xref: /openbmc/linux/fs/ubifs/tnc_misc.c (revision d0e22329)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains miscelanious TNC-related functions shared betweend
25  * different files. This file does not form any logically separate TNC
26  * sub-system. The file was created because there is a lot of TNC code and
27  * putting it all in one file would make that file too big and unreadable.
28  */
29 
30 #include "ubifs.h"
31 
32 /**
33  * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
34  * @c: UBIFS file-system description object
35  * @zr: root of the subtree to traverse
36  * @znode: previous znode
37  *
38  * This function implements levelorder TNC traversal. The LNC is ignored.
39  * Returns the next element or %NULL if @znode is already the last one.
40  */
41 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
42 					      struct ubifs_znode *zr,
43 					      struct ubifs_znode *znode)
44 {
45 	int level, iip, level_search = 0;
46 	struct ubifs_znode *zn;
47 
48 	ubifs_assert(c, zr);
49 
50 	if (unlikely(!znode))
51 		return zr;
52 
53 	if (unlikely(znode == zr)) {
54 		if (znode->level == 0)
55 			return NULL;
56 		return ubifs_tnc_find_child(zr, 0);
57 	}
58 
59 	level = znode->level;
60 
61 	iip = znode->iip;
62 	while (1) {
63 		ubifs_assert(c, znode->level <= zr->level);
64 
65 		/*
66 		 * First walk up until there is a znode with next branch to
67 		 * look at.
68 		 */
69 		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
70 			znode = znode->parent;
71 			iip = znode->iip;
72 		}
73 
74 		if (unlikely(znode->parent == zr &&
75 			     iip >= znode->parent->child_cnt)) {
76 			/* This level is done, switch to the lower one */
77 			level -= 1;
78 			if (level_search || level < 0)
79 				/*
80 				 * We were already looking for znode at lower
81 				 * level ('level_search'). As we are here
82 				 * again, it just does not exist. Or all levels
83 				 * were finished ('level < 0').
84 				 */
85 				return NULL;
86 
87 			level_search = 1;
88 			iip = -1;
89 			znode = ubifs_tnc_find_child(zr, 0);
90 			ubifs_assert(c, znode);
91 		}
92 
93 		/* Switch to the next index */
94 		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
95 		if (!zn) {
96 			/* No more children to look at, we have walk up */
97 			iip = znode->parent->child_cnt;
98 			continue;
99 		}
100 
101 		/* Walk back down to the level we came from ('level') */
102 		while (zn->level != level) {
103 			znode = zn;
104 			zn = ubifs_tnc_find_child(zn, 0);
105 			if (!zn) {
106 				/*
107 				 * This path is not too deep so it does not
108 				 * reach 'level'. Try next path.
109 				 */
110 				iip = znode->iip;
111 				break;
112 			}
113 		}
114 
115 		if (zn) {
116 			ubifs_assert(c, zn->level >= 0);
117 			return zn;
118 		}
119 	}
120 }
121 
122 /**
123  * ubifs_search_zbranch - search znode branch.
124  * @c: UBIFS file-system description object
125  * @znode: znode to search in
126  * @key: key to search for
127  * @n: znode branch slot number is returned here
128  *
129  * This is a helper function which search branch with key @key in @znode using
130  * binary search. The result of the search may be:
131  *   o exact match, then %1 is returned, and the slot number of the branch is
132  *     stored in @n;
133  *   o no exact match, then %0 is returned and the slot number of the left
134  *     closest branch is returned in @n; the slot if all keys in this znode are
135  *     greater than @key, then %-1 is returned in @n.
136  */
137 int ubifs_search_zbranch(const struct ubifs_info *c,
138 			 const struct ubifs_znode *znode,
139 			 const union ubifs_key *key, int *n)
140 {
141 	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
142 	int uninitialized_var(cmp);
143 	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
144 
145 	ubifs_assert(c, end > beg);
146 
147 	while (end > beg) {
148 		mid = (beg + end) >> 1;
149 		cmp = keys_cmp(c, key, &zbr[mid].key);
150 		if (cmp > 0)
151 			beg = mid + 1;
152 		else if (cmp < 0)
153 			end = mid;
154 		else {
155 			*n = mid;
156 			return 1;
157 		}
158 	}
159 
160 	*n = end - 1;
161 
162 	/* The insert point is after *n */
163 	ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
164 	if (*n == -1)
165 		ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
166 	else
167 		ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
168 	if (*n + 1 < znode->child_cnt)
169 		ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
170 
171 	return 0;
172 }
173 
174 /**
175  * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
176  * @znode: znode to start at (root of the sub-tree to traverse)
177  *
178  * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
179  * ignored.
180  */
181 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
182 {
183 	if (unlikely(!znode))
184 		return NULL;
185 
186 	while (znode->level > 0) {
187 		struct ubifs_znode *child;
188 
189 		child = ubifs_tnc_find_child(znode, 0);
190 		if (!child)
191 			return znode;
192 		znode = child;
193 	}
194 
195 	return znode;
196 }
197 
198 /**
199  * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
200  * @c: UBIFS file-system description object
201  * @znode: previous znode
202  *
203  * This function implements postorder TNC traversal. The LNC is ignored.
204  * Returns the next element or %NULL if @znode is already the last one.
205  */
206 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
207 					     struct ubifs_znode *znode)
208 {
209 	struct ubifs_znode *zn;
210 
211 	ubifs_assert(c, znode);
212 	if (unlikely(!znode->parent))
213 		return NULL;
214 
215 	/* Switch to the next index in the parent */
216 	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
217 	if (!zn)
218 		/* This is in fact the last child, return parent */
219 		return znode->parent;
220 
221 	/* Go to the first znode in this new subtree */
222 	return ubifs_tnc_postorder_first(zn);
223 }
224 
225 /**
226  * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
227  * @c: UBIFS file-system description object
228  * @znode: znode defining subtree to destroy
229  *
230  * This function destroys subtree of the TNC tree. Returns number of clean
231  * znodes in the subtree.
232  */
233 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
234 			       struct ubifs_znode *znode)
235 {
236 	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
237 	long clean_freed = 0;
238 	int n;
239 
240 	ubifs_assert(c, zn);
241 	while (1) {
242 		for (n = 0; n < zn->child_cnt; n++) {
243 			if (!zn->zbranch[n].znode)
244 				continue;
245 
246 			if (zn->level > 0 &&
247 			    !ubifs_zn_dirty(zn->zbranch[n].znode))
248 				clean_freed += 1;
249 
250 			cond_resched();
251 			kfree(zn->zbranch[n].znode);
252 		}
253 
254 		if (zn == znode) {
255 			if (!ubifs_zn_dirty(zn))
256 				clean_freed += 1;
257 			kfree(zn);
258 			return clean_freed;
259 		}
260 
261 		zn = ubifs_tnc_postorder_next(c, zn);
262 	}
263 }
264 
265 /**
266  * read_znode - read an indexing node from flash and fill znode.
267  * @c: UBIFS file-system description object
268  * @zzbr: the zbranch describing the node to read
269  * @znode: znode to read to
270  *
271  * This function reads an indexing node from the flash media and fills znode
272  * with the read data. Returns zero in case of success and a negative error
273  * code in case of failure. The read indexing node is validated and if anything
274  * is wrong with it, this function prints complaint messages and returns
275  * %-EINVAL.
276  */
277 static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr,
278 		      struct ubifs_znode *znode)
279 {
280 	int lnum = zzbr->lnum;
281 	int offs = zzbr->offs;
282 	int len = zzbr->len;
283 	int i, err, type, cmp;
284 	struct ubifs_idx_node *idx;
285 
286 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
287 	if (!idx)
288 		return -ENOMEM;
289 
290 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
291 	if (err < 0) {
292 		kfree(idx);
293 		return err;
294 	}
295 
296 	err = ubifs_node_check_hash(c, idx, zzbr->hash);
297 	if (err) {
298 		ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs);
299 		return err;
300 	}
301 
302 	znode->child_cnt = le16_to_cpu(idx->child_cnt);
303 	znode->level = le16_to_cpu(idx->level);
304 
305 	dbg_tnc("LEB %d:%d, level %d, %d branch",
306 		lnum, offs, znode->level, znode->child_cnt);
307 
308 	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
309 		ubifs_err(c, "current fanout %d, branch count %d",
310 			  c->fanout, znode->child_cnt);
311 		ubifs_err(c, "max levels %d, znode level %d",
312 			  UBIFS_MAX_LEVELS, znode->level);
313 		err = 1;
314 		goto out_dump;
315 	}
316 
317 	for (i = 0; i < znode->child_cnt; i++) {
318 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
319 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
320 
321 		key_read(c, &br->key, &zbr->key);
322 		zbr->lnum = le32_to_cpu(br->lnum);
323 		zbr->offs = le32_to_cpu(br->offs);
324 		zbr->len  = le32_to_cpu(br->len);
325 		ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash);
326 		zbr->znode = NULL;
327 
328 		/* Validate branch */
329 
330 		if (zbr->lnum < c->main_first ||
331 		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
332 		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
333 			ubifs_err(c, "bad branch %d", i);
334 			err = 2;
335 			goto out_dump;
336 		}
337 
338 		switch (key_type(c, &zbr->key)) {
339 		case UBIFS_INO_KEY:
340 		case UBIFS_DATA_KEY:
341 		case UBIFS_DENT_KEY:
342 		case UBIFS_XENT_KEY:
343 			break;
344 		default:
345 			ubifs_err(c, "bad key type at slot %d: %d",
346 				  i, key_type(c, &zbr->key));
347 			err = 3;
348 			goto out_dump;
349 		}
350 
351 		if (znode->level)
352 			continue;
353 
354 		type = key_type(c, &zbr->key);
355 		if (c->ranges[type].max_len == 0) {
356 			if (zbr->len != c->ranges[type].len) {
357 				ubifs_err(c, "bad target node (type %d) length (%d)",
358 					  type, zbr->len);
359 				ubifs_err(c, "have to be %d", c->ranges[type].len);
360 				err = 4;
361 				goto out_dump;
362 			}
363 		} else if (zbr->len < c->ranges[type].min_len ||
364 			   zbr->len > c->ranges[type].max_len) {
365 			ubifs_err(c, "bad target node (type %d) length (%d)",
366 				  type, zbr->len);
367 			ubifs_err(c, "have to be in range of %d-%d",
368 				  c->ranges[type].min_len,
369 				  c->ranges[type].max_len);
370 			err = 5;
371 			goto out_dump;
372 		}
373 	}
374 
375 	/*
376 	 * Ensure that the next key is greater or equivalent to the
377 	 * previous one.
378 	 */
379 	for (i = 0; i < znode->child_cnt - 1; i++) {
380 		const union ubifs_key *key1, *key2;
381 
382 		key1 = &znode->zbranch[i].key;
383 		key2 = &znode->zbranch[i + 1].key;
384 
385 		cmp = keys_cmp(c, key1, key2);
386 		if (cmp > 0) {
387 			ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
388 			err = 6;
389 			goto out_dump;
390 		} else if (cmp == 0 && !is_hash_key(c, key1)) {
391 			/* These can only be keys with colliding hash */
392 			ubifs_err(c, "keys %d and %d are not hashed but equivalent",
393 				  i, i + 1);
394 			err = 7;
395 			goto out_dump;
396 		}
397 	}
398 
399 	kfree(idx);
400 	return 0;
401 
402 out_dump:
403 	ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
404 	ubifs_dump_node(c, idx);
405 	kfree(idx);
406 	return -EINVAL;
407 }
408 
409 /**
410  * ubifs_load_znode - load znode to TNC cache.
411  * @c: UBIFS file-system description object
412  * @zbr: znode branch
413  * @parent: znode's parent
414  * @iip: index in parent
415  *
416  * This function loads znode pointed to by @zbr into the TNC cache and
417  * returns pointer to it in case of success and a negative error code in case
418  * of failure.
419  */
420 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
421 				     struct ubifs_zbranch *zbr,
422 				     struct ubifs_znode *parent, int iip)
423 {
424 	int err;
425 	struct ubifs_znode *znode;
426 
427 	ubifs_assert(c, !zbr->znode);
428 	/*
429 	 * A slab cache is not presently used for znodes because the znode size
430 	 * depends on the fanout which is stored in the superblock.
431 	 */
432 	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
433 	if (!znode)
434 		return ERR_PTR(-ENOMEM);
435 
436 	err = read_znode(c, zbr, znode);
437 	if (err)
438 		goto out;
439 
440 	atomic_long_inc(&c->clean_zn_cnt);
441 
442 	/*
443 	 * Increment the global clean znode counter as well. It is OK that
444 	 * global and per-FS clean znode counters may be inconsistent for some
445 	 * short time (because we might be preempted at this point), the global
446 	 * one is only used in shrinker.
447 	 */
448 	atomic_long_inc(&ubifs_clean_zn_cnt);
449 
450 	zbr->znode = znode;
451 	znode->parent = parent;
452 	znode->time = ktime_get_seconds();
453 	znode->iip = iip;
454 
455 	return znode;
456 
457 out:
458 	kfree(znode);
459 	return ERR_PTR(err);
460 }
461 
462 /**
463  * ubifs_tnc_read_node - read a leaf node from the flash media.
464  * @c: UBIFS file-system description object
465  * @zbr: key and position of the node
466  * @node: node is returned here
467  *
468  * This function reads a node defined by @zbr from the flash media. Returns
469  * zero in case of success or a negative negative error code in case of
470  * failure.
471  */
472 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
473 			void *node)
474 {
475 	union ubifs_key key1, *key = &zbr->key;
476 	int err, type = key_type(c, key);
477 	struct ubifs_wbuf *wbuf;
478 
479 	/*
480 	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
481 	 * may even be in a write buffer, so we have to take care about this.
482 	 */
483 	wbuf = ubifs_get_wbuf(c, zbr->lnum);
484 	if (wbuf)
485 		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
486 					   zbr->lnum, zbr->offs);
487 	else
488 		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
489 				      zbr->offs);
490 
491 	if (err) {
492 		dbg_tnck(key, "key ");
493 		return err;
494 	}
495 
496 	/* Make sure the key of the read node is correct */
497 	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
498 	if (!keys_eq(c, key, &key1)) {
499 		ubifs_err(c, "bad key in node at LEB %d:%d",
500 			  zbr->lnum, zbr->offs);
501 		dbg_tnck(key, "looked for key ");
502 		dbg_tnck(&key1, "but found node's key ");
503 		ubifs_dump_node(c, node);
504 		return -EINVAL;
505 	}
506 
507 	err = ubifs_node_check_hash(c, node, zbr->hash);
508 	if (err) {
509 		ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs);
510 		return err;
511 	}
512 
513 	return 0;
514 }
515