1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include <linux/random.h> 26 #include "ubifs.h" 27 28 /** 29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 30 * @c: UBIFS file-system description object 31 * @idx: buffer in which to place new index node 32 * @znode: znode from which to make new index node 33 * @lnum: LEB number where new index node will be written 34 * @offs: offset where new index node will be written 35 * @len: length of new index node 36 */ 37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 38 struct ubifs_znode *znode, int lnum, int offs, int len) 39 { 40 struct ubifs_znode *zp; 41 int i, err; 42 43 /* Make index node */ 44 idx->ch.node_type = UBIFS_IDX_NODE; 45 idx->child_cnt = cpu_to_le16(znode->child_cnt); 46 idx->level = cpu_to_le16(znode->level); 47 for (i = 0; i < znode->child_cnt; i++) { 48 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 49 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 50 51 key_write_idx(c, &zbr->key, &br->key); 52 br->lnum = cpu_to_le32(zbr->lnum); 53 br->offs = cpu_to_le32(zbr->offs); 54 br->len = cpu_to_le32(zbr->len); 55 if (!zbr->lnum || !zbr->len) { 56 ubifs_err(c, "bad ref in znode"); 57 ubifs_dump_znode(c, znode); 58 if (zbr->znode) 59 ubifs_dump_znode(c, zbr->znode); 60 61 return -EINVAL; 62 } 63 } 64 ubifs_prepare_node(c, idx, len, 0); 65 66 znode->lnum = lnum; 67 znode->offs = offs; 68 znode->len = len; 69 70 err = insert_old_idx_znode(c, znode); 71 72 /* Update the parent */ 73 zp = znode->parent; 74 if (zp) { 75 struct ubifs_zbranch *zbr; 76 77 zbr = &zp->zbranch[znode->iip]; 78 zbr->lnum = lnum; 79 zbr->offs = offs; 80 zbr->len = len; 81 } else { 82 c->zroot.lnum = lnum; 83 c->zroot.offs = offs; 84 c->zroot.len = len; 85 } 86 c->calc_idx_sz += ALIGN(len, 8); 87 88 atomic_long_dec(&c->dirty_zn_cnt); 89 90 ubifs_assert(ubifs_zn_dirty(znode)); 91 ubifs_assert(ubifs_zn_cow(znode)); 92 93 /* 94 * Note, unlike 'write_index()' we do not add memory barriers here 95 * because this function is called with @c->tnc_mutex locked. 96 */ 97 __clear_bit(DIRTY_ZNODE, &znode->flags); 98 __clear_bit(COW_ZNODE, &znode->flags); 99 100 return err; 101 } 102 103 /** 104 * fill_gap - make index nodes in gaps in dirty index LEBs. 105 * @c: UBIFS file-system description object 106 * @lnum: LEB number that gap appears in 107 * @gap_start: offset of start of gap 108 * @gap_end: offset of end of gap 109 * @dirt: adds dirty space to this 110 * 111 * This function returns the number of index nodes written into the gap. 112 */ 113 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 114 int *dirt) 115 { 116 int len, gap_remains, gap_pos, written, pad_len; 117 118 ubifs_assert((gap_start & 7) == 0); 119 ubifs_assert((gap_end & 7) == 0); 120 ubifs_assert(gap_end >= gap_start); 121 122 gap_remains = gap_end - gap_start; 123 if (!gap_remains) 124 return 0; 125 gap_pos = gap_start; 126 written = 0; 127 while (c->enext) { 128 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 129 if (len < gap_remains) { 130 struct ubifs_znode *znode = c->enext; 131 const int alen = ALIGN(len, 8); 132 int err; 133 134 ubifs_assert(alen <= gap_remains); 135 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 136 lnum, gap_pos, len); 137 if (err) 138 return err; 139 gap_remains -= alen; 140 gap_pos += alen; 141 c->enext = znode->cnext; 142 if (c->enext == c->cnext) 143 c->enext = NULL; 144 written += 1; 145 } else 146 break; 147 } 148 if (gap_end == c->leb_size) { 149 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 150 /* Pad to end of min_io_size */ 151 pad_len = c->ileb_len - gap_pos; 152 } else 153 /* Pad to end of gap */ 154 pad_len = gap_remains; 155 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 156 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 157 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 158 *dirt += pad_len; 159 return written; 160 } 161 162 /** 163 * find_old_idx - find an index node obsoleted since the last commit start. 164 * @c: UBIFS file-system description object 165 * @lnum: LEB number of obsoleted index node 166 * @offs: offset of obsoleted index node 167 * 168 * Returns %1 if found and %0 otherwise. 169 */ 170 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 171 { 172 struct ubifs_old_idx *o; 173 struct rb_node *p; 174 175 p = c->old_idx.rb_node; 176 while (p) { 177 o = rb_entry(p, struct ubifs_old_idx, rb); 178 if (lnum < o->lnum) 179 p = p->rb_left; 180 else if (lnum > o->lnum) 181 p = p->rb_right; 182 else if (offs < o->offs) 183 p = p->rb_left; 184 else if (offs > o->offs) 185 p = p->rb_right; 186 else 187 return 1; 188 } 189 return 0; 190 } 191 192 /** 193 * is_idx_node_in_use - determine if an index node can be overwritten. 194 * @c: UBIFS file-system description object 195 * @key: key of index node 196 * @level: index node level 197 * @lnum: LEB number of index node 198 * @offs: offset of index node 199 * 200 * If @key / @lnum / @offs identify an index node that was not part of the old 201 * index, then this function returns %0 (obsolete). Else if the index node was 202 * part of the old index but is now dirty %1 is returned, else if it is clean %2 203 * is returned. A negative error code is returned on failure. 204 */ 205 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 206 int level, int lnum, int offs) 207 { 208 int ret; 209 210 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 211 if (ret < 0) 212 return ret; /* Error code */ 213 if (ret == 0) 214 if (find_old_idx(c, lnum, offs)) 215 return 1; 216 return ret; 217 } 218 219 /** 220 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 221 * @c: UBIFS file-system description object 222 * @p: return LEB number here 223 * 224 * This function lays out new index nodes for dirty znodes using in-the-gaps 225 * method of TNC commit. 226 * This function merely puts the next znode into the next gap, making no attempt 227 * to try to maximise the number of znodes that fit. 228 * This function returns the number of index nodes written into the gaps, or a 229 * negative error code on failure. 230 */ 231 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 232 { 233 struct ubifs_scan_leb *sleb; 234 struct ubifs_scan_node *snod; 235 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 236 237 tot_written = 0; 238 /* Get an index LEB with lots of obsolete index nodes */ 239 lnum = ubifs_find_dirty_idx_leb(c); 240 if (lnum < 0) 241 /* 242 * There also may be dirt in the index head that could be 243 * filled, however we do not check there at present. 244 */ 245 return lnum; /* Error code */ 246 *p = lnum; 247 dbg_gc("LEB %d", lnum); 248 /* 249 * Scan the index LEB. We use the generic scan for this even though 250 * it is more comprehensive and less efficient than is needed for this 251 * purpose. 252 */ 253 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); 254 c->ileb_len = 0; 255 if (IS_ERR(sleb)) 256 return PTR_ERR(sleb); 257 gap_start = 0; 258 list_for_each_entry(snod, &sleb->nodes, list) { 259 struct ubifs_idx_node *idx; 260 int in_use, level; 261 262 ubifs_assert(snod->type == UBIFS_IDX_NODE); 263 idx = snod->node; 264 key_read(c, ubifs_idx_key(c, idx), &snod->key); 265 level = le16_to_cpu(idx->level); 266 /* Determine if the index node is in use (not obsolete) */ 267 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 268 snod->offs); 269 if (in_use < 0) { 270 ubifs_scan_destroy(sleb); 271 return in_use; /* Error code */ 272 } 273 if (in_use) { 274 if (in_use == 1) 275 dirt += ALIGN(snod->len, 8); 276 /* 277 * The obsolete index nodes form gaps that can be 278 * overwritten. This gap has ended because we have 279 * found an index node that is still in use 280 * i.e. not obsolete 281 */ 282 gap_end = snod->offs; 283 /* Try to fill gap */ 284 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 285 if (written < 0) { 286 ubifs_scan_destroy(sleb); 287 return written; /* Error code */ 288 } 289 tot_written += written; 290 gap_start = ALIGN(snod->offs + snod->len, 8); 291 } 292 } 293 ubifs_scan_destroy(sleb); 294 c->ileb_len = c->leb_size; 295 gap_end = c->leb_size; 296 /* Try to fill gap */ 297 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 298 if (written < 0) 299 return written; /* Error code */ 300 tot_written += written; 301 if (tot_written == 0) { 302 struct ubifs_lprops lp; 303 304 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 305 err = ubifs_read_one_lp(c, lnum, &lp); 306 if (err) 307 return err; 308 if (lp.free == c->leb_size) { 309 /* 310 * We must have snatched this LEB from the idx_gc list 311 * so we need to correct the free and dirty space. 312 */ 313 err = ubifs_change_one_lp(c, lnum, 314 c->leb_size - c->ileb_len, 315 dirt, 0, 0, 0); 316 if (err) 317 return err; 318 } 319 return 0; 320 } 321 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 322 0, 0, 0); 323 if (err) 324 return err; 325 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); 326 if (err) 327 return err; 328 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 329 return tot_written; 330 } 331 332 /** 333 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 334 * @c: UBIFS file-system description object 335 * @cnt: number of znodes to commit 336 * 337 * This function returns the number of empty LEBs needed to commit @cnt znodes 338 * to the current index head. The number is not exact and may be more than 339 * needed. 340 */ 341 static int get_leb_cnt(struct ubifs_info *c, int cnt) 342 { 343 int d; 344 345 /* Assume maximum index node size (i.e. overestimate space needed) */ 346 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 347 if (cnt < 0) 348 cnt = 0; 349 d = c->leb_size / c->max_idx_node_sz; 350 return DIV_ROUND_UP(cnt, d); 351 } 352 353 /** 354 * layout_in_gaps - in-the-gaps method of committing TNC. 355 * @c: UBIFS file-system description object 356 * @cnt: number of dirty znodes to commit. 357 * 358 * This function lays out new index nodes for dirty znodes using in-the-gaps 359 * method of TNC commit. 360 * 361 * This function returns %0 on success and a negative error code on failure. 362 */ 363 static int layout_in_gaps(struct ubifs_info *c, int cnt) 364 { 365 int err, leb_needed_cnt, written, *p; 366 367 dbg_gc("%d znodes to write", cnt); 368 369 c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int), 370 GFP_NOFS); 371 if (!c->gap_lebs) 372 return -ENOMEM; 373 374 p = c->gap_lebs; 375 do { 376 ubifs_assert(p < c->gap_lebs + c->lst.idx_lebs); 377 written = layout_leb_in_gaps(c, p); 378 if (written < 0) { 379 err = written; 380 if (err != -ENOSPC) { 381 kfree(c->gap_lebs); 382 c->gap_lebs = NULL; 383 return err; 384 } 385 if (!dbg_is_chk_index(c)) { 386 /* 387 * Do not print scary warnings if the debugging 388 * option which forces in-the-gaps is enabled. 389 */ 390 ubifs_warn(c, "out of space"); 391 ubifs_dump_budg(c, &c->bi); 392 ubifs_dump_lprops(c); 393 } 394 /* Try to commit anyway */ 395 break; 396 } 397 p++; 398 cnt -= written; 399 leb_needed_cnt = get_leb_cnt(c, cnt); 400 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 401 leb_needed_cnt, c->ileb_cnt); 402 } while (leb_needed_cnt > c->ileb_cnt); 403 404 *p = -1; 405 return 0; 406 } 407 408 /** 409 * layout_in_empty_space - layout index nodes in empty space. 410 * @c: UBIFS file-system description object 411 * 412 * This function lays out new index nodes for dirty znodes using empty LEBs. 413 * 414 * This function returns %0 on success and a negative error code on failure. 415 */ 416 static int layout_in_empty_space(struct ubifs_info *c) 417 { 418 struct ubifs_znode *znode, *cnext, *zp; 419 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 420 int wlen, blen, err; 421 422 cnext = c->enext; 423 if (!cnext) 424 return 0; 425 426 lnum = c->ihead_lnum; 427 buf_offs = c->ihead_offs; 428 429 buf_len = ubifs_idx_node_sz(c, c->fanout); 430 buf_len = ALIGN(buf_len, c->min_io_size); 431 used = 0; 432 avail = buf_len; 433 434 /* Ensure there is enough room for first write */ 435 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 436 if (buf_offs + next_len > c->leb_size) 437 lnum = -1; 438 439 while (1) { 440 znode = cnext; 441 442 len = ubifs_idx_node_sz(c, znode->child_cnt); 443 444 /* Determine the index node position */ 445 if (lnum == -1) { 446 if (c->ileb_nxt >= c->ileb_cnt) { 447 ubifs_err(c, "out of space"); 448 return -ENOSPC; 449 } 450 lnum = c->ilebs[c->ileb_nxt++]; 451 buf_offs = 0; 452 used = 0; 453 avail = buf_len; 454 } 455 456 offs = buf_offs + used; 457 458 znode->lnum = lnum; 459 znode->offs = offs; 460 znode->len = len; 461 462 /* Update the parent */ 463 zp = znode->parent; 464 if (zp) { 465 struct ubifs_zbranch *zbr; 466 int i; 467 468 i = znode->iip; 469 zbr = &zp->zbranch[i]; 470 zbr->lnum = lnum; 471 zbr->offs = offs; 472 zbr->len = len; 473 } else { 474 c->zroot.lnum = lnum; 475 c->zroot.offs = offs; 476 c->zroot.len = len; 477 } 478 c->calc_idx_sz += ALIGN(len, 8); 479 480 /* 481 * Once lprops is updated, we can decrease the dirty znode count 482 * but it is easier to just do it here. 483 */ 484 atomic_long_dec(&c->dirty_zn_cnt); 485 486 /* 487 * Calculate the next index node length to see if there is 488 * enough room for it 489 */ 490 cnext = znode->cnext; 491 if (cnext == c->cnext) 492 next_len = 0; 493 else 494 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 495 496 /* Update buffer positions */ 497 wlen = used + len; 498 used += ALIGN(len, 8); 499 avail -= ALIGN(len, 8); 500 501 if (next_len != 0 && 502 buf_offs + used + next_len <= c->leb_size && 503 avail > 0) 504 continue; 505 506 if (avail <= 0 && next_len && 507 buf_offs + used + next_len <= c->leb_size) 508 blen = buf_len; 509 else 510 blen = ALIGN(wlen, c->min_io_size); 511 512 /* The buffer is full or there are no more znodes to do */ 513 buf_offs += blen; 514 if (next_len) { 515 if (buf_offs + next_len > c->leb_size) { 516 err = ubifs_update_one_lp(c, lnum, 517 c->leb_size - buf_offs, blen - used, 518 0, 0); 519 if (err) 520 return err; 521 lnum = -1; 522 } 523 used -= blen; 524 if (used < 0) 525 used = 0; 526 avail = buf_len - used; 527 continue; 528 } 529 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 530 blen - used, 0, 0); 531 if (err) 532 return err; 533 break; 534 } 535 536 c->dbg->new_ihead_lnum = lnum; 537 c->dbg->new_ihead_offs = buf_offs; 538 539 return 0; 540 } 541 542 /** 543 * layout_commit - determine positions of index nodes to commit. 544 * @c: UBIFS file-system description object 545 * @no_space: indicates that insufficient empty LEBs were allocated 546 * @cnt: number of znodes to commit 547 * 548 * Calculate and update the positions of index nodes to commit. If there were 549 * an insufficient number of empty LEBs allocated, then index nodes are placed 550 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 551 * this purpose, an obsolete index node is one that was not in the index as at 552 * the end of the last commit. To write "in-the-gaps" requires that those index 553 * LEBs are updated atomically in-place. 554 */ 555 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 556 { 557 int err; 558 559 if (no_space) { 560 err = layout_in_gaps(c, cnt); 561 if (err) 562 return err; 563 } 564 err = layout_in_empty_space(c); 565 return err; 566 } 567 568 /** 569 * find_first_dirty - find first dirty znode. 570 * @znode: znode to begin searching from 571 */ 572 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 573 { 574 int i, cont; 575 576 if (!znode) 577 return NULL; 578 579 while (1) { 580 if (znode->level == 0) { 581 if (ubifs_zn_dirty(znode)) 582 return znode; 583 return NULL; 584 } 585 cont = 0; 586 for (i = 0; i < znode->child_cnt; i++) { 587 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 588 589 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 590 znode = zbr->znode; 591 cont = 1; 592 break; 593 } 594 } 595 if (!cont) { 596 if (ubifs_zn_dirty(znode)) 597 return znode; 598 return NULL; 599 } 600 } 601 } 602 603 /** 604 * find_next_dirty - find next dirty znode. 605 * @znode: znode to begin searching from 606 */ 607 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 608 { 609 int n = znode->iip + 1; 610 611 znode = znode->parent; 612 if (!znode) 613 return NULL; 614 for (; n < znode->child_cnt; n++) { 615 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 616 617 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 618 return find_first_dirty(zbr->znode); 619 } 620 return znode; 621 } 622 623 /** 624 * get_znodes_to_commit - create list of dirty znodes to commit. 625 * @c: UBIFS file-system description object 626 * 627 * This function returns the number of znodes to commit. 628 */ 629 static int get_znodes_to_commit(struct ubifs_info *c) 630 { 631 struct ubifs_znode *znode, *cnext; 632 int cnt = 0; 633 634 c->cnext = find_first_dirty(c->zroot.znode); 635 znode = c->enext = c->cnext; 636 if (!znode) { 637 dbg_cmt("no znodes to commit"); 638 return 0; 639 } 640 cnt += 1; 641 while (1) { 642 ubifs_assert(!ubifs_zn_cow(znode)); 643 __set_bit(COW_ZNODE, &znode->flags); 644 znode->alt = 0; 645 cnext = find_next_dirty(znode); 646 if (!cnext) { 647 znode->cnext = c->cnext; 648 break; 649 } 650 znode->cnext = cnext; 651 znode = cnext; 652 cnt += 1; 653 } 654 dbg_cmt("committing %d znodes", cnt); 655 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 656 return cnt; 657 } 658 659 /** 660 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 661 * @c: UBIFS file-system description object 662 * @cnt: number of znodes to commit 663 * 664 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 665 * empty LEBs. %0 is returned on success, otherwise a negative error code 666 * is returned. 667 */ 668 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 669 { 670 int i, leb_cnt, lnum; 671 672 c->ileb_cnt = 0; 673 c->ileb_nxt = 0; 674 leb_cnt = get_leb_cnt(c, cnt); 675 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 676 if (!leb_cnt) 677 return 0; 678 c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS); 679 if (!c->ilebs) 680 return -ENOMEM; 681 for (i = 0; i < leb_cnt; i++) { 682 lnum = ubifs_find_free_leb_for_idx(c); 683 if (lnum < 0) 684 return lnum; 685 c->ilebs[c->ileb_cnt++] = lnum; 686 dbg_cmt("LEB %d", lnum); 687 } 688 if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) 689 return -ENOSPC; 690 return 0; 691 } 692 693 /** 694 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 695 * @c: UBIFS file-system description object 696 * 697 * It is possible that we allocate more empty LEBs for the commit than we need. 698 * This functions frees the surplus. 699 * 700 * This function returns %0 on success and a negative error code on failure. 701 */ 702 static int free_unused_idx_lebs(struct ubifs_info *c) 703 { 704 int i, err = 0, lnum, er; 705 706 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 707 lnum = c->ilebs[i]; 708 dbg_cmt("LEB %d", lnum); 709 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 710 LPROPS_INDEX | LPROPS_TAKEN, 0); 711 if (!err) 712 err = er; 713 } 714 return err; 715 } 716 717 /** 718 * free_idx_lebs - free unused LEBs after commit end. 719 * @c: UBIFS file-system description object 720 * 721 * This function returns %0 on success and a negative error code on failure. 722 */ 723 static int free_idx_lebs(struct ubifs_info *c) 724 { 725 int err; 726 727 err = free_unused_idx_lebs(c); 728 kfree(c->ilebs); 729 c->ilebs = NULL; 730 return err; 731 } 732 733 /** 734 * ubifs_tnc_start_commit - start TNC commit. 735 * @c: UBIFS file-system description object 736 * @zroot: new index root position is returned here 737 * 738 * This function prepares the list of indexing nodes to commit and lays out 739 * their positions on flash. If there is not enough free space it uses the 740 * in-gap commit method. Returns zero in case of success and a negative error 741 * code in case of failure. 742 */ 743 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 744 { 745 int err = 0, cnt; 746 747 mutex_lock(&c->tnc_mutex); 748 err = dbg_check_tnc(c, 1); 749 if (err) 750 goto out; 751 cnt = get_znodes_to_commit(c); 752 if (cnt != 0) { 753 int no_space = 0; 754 755 err = alloc_idx_lebs(c, cnt); 756 if (err == -ENOSPC) 757 no_space = 1; 758 else if (err) 759 goto out_free; 760 err = layout_commit(c, no_space, cnt); 761 if (err) 762 goto out_free; 763 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 764 err = free_unused_idx_lebs(c); 765 if (err) 766 goto out; 767 } 768 destroy_old_idx(c); 769 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 770 771 err = ubifs_save_dirty_idx_lnums(c); 772 if (err) 773 goto out; 774 775 spin_lock(&c->space_lock); 776 /* 777 * Although we have not finished committing yet, update size of the 778 * committed index ('c->bi.old_idx_sz') and zero out the index growth 779 * budget. It is OK to do this now, because we've reserved all the 780 * space which is needed to commit the index, and it is save for the 781 * budgeting subsystem to assume the index is already committed, 782 * even though it is not. 783 */ 784 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 785 c->bi.old_idx_sz = c->calc_idx_sz; 786 c->bi.uncommitted_idx = 0; 787 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 788 spin_unlock(&c->space_lock); 789 mutex_unlock(&c->tnc_mutex); 790 791 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 792 dbg_cmt("size of index %llu", c->calc_idx_sz); 793 return err; 794 795 out_free: 796 free_idx_lebs(c); 797 out: 798 mutex_unlock(&c->tnc_mutex); 799 return err; 800 } 801 802 /** 803 * write_index - write index nodes. 804 * @c: UBIFS file-system description object 805 * 806 * This function writes the index nodes whose positions were laid out in the 807 * layout_in_empty_space function. 808 */ 809 static int write_index(struct ubifs_info *c) 810 { 811 struct ubifs_idx_node *idx; 812 struct ubifs_znode *znode, *cnext; 813 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 814 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; 815 816 cnext = c->enext; 817 if (!cnext) 818 return 0; 819 820 /* 821 * Always write index nodes to the index head so that index nodes and 822 * other types of nodes are never mixed in the same erase block. 823 */ 824 lnum = c->ihead_lnum; 825 buf_offs = c->ihead_offs; 826 827 /* Allocate commit buffer */ 828 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 829 used = 0; 830 avail = buf_len; 831 832 /* Ensure there is enough room for first write */ 833 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 834 if (buf_offs + next_len > c->leb_size) { 835 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 836 LPROPS_TAKEN); 837 if (err) 838 return err; 839 lnum = -1; 840 } 841 842 while (1) { 843 cond_resched(); 844 845 znode = cnext; 846 idx = c->cbuf + used; 847 848 /* Make index node */ 849 idx->ch.node_type = UBIFS_IDX_NODE; 850 idx->child_cnt = cpu_to_le16(znode->child_cnt); 851 idx->level = cpu_to_le16(znode->level); 852 for (i = 0; i < znode->child_cnt; i++) { 853 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 854 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 855 856 key_write_idx(c, &zbr->key, &br->key); 857 br->lnum = cpu_to_le32(zbr->lnum); 858 br->offs = cpu_to_le32(zbr->offs); 859 br->len = cpu_to_le32(zbr->len); 860 if (!zbr->lnum || !zbr->len) { 861 ubifs_err(c, "bad ref in znode"); 862 ubifs_dump_znode(c, znode); 863 if (zbr->znode) 864 ubifs_dump_znode(c, zbr->znode); 865 866 return -EINVAL; 867 } 868 } 869 len = ubifs_idx_node_sz(c, znode->child_cnt); 870 ubifs_prepare_node(c, idx, len, 0); 871 872 /* Determine the index node position */ 873 if (lnum == -1) { 874 lnum = c->ilebs[lnum_pos++]; 875 buf_offs = 0; 876 used = 0; 877 avail = buf_len; 878 } 879 offs = buf_offs + used; 880 881 if (lnum != znode->lnum || offs != znode->offs || 882 len != znode->len) { 883 ubifs_err(c, "inconsistent znode posn"); 884 return -EINVAL; 885 } 886 887 /* Grab some stuff from znode while we still can */ 888 cnext = znode->cnext; 889 890 ubifs_assert(ubifs_zn_dirty(znode)); 891 ubifs_assert(ubifs_zn_cow(znode)); 892 893 /* 894 * It is important that other threads should see %DIRTY_ZNODE 895 * flag cleared before %COW_ZNODE. Specifically, it matters in 896 * the 'dirty_cow_znode()' function. This is the reason for the 897 * first barrier. Also, we want the bit changes to be seen to 898 * other threads ASAP, to avoid unnecesarry copying, which is 899 * the reason for the second barrier. 900 */ 901 clear_bit(DIRTY_ZNODE, &znode->flags); 902 smp_mb__before_atomic(); 903 clear_bit(COW_ZNODE, &znode->flags); 904 smp_mb__after_atomic(); 905 906 /* 907 * We have marked the znode as clean but have not updated the 908 * @c->clean_zn_cnt counter. If this znode becomes dirty again 909 * before 'free_obsolete_znodes()' is called, then 910 * @c->clean_zn_cnt will be decremented before it gets 911 * incremented (resulting in 2 decrements for the same znode). 912 * This means that @c->clean_zn_cnt may become negative for a 913 * while. 914 * 915 * Q: why we cannot increment @c->clean_zn_cnt? 916 * A: because we do not have the @c->tnc_mutex locked, and the 917 * following code would be racy and buggy: 918 * 919 * if (!ubifs_zn_obsolete(znode)) { 920 * atomic_long_inc(&c->clean_zn_cnt); 921 * atomic_long_inc(&ubifs_clean_zn_cnt); 922 * } 923 * 924 * Thus, we just delay the @c->clean_zn_cnt update until we 925 * have the mutex locked. 926 */ 927 928 /* Do not access znode from this point on */ 929 930 /* Update buffer positions */ 931 wlen = used + len; 932 used += ALIGN(len, 8); 933 avail -= ALIGN(len, 8); 934 935 /* 936 * Calculate the next index node length to see if there is 937 * enough room for it 938 */ 939 if (cnext == c->cnext) 940 next_len = 0; 941 else 942 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 943 944 nxt_offs = buf_offs + used + next_len; 945 if (next_len && nxt_offs <= c->leb_size) { 946 if (avail > 0) 947 continue; 948 else 949 blen = buf_len; 950 } else { 951 wlen = ALIGN(wlen, 8); 952 blen = ALIGN(wlen, c->min_io_size); 953 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 954 } 955 956 /* The buffer is full or there are no more znodes to do */ 957 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); 958 if (err) 959 return err; 960 buf_offs += blen; 961 if (next_len) { 962 if (nxt_offs > c->leb_size) { 963 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 964 0, LPROPS_TAKEN); 965 if (err) 966 return err; 967 lnum = -1; 968 } 969 used -= blen; 970 if (used < 0) 971 used = 0; 972 avail = buf_len - used; 973 memmove(c->cbuf, c->cbuf + blen, used); 974 continue; 975 } 976 break; 977 } 978 979 if (lnum != c->dbg->new_ihead_lnum || 980 buf_offs != c->dbg->new_ihead_offs) { 981 ubifs_err(c, "inconsistent ihead"); 982 return -EINVAL; 983 } 984 985 c->ihead_lnum = lnum; 986 c->ihead_offs = buf_offs; 987 988 return 0; 989 } 990 991 /** 992 * free_obsolete_znodes - free obsolete znodes. 993 * @c: UBIFS file-system description object 994 * 995 * At the end of commit end, obsolete znodes are freed. 996 */ 997 static void free_obsolete_znodes(struct ubifs_info *c) 998 { 999 struct ubifs_znode *znode, *cnext; 1000 1001 cnext = c->cnext; 1002 do { 1003 znode = cnext; 1004 cnext = znode->cnext; 1005 if (ubifs_zn_obsolete(znode)) 1006 kfree(znode); 1007 else { 1008 znode->cnext = NULL; 1009 atomic_long_inc(&c->clean_zn_cnt); 1010 atomic_long_inc(&ubifs_clean_zn_cnt); 1011 } 1012 } while (cnext != c->cnext); 1013 } 1014 1015 /** 1016 * return_gap_lebs - return LEBs used by the in-gap commit method. 1017 * @c: UBIFS file-system description object 1018 * 1019 * This function clears the "taken" flag for the LEBs which were used by the 1020 * "commit in-the-gaps" method. 1021 */ 1022 static int return_gap_lebs(struct ubifs_info *c) 1023 { 1024 int *p, err; 1025 1026 if (!c->gap_lebs) 1027 return 0; 1028 1029 dbg_cmt(""); 1030 for (p = c->gap_lebs; *p != -1; p++) { 1031 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1032 LPROPS_TAKEN, 0); 1033 if (err) 1034 return err; 1035 } 1036 1037 kfree(c->gap_lebs); 1038 c->gap_lebs = NULL; 1039 return 0; 1040 } 1041 1042 /** 1043 * ubifs_tnc_end_commit - update the TNC for commit end. 1044 * @c: UBIFS file-system description object 1045 * 1046 * Write the dirty znodes. 1047 */ 1048 int ubifs_tnc_end_commit(struct ubifs_info *c) 1049 { 1050 int err; 1051 1052 if (!c->cnext) 1053 return 0; 1054 1055 err = return_gap_lebs(c); 1056 if (err) 1057 return err; 1058 1059 err = write_index(c); 1060 if (err) 1061 return err; 1062 1063 mutex_lock(&c->tnc_mutex); 1064 1065 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1066 1067 free_obsolete_znodes(c); 1068 1069 c->cnext = NULL; 1070 kfree(c->ilebs); 1071 c->ilebs = NULL; 1072 1073 mutex_unlock(&c->tnc_mutex); 1074 1075 return 0; 1076 } 1077