes
1013  * @min_log_bytes: minimum required number of bytes in the log
1014  * @cmt_bud_bytes: used during commit to temporarily amount of bytes in
1015  *                 committed buds
1016  *
1017  * @buds: tree of all buds indexed by bud LEB number
1018  * @bud_bytes: how many bytes of flash is used by buds
1019  * @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud
1020  *             lists
1021  * @jhead_cnt: count of journal heads
1022  * @jheads: journal heads (head zero is base head)
1023  * @max_bud_bytes: maximum number of bytes allowed in buds
1024  * @bg_bud_bytes: number of bud bytes when background commit is initiated
1025  * @old_buds: buds to be released after commit ends
1026  * @max_bud_cnt: maximum number of buds
1027  *
1028  * @commit_sem: synchronizes committer with other processes
1029  * @cmt_state: commit state
1030  * @cs_lock: commit state lock
1031  * @cmt_wq: wait queue to sleep on if the log is full and a commit is running
1032  *
1033  * @big_lpt: flag that LPT is too big to write whole during commit
1034  * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up
1035  * @double_hash: flag indicating that we can do lookups by hash
1036  * @encrypted: flag indicating that this file system contains encrypted files
1037  * @no_chk_data_crc: do not check CRCs when reading data nodes (except during
1038  *                   recovery)
1039  * @bulk_read: enable bulk-reads
1040  * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
1041  * @rw_incompat: the media is not R/W compatible
1042  * @assert_action: action to take when a ubifs_assert() fails
1043  * @authenticated: flag indigating the FS is mounted in authenticated mode
1044  *
1045  * @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and
1046  *             @calc_idx_sz
1047  * @zroot: zbranch which points to the root index node and znode
1048  * @cnext: next znode to commit
1049  * @enext: next znode to commit to empty space
1050  * @gap_lebs: array of LEBs used by the in-gaps commit method
1051  * @cbuf: commit buffer
1052  * @ileb_buf: buffer for commit in-the-gaps method
1053  * @ileb_len: length of data in ileb_buf
1054  * @ihead_lnum: LEB number of index head
1055  * @ihead_offs: offset of index head
1056  * @ilebs: pre-allocated index LEBs
1057  * @ileb_cnt: number of pre-allocated index LEBs
1058  * @ileb_nxt: next pre-allocated index LEBs
1059  * @old_idx: tree of index nodes obsoleted since the last commit start
1060  * @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c
1061  *
1062  * @mst_node: master node
1063  * @mst_offs: offset of valid master node
1064  *
1065  * @max_bu_buf_len: maximum bulk-read buffer length
1066  * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
1067  * @bu: pre-allocated bulk-read information
1068  *
1069  * @write_reserve_mutex: protects @write_reserve_buf
1070  * @write_reserve_buf: on the write path we allocate memory, which might
1071  *                     sometimes be unavailable, in which case we use this
1072  *                     write reserve buffer
1073  *
1074  * @log_lebs: number of logical eraseblocks in the log
1075  * @log_bytes: log size in bytes
1076  * @log_last: last LEB of the log
1077  * @lpt_lebs: number of LEBs used for lprops table
1078  * @lpt_first: first LEB of the lprops table area
1079  * @lpt_last: last LEB of the lprops table area
1080  * @orph_lebs: number of LEBs used for the orphan area
1081  * @orph_first: first LEB of the orphan area
1082  * @orph_last: last LEB of the orphan area
1083  * @main_lebs: count of LEBs in the main area
1084  * @main_first: first LEB of the main area
1085  * @main_bytes: main area size in bytes
1086  *
1087  * @key_hash_type: type of the key hash
1088  * @key_hash: direntry key hash function
1089  * @key_fmt: key format
1090  * @key_len: key length
1091  * @hash_len: The length of the index node hashes
1092  * @fanout: fanout of the index tree (number of links per indexing node)
1093  *
1094  * @min_io_size: minimal input/output unit size
1095  * @min_io_shift: number of bits in @min_io_size minus one
1096  * @max_write_size: maximum amount of bytes the underlying flash can write at a
1097  *                  time (MTD write buffer size)
1098  * @max_write_shift: number of bits in @max_write_size minus one
1099  * @leb_size: logical eraseblock size in bytes
1100  * @leb_start: starting offset of logical eraseblocks within physical
1101  *             eraseblocks
1102  * @half_leb_size: half LEB size
1103  * @idx_leb_size: how many bytes of an LEB are effectively available when it is
1104  *                used to store indexing nodes (@leb_size - @max_idx_node_sz)
1105  * @leb_cnt: count of logical eraseblocks
1106  * @max_leb_cnt: maximum count of logical eraseblocks
1107  * @ro_media: the underlying UBI volume is read-only
1108  * @ro_mount: the file-system was mounted as read-only
1109  * @ro_error: UBIFS switched to R/O mode because an error happened
1110  *
1111  * @dirty_pg_cnt: number of dirty pages (not used)
1112  * @dirty_zn_cnt: number of dirty znodes
1113  * @clean_zn_cnt: number of clean znodes
1114  *
1115  * @space_lock: protects @bi and @lst
1116  * @lst: lprops statistics
1117  * @bi: budgeting information
1118  * @calc_idx_sz: temporary variable which is used to calculate new index size
1119  *               (contains accurate new index size at end of TNC commit start)
1120  *
1121  * @ref_node_alsz: size of the LEB reference node aligned to the min. flash
1122  *                 I/O unit
1123  * @mst_node_alsz: master node aligned size
1124  * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary
1125  * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary
1126  * @max_inode_sz: maximum possible inode size in bytes
1127  * @max_znode_sz: size of znode in bytes
1128  *
1129  * @leb_overhead: how many bytes are wasted in an LEB when it is filled with
1130  *                data nodes of maximum size - used in free space reporting
1131  * @dead_wm: LEB dead space watermark
1132  * @dark_wm: LEB dark space watermark
1133  * @block_cnt: count of 4KiB blocks on the FS
1134  *
1135  * @ranges: UBIFS node length ranges
1136  * @ubi: UBI volume descriptor
1137  * @di: UBI device information
1138  * @vi: UBI volume information
1139  *
1140  * @orph_tree: rb-tree of orphan inode numbers
1141  * @orph_list: list of orphan inode numbers in order added
1142  * @orph_new: list of orphan inode numbers added since last commit
1143  * @orph_cnext: next orphan to commit
1144  * @orph_dnext: next orphan to delete
1145  * @orphan_lock: lock for orph_tree and orph_new
1146  * @orph_buf: buffer for orphan nodes
1147  * @new_orphans: number of orphans since last commit
1148  * @cmt_orphans: number of orphans being committed
1149  * @tot_orphans: number of orphans in the rb_tree
1150  * @max_orphans: maximum number of orphans allowed
1151  * @ohead_lnum: orphan head LEB number
1152  * @ohead_offs: orphan head offset
1153  * @no_orphs: non-zero if there are no orphans
1154  *
1155  * @bgt: UBIFS background thread
1156  * @bgt_name: background thread name
1157  * @need_bgt: if background thread should run
1158  * @need_wbuf_sync: if write-buffers have to be synchronized
1159  *
1160  * @gc_lnum: LEB number used for garbage collection
1161  * @sbuf: a buffer of LEB size used by GC and replay for scanning
1162  * @idx_gc: list of index LEBs that have been garbage collected
1163  * @idx_gc_cnt: number of elements on the idx_gc list
1164  * @gc_seq: incremented for every non-index LEB garbage collected
1165  * @gced_lnum: last non-index LEB that was garbage collected
1166  *
1167  * @infos_list: links all 'ubifs_info' objects
1168  * @umount_mutex: serializes shrinker and un-mount
1169  * @shrinker_run_no: shrinker run number
1170  *
1171  * @space_bits: number of bits needed to record free or dirty space
1172  * @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT
1173  * @lpt_offs_bits: number of bits needed to record an offset in the LPT
1174  * @lpt_spc_bits: number of bits needed to space in the LPT
1175  * @pcnt_bits: number of bits needed to record pnode or nnode number
1176  * @lnum_bits: number of bits needed to record LEB number
1177  * @nnode_sz: size of on-flash nnode
1178  * @pnode_sz: size of on-flash pnode
1179  * @ltab_sz: size of on-flash LPT lprops table
1180  * @lsave_sz: size of on-flash LPT save table
1181  * @pnode_cnt: number of pnodes
1182  * @nnode_cnt: number of nnodes
1183  * @lpt_hght: height of the LPT
1184  * @pnodes_have: number of pnodes in memory
1185  *
1186  * @lp_mutex: protects lprops table and all the other lprops-related fields
1187  * @lpt_lnum: LEB number of the root nnode of the LPT
1188  * @lpt_offs: offset of the root nnode of the LPT
1189  * @nhead_lnum: LEB number of LPT head
1190  * @nhead_offs: offset of LPT head
1191  * @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab
1192  * @dirty_nn_cnt: number of dirty nnodes
1193  * @dirty_pn_cnt: number of dirty pnodes
1194  * @check_lpt_free: flag that indicates LPT GC may be needed
1195  * @lpt_sz: LPT size
1196  * @lpt_nod_buf: buffer for an on-flash nnode or pnode
1197  * @lpt_buf: buffer of LEB size used by LPT
1198  * @nroot: address in memory of the root nnode of the LPT
1199  * @lpt_cnext: next LPT node to commit
1200  * @lpt_heap: array of heaps of categorized lprops
1201  * @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at
1202  *             previous commit start
1203  * @uncat_list: list of un-categorized LEBs
1204  * @empty_list: list of empty LEBs
1205  * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size)
1206  * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size)
1207  * @freeable_cnt: number of freeable LEBs in @freeable_list
1208  * @in_a_category_cnt: count of lprops which are in a certain category, which
1209  *                     basically meants that they were loaded from the flash
1210  *
1211  * @ltab_lnum: LEB number of LPT's own lprops table
1212  * @ltab_offs: offset of LPT's own lprops table
1213  * @ltab: LPT's own lprops table
1214  * @ltab_cmt: LPT's own lprops table (commit copy)
1215  * @lsave_cnt: number of LEB numbers in LPT's save table
1216  * @lsave_lnum: LEB number of LPT's save table
1217  * @lsave_offs: offset of LPT's save table
1218  * @lsave: LPT's save table
1219  * @lscan_lnum: LEB number of last LPT scan
1220  *
1221  * @rp_size: size of the reserved pool in bytes
1222  * @report_rp_size: size of the reserved pool reported to user-space
1223  * @rp_uid: reserved pool user ID
1224  * @rp_gid: reserved pool group ID
1225  *
1226  * @hash_tfm: the hash transformation used for hashing nodes
1227  * @hmac_tfm: the HMAC transformation for this filesystem
1228  * @hmac_desc_len: length of the HMAC used for authentication
1229  * @auth_key_name: the authentication key name
1230  * @auth_hash_name: the name of the hash algorithm used for authentication
1231  * @auth_hash_algo: the authentication hash used for this fs
1232  * @log_hash: the log hash from the commit start node up to the latest reference
1233  *            node.
1234  *
1235  * @empty: %1 if the UBI device is empty
1236  * @need_recovery: %1 if the file-system needs recovery
1237  * @replaying: %1 during journal replay
1238  * @mounting: %1 while mounting
1239  * @probing: %1 while attempting to mount if SB_SILENT mount flag is set
1240  * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
1241  * @replay_list: temporary list used during journal replay
1242  * @replay_buds: list of buds to replay
1243  * @cs_sqnum: sequence number of first node in the log (commit start node)
1244  * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
1245  *                    mode
1246  * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
1247  *                  FS to R/W mode
1248  * @size_tree: inode size information for recovery
1249  * @mount_opts: UBIFS-specific mount options
1250  *
1251  * @dbg: debugging-related information
1252  */
1253 struct ubifs_info {
1254 	struct super_block *vfs_sb;
1255 	struct ubifs_sb_node *sup_node;
1256 
1257 	ino_t highest_inum;
1258 	unsigned long long max_sqnum;
1259 	unsigned long long cmt_no;
1260 	spinlock_t cnt_lock;
1261 	int fmt_version;
1262 	int ro_compat_version;
1263 	unsigned char uuid[16];
1264 
1265 	int lhead_lnum;
1266 	int lhead_offs;
1267 	int ltail_lnum;
1268 	struct mutex log_mutex;
1269 	int min_log_bytes;
1270 	long long cmt_bud_bytes;
1271 
1272 	struct rb_root buds;
1273 	long long bud_bytes;
1274 	spinlock_t buds_lock;
1275 	int jhead_cnt;
1276 	struct ubifs_jhead *jheads;
1277 	long long max_bud_bytes;
1278 	long long bg_bud_bytes;
1279 	struct list_head old_buds;
1280 	int max_bud_cnt;
1281 
1282 	struct rw_semaphore commit_sem;
1283 	int cmt_state;
1284 	spinlock_t cs_lock;
1285 	wait_queue_head_t cmt_wq;
1286 
1287 	unsigned int big_lpt:1;
1288 	unsigned int space_fixup:1;
1289 	unsigned int double_hash:1;
1290 	unsigned int encrypted:1;
1291 	unsigned int no_chk_data_crc:1;
1292 	unsigned int bulk_read:1;
1293 	unsigned int default_compr:2;
1294 	unsigned int rw_incompat:1;
1295 	unsigned int assert_action:2;
1296 	unsigned int authenticated:1;
1297 	unsigned int superblock_need_write:1;
1298 
1299 	struct mutex tnc_mutex;
1300 	struct ubifs_zbranch zroot;
1301 	struct ubifs_znode *cnext;
1302 	struct ubifs_znode *enext;
1303 	int *gap_lebs;
1304 	void *cbuf;
1305 	void *ileb_buf;
1306 	int ileb_len;
1307 	int ihead_lnum;
1308 	int ihead_offs;
1309 	int *ilebs;
1310 	int ileb_cnt;
1311 	int ileb_nxt;
1312 	struct rb_root old_idx;
1313 	int *bottom_up_buf;
1314 
1315 	struct ubifs_mst_node *mst_node;
1316 	int mst_offs;
1317 
1318 	int max_bu_buf_len;
1319 	struct mutex bu_mutex;
1320 	struct bu_info bu;
1321 
1322 	struct mutex write_reserve_mutex;
1323 	void *write_reserve_buf;
1324 
1325 	int log_lebs;
1326 	long long log_bytes;
1327 	int log_last;
1328 	int lpt_lebs;
1329 	int lpt_first;
1330 	int lpt_last;
1331 	int orph_lebs;
1332 	int orph_first;
1333 	int orph_last;
1334 	int main_lebs;
1335 	int main_first;
1336 	long long main_bytes;
1337 
1338 	uint8_t key_hash_type;
1339 	uint32_t (*key_hash)(const char *str, int len);
1340 	int key_fmt;
1341 	int key_len;
1342 	int hash_len;
1343 	int fanout;
1344 
1345 	int min_io_size;
1346 	int min_io_shift;
1347 	int max_write_size;
1348 	int max_write_shift;
1349 	int leb_size;
1350 	int leb_start;
1351 	int half_leb_size;
1352 	int idx_leb_size;
1353 	int leb_cnt;
1354 	int max_leb_cnt;
1355 	unsigned int ro_media:1;
1356 	unsigned int ro_mount:1;
1357 	unsigned int ro_error:1;
1358 
1359 	atomic_long_t dirty_pg_cnt;
1360 	atomic_long_t dirty_zn_cnt;
1361 	atomic_long_t clean_zn_cnt;
1362 
1363 	spinlock_t space_lock;
1364 	struct ubifs_lp_stats lst;
1365 	struct ubifs_budg_info bi;
1366 	unsigned long long calc_idx_sz;
1367 
1368 	int ref_node_alsz;
1369 	int mst_node_alsz;
1370 	int min_idx_node_sz;
1371 	int max_idx_node_sz;
1372 	long long max_inode_sz;
1373 	int max_znode_sz;
1374 
1375 	int leb_overhead;
1376 	int dead_wm;
1377 	int dark_wm;
1378 	int block_cnt;
1379 
1380 	struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT];
1381 	struct ubi_volume_desc *ubi;
1382 	struct ubi_device_info di;
1383 	struct ubi_volume_info vi;
1384 
1385 	struct rb_root orph_tree;
1386 	struct list_head orph_list;
1387 	struct list_head orph_new;
1388 	struct ubifs_orphan *orph_cnext;
1389 	struct ubifs_orphan *orph_dnext;
1390 	spinlock_t orphan_lock;
1391 	void *orph_buf;
1392 	int new_orphans;
1393 	int cmt_orphans;
1394 	int tot_orphans;
1395 	int max_orphans;
1396 	int ohead_lnum;
1397 	int ohead_offs;
1398 	int no_orphs;
1399 
1400 	struct task_struct *bgt;
1401 	char bgt_name[sizeof(BGT_NAME_PATTERN) + 9];
1402 	int need_bgt;
1403 	int need_wbuf_sync;
1404 
1405 	int gc_lnum;
1406 	void *sbuf;
1407 	struct list_head idx_gc;
1408 	int idx_gc_cnt;
1409 	int gc_seq;
1410 	int gced_lnum;
1411 
1412 	struct list_head infos_list;
1413 	struct mutex umount_mutex;
1414 	unsigned int shrinker_run_no;
1415 
1416 	int space_bits;
1417 	int lpt_lnum_bits;
1418 	int lpt_offs_bits;
1419 	int lpt_spc_bits;
1420 	int pcnt_bits;
1421 	int lnum_bits;
1422 	int nnode_sz;
1423 	int pnode_sz;
1424 	int ltab_sz;
1425 	int lsave_sz;
1426 	int pnode_cnt;
1427 	int nnode_cnt;
1428 	int lpt_hght;
1429 	int pnodes_have;
1430 
1431 	struct mutex lp_mutex;
1432 	int lpt_lnum;
1433 	int lpt_offs;
1434 	int nhead_lnum;
1435 	int nhead_offs;
1436 	int lpt_drty_flgs;
1437 	int dirty_nn_cnt;
1438 	int dirty_pn_cnt;
1439 	int check_lpt_free;
1440 	long long lpt_sz;
1441 	void *lpt_nod_buf;
1442 	void *lpt_buf;
1443 	struct ubifs_nnode *nroot;
1444 	struct ubifs_cnode *lpt_cnext;
1445 	struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT];
1446 	struct ubifs_lpt_heap dirty_idx;
1447 	struct list_head uncat_list;
1448 	struct list_head empty_list;
1449 	struct list_head freeable_list;
1450 	struct list_head frdi_idx_list;
1451 	int freeable_cnt;
1452 	int in_a_category_cnt;
1453 
1454 	int ltab_lnum;
1455 	int ltab_offs;
1456 	struct ubifs_lpt_lprops *ltab;
1457 	struct ubifs_lpt_lprops *ltab_cmt;
1458 	int lsave_cnt;
1459 	int lsave_lnum;
1460 	int lsave_offs;
1461 	int *lsave;
1462 	int lscan_lnum;
1463 
1464 	long long rp_size;
1465 	long long report_rp_size;
1466 	kuid_t rp_uid;
1467 	kgid_t rp_gid;
1468 
1469 	struct crypto_shash *hash_tfm;
1470 	struct crypto_shash *hmac_tfm;
1471 	int hmac_desc_len;
1472 	char *auth_key_name;
1473 	char *auth_hash_name;
1474 	enum hash_algo auth_hash_algo;
1475 
1476 	struct shash_desc *log_hash;
1477 
1478 	/* The below fields are used only during mounting and re-mounting */
1479 	unsigned int empty:1;
1480 	unsigned int need_recovery:1;
1481 	unsigned int replaying:1;
1482 	unsigned int mounting:1;
1483 	unsigned int remounting_rw:1;
1484 	unsigned int probing:1;
1485 	struct list_head replay_list;
1486 	struct list_head replay_buds;
1487 	unsigned long long cs_sqnum;
1488 	struct list_head unclean_leb_list;
1489 	struct ubifs_mst_node *rcvrd_mst_node;
1490 	struct rb_root size_tree;
1491 	struct ubifs_mount_opts mount_opts;
1492 
1493 	struct ubifs_debug_info *dbg;
1494 };
1495 
1496 extern struct list_head ubifs_infos;
1497 extern spinlock_t ubifs_infos_lock;
1498 extern atomic_long_t ubifs_clean_zn_cnt;
1499 extern const struct super_operations ubifs_super_operations;
1500 extern const struct address_space_operations ubifs_file_address_operations;
1501 extern const struct file_operations ubifs_file_operations;
1502 extern const struct inode_operations ubifs_file_inode_operations;
1503 extern const struct file_operations ubifs_dir_operations;
1504 extern const struct inode_operations ubifs_dir_inode_operations;
1505 extern const struct inode_operations ubifs_symlink_inode_operations;
1506 extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
1507 
1508 /* auth.c */
1509 static inline int ubifs_authenticated(const struct ubifs_info *c)
1510 {
1511 	return (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) && c->authenticated;
1512 }
1513 
1514 struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c);
1515 static inline struct shash_desc *ubifs_hash_get_desc(const struct ubifs_info *c)
1516 {
1517 	return ubifs_authenticated(c) ? __ubifs_hash_get_desc(c) : NULL;
1518 }
1519 
1520 static inline int ubifs_shash_init(const struct ubifs_info *c,
1521 				   struct shash_desc *desc)
1522 {
1523 	if (ubifs_authenticated(c))
1524 		return crypto_shash_init(desc);
1525 	else
1526 		return 0;
1527 }
1528 
1529 static inline int ubifs_shash_update(const struct ubifs_info *c,
1530 				      struct shash_desc *desc, const void *buf,
1531 				      unsigned int len)
1532 {
1533 	int err = 0;
1534 
1535 	if (ubifs_authenticated(c)) {
1536 		err = crypto_shash_update(desc, buf, len);
1537 		if (err < 0)
1538 			return err;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static inline int ubifs_shash_final(const struct ubifs_info *c,
1545 				    struct shash_desc *desc, u8 *out)
1546 {
1547 	return ubifs_authenticated(c) ? crypto_shash_final(desc, out) : 0;
1548 }
1549 
1550 int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *buf,
1551 			  u8 *hash);
1552 static inline int ubifs_node_calc_hash(const struct ubifs_info *c,
1553 					const void *buf, u8 *hash)
1554 {
1555 	if (ubifs_authenticated(c))
1556 		return __ubifs_node_calc_hash(c, buf, hash);
1557 	else
1558 		return 0;
1559 }
1560 
1561 int ubifs_prepare_auth_node(struct ubifs_info *c, void *node,
1562 			     struct shash_desc *inhash);
1563 
1564 /**
1565  * ubifs_check_hash - compare two hashes
1566  * @c: UBIFS file-system description object
1567  * @expected: first hash
1568  * @got: second hash
1569  *
1570  * Compare two hashes @expected and @got. Returns 0 when they are equal, a
1571  * negative error code otherwise.
1572  */
1573 static inline int ubifs_check_hash(const struct ubifs_info *c,
1574 				   const u8 *expected, const u8 *got)
1575 {
1576 	return crypto_memneq(expected, got, c->hash_len);
1577 }
1578 
1579 /**
1580  * ubifs_check_hmac - compare two HMACs
1581  * @c: UBIFS file-system description object
1582  * @expected: first HMAC
1583  * @got: second HMAC
1584  *
1585  * Compare two hashes @expected and @got. Returns 0 when they are equal, a
1586  * negative error code otherwise.
1587  */
1588 static inline int ubifs_check_hmac(const struct ubifs_info *c,
1589 				   const u8 *expected, const u8 *got)
1590 {
1591 	return crypto_memneq(expected, got, c->hmac_desc_len);
1592 }
1593 
1594 void ubifs_bad_hash(const struct ubifs_info *c, const void *node,
1595 		    const u8 *hash, int lnum, int offs);
1596 
1597 int __ubifs_node_check_hash(const struct ubifs_info *c, const void *buf,
1598 			  const u8 *expected);
1599 static inline int ubifs_node_check_hash(const struct ubifs_info *c,
1600 					const void *buf, const u8 *expected)
1601 {
1602 	if (ubifs_authenticated(c))
1603 		return __ubifs_node_check_hash(c, buf, expected);
1604 	else
1605 		return 0;
1606 }
1607 
1608 int ubifs_init_authentication(struct ubifs_info *c);
1609 void __ubifs_exit_authentication(struct ubifs_info *c);
1610 static inline void ubifs_exit_authentication(struct ubifs_info *c)
1611 {
1612 	if (ubifs_authenticated(c))
1613 		__ubifs_exit_authentication(c);
1614 }
1615 
1616 /**
1617  * ubifs_branch_hash - returns a pointer to the hash of a branch
1618  * @c: UBIFS file-system description object
1619  * @br: branch to get the hash from
1620  *
1621  * This returns a pointer to the hash of a branch. Since the key already is a
1622  * dynamically sized object we cannot use a struct member here.
1623  */
1624 static inline u8 *ubifs_branch_hash(struct ubifs_info *c,
1625 				    struct ubifs_branch *br)
1626 {
1627 	return (void *)br + sizeof(*br) + c->key_len;
1628 }
1629 
1630 /**
1631  * ubifs_copy_hash - copy a hash
1632  * @c: UBIFS file-system description object
1633  * @from: source hash
1634  * @to: destination hash
1635  *
1636  * With authentication this copies a hash, otherwise does nothing.
1637  */
1638 static inline void ubifs_copy_hash(const struct ubifs_info *c, const u8 *from,
1639 				   u8 *to)
1640 {
1641 	if (ubifs_authenticated(c))
1642 		memcpy(to, from, c->hash_len);
1643 }
1644 
1645 int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf,
1646 			      int len, int ofs_hmac);
1647 static inline int ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf,
1648 					  int len, int ofs_hmac)
1649 {
1650 	if (ubifs_authenticated(c))
1651 		return __ubifs_node_insert_hmac(c, buf, len, ofs_hmac);
1652 	else
1653 		return 0;
1654 }
1655 
1656 int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *buf,
1657 			     int len, int ofs_hmac);
1658 static inline int ubifs_node_verify_hmac(const struct ubifs_info *c,
1659 					 const void *buf, int len, int ofs_hmac)
1660 {
1661 	if (ubifs_authenticated(c))
1662 		return __ubifs_node_verify_hmac(c, buf, len, ofs_hmac);
1663 	else
1664 		return 0;
1665 }
1666 
1667 /**
1668  * ubifs_auth_node_sz - returns the size of an authentication node
1669  * @c: UBIFS file-system description object
1670  *
1671  * This function returns the size of an authentication node which can
1672  * be 0 for unauthenticated filesystems or the real size of an auth node
1673  * authentication is enabled.
1674  */
1675 static inline int ubifs_auth_node_sz(const struct ubifs_info *c)
1676 {
1677 	if (ubifs_authenticated(c))
1678 		return sizeof(struct ubifs_auth_node) + c->hmac_desc_len;
1679 	else
1680 		return 0;
1681 }
1682 int ubifs_sb_verify_signature(struct ubifs_info *c,
1683 			      const struct ubifs_sb_node *sup);
1684 bool ubifs_hmac_zero(struct ubifs_info *c, const u8 *hmac);
1685 
1686 int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac);
1687 
1688 int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src,
1689 			     struct shash_desc *target);
1690 static inline int ubifs_shash_copy_state(const struct ubifs_info *c,
1691 					   struct shash_desc *src,
1692 					   struct shash_desc *target)
1693 {
1694 	if (ubifs_authenticated(c))
1695 		return __ubifs_shash_copy_state(c, src, target);
1696 	else
1697 		return 0;
1698 }
1699 
1700 /* io.c */
1701 void ubifs_ro_mode(struct ubifs_info *c, int err);
1702 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
1703 		   int len, int even_ebadmsg);
1704 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
1705 		    int len);
1706 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len);
1707 int ubifs_leb_unmap(struct ubifs_info *c, int lnum);
1708 int ubifs_leb_map(struct ubifs_info *c, int lnum);
1709 int ubifs_is_mapped(const struct ubifs_info *c, int lnum);
1710 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len);
1711 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs);
1712 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf);
1713 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1714 		    int lnum, int offs);
1715 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
1716 			 int lnum, int offs);
1717 int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum,
1718 		     int offs);
1719 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
1720 			  int offs, int hmac_offs);
1721 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
1722 		     int offs, int quiet, int must_chk_crc);
1723 void ubifs_init_node(struct ubifs_info *c, void *buf, int len, int pad);
1724 void ubifs_crc_node(struct ubifs_info *c, void *buf, int len);
1725 void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad);
1726 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
1727 			    int hmac_offs, int pad);
1728 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last);
1729 int ubifs_io_init(struct ubifs_info *c);
1730 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad);
1731 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf);
1732 int ubifs_bg_wbufs_sync(struct ubifs_info *c);
1733 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum);
1734 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode);
1735 
1736 /* scan.c */
1737 struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
1738 				  int offs, void *sbuf, int quiet);
1739 void ubifs_scan_destroy(struct ubifs_scan_leb *sleb);
1740 int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
1741 		      int offs, int quiet);
1742 struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
1743 					int offs, void *sbuf);
1744 void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
1745 		    int lnum, int offs);
1746 int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
1747 		   void *buf, int offs);
1748 void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
1749 			      void *buf);
1750 
1751 /* log.c */
1752 void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud);
1753 void ubifs_create_buds_lists(struct ubifs_info *c);
1754 int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs);
1755 struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum);
1756 struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum);
1757 int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum);
1758 int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum);
1759 int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum);
1760 int ubifs_consolidate_log(struct ubifs_info *c);
1761 
1762 /* journal.c */
1763 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
1764 		     const struct fscrypt_name *nm, const struct inode *inode,
1765 		     int deletion, int xent);
1766 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
1767 			 const union ubifs_key *key, const void *buf, int len);
1768 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode);
1769 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode);
1770 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1771 		      const struct inode *fst_inode,
1772 		      const struct fscrypt_name *fst_nm,
1773 		      const struct inode *snd_dir,
1774 		      const struct inode *snd_inode,
1775 		      const struct fscrypt_name *snd_nm, int sync);
1776 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1777 		     const struct inode *old_inode,
1778 		     const struct fscrypt_name *old_nm,
1779 		     const struct inode *new_dir,
1780 		     const struct inode *new_inode,
1781 		     const struct fscrypt_name *new_nm,
1782 		     const struct inode *whiteout, int sync);
1783 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1784 		       loff_t old_size, loff_t new_size);
1785 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1786 			   const struct inode *inode, const struct fscrypt_name *nm);
1787 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1,
1788 			   const struct inode *inode2);
1789 
1790 /* budget.c */
1791 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req);
1792 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req);
1793 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
1794 				      struct ubifs_inode *ui);
1795 int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode,
1796 			  struct ubifs_budget_req *req);
1797 void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode,
1798 				struct ubifs_budget_req *req);
1799 void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode,
1800 			 struct ubifs_budget_req *req);
1801 long long ubifs_get_free_space(struct ubifs_info *c);
1802 long long ubifs_get_free_space_nolock(struct ubifs_info *c);
1803 int ubifs_calc_min_idx_lebs(struct ubifs_info *c);
1804 void ubifs_convert_page_budget(struct ubifs_info *c);
1805 long long ubifs_reported_space(const struct ubifs_info *c, long long free);
1806 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs);
1807 
1808 /* find.c */
1809 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
1810 			  int squeeze);
1811 int ubifs_find_free_leb_for_idx(struct ubifs_info *c);
1812 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
1813 			 int min_space, int pick_free);
1814 int ubifs_find_dirty_idx_leb(struct ubifs_info *c);
1815 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c);
1816 
1817 /* tnc.c */
1818 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1819 			struct ubifs_znode **zn, int *n);
1820 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1821 			void *node, const struct fscrypt_name *nm);
1822 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1823 			void *node, uint32_t secondary_hash);
1824 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1825 		     void *node, int *lnum, int *offs);
1826 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
1827 		  int offs, int len, const u8 *hash);
1828 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
1829 		      int old_lnum, int old_offs, int lnum, int offs, int len);
1830 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
1831 		     int lnum, int offs, int len, const u8 *hash,
1832 		     const struct fscrypt_name *nm);
1833 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key);
1834 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
1835 			const struct fscrypt_name *nm);
1836 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
1837 			uint32_t cookie);
1838 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
1839 			   union ubifs_key *to_key);
1840 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum);
1841 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
1842 					   union ubifs_key *key,
1843 					   const struct fscrypt_name *nm);
1844 void ubifs_tnc_close(struct ubifs_info *c);
1845 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
1846 		       int lnum, int offs, int is_idx);
1847 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
1848 			 int lnum, int offs);
1849 /* Shared by tnc.c for tnc_commit.c */
1850 void destroy_old_idx(struct ubifs_info *c);
1851 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
1852 		       int lnum, int offs);
1853 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode);
1854 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu);
1855 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu);
1856 
1857 /* tnc_misc.c */
1858 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
1859 					      struct ubifs_znode *zr,
1860 					      struct ubifs_znode *znode);
1861 int ubifs_search_zbranch(const struct ubifs_info *c,
1862 			 const struct ubifs_znode *znode,
1863 			 const union ubifs_key *key, int *n);
1864 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode);
1865 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
1866 					     struct ubifs_znode *znode);
1867 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
1868 			       struct ubifs_znode *zr);
1869 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
1870 				     struct ubifs_zbranch *zbr,
1871 				     struct ubifs_znode *parent, int iip);
1872 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1873 			void *node);
1874 
1875 /* tnc_commit.c */
1876 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
1877 int ubifs_tnc_end_commit(struct ubifs_info *c);
1878 
1879 /* shrinker.c */
1880 unsigned long ubifs_shrink_scan(struct shrinker *shrink,
1881 				struct shrink_control *sc);
1882 unsigned long ubifs_shrink_count(struct shrinker *shrink,
1883 				 struct shrink_control *sc);
1884 
1885 /* commit.c */
1886 int ubifs_bg_thread(void *info);
1887 void ubifs_commit_required(struct ubifs_info *c);
1888 void ubifs_request_bg_commit(struct ubifs_info *c);
1889 int ubifs_run_commit(struct ubifs_info *c);
1890 void ubifs_recovery_commit(struct ubifs_info *c);
1891 int ubifs_gc_should_commit(struct ubifs_info *c);
1892 void ubifs_wait_for_commit(struct ubifs_info *c);
1893 
1894 /* master.c */
1895 int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2);
1896 int ubifs_read_master(struct ubifs_info *c);
1897 int ubifs_write_master(struct ubifs_info *c);
1898 
1899 /* sb.c */
1900 int ubifs_read_superblock(struct ubifs_info *c);
1901 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup);
1902 int ubifs_fixup_free_space(struct ubifs_info *c);
1903 int ubifs_enable_encryption(struct ubifs_info *c);
1904 
1905 /* replay.c */
1906 int ubifs_validate_entry(struct ubifs_info *c,
1907 			 const struct ubifs_dent_node *dent);
1908 int ubifs_replay_journal(struct ubifs_info *c);
1909 
1910 /* gc.c */
1911 int ubifs_garbage_collect(struct ubifs_info *c, int anyway);
1912 int ubifs_gc_start_commit(struct ubifs_info *c);
1913 int ubifs_gc_end_commit(struct ubifs_info *c);
1914 void ubifs_destroy_idx_gc(struct ubifs_info *c);
1915 int ubifs_get_idx_gc_leb(struct ubifs_info *c);
1916 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp);
1917 
1918 /* orphan.c */
1919 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum);
1920 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum);
1921 int ubifs_orphan_start_commit(struct ubifs_info *c);
1922 int ubifs_orphan_end_commit(struct ubifs_info *c);
1923 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only);
1924 int ubifs_clear_orphans(struct ubifs_info *c);
1925 
1926 /* lpt.c */
1927 int ubifs_calc_lpt_geom(struct ubifs_info *c);
1928 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
1929 			  int *lpt_lebs, int *big_lpt, u8 *hash);
1930 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr);
1931 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum);
1932 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum);
1933 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1934 			  ubifs_lpt_scan_callback scan_cb, void *data);
1935 
1936 /* Shared by lpt.c for lpt_commit.c */
1937 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave);
1938 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
1939 		     struct ubifs_lpt_lprops *ltab);
1940 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
1941 		      struct ubifs_pnode *pnode);
1942 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
1943 		      struct ubifs_nnode *nnode);
1944 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1945 				    struct ubifs_nnode *parent, int iip);
1946 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1947 				    struct ubifs_nnode *parent, int iip);
1948 struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i);
1949 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip);
1950 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty);
1951 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode);
1952 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits);
1953 struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght);
1954 /* Needed only in debugging code in lpt_commit.c */
1955 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1956 		       struct ubifs_nnode *nnode);
1957 int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash);
1958 
1959 /* lpt_commit.c */
1960 int ubifs_lpt_start_commit(struct ubifs_info *c);
1961 int ubifs_lpt_end_commit(struct ubifs_info *c);
1962 int ubifs_lpt_post_commit(struct ubifs_info *c);
1963 void ubifs_lpt_free(struct ubifs_info *c, int wr_only);
1964 
1965 /* lprops.c */
1966 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
1967 					   const struct ubifs_lprops *lp,
1968 					   int free, int dirty, int flags,
1969 					   int idx_gc_cnt);
1970 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst);
1971 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
1972 		      int cat);
1973 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
1974 		       struct ubifs_lprops *new_lprops);
1975 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops);
1976 int ubifs_categorize_lprops(const struct ubifs_info *c,
1977 			    const struct ubifs_lprops *lprops);
1978 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
1979 			int flags_set, int flags_clean, int idx_gc_cnt);
1980 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
1981 			int flags_set, int flags_clean);
1982 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp);
1983 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c);
1984 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c);
1985 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c);
1986 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c);
1987 int ubifs_calc_dark(const struct ubifs_info *c, int spc);
1988 
1989 /* file.c */
1990 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
1991 int ubifs_setattr(struct dentry *dentry, struct iattr *attr);
1992 int ubifs_update_time(struct inode *inode, struct timespec64 *time, int flags);
1993 
1994 /* dir.c */
1995 struct inode *ubifs_new_inode(struct ubifs_info *c, struct inode *dir,
1996 			      umode_t mode);
1997 int ubifs_getattr(const struct path *path, struct kstat *stat,
1998 		  u32 request_mask, unsigned int flags);
1999 int ubifs_check_dir_empty(struct inode *dir);
2000 
2001 /* xattr.c */
2002 extern const struct xattr_handler *ubifs_xattr_handlers[];
2003 ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size);
2004 int ubifs_xattr_set(struct inode *host, const char *name, const void *value,
2005 		    size_t size, int flags, bool check_lock);
2006 ssize_t ubifs_xattr_get(struct inode *host, const char *name, void *buf,
2007 			size_t size);
2008 
2009 #ifdef CONFIG_UBIFS_FS_XATTR
2010 void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum);
2011 int ubifs_purge_xattrs(struct inode *host);
2012 #else
2013 static inline void ubifs_evict_xattr_inode(struct ubifs_info *c,
2014 					   ino_t xattr_inum) { }
2015 static inline int ubifs_purge_xattrs(struct inode *host)
2016 {
2017 	return 0;
2018 }
2019 #endif
2020 
2021 #ifdef CONFIG_UBIFS_FS_SECURITY
2022 extern int ubifs_init_security(struct inode *dentry, struct inode *inode,
2023 			const struct qstr *qstr);
2024 #else
2025 static inline int ubifs_init_security(struct inode *dentry,
2026 			struct inode *inode, const struct qstr *qstr)
2027 {
2028 	return 0;
2029 }
2030 #endif
2031 
2032 
2033 /* super.c */
2034 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum);
2035 
2036 /* recovery.c */
2037 int ubifs_recover_master_node(struct ubifs_info *c);
2038 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
2039 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
2040 					 int offs, void *sbuf, int jhead);
2041 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
2042 					     int offs, void *sbuf);
2043 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf);
2044 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf);
2045 int ubifs_rcvry_gc_commit(struct ubifs_info *c);
2046 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
2047 			     int deletion, loff_t new_size);
2048 int ubifs_recover_size(struct ubifs_info *c, bool in_place);
2049 void ubifs_destroy_size_tree(struct ubifs_info *c);
2050 
2051 /* ioctl.c */
2052 long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2053 void ubifs_set_inode_flags(struct inode *inode);
2054 #ifdef CONFIG_COMPAT
2055 long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2056 #endif
2057 
2058 /* compressor.c */
2059 int __init ubifs_compressors_init(void);
2060 void ubifs_compressors_exit(void);
2061 void ubifs_compress(const struct ubifs_info *c, const void *in_buf, int in_len,
2062 		    void *out_buf, int *out_len, int *compr_type);
2063 int ubifs_decompress(const struct ubifs_info *c, const void *buf, int len,
2064 		     void *out, int *out_len, int compr_type);
2065 
2066 #include "debug.h"
2067 #include "misc.h"
2068 #include "key.h"
2069 
2070 #ifndef CONFIG_FS_ENCRYPTION
2071 static inline int ubifs_encrypt(const struct inode *inode,
2072 				struct ubifs_data_node *dn,
2073 				unsigned int in_len, unsigned int *out_len,
2074 				int block)
2075 {
2076 	struct ubifs_info *c = inode->i_sb->s_fs_info;
2077 	ubifs_assert(c, 0);
2078 	return -EOPNOTSUPP;
2079 }
2080 static inline int ubifs_decrypt(const struct inode *inode,
2081 				struct ubifs_data_node *dn,
2082 				unsigned int *out_len, int block)
2083 {
2084 	struct ubifs_info *c = inode->i_sb->s_fs_info;
2085 	ubifs_assert(c, 0);
2086 	return -EOPNOTSUPP;
2087 }
2088 #else
2089 /* crypto.c */
2090 int ubifs_encrypt(const struct inode *inode, struct ubifs_data_node *dn,
2091 		  unsigned int in_len, unsigned int *out_len, int block);
2092 int ubifs_decrypt(const struct inode *inode, struct ubifs_data_node *dn,
2093 		  unsigned int *out_len, int block);
2094 #endif
2095 
2096 extern const struct fscrypt_operations ubifs_crypt_operations;
2097 
2098 /* Normal UBIFS messages */
2099 __printf(2, 3)
2100 void ubifs_msg(const struct ubifs_info *c, const char *fmt, ...);
2101 __printf(2, 3)
2102 void ubifs_err(const struct ubifs_info *c, const char *fmt, ...);
2103 __printf(2, 3)
2104 void ubifs_warn(const struct ubifs_info *c, const char *fmt, ...);
2105 /*
2106  * A conditional variant of 'ubifs_err()' which doesn't output anything
2107  * if probing (ie. SB_SILENT set).
2108  */
2109 #define ubifs_errc(c, fmt, ...)						\
2110 do {									\
2111 	if (!(c)->probing)						\
2112 		ubifs_err(c, fmt, ##__VA_ARGS__);			\
2113 } while (0)
2114 
2115 #endif /* !__UBIFS_H__ */
2116