1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 #ifndef __UBIFS_H__ 12 #define __UBIFS_H__ 13 14 #include <asm/div64.h> 15 #include <linux/statfs.h> 16 #include <linux/fs.h> 17 #include <linux/err.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/vmalloc.h> 21 #include <linux/spinlock.h> 22 #include <linux/mutex.h> 23 #include <linux/rwsem.h> 24 #include <linux/mtd/ubi.h> 25 #include <linux/pagemap.h> 26 #include <linux/backing-dev.h> 27 #include <linux/security.h> 28 #include <linux/xattr.h> 29 #include <linux/random.h> 30 #include <crypto/hash_info.h> 31 #include <crypto/hash.h> 32 #include <crypto/algapi.h> 33 34 #include <linux/fscrypt.h> 35 36 #include "ubifs-media.h" 37 38 /* Version of this UBIFS implementation */ 39 #define UBIFS_VERSION 1 40 41 /* UBIFS file system VFS magic number */ 42 #define UBIFS_SUPER_MAGIC 0x24051905 43 44 /* Number of UBIFS blocks per VFS page */ 45 #define UBIFS_BLOCKS_PER_PAGE (PAGE_SIZE / UBIFS_BLOCK_SIZE) 46 #define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_SHIFT - UBIFS_BLOCK_SHIFT) 47 48 /* "File system end of life" sequence number watermark */ 49 #define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL 50 #define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL 51 52 /* 53 * Minimum amount of LEBs reserved for the index. At present the index needs at 54 * least 2 LEBs: one for the index head and one for in-the-gaps method (which 55 * currently does not cater for the index head and so excludes it from 56 * consideration). 57 */ 58 #define MIN_INDEX_LEBS 2 59 60 /* Minimum amount of data UBIFS writes to the flash */ 61 #define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8) 62 63 /* 64 * Currently we do not support inode number overlapping and re-using, so this 65 * watermark defines dangerous inode number level. This should be fixed later, 66 * although it is difficult to exceed current limit. Another option is to use 67 * 64-bit inode numbers, but this means more overhead. 68 */ 69 #define INUM_WARN_WATERMARK 0xFFF00000 70 #define INUM_WATERMARK 0xFFFFFF00 71 72 /* Maximum number of entries in each LPT (LEB category) heap */ 73 #define LPT_HEAP_SZ 256 74 75 /* 76 * Background thread name pattern. The numbers are UBI device and volume 77 * numbers. 78 */ 79 #define BGT_NAME_PATTERN "ubifs_bgt%d_%d" 80 81 /* Maximum possible inode number (only 32-bit inodes are supported now) */ 82 #define MAX_INUM 0xFFFFFFFF 83 84 /* Number of non-data journal heads */ 85 #define NONDATA_JHEADS_CNT 2 86 87 /* Shorter names for journal head numbers for internal usage */ 88 #define GCHD UBIFS_GC_HEAD 89 #define BASEHD UBIFS_BASE_HEAD 90 #define DATAHD UBIFS_DATA_HEAD 91 92 /* 'No change' value for 'ubifs_change_lp()' */ 93 #define LPROPS_NC 0x80000001 94 95 /* 96 * There is no notion of truncation key because truncation nodes do not exist 97 * in TNC. However, when replaying, it is handy to introduce fake "truncation" 98 * keys for truncation nodes because the code becomes simpler. So we define 99 * %UBIFS_TRUN_KEY type. 100 * 101 * But otherwise, out of the journal reply scope, the truncation keys are 102 * invalid. 103 */ 104 #define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT 105 #define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT 106 107 /* 108 * How much a directory entry/extended attribute entry adds to the parent/host 109 * inode. 110 */ 111 #define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8) 112 113 /* How much an extended attribute adds to the host inode */ 114 #define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8) 115 116 /* 117 * Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered 118 * "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are 119 * considered "young". This is used by shrinker when selecting znode to trim 120 * off. 121 */ 122 #define OLD_ZNODE_AGE 20 123 #define YOUNG_ZNODE_AGE 5 124 125 /* 126 * Some compressors, like LZO, may end up with more data then the input buffer. 127 * So UBIFS always allocates larger output buffer, to be sure the compressor 128 * will not corrupt memory in case of worst case compression. 129 */ 130 #define WORST_COMPR_FACTOR 2 131 132 #ifdef CONFIG_FS_ENCRYPTION 133 #define UBIFS_CIPHER_BLOCK_SIZE FS_CRYPTO_BLOCK_SIZE 134 #else 135 #define UBIFS_CIPHER_BLOCK_SIZE 0 136 #endif 137 138 /* 139 * How much memory is needed for a buffer where we compress a data node. 140 */ 141 #define COMPRESSED_DATA_NODE_BUF_SZ \ 142 (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR) 143 144 /* Maximum expected tree height for use by bottom_up_buf */ 145 #define BOTTOM_UP_HEIGHT 64 146 147 /* Maximum number of data nodes to bulk-read */ 148 #define UBIFS_MAX_BULK_READ 32 149 150 #ifdef CONFIG_UBIFS_FS_AUTHENTICATION 151 #define UBIFS_HASH_ARR_SZ UBIFS_MAX_HASH_LEN 152 #define UBIFS_HMAC_ARR_SZ UBIFS_MAX_HMAC_LEN 153 #else 154 #define UBIFS_HASH_ARR_SZ 0 155 #define UBIFS_HMAC_ARR_SZ 0 156 #endif 157 158 /* 159 * Lockdep classes for UBIFS inode @ui_mutex. 160 */ 161 enum { 162 WB_MUTEX_1 = 0, 163 WB_MUTEX_2 = 1, 164 WB_MUTEX_3 = 2, 165 WB_MUTEX_4 = 3, 166 }; 167 168 /* 169 * Znode flags (actually, bit numbers which store the flags). 170 * 171 * DIRTY_ZNODE: znode is dirty 172 * COW_ZNODE: znode is being committed and a new instance of this znode has to 173 * be created before changing this znode 174 * OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is 175 * still in the commit list and the ongoing commit operation 176 * will commit it, and delete this znode after it is done 177 */ 178 enum { 179 DIRTY_ZNODE = 0, 180 COW_ZNODE = 1, 181 OBSOLETE_ZNODE = 2, 182 }; 183 184 /* 185 * Commit states. 186 * 187 * COMMIT_RESTING: commit is not wanted 188 * COMMIT_BACKGROUND: background commit has been requested 189 * COMMIT_REQUIRED: commit is required 190 * COMMIT_RUNNING_BACKGROUND: background commit is running 191 * COMMIT_RUNNING_REQUIRED: commit is running and it is required 192 * COMMIT_BROKEN: commit failed 193 */ 194 enum { 195 COMMIT_RESTING = 0, 196 COMMIT_BACKGROUND, 197 COMMIT_REQUIRED, 198 COMMIT_RUNNING_BACKGROUND, 199 COMMIT_RUNNING_REQUIRED, 200 COMMIT_BROKEN, 201 }; 202 203 /* 204 * 'ubifs_scan_a_node()' return values. 205 * 206 * SCANNED_GARBAGE: scanned garbage 207 * SCANNED_EMPTY_SPACE: scanned empty space 208 * SCANNED_A_NODE: scanned a valid node 209 * SCANNED_A_CORRUPT_NODE: scanned a corrupted node 210 * SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length 211 * 212 * Greater than zero means: 'scanned that number of padding bytes' 213 */ 214 enum { 215 SCANNED_GARBAGE = 0, 216 SCANNED_EMPTY_SPACE = -1, 217 SCANNED_A_NODE = -2, 218 SCANNED_A_CORRUPT_NODE = -3, 219 SCANNED_A_BAD_PAD_NODE = -4, 220 }; 221 222 /* 223 * LPT cnode flag bits. 224 * 225 * DIRTY_CNODE: cnode is dirty 226 * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted), 227 * so it can (and must) be freed when the commit is finished 228 * COW_CNODE: cnode is being committed and must be copied before writing 229 */ 230 enum { 231 DIRTY_CNODE = 0, 232 OBSOLETE_CNODE = 1, 233 COW_CNODE = 2, 234 }; 235 236 /* 237 * Dirty flag bits (lpt_drty_flgs) for LPT special nodes. 238 * 239 * LTAB_DIRTY: ltab node is dirty 240 * LSAVE_DIRTY: lsave node is dirty 241 */ 242 enum { 243 LTAB_DIRTY = 1, 244 LSAVE_DIRTY = 2, 245 }; 246 247 /* 248 * Return codes used by the garbage collector. 249 * @LEB_FREED: the logical eraseblock was freed and is ready to use 250 * @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit 251 * @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes 252 */ 253 enum { 254 LEB_FREED, 255 LEB_FREED_IDX, 256 LEB_RETAINED, 257 }; 258 259 /* 260 * Action taken upon a failed ubifs_assert(). 261 * @ASSACT_REPORT: just report the failed assertion 262 * @ASSACT_RO: switch to read-only mode 263 * @ASSACT_PANIC: call BUG() and possible panic the kernel 264 */ 265 enum { 266 ASSACT_REPORT = 0, 267 ASSACT_RO, 268 ASSACT_PANIC, 269 }; 270 271 /** 272 * struct ubifs_old_idx - index node obsoleted since last commit start. 273 * @rb: rb-tree node 274 * @lnum: LEB number of obsoleted index node 275 * @offs: offset of obsoleted index node 276 */ 277 struct ubifs_old_idx { 278 struct rb_node rb; 279 int lnum; 280 int offs; 281 }; 282 283 /* The below union makes it easier to deal with keys */ 284 union ubifs_key { 285 uint8_t u8[UBIFS_SK_LEN]; 286 uint32_t u32[UBIFS_SK_LEN/4]; 287 uint64_t u64[UBIFS_SK_LEN/8]; 288 __le32 j32[UBIFS_SK_LEN/4]; 289 }; 290 291 /** 292 * struct ubifs_scan_node - UBIFS scanned node information. 293 * @list: list of scanned nodes 294 * @key: key of node scanned (if it has one) 295 * @sqnum: sequence number 296 * @type: type of node scanned 297 * @offs: offset with LEB of node scanned 298 * @len: length of node scanned 299 * @node: raw node 300 */ 301 struct ubifs_scan_node { 302 struct list_head list; 303 union ubifs_key key; 304 unsigned long long sqnum; 305 int type; 306 int offs; 307 int len; 308 void *node; 309 }; 310 311 /** 312 * struct ubifs_scan_leb - UBIFS scanned LEB information. 313 * @lnum: logical eraseblock number 314 * @nodes_cnt: number of nodes scanned 315 * @nodes: list of struct ubifs_scan_node 316 * @endpt: end point (and therefore the start of empty space) 317 * @buf: buffer containing entire LEB scanned 318 */ 319 struct ubifs_scan_leb { 320 int lnum; 321 int nodes_cnt; 322 struct list_head nodes; 323 int endpt; 324 void *buf; 325 }; 326 327 /** 328 * struct ubifs_gced_idx_leb - garbage-collected indexing LEB. 329 * @list: list 330 * @lnum: LEB number 331 * @unmap: OK to unmap this LEB 332 * 333 * This data structure is used to temporary store garbage-collected indexing 334 * LEBs - they are not released immediately, but only after the next commit. 335 * This is needed to guarantee recoverability. 336 */ 337 struct ubifs_gced_idx_leb { 338 struct list_head list; 339 int lnum; 340 int unmap; 341 }; 342 343 /** 344 * struct ubifs_inode - UBIFS in-memory inode description. 345 * @vfs_inode: VFS inode description object 346 * @creat_sqnum: sequence number at time of creation 347 * @del_cmtno: commit number corresponding to the time the inode was deleted, 348 * protected by @c->commit_sem; 349 * @xattr_size: summarized size of all extended attributes in bytes 350 * @xattr_cnt: count of extended attributes this inode has 351 * @xattr_names: sum of lengths of all extended attribute names belonging to 352 * this inode 353 * @dirty: non-zero if the inode is dirty 354 * @xattr: non-zero if this is an extended attribute inode 355 * @bulk_read: non-zero if bulk-read should be used 356 * @ui_mutex: serializes inode write-back with the rest of VFS operations, 357 * serializes "clean <-> dirty" state changes, serializes bulk-read, 358 * protects @dirty, @bulk_read, @ui_size, and @xattr_size 359 * @ui_lock: protects @synced_i_size 360 * @synced_i_size: synchronized size of inode, i.e. the value of inode size 361 * currently stored on the flash; used only for regular file 362 * inodes 363 * @ui_size: inode size used by UBIFS when writing to flash 364 * @flags: inode flags (@UBIFS_COMPR_FL, etc) 365 * @compr_type: default compression type used for this inode 366 * @last_page_read: page number of last page read (for bulk read) 367 * @read_in_a_row: number of consecutive pages read in a row (for bulk read) 368 * @data_len: length of the data attached to the inode 369 * @data: inode's data 370 * 371 * @ui_mutex exists for two main reasons. At first it prevents inodes from 372 * being written back while UBIFS changing them, being in the middle of an VFS 373 * operation. This way UBIFS makes sure the inode fields are consistent. For 374 * example, in 'ubifs_rename()' we change 3 inodes simultaneously, and 375 * write-back must not write any of them before we have finished. 376 * 377 * The second reason is budgeting - UBIFS has to budget all operations. If an 378 * operation is going to mark an inode dirty, it has to allocate budget for 379 * this. It cannot just mark it dirty because there is no guarantee there will 380 * be enough flash space to write the inode back later. This means UBIFS has 381 * to have full control over inode "clean <-> dirty" transitions (and pages 382 * actually). But unfortunately, VFS marks inodes dirty in many places, and it 383 * does not ask the file-system if it is allowed to do so (there is a notifier, 384 * but it is not enough), i.e., there is no mechanism to synchronize with this. 385 * So UBIFS has its own inode dirty flag and its own mutex to serialize 386 * "clean <-> dirty" transitions. 387 * 388 * The @synced_i_size field is used to make sure we never write pages which are 389 * beyond last synchronized inode size. See 'ubifs_writepage()' for more 390 * information. 391 * 392 * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses 393 * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot 394 * make sure @inode->i_size is always changed under @ui_mutex, because it 395 * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would 396 * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields 397 * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one 398 * could consider to rework locking and base it on "shadow" fields. 399 */ 400 struct ubifs_inode { 401 struct inode vfs_inode; 402 unsigned long long creat_sqnum; 403 unsigned long long del_cmtno; 404 unsigned int xattr_size; 405 unsigned int xattr_cnt; 406 unsigned int xattr_names; 407 unsigned int dirty:1; 408 unsigned int xattr:1; 409 unsigned int bulk_read:1; 410 unsigned int compr_type:2; 411 struct mutex ui_mutex; 412 spinlock_t ui_lock; 413 loff_t synced_i_size; 414 loff_t ui_size; 415 int flags; 416 pgoff_t last_page_read; 417 pgoff_t read_in_a_row; 418 int data_len; 419 void *data; 420 }; 421 422 /** 423 * struct ubifs_unclean_leb - records a LEB recovered under read-only mode. 424 * @list: list 425 * @lnum: LEB number of recovered LEB 426 * @endpt: offset where recovery ended 427 * 428 * This structure records a LEB identified during recovery that needs to be 429 * cleaned but was not because UBIFS was mounted read-only. The information 430 * is used to clean the LEB when remounting to read-write mode. 431 */ 432 struct ubifs_unclean_leb { 433 struct list_head list; 434 int lnum; 435 int endpt; 436 }; 437 438 /* 439 * LEB properties flags. 440 * 441 * LPROPS_UNCAT: not categorized 442 * LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index 443 * LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index 444 * LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index 445 * LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs 446 * LPROPS_EMPTY: LEB is empty, not taken 447 * LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken 448 * LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken 449 * LPROPS_CAT_MASK: mask for the LEB categories above 450 * LPROPS_TAKEN: LEB was taken (this flag is not saved on the media) 451 * LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash) 452 */ 453 enum { 454 LPROPS_UNCAT = 0, 455 LPROPS_DIRTY = 1, 456 LPROPS_DIRTY_IDX = 2, 457 LPROPS_FREE = 3, 458 LPROPS_HEAP_CNT = 3, 459 LPROPS_EMPTY = 4, 460 LPROPS_FREEABLE = 5, 461 LPROPS_FRDI_IDX = 6, 462 LPROPS_CAT_MASK = 15, 463 LPROPS_TAKEN = 16, 464 LPROPS_INDEX = 32, 465 }; 466 467 /** 468 * struct ubifs_lprops - logical eraseblock properties. 469 * @free: amount of free space in bytes 470 * @dirty: amount of dirty space in bytes 471 * @flags: LEB properties flags (see above) 472 * @lnum: LEB number 473 * @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE) 474 * @hpos: heap position in heap of same-category lprops (other categories) 475 */ 476 struct ubifs_lprops { 477 int free; 478 int dirty; 479 int flags; 480 int lnum; 481 union { 482 struct list_head list; 483 int hpos; 484 }; 485 }; 486 487 /** 488 * struct ubifs_lpt_lprops - LPT logical eraseblock properties. 489 * @free: amount of free space in bytes 490 * @dirty: amount of dirty space in bytes 491 * @tgc: trivial GC flag (1 => unmap after commit end) 492 * @cmt: commit flag (1 => reserved for commit) 493 */ 494 struct ubifs_lpt_lprops { 495 int free; 496 int dirty; 497 unsigned tgc:1; 498 unsigned cmt:1; 499 }; 500 501 /** 502 * struct ubifs_lp_stats - statistics of eraseblocks in the main area. 503 * @empty_lebs: number of empty LEBs 504 * @taken_empty_lebs: number of taken LEBs 505 * @idx_lebs: number of indexing LEBs 506 * @total_free: total free space in bytes (includes all LEBs) 507 * @total_dirty: total dirty space in bytes (includes all LEBs) 508 * @total_used: total used space in bytes (does not include index LEBs) 509 * @total_dead: total dead space in bytes (does not include index LEBs) 510 * @total_dark: total dark space in bytes (does not include index LEBs) 511 * 512 * The @taken_empty_lebs field counts the LEBs that are in the transient state 513 * of having been "taken" for use but not yet written to. @taken_empty_lebs is 514 * needed to account correctly for @gc_lnum, otherwise @empty_lebs could be 515 * used by itself (in which case 'unused_lebs' would be a better name). In the 516 * case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained 517 * by GC, but unlike other empty LEBs that are "taken", it may not be written 518 * straight away (i.e. before the next commit start or unmount), so either 519 * @gc_lnum must be specially accounted for, or the current approach followed 520 * i.e. count it under @taken_empty_lebs. 521 * 522 * @empty_lebs includes @taken_empty_lebs. 523 * 524 * @total_used, @total_dead and @total_dark fields do not account indexing 525 * LEBs. 526 */ 527 struct ubifs_lp_stats { 528 int empty_lebs; 529 int taken_empty_lebs; 530 int idx_lebs; 531 long long total_free; 532 long long total_dirty; 533 long long total_used; 534 long long total_dead; 535 long long total_dark; 536 }; 537 538 struct ubifs_nnode; 539 540 /** 541 * struct ubifs_cnode - LEB Properties Tree common node. 542 * @parent: parent nnode 543 * @cnext: next cnode to commit 544 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) 545 * @iip: index in parent 546 * @level: level in the tree (zero for pnodes, greater than zero for nnodes) 547 * @num: node number 548 */ 549 struct ubifs_cnode { 550 struct ubifs_nnode *parent; 551 struct ubifs_cnode *cnext; 552 unsigned long flags; 553 int iip; 554 int level; 555 int num; 556 }; 557 558 /** 559 * struct ubifs_pnode - LEB Properties Tree leaf node. 560 * @parent: parent nnode 561 * @cnext: next cnode to commit 562 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) 563 * @iip: index in parent 564 * @level: level in the tree (always zero for pnodes) 565 * @num: node number 566 * @lprops: LEB properties array 567 */ 568 struct ubifs_pnode { 569 struct ubifs_nnode *parent; 570 struct ubifs_cnode *cnext; 571 unsigned long flags; 572 int iip; 573 int level; 574 int num; 575 struct ubifs_lprops lprops[UBIFS_LPT_FANOUT]; 576 }; 577 578 /** 579 * struct ubifs_nbranch - LEB Properties Tree internal node branch. 580 * @lnum: LEB number of child 581 * @offs: offset of child 582 * @nnode: nnode child 583 * @pnode: pnode child 584 * @cnode: cnode child 585 */ 586 struct ubifs_nbranch { 587 int lnum; 588 int offs; 589 union { 590 struct ubifs_nnode *nnode; 591 struct ubifs_pnode *pnode; 592 struct ubifs_cnode *cnode; 593 }; 594 }; 595 596 /** 597 * struct ubifs_nnode - LEB Properties Tree internal node. 598 * @parent: parent nnode 599 * @cnext: next cnode to commit 600 * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) 601 * @iip: index in parent 602 * @level: level in the tree (always greater than zero for nnodes) 603 * @num: node number 604 * @nbranch: branches to child nodes 605 */ 606 struct ubifs_nnode { 607 struct ubifs_nnode *parent; 608 struct ubifs_cnode *cnext; 609 unsigned long flags; 610 int iip; 611 int level; 612 int num; 613 struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT]; 614 }; 615 616 /** 617 * struct ubifs_lpt_heap - heap of categorized lprops. 618 * @arr: heap array 619 * @cnt: number in heap 620 * @max_cnt: maximum number allowed in heap 621 * 622 * There are %LPROPS_HEAP_CNT heaps. 623 */ 624 struct ubifs_lpt_heap { 625 struct ubifs_lprops **arr; 626 int cnt; 627 int max_cnt; 628 }; 629 630 /* 631 * Return codes for LPT scan callback function. 632 * 633 * LPT_SCAN_CONTINUE: continue scanning 634 * LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory 635 * LPT_SCAN_STOP: stop scanning 636 */ 637 enum { 638 LPT_SCAN_CONTINUE = 0, 639 LPT_SCAN_ADD = 1, 640 LPT_SCAN_STOP = 2, 641 }; 642 643 struct ubifs_info; 644 645 /* Callback used by the 'ubifs_lpt_scan_nolock()' function */ 646 typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c, 647 const struct ubifs_lprops *lprops, 648 int in_tree, void *data); 649 650 /** 651 * struct ubifs_wbuf - UBIFS write-buffer. 652 * @c: UBIFS file-system description object 653 * @buf: write-buffer (of min. flash I/O unit size) 654 * @lnum: logical eraseblock number the write-buffer points to 655 * @offs: write-buffer offset in this logical eraseblock 656 * @avail: number of bytes available in the write-buffer 657 * @used: number of used bytes in the write-buffer 658 * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range) 659 * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep 660 * up by 'mutex_lock_nested()). 661 * @sync_callback: write-buffer synchronization callback 662 * @io_mutex: serializes write-buffer I/O 663 * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes 664 * fields 665 * @timer: write-buffer timer 666 * @no_timer: non-zero if this write-buffer does not have a timer 667 * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing 668 * @next_ino: points to the next position of the following inode number 669 * @inodes: stores the inode numbers of the nodes which are in wbuf 670 * 671 * The write-buffer synchronization callback is called when the write-buffer is 672 * synchronized in order to notify how much space was wasted due to 673 * write-buffer padding and how much free space is left in the LEB. 674 * 675 * Note: the fields @buf, @lnum, @offs, @avail and @used can be read under 676 * spin-lock or mutex because they are written under both mutex and spin-lock. 677 * @buf is appended to under mutex but overwritten under both mutex and 678 * spin-lock. Thus the data between @buf and @buf + @used can be read under 679 * spinlock. 680 */ 681 struct ubifs_wbuf { 682 struct ubifs_info *c; 683 void *buf; 684 int lnum; 685 int offs; 686 int avail; 687 int used; 688 int size; 689 int jhead; 690 int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad); 691 struct mutex io_mutex; 692 spinlock_t lock; 693 struct hrtimer timer; 694 unsigned int no_timer:1; 695 unsigned int need_sync:1; 696 int next_ino; 697 ino_t *inodes; 698 }; 699 700 /** 701 * struct ubifs_bud - bud logical eraseblock. 702 * @lnum: logical eraseblock number 703 * @start: where the (uncommitted) bud data starts 704 * @jhead: journal head number this bud belongs to 705 * @list: link in the list buds belonging to the same journal head 706 * @rb: link in the tree of all buds 707 * @log_hash: the log hash from the commit start node up to this bud 708 */ 709 struct ubifs_bud { 710 int lnum; 711 int start; 712 int jhead; 713 struct list_head list; 714 struct rb_node rb; 715 struct shash_desc *log_hash; 716 }; 717 718 /** 719 * struct ubifs_jhead - journal head. 720 * @wbuf: head's write-buffer 721 * @buds_list: list of bud LEBs belonging to this journal head 722 * @grouped: non-zero if UBIFS groups nodes when writing to this journal head 723 * @log_hash: the log hash from the commit start node up to this journal head 724 * 725 * Note, the @buds list is protected by the @c->buds_lock. 726 */ 727 struct ubifs_jhead { 728 struct ubifs_wbuf wbuf; 729 struct list_head buds_list; 730 unsigned int grouped:1; 731 struct shash_desc *log_hash; 732 }; 733 734 /** 735 * struct ubifs_zbranch - key/coordinate/length branch stored in znodes. 736 * @key: key 737 * @znode: znode address in memory 738 * @lnum: LEB number of the target node (indexing node or data node) 739 * @offs: target node offset within @lnum 740 * @len: target node length 741 * @hash: the hash of the target node 742 */ 743 struct ubifs_zbranch { 744 union ubifs_key key; 745 union { 746 struct ubifs_znode *znode; 747 void *leaf; 748 }; 749 int lnum; 750 int offs; 751 int len; 752 u8 hash[UBIFS_HASH_ARR_SZ]; 753 }; 754 755 /** 756 * struct ubifs_znode - in-memory representation of an indexing node. 757 * @parent: parent znode or NULL if it is the root 758 * @cnext: next znode to commit 759 * @cparent: parent node for this commit 760 * @ciip: index in cparent's zbranch array 761 * @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE) 762 * @time: last access time (seconds) 763 * @level: level of the entry in the TNC tree 764 * @child_cnt: count of child znodes 765 * @iip: index in parent's zbranch array 766 * @alt: lower bound of key range has altered i.e. child inserted at slot 0 767 * @lnum: LEB number of the corresponding indexing node 768 * @offs: offset of the corresponding indexing node 769 * @len: length of the corresponding indexing node 770 * @zbranch: array of znode branches (@c->fanout elements) 771 * 772 * Note! The @lnum, @offs, and @len fields are not really needed - we have them 773 * only for internal consistency check. They could be removed to save some RAM. 774 */ 775 struct ubifs_znode { 776 struct ubifs_znode *parent; 777 struct ubifs_znode *cnext; 778 struct ubifs_znode *cparent; 779 int ciip; 780 unsigned long flags; 781 time64_t time; 782 int level; 783 int child_cnt; 784 int iip; 785 int alt; 786 int lnum; 787 int offs; 788 int len; 789 struct ubifs_zbranch zbranch[]; 790 }; 791 792 /** 793 * struct bu_info - bulk-read information. 794 * @key: first data node key 795 * @zbranch: zbranches of data nodes to bulk read 796 * @buf: buffer to read into 797 * @buf_len: buffer length 798 * @gc_seq: GC sequence number to detect races with GC 799 * @cnt: number of data nodes for bulk read 800 * @blk_cnt: number of data blocks including holes 801 * @oef: end of file reached 802 */ 803 struct bu_info { 804 union ubifs_key key; 805 struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ]; 806 void *buf; 807 int buf_len; 808 int gc_seq; 809 int cnt; 810 int blk_cnt; 811 int eof; 812 }; 813 814 /** 815 * struct ubifs_node_range - node length range description data structure. 816 * @len: fixed node length 817 * @min_len: minimum possible node length 818 * @max_len: maximum possible node length 819 * 820 * If @max_len is %0, the node has fixed length @len. 821 */ 822 struct ubifs_node_range { 823 union { 824 int len; 825 int min_len; 826 }; 827 int max_len; 828 }; 829 830 /** 831 * struct ubifs_compressor - UBIFS compressor description structure. 832 * @compr_type: compressor type (%UBIFS_COMPR_LZO, etc) 833 * @cc: cryptoapi compressor handle 834 * @comp_mutex: mutex used during compression 835 * @decomp_mutex: mutex used during decompression 836 * @name: compressor name 837 * @capi_name: cryptoapi compressor name 838 */ 839 struct ubifs_compressor { 840 int compr_type; 841 struct crypto_comp *cc; 842 struct mutex *comp_mutex; 843 struct mutex *decomp_mutex; 844 const char *name; 845 const char *capi_name; 846 }; 847 848 /** 849 * struct ubifs_budget_req - budget requirements of an operation. 850 * 851 * @fast: non-zero if the budgeting should try to acquire budget quickly and 852 * should not try to call write-back 853 * @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields 854 * have to be re-calculated 855 * @new_page: non-zero if the operation adds a new page 856 * @dirtied_page: non-zero if the operation makes a page dirty 857 * @new_dent: non-zero if the operation adds a new directory entry 858 * @mod_dent: non-zero if the operation removes or modifies an existing 859 * directory entry 860 * @new_ino: non-zero if the operation adds a new inode 861 * @new_ino_d: how much data newly created inode contains 862 * @dirtied_ino: how many inodes the operation makes dirty 863 * @dirtied_ino_d: how much data dirtied inode contains 864 * @idx_growth: how much the index will supposedly grow 865 * @data_growth: how much new data the operation will supposedly add 866 * @dd_growth: how much data that makes other data dirty the operation will 867 * supposedly add 868 * 869 * @idx_growth, @data_growth and @dd_growth are not used in budget request. The 870 * budgeting subsystem caches index and data growth values there to avoid 871 * re-calculating them when the budget is released. However, if @idx_growth is 872 * %-1, it is calculated by the release function using other fields. 873 * 874 * An inode may contain 4KiB of data at max., thus the widths of @new_ino_d 875 * is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made 876 * dirty by the re-name operation. 877 * 878 * Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to 879 * make sure the amount of inode data which contribute to @new_ino_d and 880 * @dirtied_ino_d fields are aligned. 881 */ 882 struct ubifs_budget_req { 883 unsigned int fast:1; 884 unsigned int recalculate:1; 885 #ifndef UBIFS_DEBUG 886 unsigned int new_page:1; 887 unsigned int dirtied_page:1; 888 unsigned int new_dent:1; 889 unsigned int mod_dent:1; 890 unsigned int new_ino:1; 891 unsigned int new_ino_d:13; 892 unsigned int dirtied_ino:4; 893 unsigned int dirtied_ino_d:15; 894 #else 895 /* Not bit-fields to check for overflows */ 896 unsigned int new_page; 897 unsigned int dirtied_page; 898 unsigned int new_dent; 899 unsigned int mod_dent; 900 unsigned int new_ino; 901 unsigned int new_ino_d; 902 unsigned int dirtied_ino; 903 unsigned int dirtied_ino_d; 904 #endif 905 int idx_growth; 906 int data_growth; 907 int dd_growth; 908 }; 909 910 /** 911 * struct ubifs_orphan - stores the inode number of an orphan. 912 * @rb: rb-tree node of rb-tree of orphans sorted by inode number 913 * @list: list head of list of orphans in order added 914 * @new_list: list head of list of orphans added since the last commit 915 * @child_list: list of xattr childs if this orphan hosts xattrs, list head 916 * if this orphan is a xattr, not used otherwise. 917 * @cnext: next orphan to commit 918 * @dnext: next orphan to delete 919 * @inum: inode number 920 * @new: %1 => added since the last commit, otherwise %0 921 * @cmt: %1 => commit pending, otherwise %0 922 * @del: %1 => delete pending, otherwise %0 923 */ 924 struct ubifs_orphan { 925 struct rb_node rb; 926 struct list_head list; 927 struct list_head new_list; 928 struct list_head child_list; 929 struct ubifs_orphan *cnext; 930 struct ubifs_orphan *dnext; 931 ino_t inum; 932 unsigned new:1; 933 unsigned cmt:1; 934 unsigned del:1; 935 }; 936 937 /** 938 * struct ubifs_mount_opts - UBIFS-specific mount options information. 939 * @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast) 940 * @bulk_read: enable/disable bulk-reads (%0 default, %1 disable, %2 enable) 941 * @chk_data_crc: enable/disable CRC data checking when reading data nodes 942 * (%0 default, %1 disable, %2 enable) 943 * @override_compr: override default compressor (%0 - do not override and use 944 * superblock compressor, %1 - override and use compressor 945 * specified in @compr_type) 946 * @compr_type: compressor type to override the superblock compressor with 947 * (%UBIFS_COMPR_NONE, etc) 948 */ 949 struct ubifs_mount_opts { 950 unsigned int unmount_mode:2; 951 unsigned int bulk_read:2; 952 unsigned int chk_data_crc:2; 953 unsigned int override_compr:1; 954 unsigned int compr_type:2; 955 }; 956 957 /** 958 * struct ubifs_budg_info - UBIFS budgeting information. 959 * @idx_growth: amount of bytes budgeted for index growth 960 * @data_growth: amount of bytes budgeted for cached data 961 * @dd_growth: amount of bytes budgeted for cached data that will make 962 * other data dirty 963 * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but 964 * which still have to be taken into account because the index 965 * has not been committed so far 966 * @old_idx_sz: size of index on flash 967 * @min_idx_lebs: minimum number of LEBs required for the index 968 * @nospace: non-zero if the file-system does not have flash space (used as 969 * optimization) 970 * @nospace_rp: the same as @nospace, but additionally means that even reserved 971 * pool is full 972 * @page_budget: budget for a page (constant, never changed after mount) 973 * @inode_budget: budget for an inode (constant, never changed after mount) 974 * @dent_budget: budget for a directory entry (constant, never changed after 975 * mount) 976 */ 977 struct ubifs_budg_info { 978 long long idx_growth; 979 long long data_growth; 980 long long dd_growth; 981 long long uncommitted_idx; 982 unsigned long long old_idx_sz; 983 int min_idx_lebs; 984 unsigned int nospace:1; 985 unsigned int nospace_rp:1; 986 int page_budget; 987 int inode_budget; 988 int dent_budget; 989 }; 990 991 struct ubifs_debug_info; 992 993 /** 994 * struct ubifs_info - UBIFS file-system description data structure 995 * (per-superblock). 996 * @vfs_sb: VFS @struct super_block object 997 * @sup_node: The super block node as read from the device 998 * 999 * @highest_inum: highest used inode number 1000 * @max_sqnum: current global sequence number 1001 * @cmt_no: commit number of the last successfully completed commit, protected 1002 * by @commit_sem 1003 * @cnt_lock: protects @highest_inum and @max_sqnum counters 1004 * @fmt_version: UBIFS on-flash format version 1005 * @ro_compat_version: R/O compatibility version 1006 * @uuid: UUID from super block 1007 * 1008 * @lhead_lnum: log head logical eraseblock number 1009 * @lhead_offs: log head offset 1010 * @ltail_lnum: log tail logical eraseblock number (offset is always 0) 1011 * @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and 1012 * @bud_bytes 1013 * @min_log_bytes: minimum required number of bytes in the log 1014 * @cmt_bud_bytes: used during commit to temporarily amount of bytes in 1015 * committed buds 1016 * 1017 * @buds: tree of all buds indexed by bud LEB number 1018 * @bud_bytes: how many bytes of flash is used by buds 1019 * @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud 1020 * lists 1021 * @jhead_cnt: count of journal heads 1022 * @jheads: journal heads (head zero is base head) 1023 * @max_bud_bytes: maximum number of bytes allowed in buds 1024 * @bg_bud_bytes: number of bud bytes when background commit is initiated 1025 * @old_buds: buds to be released after commit ends 1026 * @max_bud_cnt: maximum number of buds 1027 * 1028 * @commit_sem: synchronizes committer with other processes 1029 * @cmt_state: commit state 1030 * @cs_lock: commit state lock 1031 * @cmt_wq: wait queue to sleep on if the log is full and a commit is running 1032 * 1033 * @big_lpt: flag that LPT is too big to write whole during commit 1034 * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up 1035 * @double_hash: flag indicating that we can do lookups by hash 1036 * @encrypted: flag indicating that this file system contains encrypted files 1037 * @no_chk_data_crc: do not check CRCs when reading data nodes (except during 1038 * recovery) 1039 * @bulk_read: enable bulk-reads 1040 * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc) 1041 * @rw_incompat: the media is not R/W compatible 1042 * @assert_action: action to take when a ubifs_assert() fails 1043 * @authenticated: flag indigating the FS is mounted in authenticated mode 1044 * 1045 * @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and 1046 * @calc_idx_sz 1047 * @zroot: zbranch which points to the root index node and znode 1048 * @cnext: next znode to commit 1049 * @enext: next znode to commit to empty space 1050 * @gap_lebs: array of LEBs used by the in-gaps commit method 1051 * @cbuf: commit buffer 1052 * @ileb_buf: buffer for commit in-the-gaps method 1053 * @ileb_len: length of data in ileb_buf 1054 * @ihead_lnum: LEB number of index head 1055 * @ihead_offs: offset of index head 1056 * @ilebs: pre-allocated index LEBs 1057 * @ileb_cnt: number of pre-allocated index LEBs 1058 * @ileb_nxt: next pre-allocated index LEBs 1059 * @old_idx: tree of index nodes obsoleted since the last commit start 1060 * @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c 1061 * 1062 * @mst_node: master node 1063 * @mst_offs: offset of valid master node 1064 * 1065 * @max_bu_buf_len: maximum bulk-read buffer length 1066 * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu 1067 * @bu: pre-allocated bulk-read information 1068 * 1069 * @write_reserve_mutex: protects @write_reserve_buf 1070 * @write_reserve_buf: on the write path we allocate memory, which might 1071 * sometimes be unavailable, in which case we use this 1072 * write reserve buffer 1073 * 1074 * @log_lebs: number of logical eraseblocks in the log 1075 * @log_bytes: log size in bytes 1076 * @log_last: last LEB of the log 1077 * @lpt_lebs: number of LEBs used for lprops table 1078 * @lpt_first: first LEB of the lprops table area 1079 * @lpt_last: last LEB of the lprops table area 1080 * @orph_lebs: number of LEBs used for the orphan area 1081 * @orph_first: first LEB of the orphan area 1082 * @orph_last: last LEB of the orphan area 1083 * @main_lebs: count of LEBs in the main area 1084 * @main_first: first LEB of the main area 1085 * @main_bytes: main area size in bytes 1086 * 1087 * @key_hash_type: type of the key hash 1088 * @key_hash: direntry key hash function 1089 * @key_fmt: key format 1090 * @key_len: key length 1091 * @hash_len: The length of the index node hashes 1092 * @fanout: fanout of the index tree (number of links per indexing node) 1093 * 1094 * @min_io_size: minimal input/output unit size 1095 * @min_io_shift: number of bits in @min_io_size minus one 1096 * @max_write_size: maximum amount of bytes the underlying flash can write at a 1097 * time (MTD write buffer size) 1098 * @max_write_shift: number of bits in @max_write_size minus one 1099 * @leb_size: logical eraseblock size in bytes 1100 * @leb_start: starting offset of logical eraseblocks within physical 1101 * eraseblocks 1102 * @half_leb_size: half LEB size 1103 * @idx_leb_size: how many bytes of an LEB are effectively available when it is 1104 * used to store indexing nodes (@leb_size - @max_idx_node_sz) 1105 * @leb_cnt: count of logical eraseblocks 1106 * @max_leb_cnt: maximum count of logical eraseblocks 1107 * @old_leb_cnt: count of logical eraseblocks before re-size 1108 * @ro_media: the underlying UBI volume is read-only 1109 * @ro_mount: the file-system was mounted as read-only 1110 * @ro_error: UBIFS switched to R/O mode because an error happened 1111 * 1112 * @dirty_pg_cnt: number of dirty pages (not used) 1113 * @dirty_zn_cnt: number of dirty znodes 1114 * @clean_zn_cnt: number of clean znodes 1115 * 1116 * @space_lock: protects @bi and @lst 1117 * @lst: lprops statistics 1118 * @bi: budgeting information 1119 * @calc_idx_sz: temporary variable which is used to calculate new index size 1120 * (contains accurate new index size at end of TNC commit start) 1121 * 1122 * @ref_node_alsz: size of the LEB reference node aligned to the min. flash 1123 * I/O unit 1124 * @mst_node_alsz: master node aligned size 1125 * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary 1126 * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary 1127 * @max_inode_sz: maximum possible inode size in bytes 1128 * @max_znode_sz: size of znode in bytes 1129 * 1130 * @leb_overhead: how many bytes are wasted in an LEB when it is filled with 1131 * data nodes of maximum size - used in free space reporting 1132 * @dead_wm: LEB dead space watermark 1133 * @dark_wm: LEB dark space watermark 1134 * @block_cnt: count of 4KiB blocks on the FS 1135 * 1136 * @ranges: UBIFS node length ranges 1137 * @ubi: UBI volume descriptor 1138 * @di: UBI device information 1139 * @vi: UBI volume information 1140 * 1141 * @orph_tree: rb-tree of orphan inode numbers 1142 * @orph_list: list of orphan inode numbers in order added 1143 * @orph_new: list of orphan inode numbers added since last commit 1144 * @orph_cnext: next orphan to commit 1145 * @orph_dnext: next orphan to delete 1146 * @orphan_lock: lock for orph_tree and orph_new 1147 * @orph_buf: buffer for orphan nodes 1148 * @new_orphans: number of orphans since last commit 1149 * @cmt_orphans: number of orphans being committed 1150 * @tot_orphans: number of orphans in the rb_tree 1151 * @max_orphans: maximum number of orphans allowed 1152 * @ohead_lnum: orphan head LEB number 1153 * @ohead_offs: orphan head offset 1154 * @no_orphs: non-zero if there are no orphans 1155 * 1156 * @bgt: UBIFS background thread 1157 * @bgt_name: background thread name 1158 * @need_bgt: if background thread should run 1159 * @need_wbuf_sync: if write-buffers have to be synchronized 1160 * 1161 * @gc_lnum: LEB number used for garbage collection 1162 * @sbuf: a buffer of LEB size used by GC and replay for scanning 1163 * @idx_gc: list of index LEBs that have been garbage collected 1164 * @idx_gc_cnt: number of elements on the idx_gc list 1165 * @gc_seq: incremented for every non-index LEB garbage collected 1166 * @gced_lnum: last non-index LEB that was garbage collected 1167 * 1168 * @infos_list: links all 'ubifs_info' objects 1169 * @umount_mutex: serializes shrinker and un-mount 1170 * @shrinker_run_no: shrinker run number 1171 * 1172 * @space_bits: number of bits needed to record free or dirty space 1173 * @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT 1174 * @lpt_offs_bits: number of bits needed to record an offset in the LPT 1175 * @lpt_spc_bits: number of bits needed to space in the LPT 1176 * @pcnt_bits: number of bits needed to record pnode or nnode number 1177 * @lnum_bits: number of bits needed to record LEB number 1178 * @nnode_sz: size of on-flash nnode 1179 * @pnode_sz: size of on-flash pnode 1180 * @ltab_sz: size of on-flash LPT lprops table 1181 * @lsave_sz: size of on-flash LPT save table 1182 * @pnode_cnt: number of pnodes 1183 * @nnode_cnt: number of nnodes 1184 * @lpt_hght: height of the LPT 1185 * @pnodes_have: number of pnodes in memory 1186 * 1187 * @lp_mutex: protects lprops table and all the other lprops-related fields 1188 * @lpt_lnum: LEB number of the root nnode of the LPT 1189 * @lpt_offs: offset of the root nnode of the LPT 1190 * @nhead_lnum: LEB number of LPT head 1191 * @nhead_offs: offset of LPT head 1192 * @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab 1193 * @dirty_nn_cnt: number of dirty nnodes 1194 * @dirty_pn_cnt: number of dirty pnodes 1195 * @check_lpt_free: flag that indicates LPT GC may be needed 1196 * @lpt_sz: LPT size 1197 * @lpt_nod_buf: buffer for an on-flash nnode or pnode 1198 * @lpt_buf: buffer of LEB size used by LPT 1199 * @nroot: address in memory of the root nnode of the LPT 1200 * @lpt_cnext: next LPT node to commit 1201 * @lpt_heap: array of heaps of categorized lprops 1202 * @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at 1203 * previous commit start 1204 * @uncat_list: list of un-categorized LEBs 1205 * @empty_list: list of empty LEBs 1206 * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size) 1207 * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size) 1208 * @freeable_cnt: number of freeable LEBs in @freeable_list 1209 * @in_a_category_cnt: count of lprops which are in a certain category, which 1210 * basically meants that they were loaded from the flash 1211 * 1212 * @ltab_lnum: LEB number of LPT's own lprops table 1213 * @ltab_offs: offset of LPT's own lprops table 1214 * @ltab: LPT's own lprops table 1215 * @ltab_cmt: LPT's own lprops table (commit copy) 1216 * @lsave_cnt: number of LEB numbers in LPT's save table 1217 * @lsave_lnum: LEB number of LPT's save table 1218 * @lsave_offs: offset of LPT's save table 1219 * @lsave: LPT's save table 1220 * @lscan_lnum: LEB number of last LPT scan 1221 * 1222 * @rp_size: size of the reserved pool in bytes 1223 * @report_rp_size: size of the reserved pool reported to user-space 1224 * @rp_uid: reserved pool user ID 1225 * @rp_gid: reserved pool group ID 1226 * 1227 * @hash_tfm: the hash transformation used for hashing nodes 1228 * @hmac_tfm: the HMAC transformation for this filesystem 1229 * @hmac_desc_len: length of the HMAC used for authentication 1230 * @auth_key_name: the authentication key name 1231 * @auth_hash_name: the name of the hash algorithm used for authentication 1232 * @auth_hash_algo: the authentication hash used for this fs 1233 * @log_hash: the log hash from the commit start node up to the latest reference 1234 * node. 1235 * 1236 * @empty: %1 if the UBI device is empty 1237 * @need_recovery: %1 if the file-system needs recovery 1238 * @replaying: %1 during journal replay 1239 * @mounting: %1 while mounting 1240 * @probing: %1 while attempting to mount if SB_SILENT mount flag is set 1241 * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode 1242 * @replay_list: temporary list used during journal replay 1243 * @replay_buds: list of buds to replay 1244 * @cs_sqnum: sequence number of first node in the log (commit start node) 1245 * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W 1246 * mode 1247 * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted 1248 * FS to R/W mode 1249 * @size_tree: inode size information for recovery 1250 * @mount_opts: UBIFS-specific mount options 1251 * 1252 * @dbg: debugging-related information 1253 */ 1254 struct ubifs_info { 1255 struct super_block *vfs_sb; 1256 struct ubifs_sb_node *sup_node; 1257 1258 ino_t highest_inum; 1259 unsigned long long max_sqnum; 1260 unsigned long long cmt_no; 1261 spinlock_t cnt_lock; 1262 int fmt_version; 1263 int ro_compat_version; 1264 unsigned char uuid[16]; 1265 1266 int lhead_lnum; 1267 int lhead_offs; 1268 int ltail_lnum; 1269 struct mutex log_mutex; 1270 int min_log_bytes; 1271 long long cmt_bud_bytes; 1272 1273 struct rb_root buds; 1274 long long bud_bytes; 1275 spinlock_t buds_lock; 1276 int jhead_cnt; 1277 struct ubifs_jhead *jheads; 1278 long long max_bud_bytes; 1279 long long bg_bud_bytes; 1280 struct list_head old_buds; 1281 int max_bud_cnt; 1282 1283 struct rw_semaphore commit_sem; 1284 int cmt_state; 1285 spinlock_t cs_lock; 1286 wait_queue_head_t cmt_wq; 1287 1288 unsigned int big_lpt:1; 1289 unsigned int space_fixup:1; 1290 unsigned int double_hash:1; 1291 unsigned int encrypted:1; 1292 unsigned int no_chk_data_crc:1; 1293 unsigned int bulk_read:1; 1294 unsigned int default_compr:2; 1295 unsigned int rw_incompat:1; 1296 unsigned int assert_action:2; 1297 unsigned int authenticated:1; 1298 1299 struct mutex tnc_mutex; 1300 struct ubifs_zbranch zroot; 1301 struct ubifs_znode *cnext; 1302 struct ubifs_znode *enext; 1303 int *gap_lebs; 1304 void *cbuf; 1305 void *ileb_buf; 1306 int ileb_len; 1307 int ihead_lnum; 1308 int ihead_offs; 1309 int *ilebs; 1310 int ileb_cnt; 1311 int ileb_nxt; 1312 struct rb_root old_idx; 1313 int *bottom_up_buf; 1314 1315 struct ubifs_mst_node *mst_node; 1316 int mst_offs; 1317 1318 int max_bu_buf_len; 1319 struct mutex bu_mutex; 1320 struct bu_info bu; 1321 1322 struct mutex write_reserve_mutex; 1323 void *write_reserve_buf; 1324 1325 int log_lebs; 1326 long long log_bytes; 1327 int log_last; 1328 int lpt_lebs; 1329 int lpt_first; 1330 int lpt_last; 1331 int orph_lebs; 1332 int orph_first; 1333 int orph_last; 1334 int main_lebs; 1335 int main_first; 1336 long long main_bytes; 1337 1338 uint8_t key_hash_type; 1339 uint32_t (*key_hash)(const char *str, int len); 1340 int key_fmt; 1341 int key_len; 1342 int hash_len; 1343 int fanout; 1344 1345 int min_io_size; 1346 int min_io_shift; 1347 int max_write_size; 1348 int max_write_shift; 1349 int leb_size; 1350 int leb_start; 1351 int half_leb_size; 1352 int idx_leb_size; 1353 int leb_cnt; 1354 int max_leb_cnt; 1355 int old_leb_cnt; 1356 unsigned int ro_media:1; 1357 unsigned int ro_mount:1; 1358 unsigned int ro_error:1; 1359 1360 atomic_long_t dirty_pg_cnt; 1361 atomic_long_t dirty_zn_cnt; 1362 atomic_long_t clean_zn_cnt; 1363 1364 spinlock_t space_lock; 1365 struct ubifs_lp_stats lst; 1366 struct ubifs_budg_info bi; 1367 unsigned long long calc_idx_sz; 1368 1369 int ref_node_alsz; 1370 int mst_node_alsz; 1371 int min_idx_node_sz; 1372 int max_idx_node_sz; 1373 long long max_inode_sz; 1374 int max_znode_sz; 1375 1376 int leb_overhead; 1377 int dead_wm; 1378 int dark_wm; 1379 int block_cnt; 1380 1381 struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT]; 1382 struct ubi_volume_desc *ubi; 1383 struct ubi_device_info di; 1384 struct ubi_volume_info vi; 1385 1386 struct rb_root orph_tree; 1387 struct list_head orph_list; 1388 struct list_head orph_new; 1389 struct ubifs_orphan *orph_cnext; 1390 struct ubifs_orphan *orph_dnext; 1391 spinlock_t orphan_lock; 1392 void *orph_buf; 1393 int new_orphans; 1394 int cmt_orphans; 1395 int tot_orphans; 1396 int max_orphans; 1397 int ohead_lnum; 1398 int ohead_offs; 1399 int no_orphs; 1400 1401 struct task_struct *bgt; 1402 char bgt_name[sizeof(BGT_NAME_PATTERN) + 9]; 1403 int need_bgt; 1404 int need_wbuf_sync; 1405 1406 int gc_lnum; 1407 void *sbuf; 1408 struct list_head idx_gc; 1409 int idx_gc_cnt; 1410 int gc_seq; 1411 int gced_lnum; 1412 1413 struct list_head infos_list; 1414 struct mutex umount_mutex; 1415 unsigned int shrinker_run_no; 1416 1417 int space_bits; 1418 int lpt_lnum_bits; 1419 int lpt_offs_bits; 1420 int lpt_spc_bits; 1421 int pcnt_bits; 1422 int lnum_bits; 1423 int nnode_sz; 1424 int pnode_sz; 1425 int ltab_sz; 1426 int lsave_sz; 1427 int pnode_cnt; 1428 int nnode_cnt; 1429 int lpt_hght; 1430 int pnodes_have; 1431 1432 struct mutex lp_mutex; 1433 int lpt_lnum; 1434 int lpt_offs; 1435 int nhead_lnum; 1436 int nhead_offs; 1437 int lpt_drty_flgs; 1438 int dirty_nn_cnt; 1439 int dirty_pn_cnt; 1440 int check_lpt_free; 1441 long long lpt_sz; 1442 void *lpt_nod_buf; 1443 void *lpt_buf; 1444 struct ubifs_nnode *nroot; 1445 struct ubifs_cnode *lpt_cnext; 1446 struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT]; 1447 struct ubifs_lpt_heap dirty_idx; 1448 struct list_head uncat_list; 1449 struct list_head empty_list; 1450 struct list_head freeable_list; 1451 struct list_head frdi_idx_list; 1452 int freeable_cnt; 1453 int in_a_category_cnt; 1454 1455 int ltab_lnum; 1456 int ltab_offs; 1457 struct ubifs_lpt_lprops *ltab; 1458 struct ubifs_lpt_lprops *ltab_cmt; 1459 int lsave_cnt; 1460 int lsave_lnum; 1461 int lsave_offs; 1462 int *lsave; 1463 int lscan_lnum; 1464 1465 long long rp_size; 1466 long long report_rp_size; 1467 kuid_t rp_uid; 1468 kgid_t rp_gid; 1469 1470 struct crypto_shash *hash_tfm; 1471 struct crypto_shash *hmac_tfm; 1472 int hmac_desc_len; 1473 char *auth_key_name; 1474 char *auth_hash_name; 1475 enum hash_algo auth_hash_algo; 1476 1477 struct shash_desc *log_hash; 1478 1479 /* The below fields are used only during mounting and re-mounting */ 1480 unsigned int empty:1; 1481 unsigned int need_recovery:1; 1482 unsigned int replaying:1; 1483 unsigned int mounting:1; 1484 unsigned int remounting_rw:1; 1485 unsigned int probing:1; 1486 struct list_head replay_list; 1487 struct list_head replay_buds; 1488 unsigned long long cs_sqnum; 1489 struct list_head unclean_leb_list; 1490 struct ubifs_mst_node *rcvrd_mst_node; 1491 struct rb_root size_tree; 1492 struct ubifs_mount_opts mount_opts; 1493 1494 struct ubifs_debug_info *dbg; 1495 }; 1496 1497 extern struct list_head ubifs_infos; 1498 extern spinlock_t ubifs_infos_lock; 1499 extern atomic_long_t ubifs_clean_zn_cnt; 1500 extern const struct super_operations ubifs_super_operations; 1501 extern const struct address_space_operations ubifs_file_address_operations; 1502 extern const struct file_operations ubifs_file_operations; 1503 extern const struct inode_operations ubifs_file_inode_operations; 1504 extern const struct file_operations ubifs_dir_operations; 1505 extern const struct inode_operations ubifs_dir_inode_operations; 1506 extern const struct inode_operations ubifs_symlink_inode_operations; 1507 extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT]; 1508 1509 /* auth.c */ 1510 static inline int ubifs_authenticated(const struct ubifs_info *c) 1511 { 1512 return (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) && c->authenticated; 1513 } 1514 1515 struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c); 1516 static inline struct shash_desc *ubifs_hash_get_desc(const struct ubifs_info *c) 1517 { 1518 return ubifs_authenticated(c) ? __ubifs_hash_get_desc(c) : NULL; 1519 } 1520 1521 static inline int ubifs_shash_init(const struct ubifs_info *c, 1522 struct shash_desc *desc) 1523 { 1524 if (ubifs_authenticated(c)) 1525 return crypto_shash_init(desc); 1526 else 1527 return 0; 1528 } 1529 1530 static inline int ubifs_shash_update(const struct ubifs_info *c, 1531 struct shash_desc *desc, const void *buf, 1532 unsigned int len) 1533 { 1534 int err = 0; 1535 1536 if (ubifs_authenticated(c)) { 1537 err = crypto_shash_update(desc, buf, len); 1538 if (err < 0) 1539 return err; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static inline int ubifs_shash_final(const struct ubifs_info *c, 1546 struct shash_desc *desc, u8 *out) 1547 { 1548 return ubifs_authenticated(c) ? crypto_shash_final(desc, out) : 0; 1549 } 1550 1551 int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *buf, 1552 u8 *hash); 1553 static inline int ubifs_node_calc_hash(const struct ubifs_info *c, 1554 const void *buf, u8 *hash) 1555 { 1556 if (ubifs_authenticated(c)) 1557 return __ubifs_node_calc_hash(c, buf, hash); 1558 else 1559 return 0; 1560 } 1561 1562 int ubifs_prepare_auth_node(struct ubifs_info *c, void *node, 1563 struct shash_desc *inhash); 1564 1565 /** 1566 * ubifs_check_hash - compare two hashes 1567 * @c: UBIFS file-system description object 1568 * @expected: first hash 1569 * @got: second hash 1570 * 1571 * Compare two hashes @expected and @got. Returns 0 when they are equal, a 1572 * negative error code otherwise. 1573 */ 1574 static inline int ubifs_check_hash(const struct ubifs_info *c, 1575 const u8 *expected, const u8 *got) 1576 { 1577 return crypto_memneq(expected, got, c->hash_len); 1578 } 1579 1580 /** 1581 * ubifs_check_hmac - compare two HMACs 1582 * @c: UBIFS file-system description object 1583 * @expected: first HMAC 1584 * @got: second HMAC 1585 * 1586 * Compare two hashes @expected and @got. Returns 0 when they are equal, a 1587 * negative error code otherwise. 1588 */ 1589 static inline int ubifs_check_hmac(const struct ubifs_info *c, 1590 const u8 *expected, const u8 *got) 1591 { 1592 return crypto_memneq(expected, got, c->hmac_desc_len); 1593 } 1594 1595 void ubifs_bad_hash(const struct ubifs_info *c, const void *node, 1596 const u8 *hash, int lnum, int offs); 1597 1598 int __ubifs_node_check_hash(const struct ubifs_info *c, const void *buf, 1599 const u8 *expected); 1600 static inline int ubifs_node_check_hash(const struct ubifs_info *c, 1601 const void *buf, const u8 *expected) 1602 { 1603 if (ubifs_authenticated(c)) 1604 return __ubifs_node_check_hash(c, buf, expected); 1605 else 1606 return 0; 1607 } 1608 1609 int ubifs_init_authentication(struct ubifs_info *c); 1610 void __ubifs_exit_authentication(struct ubifs_info *c); 1611 static inline void ubifs_exit_authentication(struct ubifs_info *c) 1612 { 1613 if (ubifs_authenticated(c)) 1614 __ubifs_exit_authentication(c); 1615 } 1616 1617 /** 1618 * ubifs_branch_hash - returns a pointer to the hash of a branch 1619 * @c: UBIFS file-system description object 1620 * @br: branch to get the hash from 1621 * 1622 * This returns a pointer to the hash of a branch. Since the key already is a 1623 * dynamically sized object we cannot use a struct member here. 1624 */ 1625 static inline u8 *ubifs_branch_hash(struct ubifs_info *c, 1626 struct ubifs_branch *br) 1627 { 1628 return (void *)br + sizeof(*br) + c->key_len; 1629 } 1630 1631 /** 1632 * ubifs_copy_hash - copy a hash 1633 * @c: UBIFS file-system description object 1634 * @from: source hash 1635 * @to: destination hash 1636 * 1637 * With authentication this copies a hash, otherwise does nothing. 1638 */ 1639 static inline void ubifs_copy_hash(const struct ubifs_info *c, const u8 *from, 1640 u8 *to) 1641 { 1642 if (ubifs_authenticated(c)) 1643 memcpy(to, from, c->hash_len); 1644 } 1645 1646 int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf, 1647 int len, int ofs_hmac); 1648 static inline int ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf, 1649 int len, int ofs_hmac) 1650 { 1651 if (ubifs_authenticated(c)) 1652 return __ubifs_node_insert_hmac(c, buf, len, ofs_hmac); 1653 else 1654 return 0; 1655 } 1656 1657 int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *buf, 1658 int len, int ofs_hmac); 1659 static inline int ubifs_node_verify_hmac(const struct ubifs_info *c, 1660 const void *buf, int len, int ofs_hmac) 1661 { 1662 if (ubifs_authenticated(c)) 1663 return __ubifs_node_verify_hmac(c, buf, len, ofs_hmac); 1664 else 1665 return 0; 1666 } 1667 1668 /** 1669 * ubifs_auth_node_sz - returns the size of an authentication node 1670 * @c: UBIFS file-system description object 1671 * 1672 * This function returns the size of an authentication node which can 1673 * be 0 for unauthenticated filesystems or the real size of an auth node 1674 * authentication is enabled. 1675 */ 1676 static inline int ubifs_auth_node_sz(const struct ubifs_info *c) 1677 { 1678 if (ubifs_authenticated(c)) 1679 return sizeof(struct ubifs_auth_node) + c->hmac_desc_len; 1680 else 1681 return 0; 1682 } 1683 1684 int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac); 1685 1686 int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src, 1687 struct shash_desc *target); 1688 static inline int ubifs_shash_copy_state(const struct ubifs_info *c, 1689 struct shash_desc *src, 1690 struct shash_desc *target) 1691 { 1692 if (ubifs_authenticated(c)) 1693 return __ubifs_shash_copy_state(c, src, target); 1694 else 1695 return 0; 1696 } 1697 1698 /* io.c */ 1699 void ubifs_ro_mode(struct ubifs_info *c, int err); 1700 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 1701 int len, int even_ebadmsg); 1702 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 1703 int len); 1704 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len); 1705 int ubifs_leb_unmap(struct ubifs_info *c, int lnum); 1706 int ubifs_leb_map(struct ubifs_info *c, int lnum); 1707 int ubifs_is_mapped(const struct ubifs_info *c, int lnum); 1708 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len); 1709 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs); 1710 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf); 1711 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 1712 int lnum, int offs); 1713 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 1714 int lnum, int offs); 1715 int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum, 1716 int offs); 1717 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, 1718 int offs, int hmac_offs); 1719 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 1720 int offs, int quiet, int must_chk_crc); 1721 void ubifs_init_node(struct ubifs_info *c, void *buf, int len, int pad); 1722 void ubifs_crc_node(struct ubifs_info *c, void *buf, int len); 1723 void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad); 1724 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, 1725 int hmac_offs, int pad); 1726 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last); 1727 int ubifs_io_init(struct ubifs_info *c); 1728 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad); 1729 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf); 1730 int ubifs_bg_wbufs_sync(struct ubifs_info *c); 1731 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum); 1732 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode); 1733 1734 /* scan.c */ 1735 struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, 1736 int offs, void *sbuf, int quiet); 1737 void ubifs_scan_destroy(struct ubifs_scan_leb *sleb); 1738 int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, 1739 int offs, int quiet); 1740 struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum, 1741 int offs, void *sbuf); 1742 void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, 1743 int lnum, int offs); 1744 int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, 1745 void *buf, int offs); 1746 void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs, 1747 void *buf); 1748 1749 /* log.c */ 1750 void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud); 1751 void ubifs_create_buds_lists(struct ubifs_info *c); 1752 int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs); 1753 struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum); 1754 struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum); 1755 int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum); 1756 int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum); 1757 int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum); 1758 int ubifs_consolidate_log(struct ubifs_info *c); 1759 1760 /* journal.c */ 1761 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 1762 const struct fscrypt_name *nm, const struct inode *inode, 1763 int deletion, int xent); 1764 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 1765 const union ubifs_key *key, const void *buf, int len); 1766 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode); 1767 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode); 1768 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 1769 const struct inode *fst_inode, 1770 const struct fscrypt_name *fst_nm, 1771 const struct inode *snd_dir, 1772 const struct inode *snd_inode, 1773 const struct fscrypt_name *snd_nm, int sync); 1774 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1775 const struct inode *old_inode, 1776 const struct fscrypt_name *old_nm, 1777 const struct inode *new_dir, 1778 const struct inode *new_inode, 1779 const struct fscrypt_name *new_nm, 1780 const struct inode *whiteout, int sync); 1781 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1782 loff_t old_size, loff_t new_size); 1783 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1784 const struct inode *inode, const struct fscrypt_name *nm); 1785 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1, 1786 const struct inode *inode2); 1787 1788 /* budget.c */ 1789 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req); 1790 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req); 1791 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 1792 struct ubifs_inode *ui); 1793 int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode, 1794 struct ubifs_budget_req *req); 1795 void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode, 1796 struct ubifs_budget_req *req); 1797 void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode, 1798 struct ubifs_budget_req *req); 1799 long long ubifs_get_free_space(struct ubifs_info *c); 1800 long long ubifs_get_free_space_nolock(struct ubifs_info *c); 1801 int ubifs_calc_min_idx_lebs(struct ubifs_info *c); 1802 void ubifs_convert_page_budget(struct ubifs_info *c); 1803 long long ubifs_reported_space(const struct ubifs_info *c, long long free); 1804 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs); 1805 1806 /* find.c */ 1807 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, 1808 int squeeze); 1809 int ubifs_find_free_leb_for_idx(struct ubifs_info *c); 1810 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, 1811 int min_space, int pick_free); 1812 int ubifs_find_dirty_idx_leb(struct ubifs_info *c); 1813 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c); 1814 1815 /* tnc.c */ 1816 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1817 struct ubifs_znode **zn, int *n); 1818 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1819 void *node, const struct fscrypt_name *nm); 1820 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1821 void *node, uint32_t secondary_hash); 1822 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1823 void *node, int *lnum, int *offs); 1824 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 1825 int offs, int len, const u8 *hash); 1826 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 1827 int old_lnum, int old_offs, int lnum, int offs, int len); 1828 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 1829 int lnum, int offs, int len, const u8 *hash, 1830 const struct fscrypt_name *nm); 1831 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key); 1832 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 1833 const struct fscrypt_name *nm); 1834 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 1835 uint32_t cookie); 1836 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 1837 union ubifs_key *to_key); 1838 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum); 1839 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 1840 union ubifs_key *key, 1841 const struct fscrypt_name *nm); 1842 void ubifs_tnc_close(struct ubifs_info *c); 1843 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 1844 int lnum, int offs, int is_idx); 1845 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 1846 int lnum, int offs); 1847 /* Shared by tnc.c for tnc_commit.c */ 1848 void destroy_old_idx(struct ubifs_info *c); 1849 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 1850 int lnum, int offs); 1851 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode); 1852 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu); 1853 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu); 1854 1855 /* tnc_misc.c */ 1856 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c, 1857 struct ubifs_znode *zr, 1858 struct ubifs_znode *znode); 1859 int ubifs_search_zbranch(const struct ubifs_info *c, 1860 const struct ubifs_znode *znode, 1861 const union ubifs_key *key, int *n); 1862 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode); 1863 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c, 1864 struct ubifs_znode *znode); 1865 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c, 1866 struct ubifs_znode *zr); 1867 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, 1868 struct ubifs_zbranch *zbr, 1869 struct ubifs_znode *parent, int iip); 1870 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1871 void *node); 1872 1873 /* tnc_commit.c */ 1874 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot); 1875 int ubifs_tnc_end_commit(struct ubifs_info *c); 1876 1877 /* shrinker.c */ 1878 unsigned long ubifs_shrink_scan(struct shrinker *shrink, 1879 struct shrink_control *sc); 1880 unsigned long ubifs_shrink_count(struct shrinker *shrink, 1881 struct shrink_control *sc); 1882 1883 /* commit.c */ 1884 int ubifs_bg_thread(void *info); 1885 void ubifs_commit_required(struct ubifs_info *c); 1886 void ubifs_request_bg_commit(struct ubifs_info *c); 1887 int ubifs_run_commit(struct ubifs_info *c); 1888 void ubifs_recovery_commit(struct ubifs_info *c); 1889 int ubifs_gc_should_commit(struct ubifs_info *c); 1890 void ubifs_wait_for_commit(struct ubifs_info *c); 1891 1892 /* master.c */ 1893 int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2); 1894 int ubifs_read_master(struct ubifs_info *c); 1895 int ubifs_write_master(struct ubifs_info *c); 1896 1897 /* sb.c */ 1898 int ubifs_read_superblock(struct ubifs_info *c); 1899 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup); 1900 int ubifs_fixup_free_space(struct ubifs_info *c); 1901 int ubifs_enable_encryption(struct ubifs_info *c); 1902 1903 /* replay.c */ 1904 int ubifs_validate_entry(struct ubifs_info *c, 1905 const struct ubifs_dent_node *dent); 1906 int ubifs_replay_journal(struct ubifs_info *c); 1907 1908 /* gc.c */ 1909 int ubifs_garbage_collect(struct ubifs_info *c, int anyway); 1910 int ubifs_gc_start_commit(struct ubifs_info *c); 1911 int ubifs_gc_end_commit(struct ubifs_info *c); 1912 void ubifs_destroy_idx_gc(struct ubifs_info *c); 1913 int ubifs_get_idx_gc_leb(struct ubifs_info *c); 1914 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp); 1915 1916 /* orphan.c */ 1917 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum); 1918 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum); 1919 int ubifs_orphan_start_commit(struct ubifs_info *c); 1920 int ubifs_orphan_end_commit(struct ubifs_info *c); 1921 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only); 1922 int ubifs_clear_orphans(struct ubifs_info *c); 1923 1924 /* lpt.c */ 1925 int ubifs_calc_lpt_geom(struct ubifs_info *c); 1926 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, 1927 int *lpt_lebs, int *big_lpt, u8 *hash); 1928 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr); 1929 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum); 1930 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum); 1931 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, 1932 ubifs_lpt_scan_callback scan_cb, void *data); 1933 1934 /* Shared by lpt.c for lpt_commit.c */ 1935 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave); 1936 void ubifs_pack_ltab(struct ubifs_info *c, void *buf, 1937 struct ubifs_lpt_lprops *ltab); 1938 void ubifs_pack_pnode(struct ubifs_info *c, void *buf, 1939 struct ubifs_pnode *pnode); 1940 void ubifs_pack_nnode(struct ubifs_info *c, void *buf, 1941 struct ubifs_nnode *nnode); 1942 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, 1943 struct ubifs_nnode *parent, int iip); 1944 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, 1945 struct ubifs_nnode *parent, int iip); 1946 struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i); 1947 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip); 1948 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty); 1949 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode); 1950 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits); 1951 struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght); 1952 /* Needed only in debugging code in lpt_commit.c */ 1953 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, 1954 struct ubifs_nnode *nnode); 1955 int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash); 1956 1957 /* lpt_commit.c */ 1958 int ubifs_lpt_start_commit(struct ubifs_info *c); 1959 int ubifs_lpt_end_commit(struct ubifs_info *c); 1960 int ubifs_lpt_post_commit(struct ubifs_info *c); 1961 void ubifs_lpt_free(struct ubifs_info *c, int wr_only); 1962 1963 /* lprops.c */ 1964 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 1965 const struct ubifs_lprops *lp, 1966 int free, int dirty, int flags, 1967 int idx_gc_cnt); 1968 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst); 1969 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 1970 int cat); 1971 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 1972 struct ubifs_lprops *new_lprops); 1973 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops); 1974 int ubifs_categorize_lprops(const struct ubifs_info *c, 1975 const struct ubifs_lprops *lprops); 1976 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 1977 int flags_set, int flags_clean, int idx_gc_cnt); 1978 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 1979 int flags_set, int flags_clean); 1980 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp); 1981 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c); 1982 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c); 1983 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c); 1984 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c); 1985 int ubifs_calc_dark(const struct ubifs_info *c, int spc); 1986 1987 /* file.c */ 1988 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync); 1989 int ubifs_setattr(struct dentry *dentry, struct iattr *attr); 1990 int ubifs_update_time(struct inode *inode, struct timespec64 *time, int flags); 1991 1992 /* dir.c */ 1993 struct inode *ubifs_new_inode(struct ubifs_info *c, struct inode *dir, 1994 umode_t mode); 1995 int ubifs_getattr(const struct path *path, struct kstat *stat, 1996 u32 request_mask, unsigned int flags); 1997 int ubifs_check_dir_empty(struct inode *dir); 1998 1999 /* xattr.c */ 2000 extern const struct xattr_handler *ubifs_xattr_handlers[]; 2001 ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size); 2002 int ubifs_xattr_set(struct inode *host, const char *name, const void *value, 2003 size_t size, int flags, bool check_lock); 2004 ssize_t ubifs_xattr_get(struct inode *host, const char *name, void *buf, 2005 size_t size); 2006 2007 #ifdef CONFIG_UBIFS_FS_XATTR 2008 void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum); 2009 int ubifs_purge_xattrs(struct inode *host); 2010 #else 2011 static inline void ubifs_evict_xattr_inode(struct ubifs_info *c, 2012 ino_t xattr_inum) { } 2013 static inline int ubifs_purge_xattrs(struct inode *host) 2014 { 2015 return 0; 2016 } 2017 #endif 2018 2019 #ifdef CONFIG_UBIFS_FS_SECURITY 2020 extern int ubifs_init_security(struct inode *dentry, struct inode *inode, 2021 const struct qstr *qstr); 2022 #else 2023 static inline int ubifs_init_security(struct inode *dentry, 2024 struct inode *inode, const struct qstr *qstr) 2025 { 2026 return 0; 2027 } 2028 #endif 2029 2030 2031 /* super.c */ 2032 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum); 2033 2034 /* recovery.c */ 2035 int ubifs_recover_master_node(struct ubifs_info *c); 2036 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c); 2037 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 2038 int offs, void *sbuf, int jhead); 2039 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 2040 int offs, void *sbuf); 2041 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf); 2042 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf); 2043 int ubifs_rcvry_gc_commit(struct ubifs_info *c); 2044 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 2045 int deletion, loff_t new_size); 2046 int ubifs_recover_size(struct ubifs_info *c, bool in_place); 2047 void ubifs_destroy_size_tree(struct ubifs_info *c); 2048 2049 /* ioctl.c */ 2050 long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2051 void ubifs_set_inode_flags(struct inode *inode); 2052 #ifdef CONFIG_COMPAT 2053 long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2054 #endif 2055 2056 /* compressor.c */ 2057 int __init ubifs_compressors_init(void); 2058 void ubifs_compressors_exit(void); 2059 void ubifs_compress(const struct ubifs_info *c, const void *in_buf, int in_len, 2060 void *out_buf, int *out_len, int *compr_type); 2061 int ubifs_decompress(const struct ubifs_info *c, const void *buf, int len, 2062 void *out, int *out_len, int compr_type); 2063 2064 #include "debug.h" 2065 #include "misc.h" 2066 #include "key.h" 2067 2068 #ifndef CONFIG_FS_ENCRYPTION 2069 static inline int ubifs_encrypt(const struct inode *inode, 2070 struct ubifs_data_node *dn, 2071 unsigned int in_len, unsigned int *out_len, 2072 int block) 2073 { 2074 struct ubifs_info *c = inode->i_sb->s_fs_info; 2075 ubifs_assert(c, 0); 2076 return -EOPNOTSUPP; 2077 } 2078 static inline int ubifs_decrypt(const struct inode *inode, 2079 struct ubifs_data_node *dn, 2080 unsigned int *out_len, int block) 2081 { 2082 struct ubifs_info *c = inode->i_sb->s_fs_info; 2083 ubifs_assert(c, 0); 2084 return -EOPNOTSUPP; 2085 } 2086 #else 2087 /* crypto.c */ 2088 int ubifs_encrypt(const struct inode *inode, struct ubifs_data_node *dn, 2089 unsigned int in_len, unsigned int *out_len, int block); 2090 int ubifs_decrypt(const struct inode *inode, struct ubifs_data_node *dn, 2091 unsigned int *out_len, int block); 2092 #endif 2093 2094 extern const struct fscrypt_operations ubifs_crypt_operations; 2095 2096 static inline bool ubifs_crypt_is_encrypted(const struct inode *inode) 2097 { 2098 const struct ubifs_inode *ui = ubifs_inode(inode); 2099 2100 return ui->flags & UBIFS_CRYPT_FL; 2101 } 2102 2103 /* Normal UBIFS messages */ 2104 __printf(2, 3) 2105 void ubifs_msg(const struct ubifs_info *c, const char *fmt, ...); 2106 __printf(2, 3) 2107 void ubifs_err(const struct ubifs_info *c, const char *fmt, ...); 2108 __printf(2, 3) 2109 void ubifs_warn(const struct ubifs_info *c, const char *fmt, ...); 2110 /* 2111 * A conditional variant of 'ubifs_err()' which doesn't output anything 2112 * if probing (ie. SB_SILENT set). 2113 */ 2114 #define ubifs_errc(c, fmt, ...) \ 2115 do { \ 2116 if (!(c)->probing) \ 2117 ubifs_err(c, fmt, ##__VA_ARGS__); \ 2118 } while (0) 2119 2120 #endif /* !__UBIFS_H__ */ 2121