1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include <linux/random.h> 26 #include "ubifs.h" 27 28 /** 29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 30 * @c: UBIFS file-system description object 31 * @idx: buffer in which to place new index node 32 * @znode: znode from which to make new index node 33 * @lnum: LEB number where new index node will be written 34 * @offs: offset where new index node will be written 35 * @len: length of new index node 36 */ 37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 38 struct ubifs_znode *znode, int lnum, int offs, int len) 39 { 40 struct ubifs_znode *zp; 41 u8 hash[UBIFS_HASH_ARR_SZ]; 42 int i, err; 43 44 /* Make index node */ 45 idx->ch.node_type = UBIFS_IDX_NODE; 46 idx->child_cnt = cpu_to_le16(znode->child_cnt); 47 idx->level = cpu_to_le16(znode->level); 48 for (i = 0; i < znode->child_cnt; i++) { 49 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 50 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 51 52 key_write_idx(c, &zbr->key, &br->key); 53 br->lnum = cpu_to_le32(zbr->lnum); 54 br->offs = cpu_to_le32(zbr->offs); 55 br->len = cpu_to_le32(zbr->len); 56 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); 57 if (!zbr->lnum || !zbr->len) { 58 ubifs_err(c, "bad ref in znode"); 59 ubifs_dump_znode(c, znode); 60 if (zbr->znode) 61 ubifs_dump_znode(c, zbr->znode); 62 63 return -EINVAL; 64 } 65 } 66 ubifs_prepare_node(c, idx, len, 0); 67 ubifs_node_calc_hash(c, idx, hash); 68 69 znode->lnum = lnum; 70 znode->offs = offs; 71 znode->len = len; 72 73 err = insert_old_idx_znode(c, znode); 74 75 /* Update the parent */ 76 zp = znode->parent; 77 if (zp) { 78 struct ubifs_zbranch *zbr; 79 80 zbr = &zp->zbranch[znode->iip]; 81 zbr->lnum = lnum; 82 zbr->offs = offs; 83 zbr->len = len; 84 ubifs_copy_hash(c, hash, zbr->hash); 85 } else { 86 c->zroot.lnum = lnum; 87 c->zroot.offs = offs; 88 c->zroot.len = len; 89 ubifs_copy_hash(c, hash, c->zroot.hash); 90 } 91 c->calc_idx_sz += ALIGN(len, 8); 92 93 atomic_long_dec(&c->dirty_zn_cnt); 94 95 ubifs_assert(c, ubifs_zn_dirty(znode)); 96 ubifs_assert(c, ubifs_zn_cow(znode)); 97 98 /* 99 * Note, unlike 'write_index()' we do not add memory barriers here 100 * because this function is called with @c->tnc_mutex locked. 101 */ 102 __clear_bit(DIRTY_ZNODE, &znode->flags); 103 __clear_bit(COW_ZNODE, &znode->flags); 104 105 return err; 106 } 107 108 /** 109 * fill_gap - make index nodes in gaps in dirty index LEBs. 110 * @c: UBIFS file-system description object 111 * @lnum: LEB number that gap appears in 112 * @gap_start: offset of start of gap 113 * @gap_end: offset of end of gap 114 * @dirt: adds dirty space to this 115 * 116 * This function returns the number of index nodes written into the gap. 117 */ 118 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 119 int *dirt) 120 { 121 int len, gap_remains, gap_pos, written, pad_len; 122 123 ubifs_assert(c, (gap_start & 7) == 0); 124 ubifs_assert(c, (gap_end & 7) == 0); 125 ubifs_assert(c, gap_end >= gap_start); 126 127 gap_remains = gap_end - gap_start; 128 if (!gap_remains) 129 return 0; 130 gap_pos = gap_start; 131 written = 0; 132 while (c->enext) { 133 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 134 if (len < gap_remains) { 135 struct ubifs_znode *znode = c->enext; 136 const int alen = ALIGN(len, 8); 137 int err; 138 139 ubifs_assert(c, alen <= gap_remains); 140 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 141 lnum, gap_pos, len); 142 if (err) 143 return err; 144 gap_remains -= alen; 145 gap_pos += alen; 146 c->enext = znode->cnext; 147 if (c->enext == c->cnext) 148 c->enext = NULL; 149 written += 1; 150 } else 151 break; 152 } 153 if (gap_end == c->leb_size) { 154 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 155 /* Pad to end of min_io_size */ 156 pad_len = c->ileb_len - gap_pos; 157 } else 158 /* Pad to end of gap */ 159 pad_len = gap_remains; 160 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 161 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 162 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 163 *dirt += pad_len; 164 return written; 165 } 166 167 /** 168 * find_old_idx - find an index node obsoleted since the last commit start. 169 * @c: UBIFS file-system description object 170 * @lnum: LEB number of obsoleted index node 171 * @offs: offset of obsoleted index node 172 * 173 * Returns %1 if found and %0 otherwise. 174 */ 175 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 176 { 177 struct ubifs_old_idx *o; 178 struct rb_node *p; 179 180 p = c->old_idx.rb_node; 181 while (p) { 182 o = rb_entry(p, struct ubifs_old_idx, rb); 183 if (lnum < o->lnum) 184 p = p->rb_left; 185 else if (lnum > o->lnum) 186 p = p->rb_right; 187 else if (offs < o->offs) 188 p = p->rb_left; 189 else if (offs > o->offs) 190 p = p->rb_right; 191 else 192 return 1; 193 } 194 return 0; 195 } 196 197 /** 198 * is_idx_node_in_use - determine if an index node can be overwritten. 199 * @c: UBIFS file-system description object 200 * @key: key of index node 201 * @level: index node level 202 * @lnum: LEB number of index node 203 * @offs: offset of index node 204 * 205 * If @key / @lnum / @offs identify an index node that was not part of the old 206 * index, then this function returns %0 (obsolete). Else if the index node was 207 * part of the old index but is now dirty %1 is returned, else if it is clean %2 208 * is returned. A negative error code is returned on failure. 209 */ 210 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 211 int level, int lnum, int offs) 212 { 213 int ret; 214 215 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 216 if (ret < 0) 217 return ret; /* Error code */ 218 if (ret == 0) 219 if (find_old_idx(c, lnum, offs)) 220 return 1; 221 return ret; 222 } 223 224 /** 225 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 226 * @c: UBIFS file-system description object 227 * @p: return LEB number here 228 * 229 * This function lays out new index nodes for dirty znodes using in-the-gaps 230 * method of TNC commit. 231 * This function merely puts the next znode into the next gap, making no attempt 232 * to try to maximise the number of znodes that fit. 233 * This function returns the number of index nodes written into the gaps, or a 234 * negative error code on failure. 235 */ 236 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 237 { 238 struct ubifs_scan_leb *sleb; 239 struct ubifs_scan_node *snod; 240 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 241 242 tot_written = 0; 243 /* Get an index LEB with lots of obsolete index nodes */ 244 lnum = ubifs_find_dirty_idx_leb(c); 245 if (lnum < 0) 246 /* 247 * There also may be dirt in the index head that could be 248 * filled, however we do not check there at present. 249 */ 250 return lnum; /* Error code */ 251 *p = lnum; 252 dbg_gc("LEB %d", lnum); 253 /* 254 * Scan the index LEB. We use the generic scan for this even though 255 * it is more comprehensive and less efficient than is needed for this 256 * purpose. 257 */ 258 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); 259 c->ileb_len = 0; 260 if (IS_ERR(sleb)) 261 return PTR_ERR(sleb); 262 gap_start = 0; 263 list_for_each_entry(snod, &sleb->nodes, list) { 264 struct ubifs_idx_node *idx; 265 int in_use, level; 266 267 ubifs_assert(c, snod->type == UBIFS_IDX_NODE); 268 idx = snod->node; 269 key_read(c, ubifs_idx_key(c, idx), &snod->key); 270 level = le16_to_cpu(idx->level); 271 /* Determine if the index node is in use (not obsolete) */ 272 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 273 snod->offs); 274 if (in_use < 0) { 275 ubifs_scan_destroy(sleb); 276 return in_use; /* Error code */ 277 } 278 if (in_use) { 279 if (in_use == 1) 280 dirt += ALIGN(snod->len, 8); 281 /* 282 * The obsolete index nodes form gaps that can be 283 * overwritten. This gap has ended because we have 284 * found an index node that is still in use 285 * i.e. not obsolete 286 */ 287 gap_end = snod->offs; 288 /* Try to fill gap */ 289 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 290 if (written < 0) { 291 ubifs_scan_destroy(sleb); 292 return written; /* Error code */ 293 } 294 tot_written += written; 295 gap_start = ALIGN(snod->offs + snod->len, 8); 296 } 297 } 298 ubifs_scan_destroy(sleb); 299 c->ileb_len = c->leb_size; 300 gap_end = c->leb_size; 301 /* Try to fill gap */ 302 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 303 if (written < 0) 304 return written; /* Error code */ 305 tot_written += written; 306 if (tot_written == 0) { 307 struct ubifs_lprops lp; 308 309 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 310 err = ubifs_read_one_lp(c, lnum, &lp); 311 if (err) 312 return err; 313 if (lp.free == c->leb_size) { 314 /* 315 * We must have snatched this LEB from the idx_gc list 316 * so we need to correct the free and dirty space. 317 */ 318 err = ubifs_change_one_lp(c, lnum, 319 c->leb_size - c->ileb_len, 320 dirt, 0, 0, 0); 321 if (err) 322 return err; 323 } 324 return 0; 325 } 326 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 327 0, 0, 0); 328 if (err) 329 return err; 330 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); 331 if (err) 332 return err; 333 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 334 return tot_written; 335 } 336 337 /** 338 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 339 * @c: UBIFS file-system description object 340 * @cnt: number of znodes to commit 341 * 342 * This function returns the number of empty LEBs needed to commit @cnt znodes 343 * to the current index head. The number is not exact and may be more than 344 * needed. 345 */ 346 static int get_leb_cnt(struct ubifs_info *c, int cnt) 347 { 348 int d; 349 350 /* Assume maximum index node size (i.e. overestimate space needed) */ 351 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 352 if (cnt < 0) 353 cnt = 0; 354 d = c->leb_size / c->max_idx_node_sz; 355 return DIV_ROUND_UP(cnt, d); 356 } 357 358 /** 359 * layout_in_gaps - in-the-gaps method of committing TNC. 360 * @c: UBIFS file-system description object 361 * @cnt: number of dirty znodes to commit. 362 * 363 * This function lays out new index nodes for dirty znodes using in-the-gaps 364 * method of TNC commit. 365 * 366 * This function returns %0 on success and a negative error code on failure. 367 */ 368 static int layout_in_gaps(struct ubifs_info *c, int cnt) 369 { 370 int err, leb_needed_cnt, written, *p; 371 372 dbg_gc("%d znodes to write", cnt); 373 374 c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int), 375 GFP_NOFS); 376 if (!c->gap_lebs) 377 return -ENOMEM; 378 379 p = c->gap_lebs; 380 do { 381 ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs); 382 written = layout_leb_in_gaps(c, p); 383 if (written < 0) { 384 err = written; 385 if (err != -ENOSPC) { 386 kfree(c->gap_lebs); 387 c->gap_lebs = NULL; 388 return err; 389 } 390 if (!dbg_is_chk_index(c)) { 391 /* 392 * Do not print scary warnings if the debugging 393 * option which forces in-the-gaps is enabled. 394 */ 395 ubifs_warn(c, "out of space"); 396 ubifs_dump_budg(c, &c->bi); 397 ubifs_dump_lprops(c); 398 } 399 /* Try to commit anyway */ 400 break; 401 } 402 p++; 403 cnt -= written; 404 leb_needed_cnt = get_leb_cnt(c, cnt); 405 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 406 leb_needed_cnt, c->ileb_cnt); 407 } while (leb_needed_cnt > c->ileb_cnt); 408 409 *p = -1; 410 return 0; 411 } 412 413 /** 414 * layout_in_empty_space - layout index nodes in empty space. 415 * @c: UBIFS file-system description object 416 * 417 * This function lays out new index nodes for dirty znodes using empty LEBs. 418 * 419 * This function returns %0 on success and a negative error code on failure. 420 */ 421 static int layout_in_empty_space(struct ubifs_info *c) 422 { 423 struct ubifs_znode *znode, *cnext, *zp; 424 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 425 int wlen, blen, err; 426 427 cnext = c->enext; 428 if (!cnext) 429 return 0; 430 431 lnum = c->ihead_lnum; 432 buf_offs = c->ihead_offs; 433 434 buf_len = ubifs_idx_node_sz(c, c->fanout); 435 buf_len = ALIGN(buf_len, c->min_io_size); 436 used = 0; 437 avail = buf_len; 438 439 /* Ensure there is enough room for first write */ 440 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 441 if (buf_offs + next_len > c->leb_size) 442 lnum = -1; 443 444 while (1) { 445 znode = cnext; 446 447 len = ubifs_idx_node_sz(c, znode->child_cnt); 448 449 /* Determine the index node position */ 450 if (lnum == -1) { 451 if (c->ileb_nxt >= c->ileb_cnt) { 452 ubifs_err(c, "out of space"); 453 return -ENOSPC; 454 } 455 lnum = c->ilebs[c->ileb_nxt++]; 456 buf_offs = 0; 457 used = 0; 458 avail = buf_len; 459 } 460 461 offs = buf_offs + used; 462 463 znode->lnum = lnum; 464 znode->offs = offs; 465 znode->len = len; 466 467 /* Update the parent */ 468 zp = znode->parent; 469 if (zp) { 470 struct ubifs_zbranch *zbr; 471 int i; 472 473 i = znode->iip; 474 zbr = &zp->zbranch[i]; 475 zbr->lnum = lnum; 476 zbr->offs = offs; 477 zbr->len = len; 478 } else { 479 c->zroot.lnum = lnum; 480 c->zroot.offs = offs; 481 c->zroot.len = len; 482 } 483 c->calc_idx_sz += ALIGN(len, 8); 484 485 /* 486 * Once lprops is updated, we can decrease the dirty znode count 487 * but it is easier to just do it here. 488 */ 489 atomic_long_dec(&c->dirty_zn_cnt); 490 491 /* 492 * Calculate the next index node length to see if there is 493 * enough room for it 494 */ 495 cnext = znode->cnext; 496 if (cnext == c->cnext) 497 next_len = 0; 498 else 499 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 500 501 /* Update buffer positions */ 502 wlen = used + len; 503 used += ALIGN(len, 8); 504 avail -= ALIGN(len, 8); 505 506 if (next_len != 0 && 507 buf_offs + used + next_len <= c->leb_size && 508 avail > 0) 509 continue; 510 511 if (avail <= 0 && next_len && 512 buf_offs + used + next_len <= c->leb_size) 513 blen = buf_len; 514 else 515 blen = ALIGN(wlen, c->min_io_size); 516 517 /* The buffer is full or there are no more znodes to do */ 518 buf_offs += blen; 519 if (next_len) { 520 if (buf_offs + next_len > c->leb_size) { 521 err = ubifs_update_one_lp(c, lnum, 522 c->leb_size - buf_offs, blen - used, 523 0, 0); 524 if (err) 525 return err; 526 lnum = -1; 527 } 528 used -= blen; 529 if (used < 0) 530 used = 0; 531 avail = buf_len - used; 532 continue; 533 } 534 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 535 blen - used, 0, 0); 536 if (err) 537 return err; 538 break; 539 } 540 541 c->dbg->new_ihead_lnum = lnum; 542 c->dbg->new_ihead_offs = buf_offs; 543 544 return 0; 545 } 546 547 /** 548 * layout_commit - determine positions of index nodes to commit. 549 * @c: UBIFS file-system description object 550 * @no_space: indicates that insufficient empty LEBs were allocated 551 * @cnt: number of znodes to commit 552 * 553 * Calculate and update the positions of index nodes to commit. If there were 554 * an insufficient number of empty LEBs allocated, then index nodes are placed 555 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 556 * this purpose, an obsolete index node is one that was not in the index as at 557 * the end of the last commit. To write "in-the-gaps" requires that those index 558 * LEBs are updated atomically in-place. 559 */ 560 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 561 { 562 int err; 563 564 if (no_space) { 565 err = layout_in_gaps(c, cnt); 566 if (err) 567 return err; 568 } 569 err = layout_in_empty_space(c); 570 return err; 571 } 572 573 /** 574 * find_first_dirty - find first dirty znode. 575 * @znode: znode to begin searching from 576 */ 577 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 578 { 579 int i, cont; 580 581 if (!znode) 582 return NULL; 583 584 while (1) { 585 if (znode->level == 0) { 586 if (ubifs_zn_dirty(znode)) 587 return znode; 588 return NULL; 589 } 590 cont = 0; 591 for (i = 0; i < znode->child_cnt; i++) { 592 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 593 594 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 595 znode = zbr->znode; 596 cont = 1; 597 break; 598 } 599 } 600 if (!cont) { 601 if (ubifs_zn_dirty(znode)) 602 return znode; 603 return NULL; 604 } 605 } 606 } 607 608 /** 609 * find_next_dirty - find next dirty znode. 610 * @znode: znode to begin searching from 611 */ 612 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 613 { 614 int n = znode->iip + 1; 615 616 znode = znode->parent; 617 if (!znode) 618 return NULL; 619 for (; n < znode->child_cnt; n++) { 620 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 621 622 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 623 return find_first_dirty(zbr->znode); 624 } 625 return znode; 626 } 627 628 /** 629 * get_znodes_to_commit - create list of dirty znodes to commit. 630 * @c: UBIFS file-system description object 631 * 632 * This function returns the number of znodes to commit. 633 */ 634 static int get_znodes_to_commit(struct ubifs_info *c) 635 { 636 struct ubifs_znode *znode, *cnext; 637 int cnt = 0; 638 639 c->cnext = find_first_dirty(c->zroot.znode); 640 znode = c->enext = c->cnext; 641 if (!znode) { 642 dbg_cmt("no znodes to commit"); 643 return 0; 644 } 645 cnt += 1; 646 while (1) { 647 ubifs_assert(c, !ubifs_zn_cow(znode)); 648 __set_bit(COW_ZNODE, &znode->flags); 649 znode->alt = 0; 650 cnext = find_next_dirty(znode); 651 if (!cnext) { 652 znode->cnext = c->cnext; 653 break; 654 } 655 znode->cparent = znode->parent; 656 znode->ciip = znode->iip; 657 znode->cnext = cnext; 658 znode = cnext; 659 cnt += 1; 660 } 661 dbg_cmt("committing %d znodes", cnt); 662 ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt)); 663 return cnt; 664 } 665 666 /** 667 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 668 * @c: UBIFS file-system description object 669 * @cnt: number of znodes to commit 670 * 671 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 672 * empty LEBs. %0 is returned on success, otherwise a negative error code 673 * is returned. 674 */ 675 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 676 { 677 int i, leb_cnt, lnum; 678 679 c->ileb_cnt = 0; 680 c->ileb_nxt = 0; 681 leb_cnt = get_leb_cnt(c, cnt); 682 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 683 if (!leb_cnt) 684 return 0; 685 c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS); 686 if (!c->ilebs) 687 return -ENOMEM; 688 for (i = 0; i < leb_cnt; i++) { 689 lnum = ubifs_find_free_leb_for_idx(c); 690 if (lnum < 0) 691 return lnum; 692 c->ilebs[c->ileb_cnt++] = lnum; 693 dbg_cmt("LEB %d", lnum); 694 } 695 if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) 696 return -ENOSPC; 697 return 0; 698 } 699 700 /** 701 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 702 * @c: UBIFS file-system description object 703 * 704 * It is possible that we allocate more empty LEBs for the commit than we need. 705 * This functions frees the surplus. 706 * 707 * This function returns %0 on success and a negative error code on failure. 708 */ 709 static int free_unused_idx_lebs(struct ubifs_info *c) 710 { 711 int i, err = 0, lnum, er; 712 713 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 714 lnum = c->ilebs[i]; 715 dbg_cmt("LEB %d", lnum); 716 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 717 LPROPS_INDEX | LPROPS_TAKEN, 0); 718 if (!err) 719 err = er; 720 } 721 return err; 722 } 723 724 /** 725 * free_idx_lebs - free unused LEBs after commit end. 726 * @c: UBIFS file-system description object 727 * 728 * This function returns %0 on success and a negative error code on failure. 729 */ 730 static int free_idx_lebs(struct ubifs_info *c) 731 { 732 int err; 733 734 err = free_unused_idx_lebs(c); 735 kfree(c->ilebs); 736 c->ilebs = NULL; 737 return err; 738 } 739 740 /** 741 * ubifs_tnc_start_commit - start TNC commit. 742 * @c: UBIFS file-system description object 743 * @zroot: new index root position is returned here 744 * 745 * This function prepares the list of indexing nodes to commit and lays out 746 * their positions on flash. If there is not enough free space it uses the 747 * in-gap commit method. Returns zero in case of success and a negative error 748 * code in case of failure. 749 */ 750 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 751 { 752 int err = 0, cnt; 753 754 mutex_lock(&c->tnc_mutex); 755 err = dbg_check_tnc(c, 1); 756 if (err) 757 goto out; 758 cnt = get_znodes_to_commit(c); 759 if (cnt != 0) { 760 int no_space = 0; 761 762 err = alloc_idx_lebs(c, cnt); 763 if (err == -ENOSPC) 764 no_space = 1; 765 else if (err) 766 goto out_free; 767 err = layout_commit(c, no_space, cnt); 768 if (err) 769 goto out_free; 770 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0); 771 err = free_unused_idx_lebs(c); 772 if (err) 773 goto out; 774 } 775 destroy_old_idx(c); 776 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 777 778 err = ubifs_save_dirty_idx_lnums(c); 779 if (err) 780 goto out; 781 782 spin_lock(&c->space_lock); 783 /* 784 * Although we have not finished committing yet, update size of the 785 * committed index ('c->bi.old_idx_sz') and zero out the index growth 786 * budget. It is OK to do this now, because we've reserved all the 787 * space which is needed to commit the index, and it is save for the 788 * budgeting subsystem to assume the index is already committed, 789 * even though it is not. 790 */ 791 ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 792 c->bi.old_idx_sz = c->calc_idx_sz; 793 c->bi.uncommitted_idx = 0; 794 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 795 spin_unlock(&c->space_lock); 796 mutex_unlock(&c->tnc_mutex); 797 798 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 799 dbg_cmt("size of index %llu", c->calc_idx_sz); 800 return err; 801 802 out_free: 803 free_idx_lebs(c); 804 out: 805 mutex_unlock(&c->tnc_mutex); 806 return err; 807 } 808 809 /** 810 * write_index - write index nodes. 811 * @c: UBIFS file-system description object 812 * 813 * This function writes the index nodes whose positions were laid out in the 814 * layout_in_empty_space function. 815 */ 816 static int write_index(struct ubifs_info *c) 817 { 818 struct ubifs_idx_node *idx; 819 struct ubifs_znode *znode, *cnext; 820 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 821 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; 822 823 cnext = c->enext; 824 if (!cnext) 825 return 0; 826 827 /* 828 * Always write index nodes to the index head so that index nodes and 829 * other types of nodes are never mixed in the same erase block. 830 */ 831 lnum = c->ihead_lnum; 832 buf_offs = c->ihead_offs; 833 834 /* Allocate commit buffer */ 835 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 836 used = 0; 837 avail = buf_len; 838 839 /* Ensure there is enough room for first write */ 840 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 841 if (buf_offs + next_len > c->leb_size) { 842 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 843 LPROPS_TAKEN); 844 if (err) 845 return err; 846 lnum = -1; 847 } 848 849 while (1) { 850 u8 hash[UBIFS_HASH_ARR_SZ]; 851 852 cond_resched(); 853 854 znode = cnext; 855 idx = c->cbuf + used; 856 857 /* Make index node */ 858 idx->ch.node_type = UBIFS_IDX_NODE; 859 idx->child_cnt = cpu_to_le16(znode->child_cnt); 860 idx->level = cpu_to_le16(znode->level); 861 for (i = 0; i < znode->child_cnt; i++) { 862 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 863 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 864 865 key_write_idx(c, &zbr->key, &br->key); 866 br->lnum = cpu_to_le32(zbr->lnum); 867 br->offs = cpu_to_le32(zbr->offs); 868 br->len = cpu_to_le32(zbr->len); 869 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); 870 if (!zbr->lnum || !zbr->len) { 871 ubifs_err(c, "bad ref in znode"); 872 ubifs_dump_znode(c, znode); 873 if (zbr->znode) 874 ubifs_dump_znode(c, zbr->znode); 875 876 return -EINVAL; 877 } 878 } 879 len = ubifs_idx_node_sz(c, znode->child_cnt); 880 ubifs_prepare_node(c, idx, len, 0); 881 ubifs_node_calc_hash(c, idx, hash); 882 883 mutex_lock(&c->tnc_mutex); 884 885 if (znode->cparent) 886 ubifs_copy_hash(c, hash, 887 znode->cparent->zbranch[znode->ciip].hash); 888 889 if (znode->parent) { 890 if (!ubifs_zn_obsolete(znode)) 891 ubifs_copy_hash(c, hash, 892 znode->parent->zbranch[znode->iip].hash); 893 } else { 894 ubifs_copy_hash(c, hash, c->zroot.hash); 895 } 896 897 mutex_unlock(&c->tnc_mutex); 898 899 /* Determine the index node position */ 900 if (lnum == -1) { 901 lnum = c->ilebs[lnum_pos++]; 902 buf_offs = 0; 903 used = 0; 904 avail = buf_len; 905 } 906 offs = buf_offs + used; 907 908 if (lnum != znode->lnum || offs != znode->offs || 909 len != znode->len) { 910 ubifs_err(c, "inconsistent znode posn"); 911 return -EINVAL; 912 } 913 914 /* Grab some stuff from znode while we still can */ 915 cnext = znode->cnext; 916 917 ubifs_assert(c, ubifs_zn_dirty(znode)); 918 ubifs_assert(c, ubifs_zn_cow(znode)); 919 920 /* 921 * It is important that other threads should see %DIRTY_ZNODE 922 * flag cleared before %COW_ZNODE. Specifically, it matters in 923 * the 'dirty_cow_znode()' function. This is the reason for the 924 * first barrier. Also, we want the bit changes to be seen to 925 * other threads ASAP, to avoid unnecesarry copying, which is 926 * the reason for the second barrier. 927 */ 928 clear_bit(DIRTY_ZNODE, &znode->flags); 929 smp_mb__before_atomic(); 930 clear_bit(COW_ZNODE, &znode->flags); 931 smp_mb__after_atomic(); 932 933 /* 934 * We have marked the znode as clean but have not updated the 935 * @c->clean_zn_cnt counter. If this znode becomes dirty again 936 * before 'free_obsolete_znodes()' is called, then 937 * @c->clean_zn_cnt will be decremented before it gets 938 * incremented (resulting in 2 decrements for the same znode). 939 * This means that @c->clean_zn_cnt may become negative for a 940 * while. 941 * 942 * Q: why we cannot increment @c->clean_zn_cnt? 943 * A: because we do not have the @c->tnc_mutex locked, and the 944 * following code would be racy and buggy: 945 * 946 * if (!ubifs_zn_obsolete(znode)) { 947 * atomic_long_inc(&c->clean_zn_cnt); 948 * atomic_long_inc(&ubifs_clean_zn_cnt); 949 * } 950 * 951 * Thus, we just delay the @c->clean_zn_cnt update until we 952 * have the mutex locked. 953 */ 954 955 /* Do not access znode from this point on */ 956 957 /* Update buffer positions */ 958 wlen = used + len; 959 used += ALIGN(len, 8); 960 avail -= ALIGN(len, 8); 961 962 /* 963 * Calculate the next index node length to see if there is 964 * enough room for it 965 */ 966 if (cnext == c->cnext) 967 next_len = 0; 968 else 969 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 970 971 nxt_offs = buf_offs + used + next_len; 972 if (next_len && nxt_offs <= c->leb_size) { 973 if (avail > 0) 974 continue; 975 else 976 blen = buf_len; 977 } else { 978 wlen = ALIGN(wlen, 8); 979 blen = ALIGN(wlen, c->min_io_size); 980 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 981 } 982 983 /* The buffer is full or there are no more znodes to do */ 984 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); 985 if (err) 986 return err; 987 buf_offs += blen; 988 if (next_len) { 989 if (nxt_offs > c->leb_size) { 990 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 991 0, LPROPS_TAKEN); 992 if (err) 993 return err; 994 lnum = -1; 995 } 996 used -= blen; 997 if (used < 0) 998 used = 0; 999 avail = buf_len - used; 1000 memmove(c->cbuf, c->cbuf + blen, used); 1001 continue; 1002 } 1003 break; 1004 } 1005 1006 if (lnum != c->dbg->new_ihead_lnum || 1007 buf_offs != c->dbg->new_ihead_offs) { 1008 ubifs_err(c, "inconsistent ihead"); 1009 return -EINVAL; 1010 } 1011 1012 c->ihead_lnum = lnum; 1013 c->ihead_offs = buf_offs; 1014 1015 return 0; 1016 } 1017 1018 /** 1019 * free_obsolete_znodes - free obsolete znodes. 1020 * @c: UBIFS file-system description object 1021 * 1022 * At the end of commit end, obsolete znodes are freed. 1023 */ 1024 static void free_obsolete_znodes(struct ubifs_info *c) 1025 { 1026 struct ubifs_znode *znode, *cnext; 1027 1028 cnext = c->cnext; 1029 do { 1030 znode = cnext; 1031 cnext = znode->cnext; 1032 if (ubifs_zn_obsolete(znode)) 1033 kfree(znode); 1034 else { 1035 znode->cnext = NULL; 1036 atomic_long_inc(&c->clean_zn_cnt); 1037 atomic_long_inc(&ubifs_clean_zn_cnt); 1038 } 1039 } while (cnext != c->cnext); 1040 } 1041 1042 /** 1043 * return_gap_lebs - return LEBs used by the in-gap commit method. 1044 * @c: UBIFS file-system description object 1045 * 1046 * This function clears the "taken" flag for the LEBs which were used by the 1047 * "commit in-the-gaps" method. 1048 */ 1049 static int return_gap_lebs(struct ubifs_info *c) 1050 { 1051 int *p, err; 1052 1053 if (!c->gap_lebs) 1054 return 0; 1055 1056 dbg_cmt(""); 1057 for (p = c->gap_lebs; *p != -1; p++) { 1058 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1059 LPROPS_TAKEN, 0); 1060 if (err) 1061 return err; 1062 } 1063 1064 kfree(c->gap_lebs); 1065 c->gap_lebs = NULL; 1066 return 0; 1067 } 1068 1069 /** 1070 * ubifs_tnc_end_commit - update the TNC for commit end. 1071 * @c: UBIFS file-system description object 1072 * 1073 * Write the dirty znodes. 1074 */ 1075 int ubifs_tnc_end_commit(struct ubifs_info *c) 1076 { 1077 int err; 1078 1079 if (!c->cnext) 1080 return 0; 1081 1082 err = return_gap_lebs(c); 1083 if (err) 1084 return err; 1085 1086 err = write_index(c); 1087 if (err) 1088 return err; 1089 1090 mutex_lock(&c->tnc_mutex); 1091 1092 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1093 1094 free_obsolete_znodes(c); 1095 1096 c->cnext = NULL; 1097 kfree(c->ilebs); 1098 c->ilebs = NULL; 1099 1100 mutex_unlock(&c->tnc_mutex); 1101 1102 return 0; 1103 } 1104