xref: /openbmc/linux/fs/ubifs/tnc_commit.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /* This file implements TNC functions for committing */
24 
25 #include <linux/random.h>
26 #include "ubifs.h"
27 
28 /**
29  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30  * @c: UBIFS file-system description object
31  * @idx: buffer in which to place new index node
32  * @znode: znode from which to make new index node
33  * @lnum: LEB number where new index node will be written
34  * @offs: offset where new index node will be written
35  * @len: length of new index node
36  */
37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
38 			 struct ubifs_znode *znode, int lnum, int offs, int len)
39 {
40 	struct ubifs_znode *zp;
41 	int i, err;
42 
43 	/* Make index node */
44 	idx->ch.node_type = UBIFS_IDX_NODE;
45 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
46 	idx->level = cpu_to_le16(znode->level);
47 	for (i = 0; i < znode->child_cnt; i++) {
48 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
49 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
50 
51 		key_write_idx(c, &zbr->key, &br->key);
52 		br->lnum = cpu_to_le32(zbr->lnum);
53 		br->offs = cpu_to_le32(zbr->offs);
54 		br->len = cpu_to_le32(zbr->len);
55 		if (!zbr->lnum || !zbr->len) {
56 			ubifs_err(c, "bad ref in znode");
57 			ubifs_dump_znode(c, znode);
58 			if (zbr->znode)
59 				ubifs_dump_znode(c, zbr->znode);
60 
61 			return -EINVAL;
62 		}
63 	}
64 	ubifs_prepare_node(c, idx, len, 0);
65 
66 	znode->lnum = lnum;
67 	znode->offs = offs;
68 	znode->len = len;
69 
70 	err = insert_old_idx_znode(c, znode);
71 
72 	/* Update the parent */
73 	zp = znode->parent;
74 	if (zp) {
75 		struct ubifs_zbranch *zbr;
76 
77 		zbr = &zp->zbranch[znode->iip];
78 		zbr->lnum = lnum;
79 		zbr->offs = offs;
80 		zbr->len = len;
81 	} else {
82 		c->zroot.lnum = lnum;
83 		c->zroot.offs = offs;
84 		c->zroot.len = len;
85 	}
86 	c->calc_idx_sz += ALIGN(len, 8);
87 
88 	atomic_long_dec(&c->dirty_zn_cnt);
89 
90 	ubifs_assert(ubifs_zn_dirty(znode));
91 	ubifs_assert(ubifs_zn_cow(znode));
92 
93 	/*
94 	 * Note, unlike 'write_index()' we do not add memory barriers here
95 	 * because this function is called with @c->tnc_mutex locked.
96 	 */
97 	__clear_bit(DIRTY_ZNODE, &znode->flags);
98 	__clear_bit(COW_ZNODE, &znode->flags);
99 
100 	return err;
101 }
102 
103 /**
104  * fill_gap - make index nodes in gaps in dirty index LEBs.
105  * @c: UBIFS file-system description object
106  * @lnum: LEB number that gap appears in
107  * @gap_start: offset of start of gap
108  * @gap_end: offset of end of gap
109  * @dirt: adds dirty space to this
110  *
111  * This function returns the number of index nodes written into the gap.
112  */
113 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
114 		    int *dirt)
115 {
116 	int len, gap_remains, gap_pos, written, pad_len;
117 
118 	ubifs_assert((gap_start & 7) == 0);
119 	ubifs_assert((gap_end & 7) == 0);
120 	ubifs_assert(gap_end >= gap_start);
121 
122 	gap_remains = gap_end - gap_start;
123 	if (!gap_remains)
124 		return 0;
125 	gap_pos = gap_start;
126 	written = 0;
127 	while (c->enext) {
128 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
129 		if (len < gap_remains) {
130 			struct ubifs_znode *znode = c->enext;
131 			const int alen = ALIGN(len, 8);
132 			int err;
133 
134 			ubifs_assert(alen <= gap_remains);
135 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
136 					    lnum, gap_pos, len);
137 			if (err)
138 				return err;
139 			gap_remains -= alen;
140 			gap_pos += alen;
141 			c->enext = znode->cnext;
142 			if (c->enext == c->cnext)
143 				c->enext = NULL;
144 			written += 1;
145 		} else
146 			break;
147 	}
148 	if (gap_end == c->leb_size) {
149 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
150 		/* Pad to end of min_io_size */
151 		pad_len = c->ileb_len - gap_pos;
152 	} else
153 		/* Pad to end of gap */
154 		pad_len = gap_remains;
155 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
156 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
157 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
158 	*dirt += pad_len;
159 	return written;
160 }
161 
162 /**
163  * find_old_idx - find an index node obsoleted since the last commit start.
164  * @c: UBIFS file-system description object
165  * @lnum: LEB number of obsoleted index node
166  * @offs: offset of obsoleted index node
167  *
168  * Returns %1 if found and %0 otherwise.
169  */
170 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
171 {
172 	struct ubifs_old_idx *o;
173 	struct rb_node *p;
174 
175 	p = c->old_idx.rb_node;
176 	while (p) {
177 		o = rb_entry(p, struct ubifs_old_idx, rb);
178 		if (lnum < o->lnum)
179 			p = p->rb_left;
180 		else if (lnum > o->lnum)
181 			p = p->rb_right;
182 		else if (offs < o->offs)
183 			p = p->rb_left;
184 		else if (offs > o->offs)
185 			p = p->rb_right;
186 		else
187 			return 1;
188 	}
189 	return 0;
190 }
191 
192 /**
193  * is_idx_node_in_use - determine if an index node can be overwritten.
194  * @c: UBIFS file-system description object
195  * @key: key of index node
196  * @level: index node level
197  * @lnum: LEB number of index node
198  * @offs: offset of index node
199  *
200  * If @key / @lnum / @offs identify an index node that was not part of the old
201  * index, then this function returns %0 (obsolete).  Else if the index node was
202  * part of the old index but is now dirty %1 is returned, else if it is clean %2
203  * is returned. A negative error code is returned on failure.
204  */
205 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
206 			      int level, int lnum, int offs)
207 {
208 	int ret;
209 
210 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
211 	if (ret < 0)
212 		return ret; /* Error code */
213 	if (ret == 0)
214 		if (find_old_idx(c, lnum, offs))
215 			return 1;
216 	return ret;
217 }
218 
219 /**
220  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
221  * @c: UBIFS file-system description object
222  * @p: return LEB number here
223  *
224  * This function lays out new index nodes for dirty znodes using in-the-gaps
225  * method of TNC commit.
226  * This function merely puts the next znode into the next gap, making no attempt
227  * to try to maximise the number of znodes that fit.
228  * This function returns the number of index nodes written into the gaps, or a
229  * negative error code on failure.
230  */
231 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
232 {
233 	struct ubifs_scan_leb *sleb;
234 	struct ubifs_scan_node *snod;
235 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
236 
237 	tot_written = 0;
238 	/* Get an index LEB with lots of obsolete index nodes */
239 	lnum = ubifs_find_dirty_idx_leb(c);
240 	if (lnum < 0)
241 		/*
242 		 * There also may be dirt in the index head that could be
243 		 * filled, however we do not check there at present.
244 		 */
245 		return lnum; /* Error code */
246 	*p = lnum;
247 	dbg_gc("LEB %d", lnum);
248 	/*
249 	 * Scan the index LEB.  We use the generic scan for this even though
250 	 * it is more comprehensive and less efficient than is needed for this
251 	 * purpose.
252 	 */
253 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
254 	c->ileb_len = 0;
255 	if (IS_ERR(sleb))
256 		return PTR_ERR(sleb);
257 	gap_start = 0;
258 	list_for_each_entry(snod, &sleb->nodes, list) {
259 		struct ubifs_idx_node *idx;
260 		int in_use, level;
261 
262 		ubifs_assert(snod->type == UBIFS_IDX_NODE);
263 		idx = snod->node;
264 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
265 		level = le16_to_cpu(idx->level);
266 		/* Determine if the index node is in use (not obsolete) */
267 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
268 					    snod->offs);
269 		if (in_use < 0) {
270 			ubifs_scan_destroy(sleb);
271 			return in_use; /* Error code */
272 		}
273 		if (in_use) {
274 			if (in_use == 1)
275 				dirt += ALIGN(snod->len, 8);
276 			/*
277 			 * The obsolete index nodes form gaps that can be
278 			 * overwritten.  This gap has ended because we have
279 			 * found an index node that is still in use
280 			 * i.e. not obsolete
281 			 */
282 			gap_end = snod->offs;
283 			/* Try to fill gap */
284 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
285 			if (written < 0) {
286 				ubifs_scan_destroy(sleb);
287 				return written; /* Error code */
288 			}
289 			tot_written += written;
290 			gap_start = ALIGN(snod->offs + snod->len, 8);
291 		}
292 	}
293 	ubifs_scan_destroy(sleb);
294 	c->ileb_len = c->leb_size;
295 	gap_end = c->leb_size;
296 	/* Try to fill gap */
297 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
298 	if (written < 0)
299 		return written; /* Error code */
300 	tot_written += written;
301 	if (tot_written == 0) {
302 		struct ubifs_lprops lp;
303 
304 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
305 		err = ubifs_read_one_lp(c, lnum, &lp);
306 		if (err)
307 			return err;
308 		if (lp.free == c->leb_size) {
309 			/*
310 			 * We must have snatched this LEB from the idx_gc list
311 			 * so we need to correct the free and dirty space.
312 			 */
313 			err = ubifs_change_one_lp(c, lnum,
314 						  c->leb_size - c->ileb_len,
315 						  dirt, 0, 0, 0);
316 			if (err)
317 				return err;
318 		}
319 		return 0;
320 	}
321 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
322 				  0, 0, 0);
323 	if (err)
324 		return err;
325 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
326 	if (err)
327 		return err;
328 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
329 	return tot_written;
330 }
331 
332 /**
333  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
334  * @c: UBIFS file-system description object
335  * @cnt: number of znodes to commit
336  *
337  * This function returns the number of empty LEBs needed to commit @cnt znodes
338  * to the current index head.  The number is not exact and may be more than
339  * needed.
340  */
341 static int get_leb_cnt(struct ubifs_info *c, int cnt)
342 {
343 	int d;
344 
345 	/* Assume maximum index node size (i.e. overestimate space needed) */
346 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
347 	if (cnt < 0)
348 		cnt = 0;
349 	d = c->leb_size / c->max_idx_node_sz;
350 	return DIV_ROUND_UP(cnt, d);
351 }
352 
353 /**
354  * layout_in_gaps - in-the-gaps method of committing TNC.
355  * @c: UBIFS file-system description object
356  * @cnt: number of dirty znodes to commit.
357  *
358  * This function lays out new index nodes for dirty znodes using in-the-gaps
359  * method of TNC commit.
360  *
361  * This function returns %0 on success and a negative error code on failure.
362  */
363 static int layout_in_gaps(struct ubifs_info *c, int cnt)
364 {
365 	int err, leb_needed_cnt, written, *p;
366 
367 	dbg_gc("%d znodes to write", cnt);
368 
369 	c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
370 				    GFP_NOFS);
371 	if (!c->gap_lebs)
372 		return -ENOMEM;
373 
374 	p = c->gap_lebs;
375 	do {
376 		ubifs_assert(p < c->gap_lebs + c->lst.idx_lebs);
377 		written = layout_leb_in_gaps(c, p);
378 		if (written < 0) {
379 			err = written;
380 			if (err != -ENOSPC) {
381 				kfree(c->gap_lebs);
382 				c->gap_lebs = NULL;
383 				return err;
384 			}
385 			if (!dbg_is_chk_index(c)) {
386 				/*
387 				 * Do not print scary warnings if the debugging
388 				 * option which forces in-the-gaps is enabled.
389 				 */
390 				ubifs_warn(c, "out of space");
391 				ubifs_dump_budg(c, &c->bi);
392 				ubifs_dump_lprops(c);
393 			}
394 			/* Try to commit anyway */
395 			break;
396 		}
397 		p++;
398 		cnt -= written;
399 		leb_needed_cnt = get_leb_cnt(c, cnt);
400 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
401 		       leb_needed_cnt, c->ileb_cnt);
402 	} while (leb_needed_cnt > c->ileb_cnt);
403 
404 	*p = -1;
405 	return 0;
406 }
407 
408 /**
409  * layout_in_empty_space - layout index nodes in empty space.
410  * @c: UBIFS file-system description object
411  *
412  * This function lays out new index nodes for dirty znodes using empty LEBs.
413  *
414  * This function returns %0 on success and a negative error code on failure.
415  */
416 static int layout_in_empty_space(struct ubifs_info *c)
417 {
418 	struct ubifs_znode *znode, *cnext, *zp;
419 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
420 	int wlen, blen, err;
421 
422 	cnext = c->enext;
423 	if (!cnext)
424 		return 0;
425 
426 	lnum = c->ihead_lnum;
427 	buf_offs = c->ihead_offs;
428 
429 	buf_len = ubifs_idx_node_sz(c, c->fanout);
430 	buf_len = ALIGN(buf_len, c->min_io_size);
431 	used = 0;
432 	avail = buf_len;
433 
434 	/* Ensure there is enough room for first write */
435 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
436 	if (buf_offs + next_len > c->leb_size)
437 		lnum = -1;
438 
439 	while (1) {
440 		znode = cnext;
441 
442 		len = ubifs_idx_node_sz(c, znode->child_cnt);
443 
444 		/* Determine the index node position */
445 		if (lnum == -1) {
446 			if (c->ileb_nxt >= c->ileb_cnt) {
447 				ubifs_err(c, "out of space");
448 				return -ENOSPC;
449 			}
450 			lnum = c->ilebs[c->ileb_nxt++];
451 			buf_offs = 0;
452 			used = 0;
453 			avail = buf_len;
454 		}
455 
456 		offs = buf_offs + used;
457 
458 		znode->lnum = lnum;
459 		znode->offs = offs;
460 		znode->len = len;
461 
462 		/* Update the parent */
463 		zp = znode->parent;
464 		if (zp) {
465 			struct ubifs_zbranch *zbr;
466 			int i;
467 
468 			i = znode->iip;
469 			zbr = &zp->zbranch[i];
470 			zbr->lnum = lnum;
471 			zbr->offs = offs;
472 			zbr->len = len;
473 		} else {
474 			c->zroot.lnum = lnum;
475 			c->zroot.offs = offs;
476 			c->zroot.len = len;
477 		}
478 		c->calc_idx_sz += ALIGN(len, 8);
479 
480 		/*
481 		 * Once lprops is updated, we can decrease the dirty znode count
482 		 * but it is easier to just do it here.
483 		 */
484 		atomic_long_dec(&c->dirty_zn_cnt);
485 
486 		/*
487 		 * Calculate the next index node length to see if there is
488 		 * enough room for it
489 		 */
490 		cnext = znode->cnext;
491 		if (cnext == c->cnext)
492 			next_len = 0;
493 		else
494 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
495 
496 		/* Update buffer positions */
497 		wlen = used + len;
498 		used += ALIGN(len, 8);
499 		avail -= ALIGN(len, 8);
500 
501 		if (next_len != 0 &&
502 		    buf_offs + used + next_len <= c->leb_size &&
503 		    avail > 0)
504 			continue;
505 
506 		if (avail <= 0 && next_len &&
507 		    buf_offs + used + next_len <= c->leb_size)
508 			blen = buf_len;
509 		else
510 			blen = ALIGN(wlen, c->min_io_size);
511 
512 		/* The buffer is full or there are no more znodes to do */
513 		buf_offs += blen;
514 		if (next_len) {
515 			if (buf_offs + next_len > c->leb_size) {
516 				err = ubifs_update_one_lp(c, lnum,
517 					c->leb_size - buf_offs, blen - used,
518 					0, 0);
519 				if (err)
520 					return err;
521 				lnum = -1;
522 			}
523 			used -= blen;
524 			if (used < 0)
525 				used = 0;
526 			avail = buf_len - used;
527 			continue;
528 		}
529 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
530 					  blen - used, 0, 0);
531 		if (err)
532 			return err;
533 		break;
534 	}
535 
536 	c->dbg->new_ihead_lnum = lnum;
537 	c->dbg->new_ihead_offs = buf_offs;
538 
539 	return 0;
540 }
541 
542 /**
543  * layout_commit - determine positions of index nodes to commit.
544  * @c: UBIFS file-system description object
545  * @no_space: indicates that insufficient empty LEBs were allocated
546  * @cnt: number of znodes to commit
547  *
548  * Calculate and update the positions of index nodes to commit.  If there were
549  * an insufficient number of empty LEBs allocated, then index nodes are placed
550  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
551  * this purpose, an obsolete index node is one that was not in the index as at
552  * the end of the last commit.  To write "in-the-gaps" requires that those index
553  * LEBs are updated atomically in-place.
554  */
555 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
556 {
557 	int err;
558 
559 	if (no_space) {
560 		err = layout_in_gaps(c, cnt);
561 		if (err)
562 			return err;
563 	}
564 	err = layout_in_empty_space(c);
565 	return err;
566 }
567 
568 /**
569  * find_first_dirty - find first dirty znode.
570  * @znode: znode to begin searching from
571  */
572 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
573 {
574 	int i, cont;
575 
576 	if (!znode)
577 		return NULL;
578 
579 	while (1) {
580 		if (znode->level == 0) {
581 			if (ubifs_zn_dirty(znode))
582 				return znode;
583 			return NULL;
584 		}
585 		cont = 0;
586 		for (i = 0; i < znode->child_cnt; i++) {
587 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
588 
589 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
590 				znode = zbr->znode;
591 				cont = 1;
592 				break;
593 			}
594 		}
595 		if (!cont) {
596 			if (ubifs_zn_dirty(znode))
597 				return znode;
598 			return NULL;
599 		}
600 	}
601 }
602 
603 /**
604  * find_next_dirty - find next dirty znode.
605  * @znode: znode to begin searching from
606  */
607 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
608 {
609 	int n = znode->iip + 1;
610 
611 	znode = znode->parent;
612 	if (!znode)
613 		return NULL;
614 	for (; n < znode->child_cnt; n++) {
615 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
616 
617 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
618 			return find_first_dirty(zbr->znode);
619 	}
620 	return znode;
621 }
622 
623 /**
624  * get_znodes_to_commit - create list of dirty znodes to commit.
625  * @c: UBIFS file-system description object
626  *
627  * This function returns the number of znodes to commit.
628  */
629 static int get_znodes_to_commit(struct ubifs_info *c)
630 {
631 	struct ubifs_znode *znode, *cnext;
632 	int cnt = 0;
633 
634 	c->cnext = find_first_dirty(c->zroot.znode);
635 	znode = c->enext = c->cnext;
636 	if (!znode) {
637 		dbg_cmt("no znodes to commit");
638 		return 0;
639 	}
640 	cnt += 1;
641 	while (1) {
642 		ubifs_assert(!ubifs_zn_cow(znode));
643 		__set_bit(COW_ZNODE, &znode->flags);
644 		znode->alt = 0;
645 		cnext = find_next_dirty(znode);
646 		if (!cnext) {
647 			znode->cnext = c->cnext;
648 			break;
649 		}
650 		znode->cnext = cnext;
651 		znode = cnext;
652 		cnt += 1;
653 	}
654 	dbg_cmt("committing %d znodes", cnt);
655 	ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
656 	return cnt;
657 }
658 
659 /**
660  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
661  * @c: UBIFS file-system description object
662  * @cnt: number of znodes to commit
663  *
664  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
665  * empty LEBs.  %0 is returned on success, otherwise a negative error code
666  * is returned.
667  */
668 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
669 {
670 	int i, leb_cnt, lnum;
671 
672 	c->ileb_cnt = 0;
673 	c->ileb_nxt = 0;
674 	leb_cnt = get_leb_cnt(c, cnt);
675 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
676 	if (!leb_cnt)
677 		return 0;
678 	c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
679 	if (!c->ilebs)
680 		return -ENOMEM;
681 	for (i = 0; i < leb_cnt; i++) {
682 		lnum = ubifs_find_free_leb_for_idx(c);
683 		if (lnum < 0)
684 			return lnum;
685 		c->ilebs[c->ileb_cnt++] = lnum;
686 		dbg_cmt("LEB %d", lnum);
687 	}
688 	if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
689 		return -ENOSPC;
690 	return 0;
691 }
692 
693 /**
694  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
695  * @c: UBIFS file-system description object
696  *
697  * It is possible that we allocate more empty LEBs for the commit than we need.
698  * This functions frees the surplus.
699  *
700  * This function returns %0 on success and a negative error code on failure.
701  */
702 static int free_unused_idx_lebs(struct ubifs_info *c)
703 {
704 	int i, err = 0, lnum, er;
705 
706 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
707 		lnum = c->ilebs[i];
708 		dbg_cmt("LEB %d", lnum);
709 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
710 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
711 		if (!err)
712 			err = er;
713 	}
714 	return err;
715 }
716 
717 /**
718  * free_idx_lebs - free unused LEBs after commit end.
719  * @c: UBIFS file-system description object
720  *
721  * This function returns %0 on success and a negative error code on failure.
722  */
723 static int free_idx_lebs(struct ubifs_info *c)
724 {
725 	int err;
726 
727 	err = free_unused_idx_lebs(c);
728 	kfree(c->ilebs);
729 	c->ilebs = NULL;
730 	return err;
731 }
732 
733 /**
734  * ubifs_tnc_start_commit - start TNC commit.
735  * @c: UBIFS file-system description object
736  * @zroot: new index root position is returned here
737  *
738  * This function prepares the list of indexing nodes to commit and lays out
739  * their positions on flash. If there is not enough free space it uses the
740  * in-gap commit method. Returns zero in case of success and a negative error
741  * code in case of failure.
742  */
743 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
744 {
745 	int err = 0, cnt;
746 
747 	mutex_lock(&c->tnc_mutex);
748 	err = dbg_check_tnc(c, 1);
749 	if (err)
750 		goto out;
751 	cnt = get_znodes_to_commit(c);
752 	if (cnt != 0) {
753 		int no_space = 0;
754 
755 		err = alloc_idx_lebs(c, cnt);
756 		if (err == -ENOSPC)
757 			no_space = 1;
758 		else if (err)
759 			goto out_free;
760 		err = layout_commit(c, no_space, cnt);
761 		if (err)
762 			goto out_free;
763 		ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
764 		err = free_unused_idx_lebs(c);
765 		if (err)
766 			goto out;
767 	}
768 	destroy_old_idx(c);
769 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
770 
771 	err = ubifs_save_dirty_idx_lnums(c);
772 	if (err)
773 		goto out;
774 
775 	spin_lock(&c->space_lock);
776 	/*
777 	 * Although we have not finished committing yet, update size of the
778 	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
779 	 * budget. It is OK to do this now, because we've reserved all the
780 	 * space which is needed to commit the index, and it is save for the
781 	 * budgeting subsystem to assume the index is already committed,
782 	 * even though it is not.
783 	 */
784 	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
785 	c->bi.old_idx_sz = c->calc_idx_sz;
786 	c->bi.uncommitted_idx = 0;
787 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
788 	spin_unlock(&c->space_lock);
789 	mutex_unlock(&c->tnc_mutex);
790 
791 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
792 	dbg_cmt("size of index %llu", c->calc_idx_sz);
793 	return err;
794 
795 out_free:
796 	free_idx_lebs(c);
797 out:
798 	mutex_unlock(&c->tnc_mutex);
799 	return err;
800 }
801 
802 /**
803  * write_index - write index nodes.
804  * @c: UBIFS file-system description object
805  *
806  * This function writes the index nodes whose positions were laid out in the
807  * layout_in_empty_space function.
808  */
809 static int write_index(struct ubifs_info *c)
810 {
811 	struct ubifs_idx_node *idx;
812 	struct ubifs_znode *znode, *cnext;
813 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
814 	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
815 
816 	cnext = c->enext;
817 	if (!cnext)
818 		return 0;
819 
820 	/*
821 	 * Always write index nodes to the index head so that index nodes and
822 	 * other types of nodes are never mixed in the same erase block.
823 	 */
824 	lnum = c->ihead_lnum;
825 	buf_offs = c->ihead_offs;
826 
827 	/* Allocate commit buffer */
828 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
829 	used = 0;
830 	avail = buf_len;
831 
832 	/* Ensure there is enough room for first write */
833 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
834 	if (buf_offs + next_len > c->leb_size) {
835 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
836 					  LPROPS_TAKEN);
837 		if (err)
838 			return err;
839 		lnum = -1;
840 	}
841 
842 	while (1) {
843 		cond_resched();
844 
845 		znode = cnext;
846 		idx = c->cbuf + used;
847 
848 		/* Make index node */
849 		idx->ch.node_type = UBIFS_IDX_NODE;
850 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
851 		idx->level = cpu_to_le16(znode->level);
852 		for (i = 0; i < znode->child_cnt; i++) {
853 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
854 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
855 
856 			key_write_idx(c, &zbr->key, &br->key);
857 			br->lnum = cpu_to_le32(zbr->lnum);
858 			br->offs = cpu_to_le32(zbr->offs);
859 			br->len = cpu_to_le32(zbr->len);
860 			if (!zbr->lnum || !zbr->len) {
861 				ubifs_err(c, "bad ref in znode");
862 				ubifs_dump_znode(c, znode);
863 				if (zbr->znode)
864 					ubifs_dump_znode(c, zbr->znode);
865 
866 				return -EINVAL;
867 			}
868 		}
869 		len = ubifs_idx_node_sz(c, znode->child_cnt);
870 		ubifs_prepare_node(c, idx, len, 0);
871 
872 		/* Determine the index node position */
873 		if (lnum == -1) {
874 			lnum = c->ilebs[lnum_pos++];
875 			buf_offs = 0;
876 			used = 0;
877 			avail = buf_len;
878 		}
879 		offs = buf_offs + used;
880 
881 		if (lnum != znode->lnum || offs != znode->offs ||
882 		    len != znode->len) {
883 			ubifs_err(c, "inconsistent znode posn");
884 			return -EINVAL;
885 		}
886 
887 		/* Grab some stuff from znode while we still can */
888 		cnext = znode->cnext;
889 
890 		ubifs_assert(ubifs_zn_dirty(znode));
891 		ubifs_assert(ubifs_zn_cow(znode));
892 
893 		/*
894 		 * It is important that other threads should see %DIRTY_ZNODE
895 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
896 		 * the 'dirty_cow_znode()' function. This is the reason for the
897 		 * first barrier. Also, we want the bit changes to be seen to
898 		 * other threads ASAP, to avoid unnecesarry copying, which is
899 		 * the reason for the second barrier.
900 		 */
901 		clear_bit(DIRTY_ZNODE, &znode->flags);
902 		smp_mb__before_atomic();
903 		clear_bit(COW_ZNODE, &znode->flags);
904 		smp_mb__after_atomic();
905 
906 		/*
907 		 * We have marked the znode as clean but have not updated the
908 		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
909 		 * before 'free_obsolete_znodes()' is called, then
910 		 * @c->clean_zn_cnt will be decremented before it gets
911 		 * incremented (resulting in 2 decrements for the same znode).
912 		 * This means that @c->clean_zn_cnt may become negative for a
913 		 * while.
914 		 *
915 		 * Q: why we cannot increment @c->clean_zn_cnt?
916 		 * A: because we do not have the @c->tnc_mutex locked, and the
917 		 *    following code would be racy and buggy:
918 		 *
919 		 *    if (!ubifs_zn_obsolete(znode)) {
920 		 *            atomic_long_inc(&c->clean_zn_cnt);
921 		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
922 		 *    }
923 		 *
924 		 *    Thus, we just delay the @c->clean_zn_cnt update until we
925 		 *    have the mutex locked.
926 		 */
927 
928 		/* Do not access znode from this point on */
929 
930 		/* Update buffer positions */
931 		wlen = used + len;
932 		used += ALIGN(len, 8);
933 		avail -= ALIGN(len, 8);
934 
935 		/*
936 		 * Calculate the next index node length to see if there is
937 		 * enough room for it
938 		 */
939 		if (cnext == c->cnext)
940 			next_len = 0;
941 		else
942 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
943 
944 		nxt_offs = buf_offs + used + next_len;
945 		if (next_len && nxt_offs <= c->leb_size) {
946 			if (avail > 0)
947 				continue;
948 			else
949 				blen = buf_len;
950 		} else {
951 			wlen = ALIGN(wlen, 8);
952 			blen = ALIGN(wlen, c->min_io_size);
953 			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
954 		}
955 
956 		/* The buffer is full or there are no more znodes to do */
957 		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
958 		if (err)
959 			return err;
960 		buf_offs += blen;
961 		if (next_len) {
962 			if (nxt_offs > c->leb_size) {
963 				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
964 							  0, LPROPS_TAKEN);
965 				if (err)
966 					return err;
967 				lnum = -1;
968 			}
969 			used -= blen;
970 			if (used < 0)
971 				used = 0;
972 			avail = buf_len - used;
973 			memmove(c->cbuf, c->cbuf + blen, used);
974 			continue;
975 		}
976 		break;
977 	}
978 
979 	if (lnum != c->dbg->new_ihead_lnum ||
980 	    buf_offs != c->dbg->new_ihead_offs) {
981 		ubifs_err(c, "inconsistent ihead");
982 		return -EINVAL;
983 	}
984 
985 	c->ihead_lnum = lnum;
986 	c->ihead_offs = buf_offs;
987 
988 	return 0;
989 }
990 
991 /**
992  * free_obsolete_znodes - free obsolete znodes.
993  * @c: UBIFS file-system description object
994  *
995  * At the end of commit end, obsolete znodes are freed.
996  */
997 static void free_obsolete_znodes(struct ubifs_info *c)
998 {
999 	struct ubifs_znode *znode, *cnext;
1000 
1001 	cnext = c->cnext;
1002 	do {
1003 		znode = cnext;
1004 		cnext = znode->cnext;
1005 		if (ubifs_zn_obsolete(znode))
1006 			kfree(znode);
1007 		else {
1008 			znode->cnext = NULL;
1009 			atomic_long_inc(&c->clean_zn_cnt);
1010 			atomic_long_inc(&ubifs_clean_zn_cnt);
1011 		}
1012 	} while (cnext != c->cnext);
1013 }
1014 
1015 /**
1016  * return_gap_lebs - return LEBs used by the in-gap commit method.
1017  * @c: UBIFS file-system description object
1018  *
1019  * This function clears the "taken" flag for the LEBs which were used by the
1020  * "commit in-the-gaps" method.
1021  */
1022 static int return_gap_lebs(struct ubifs_info *c)
1023 {
1024 	int *p, err;
1025 
1026 	if (!c->gap_lebs)
1027 		return 0;
1028 
1029 	dbg_cmt("");
1030 	for (p = c->gap_lebs; *p != -1; p++) {
1031 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1032 					  LPROPS_TAKEN, 0);
1033 		if (err)
1034 			return err;
1035 	}
1036 
1037 	kfree(c->gap_lebs);
1038 	c->gap_lebs = NULL;
1039 	return 0;
1040 }
1041 
1042 /**
1043  * ubifs_tnc_end_commit - update the TNC for commit end.
1044  * @c: UBIFS file-system description object
1045  *
1046  * Write the dirty znodes.
1047  */
1048 int ubifs_tnc_end_commit(struct ubifs_info *c)
1049 {
1050 	int err;
1051 
1052 	if (!c->cnext)
1053 		return 0;
1054 
1055 	err = return_gap_lebs(c);
1056 	if (err)
1057 		return err;
1058 
1059 	err = write_index(c);
1060 	if (err)
1061 		return err;
1062 
1063 	mutex_lock(&c->tnc_mutex);
1064 
1065 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1066 
1067 	free_obsolete_znodes(c);
1068 
1069 	c->cnext = NULL;
1070 	kfree(c->ilebs);
1071 	c->ilebs = NULL;
1072 
1073 	mutex_unlock(&c->tnc_mutex);
1074 
1075 	return 0;
1076 }
1077