xref: /openbmc/linux/fs/ubifs/tnc_commit.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /* This file implements TNC functions for committing */
24 
25 #include "ubifs.h"
26 
27 /**
28  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
29  * @c: UBIFS file-system description object
30  * @idx: buffer in which to place new index node
31  * @znode: znode from which to make new index node
32  * @lnum: LEB number where new index node will be written
33  * @offs: offset where new index node will be written
34  * @len: length of new index node
35  */
36 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
37 			 struct ubifs_znode *znode, int lnum, int offs, int len)
38 {
39 	struct ubifs_znode *zp;
40 	int i, err;
41 
42 	/* Make index node */
43 	idx->ch.node_type = UBIFS_IDX_NODE;
44 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
45 	idx->level = cpu_to_le16(znode->level);
46 	for (i = 0; i < znode->child_cnt; i++) {
47 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
48 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
49 
50 		key_write_idx(c, &zbr->key, &br->key);
51 		br->lnum = cpu_to_le32(zbr->lnum);
52 		br->offs = cpu_to_le32(zbr->offs);
53 		br->len = cpu_to_le32(zbr->len);
54 		if (!zbr->lnum || !zbr->len) {
55 			ubifs_err("bad ref in znode");
56 			dbg_dump_znode(c, znode);
57 			if (zbr->znode)
58 				dbg_dump_znode(c, zbr->znode);
59 		}
60 	}
61 	ubifs_prepare_node(c, idx, len, 0);
62 
63 #ifdef CONFIG_UBIFS_FS_DEBUG
64 	znode->lnum = lnum;
65 	znode->offs = offs;
66 	znode->len = len;
67 #endif
68 
69 	err = insert_old_idx_znode(c, znode);
70 
71 	/* Update the parent */
72 	zp = znode->parent;
73 	if (zp) {
74 		struct ubifs_zbranch *zbr;
75 
76 		zbr = &zp->zbranch[znode->iip];
77 		zbr->lnum = lnum;
78 		zbr->offs = offs;
79 		zbr->len = len;
80 	} else {
81 		c->zroot.lnum = lnum;
82 		c->zroot.offs = offs;
83 		c->zroot.len = len;
84 	}
85 	c->calc_idx_sz += ALIGN(len, 8);
86 
87 	atomic_long_dec(&c->dirty_zn_cnt);
88 
89 	ubifs_assert(ubifs_zn_dirty(znode));
90 	ubifs_assert(test_bit(COW_ZNODE, &znode->flags));
91 
92 	__clear_bit(DIRTY_ZNODE, &znode->flags);
93 	__clear_bit(COW_ZNODE, &znode->flags);
94 
95 	return err;
96 }
97 
98 /**
99  * fill_gap - make index nodes in gaps in dirty index LEBs.
100  * @c: UBIFS file-system description object
101  * @lnum: LEB number that gap appears in
102  * @gap_start: offset of start of gap
103  * @gap_end: offset of end of gap
104  * @dirt: adds dirty space to this
105  *
106  * This function returns the number of index nodes written into the gap.
107  */
108 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
109 		    int *dirt)
110 {
111 	int len, gap_remains, gap_pos, written, pad_len;
112 
113 	ubifs_assert((gap_start & 7) == 0);
114 	ubifs_assert((gap_end & 7) == 0);
115 	ubifs_assert(gap_end >= gap_start);
116 
117 	gap_remains = gap_end - gap_start;
118 	if (!gap_remains)
119 		return 0;
120 	gap_pos = gap_start;
121 	written = 0;
122 	while (c->enext) {
123 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
124 		if (len < gap_remains) {
125 			struct ubifs_znode *znode = c->enext;
126 			const int alen = ALIGN(len, 8);
127 			int err;
128 
129 			ubifs_assert(alen <= gap_remains);
130 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
131 					    lnum, gap_pos, len);
132 			if (err)
133 				return err;
134 			gap_remains -= alen;
135 			gap_pos += alen;
136 			c->enext = znode->cnext;
137 			if (c->enext == c->cnext)
138 				c->enext = NULL;
139 			written += 1;
140 		} else
141 			break;
142 	}
143 	if (gap_end == c->leb_size) {
144 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
145 		/* Pad to end of min_io_size */
146 		pad_len = c->ileb_len - gap_pos;
147 	} else
148 		/* Pad to end of gap */
149 		pad_len = gap_remains;
150 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
151 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
152 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
153 	*dirt += pad_len;
154 	return written;
155 }
156 
157 /**
158  * find_old_idx - find an index node obsoleted since the last commit start.
159  * @c: UBIFS file-system description object
160  * @lnum: LEB number of obsoleted index node
161  * @offs: offset of obsoleted index node
162  *
163  * Returns %1 if found and %0 otherwise.
164  */
165 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
166 {
167 	struct ubifs_old_idx *o;
168 	struct rb_node *p;
169 
170 	p = c->old_idx.rb_node;
171 	while (p) {
172 		o = rb_entry(p, struct ubifs_old_idx, rb);
173 		if (lnum < o->lnum)
174 			p = p->rb_left;
175 		else if (lnum > o->lnum)
176 			p = p->rb_right;
177 		else if (offs < o->offs)
178 			p = p->rb_left;
179 		else if (offs > o->offs)
180 			p = p->rb_right;
181 		else
182 			return 1;
183 	}
184 	return 0;
185 }
186 
187 /**
188  * is_idx_node_in_use - determine if an index node can be overwritten.
189  * @c: UBIFS file-system description object
190  * @key: key of index node
191  * @level: index node level
192  * @lnum: LEB number of index node
193  * @offs: offset of index node
194  *
195  * If @key / @lnum / @offs identify an index node that was not part of the old
196  * index, then this function returns %0 (obsolete).  Else if the index node was
197  * part of the old index but is now dirty %1 is returned, else if it is clean %2
198  * is returned. A negative error code is returned on failure.
199  */
200 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
201 			      int level, int lnum, int offs)
202 {
203 	int ret;
204 
205 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
206 	if (ret < 0)
207 		return ret; /* Error code */
208 	if (ret == 0)
209 		if (find_old_idx(c, lnum, offs))
210 			return 1;
211 	return ret;
212 }
213 
214 /**
215  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
216  * @c: UBIFS file-system description object
217  * @p: return LEB number here
218  *
219  * This function lays out new index nodes for dirty znodes using in-the-gaps
220  * method of TNC commit.
221  * This function merely puts the next znode into the next gap, making no attempt
222  * to try to maximise the number of znodes that fit.
223  * This function returns the number of index nodes written into the gaps, or a
224  * negative error code on failure.
225  */
226 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
227 {
228 	struct ubifs_scan_leb *sleb;
229 	struct ubifs_scan_node *snod;
230 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
231 
232 	tot_written = 0;
233 	/* Get an index LEB with lots of obsolete index nodes */
234 	lnum = ubifs_find_dirty_idx_leb(c);
235 	if (lnum < 0)
236 		/*
237 		 * There also may be dirt in the index head that could be
238 		 * filled, however we do not check there at present.
239 		 */
240 		return lnum; /* Error code */
241 	*p = lnum;
242 	dbg_gc("LEB %d", lnum);
243 	/*
244 	 * Scan the index LEB.  We use the generic scan for this even though
245 	 * it is more comprehensive and less efficient than is needed for this
246 	 * purpose.
247 	 */
248 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf);
249 	c->ileb_len = 0;
250 	if (IS_ERR(sleb))
251 		return PTR_ERR(sleb);
252 	gap_start = 0;
253 	list_for_each_entry(snod, &sleb->nodes, list) {
254 		struct ubifs_idx_node *idx;
255 		int in_use, level;
256 
257 		ubifs_assert(snod->type == UBIFS_IDX_NODE);
258 		idx = snod->node;
259 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
260 		level = le16_to_cpu(idx->level);
261 		/* Determine if the index node is in use (not obsolete) */
262 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
263 					    snod->offs);
264 		if (in_use < 0) {
265 			ubifs_scan_destroy(sleb);
266 			return in_use; /* Error code */
267 		}
268 		if (in_use) {
269 			if (in_use == 1)
270 				dirt += ALIGN(snod->len, 8);
271 			/*
272 			 * The obsolete index nodes form gaps that can be
273 			 * overwritten.  This gap has ended because we have
274 			 * found an index node that is still in use
275 			 * i.e. not obsolete
276 			 */
277 			gap_end = snod->offs;
278 			/* Try to fill gap */
279 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
280 			if (written < 0) {
281 				ubifs_scan_destroy(sleb);
282 				return written; /* Error code */
283 			}
284 			tot_written += written;
285 			gap_start = ALIGN(snod->offs + snod->len, 8);
286 		}
287 	}
288 	ubifs_scan_destroy(sleb);
289 	c->ileb_len = c->leb_size;
290 	gap_end = c->leb_size;
291 	/* Try to fill gap */
292 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
293 	if (written < 0)
294 		return written; /* Error code */
295 	tot_written += written;
296 	if (tot_written == 0) {
297 		struct ubifs_lprops lp;
298 
299 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
300 		err = ubifs_read_one_lp(c, lnum, &lp);
301 		if (err)
302 			return err;
303 		if (lp.free == c->leb_size) {
304 			/*
305 			 * We must have snatched this LEB from the idx_gc list
306 			 * so we need to correct the free and dirty space.
307 			 */
308 			err = ubifs_change_one_lp(c, lnum,
309 						  c->leb_size - c->ileb_len,
310 						  dirt, 0, 0, 0);
311 			if (err)
312 				return err;
313 		}
314 		return 0;
315 	}
316 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
317 				  0, 0, 0);
318 	if (err)
319 		return err;
320 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len,
321 			       UBI_SHORTTERM);
322 	if (err)
323 		return err;
324 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
325 	return tot_written;
326 }
327 
328 /**
329  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
330  * @c: UBIFS file-system description object
331  * @cnt: number of znodes to commit
332  *
333  * This function returns the number of empty LEBs needed to commit @cnt znodes
334  * to the current index head.  The number is not exact and may be more than
335  * needed.
336  */
337 static int get_leb_cnt(struct ubifs_info *c, int cnt)
338 {
339 	int d;
340 
341 	/* Assume maximum index node size (i.e. overestimate space needed) */
342 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
343 	if (cnt < 0)
344 		cnt = 0;
345 	d = c->leb_size / c->max_idx_node_sz;
346 	return DIV_ROUND_UP(cnt, d);
347 }
348 
349 /**
350  * layout_in_gaps - in-the-gaps method of committing TNC.
351  * @c: UBIFS file-system description object
352  * @cnt: number of dirty znodes to commit.
353  *
354  * This function lays out new index nodes for dirty znodes using in-the-gaps
355  * method of TNC commit.
356  *
357  * This function returns %0 on success and a negative error code on failure.
358  */
359 static int layout_in_gaps(struct ubifs_info *c, int cnt)
360 {
361 	int err, leb_needed_cnt, written, *p;
362 
363 	dbg_gc("%d znodes to write", cnt);
364 
365 	c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
366 	if (!c->gap_lebs)
367 		return -ENOMEM;
368 
369 	p = c->gap_lebs;
370 	do {
371 		ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs);
372 		written = layout_leb_in_gaps(c, p);
373 		if (written < 0) {
374 			err = written;
375 			if (err != -ENOSPC) {
376 				kfree(c->gap_lebs);
377 				c->gap_lebs = NULL;
378 				return err;
379 			}
380 			if (!dbg_force_in_the_gaps_enabled) {
381 				/*
382 				 * Do not print scary warnings if the debugging
383 				 * option which forces in-the-gaps is enabled.
384 				 */
385 				ubifs_err("out of space");
386 				spin_lock(&c->space_lock);
387 				dbg_dump_budg(c);
388 				spin_unlock(&c->space_lock);
389 				dbg_dump_lprops(c);
390 			}
391 			/* Try to commit anyway */
392 			err = 0;
393 			break;
394 		}
395 		p++;
396 		cnt -= written;
397 		leb_needed_cnt = get_leb_cnt(c, cnt);
398 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
399 		       leb_needed_cnt, c->ileb_cnt);
400 	} while (leb_needed_cnt > c->ileb_cnt);
401 
402 	*p = -1;
403 	return 0;
404 }
405 
406 /**
407  * layout_in_empty_space - layout index nodes in empty space.
408  * @c: UBIFS file-system description object
409  *
410  * This function lays out new index nodes for dirty znodes using empty LEBs.
411  *
412  * This function returns %0 on success and a negative error code on failure.
413  */
414 static int layout_in_empty_space(struct ubifs_info *c)
415 {
416 	struct ubifs_znode *znode, *cnext, *zp;
417 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
418 	int wlen, blen, err;
419 
420 	cnext = c->enext;
421 	if (!cnext)
422 		return 0;
423 
424 	lnum = c->ihead_lnum;
425 	buf_offs = c->ihead_offs;
426 
427 	buf_len = ubifs_idx_node_sz(c, c->fanout);
428 	buf_len = ALIGN(buf_len, c->min_io_size);
429 	used = 0;
430 	avail = buf_len;
431 
432 	/* Ensure there is enough room for first write */
433 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
434 	if (buf_offs + next_len > c->leb_size)
435 		lnum = -1;
436 
437 	while (1) {
438 		znode = cnext;
439 
440 		len = ubifs_idx_node_sz(c, znode->child_cnt);
441 
442 		/* Determine the index node position */
443 		if (lnum == -1) {
444 			if (c->ileb_nxt >= c->ileb_cnt) {
445 				ubifs_err("out of space");
446 				return -ENOSPC;
447 			}
448 			lnum = c->ilebs[c->ileb_nxt++];
449 			buf_offs = 0;
450 			used = 0;
451 			avail = buf_len;
452 		}
453 
454 		offs = buf_offs + used;
455 
456 #ifdef CONFIG_UBIFS_FS_DEBUG
457 		znode->lnum = lnum;
458 		znode->offs = offs;
459 		znode->len = len;
460 #endif
461 
462 		/* Update the parent */
463 		zp = znode->parent;
464 		if (zp) {
465 			struct ubifs_zbranch *zbr;
466 			int i;
467 
468 			i = znode->iip;
469 			zbr = &zp->zbranch[i];
470 			zbr->lnum = lnum;
471 			zbr->offs = offs;
472 			zbr->len = len;
473 		} else {
474 			c->zroot.lnum = lnum;
475 			c->zroot.offs = offs;
476 			c->zroot.len = len;
477 		}
478 		c->calc_idx_sz += ALIGN(len, 8);
479 
480 		/*
481 		 * Once lprops is updated, we can decrease the dirty znode count
482 		 * but it is easier to just do it here.
483 		 */
484 		atomic_long_dec(&c->dirty_zn_cnt);
485 
486 		/*
487 		 * Calculate the next index node length to see if there is
488 		 * enough room for it
489 		 */
490 		cnext = znode->cnext;
491 		if (cnext == c->cnext)
492 			next_len = 0;
493 		else
494 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
495 
496 		if (c->min_io_size == 1) {
497 			buf_offs += ALIGN(len, 8);
498 			if (next_len) {
499 				if (buf_offs + next_len <= c->leb_size)
500 					continue;
501 				err = ubifs_update_one_lp(c, lnum, 0,
502 						c->leb_size - buf_offs, 0, 0);
503 				if (err)
504 					return err;
505 				lnum = -1;
506 				continue;
507 			}
508 			err = ubifs_update_one_lp(c, lnum,
509 					c->leb_size - buf_offs, 0, 0, 0);
510 			if (err)
511 				return err;
512 			break;
513 		}
514 
515 		/* Update buffer positions */
516 		wlen = used + len;
517 		used += ALIGN(len, 8);
518 		avail -= ALIGN(len, 8);
519 
520 		if (next_len != 0 &&
521 		    buf_offs + used + next_len <= c->leb_size &&
522 		    avail > 0)
523 			continue;
524 
525 		if (avail <= 0 && next_len &&
526 		    buf_offs + used + next_len <= c->leb_size)
527 			blen = buf_len;
528 		else
529 			blen = ALIGN(wlen, c->min_io_size);
530 
531 		/* The buffer is full or there are no more znodes to do */
532 		buf_offs += blen;
533 		if (next_len) {
534 			if (buf_offs + next_len > c->leb_size) {
535 				err = ubifs_update_one_lp(c, lnum,
536 					c->leb_size - buf_offs, blen - used,
537 					0, 0);
538 				if (err)
539 					return err;
540 				lnum = -1;
541 			}
542 			used -= blen;
543 			if (used < 0)
544 				used = 0;
545 			avail = buf_len - used;
546 			continue;
547 		}
548 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
549 					  blen - used, 0, 0);
550 		if (err)
551 			return err;
552 		break;
553 	}
554 
555 #ifdef CONFIG_UBIFS_FS_DEBUG
556 	c->new_ihead_lnum = lnum;
557 	c->new_ihead_offs = buf_offs;
558 #endif
559 
560 	return 0;
561 }
562 
563 /**
564  * layout_commit - determine positions of index nodes to commit.
565  * @c: UBIFS file-system description object
566  * @no_space: indicates that insufficient empty LEBs were allocated
567  * @cnt: number of znodes to commit
568  *
569  * Calculate and update the positions of index nodes to commit.  If there were
570  * an insufficient number of empty LEBs allocated, then index nodes are placed
571  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
572  * this purpose, an obsolete index node is one that was not in the index as at
573  * the end of the last commit.  To write "in-the-gaps" requires that those index
574  * LEBs are updated atomically in-place.
575  */
576 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
577 {
578 	int err;
579 
580 	if (no_space) {
581 		err = layout_in_gaps(c, cnt);
582 		if (err)
583 			return err;
584 	}
585 	err = layout_in_empty_space(c);
586 	return err;
587 }
588 
589 /**
590  * find_first_dirty - find first dirty znode.
591  * @znode: znode to begin searching from
592  */
593 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
594 {
595 	int i, cont;
596 
597 	if (!znode)
598 		return NULL;
599 
600 	while (1) {
601 		if (znode->level == 0) {
602 			if (ubifs_zn_dirty(znode))
603 				return znode;
604 			return NULL;
605 		}
606 		cont = 0;
607 		for (i = 0; i < znode->child_cnt; i++) {
608 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
609 
610 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
611 				znode = zbr->znode;
612 				cont = 1;
613 				break;
614 			}
615 		}
616 		if (!cont) {
617 			if (ubifs_zn_dirty(znode))
618 				return znode;
619 			return NULL;
620 		}
621 	}
622 }
623 
624 /**
625  * find_next_dirty - find next dirty znode.
626  * @znode: znode to begin searching from
627  */
628 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
629 {
630 	int n = znode->iip + 1;
631 
632 	znode = znode->parent;
633 	if (!znode)
634 		return NULL;
635 	for (; n < znode->child_cnt; n++) {
636 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
637 
638 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
639 			return find_first_dirty(zbr->znode);
640 	}
641 	return znode;
642 }
643 
644 /**
645  * get_znodes_to_commit - create list of dirty znodes to commit.
646  * @c: UBIFS file-system description object
647  *
648  * This function returns the number of znodes to commit.
649  */
650 static int get_znodes_to_commit(struct ubifs_info *c)
651 {
652 	struct ubifs_znode *znode, *cnext;
653 	int cnt = 0;
654 
655 	c->cnext = find_first_dirty(c->zroot.znode);
656 	znode = c->enext = c->cnext;
657 	if (!znode) {
658 		dbg_cmt("no znodes to commit");
659 		return 0;
660 	}
661 	cnt += 1;
662 	while (1) {
663 		ubifs_assert(!test_bit(COW_ZNODE, &znode->flags));
664 		__set_bit(COW_ZNODE, &znode->flags);
665 		znode->alt = 0;
666 		cnext = find_next_dirty(znode);
667 		if (!cnext) {
668 			znode->cnext = c->cnext;
669 			break;
670 		}
671 		znode->cnext = cnext;
672 		znode = cnext;
673 		cnt += 1;
674 	}
675 	dbg_cmt("committing %d znodes", cnt);
676 	ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
677 	return cnt;
678 }
679 
680 /**
681  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
682  * @c: UBIFS file-system description object
683  * @cnt: number of znodes to commit
684  *
685  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
686  * empty LEBs.  %0 is returned on success, otherwise a negative error code
687  * is returned.
688  */
689 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
690 {
691 	int i, leb_cnt, lnum;
692 
693 	c->ileb_cnt = 0;
694 	c->ileb_nxt = 0;
695 	leb_cnt = get_leb_cnt(c, cnt);
696 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
697 	if (!leb_cnt)
698 		return 0;
699 	c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
700 	if (!c->ilebs)
701 		return -ENOMEM;
702 	for (i = 0; i < leb_cnt; i++) {
703 		lnum = ubifs_find_free_leb_for_idx(c);
704 		if (lnum < 0)
705 			return lnum;
706 		c->ilebs[c->ileb_cnt++] = lnum;
707 		dbg_cmt("LEB %d", lnum);
708 	}
709 	if (dbg_force_in_the_gaps())
710 		return -ENOSPC;
711 	return 0;
712 }
713 
714 /**
715  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
716  * @c: UBIFS file-system description object
717  *
718  * It is possible that we allocate more empty LEBs for the commit than we need.
719  * This functions frees the surplus.
720  *
721  * This function returns %0 on success and a negative error code on failure.
722  */
723 static int free_unused_idx_lebs(struct ubifs_info *c)
724 {
725 	int i, err = 0, lnum, er;
726 
727 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
728 		lnum = c->ilebs[i];
729 		dbg_cmt("LEB %d", lnum);
730 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
731 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
732 		if (!err)
733 			err = er;
734 	}
735 	return err;
736 }
737 
738 /**
739  * free_idx_lebs - free unused LEBs after commit end.
740  * @c: UBIFS file-system description object
741  *
742  * This function returns %0 on success and a negative error code on failure.
743  */
744 static int free_idx_lebs(struct ubifs_info *c)
745 {
746 	int err;
747 
748 	err = free_unused_idx_lebs(c);
749 	kfree(c->ilebs);
750 	c->ilebs = NULL;
751 	return err;
752 }
753 
754 /**
755  * ubifs_tnc_start_commit - start TNC commit.
756  * @c: UBIFS file-system description object
757  * @zroot: new index root position is returned here
758  *
759  * This function prepares the list of indexing nodes to commit and lays out
760  * their positions on flash. If there is not enough free space it uses the
761  * in-gap commit method. Returns zero in case of success and a negative error
762  * code in case of failure.
763  */
764 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
765 {
766 	int err = 0, cnt;
767 
768 	mutex_lock(&c->tnc_mutex);
769 	err = dbg_check_tnc(c, 1);
770 	if (err)
771 		goto out;
772 	cnt = get_znodes_to_commit(c);
773 	if (cnt != 0) {
774 		int no_space = 0;
775 
776 		err = alloc_idx_lebs(c, cnt);
777 		if (err == -ENOSPC)
778 			no_space = 1;
779 		else if (err)
780 			goto out_free;
781 		err = layout_commit(c, no_space, cnt);
782 		if (err)
783 			goto out_free;
784 		ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
785 		err = free_unused_idx_lebs(c);
786 		if (err)
787 			goto out;
788 	}
789 	destroy_old_idx(c);
790 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
791 
792 	err = ubifs_save_dirty_idx_lnums(c);
793 	if (err)
794 		goto out;
795 
796 	spin_lock(&c->space_lock);
797 	/*
798 	 * Although we have not finished committing yet, update size of the
799 	 * committed index ('c->old_idx_sz') and zero out the index growth
800 	 * budget. It is OK to do this now, because we've reserved all the
801 	 * space which is needed to commit the index, and it is save for the
802 	 * budgeting subsystem to assume the index is already committed,
803 	 * even though it is not.
804 	 */
805 	c->old_idx_sz = c->calc_idx_sz;
806 	c->budg_uncommitted_idx = 0;
807 	spin_unlock(&c->space_lock);
808 	mutex_unlock(&c->tnc_mutex);
809 
810 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
811 	dbg_cmt("size of index %llu", c->calc_idx_sz);
812 	return err;
813 
814 out_free:
815 	free_idx_lebs(c);
816 out:
817 	mutex_unlock(&c->tnc_mutex);
818 	return err;
819 }
820 
821 /**
822  * write_index - write index nodes.
823  * @c: UBIFS file-system description object
824  *
825  * This function writes the index nodes whose positions were laid out in the
826  * layout_in_empty_space function.
827  */
828 static int write_index(struct ubifs_info *c)
829 {
830 	struct ubifs_idx_node *idx;
831 	struct ubifs_znode *znode, *cnext;
832 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
833 	int avail, wlen, err, lnum_pos = 0;
834 
835 	cnext = c->enext;
836 	if (!cnext)
837 		return 0;
838 
839 	/*
840 	 * Always write index nodes to the index head so that index nodes and
841 	 * other types of nodes are never mixed in the same erase block.
842 	 */
843 	lnum = c->ihead_lnum;
844 	buf_offs = c->ihead_offs;
845 
846 	/* Allocate commit buffer */
847 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
848 	used = 0;
849 	avail = buf_len;
850 
851 	/* Ensure there is enough room for first write */
852 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
853 	if (buf_offs + next_len > c->leb_size) {
854 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
855 					  LPROPS_TAKEN);
856 		if (err)
857 			return err;
858 		lnum = -1;
859 	}
860 
861 	while (1) {
862 		cond_resched();
863 
864 		znode = cnext;
865 		idx = c->cbuf + used;
866 
867 		/* Make index node */
868 		idx->ch.node_type = UBIFS_IDX_NODE;
869 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
870 		idx->level = cpu_to_le16(znode->level);
871 		for (i = 0; i < znode->child_cnt; i++) {
872 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
873 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
874 
875 			key_write_idx(c, &zbr->key, &br->key);
876 			br->lnum = cpu_to_le32(zbr->lnum);
877 			br->offs = cpu_to_le32(zbr->offs);
878 			br->len = cpu_to_le32(zbr->len);
879 			if (!zbr->lnum || !zbr->len) {
880 				ubifs_err("bad ref in znode");
881 				dbg_dump_znode(c, znode);
882 				if (zbr->znode)
883 					dbg_dump_znode(c, zbr->znode);
884 			}
885 		}
886 		len = ubifs_idx_node_sz(c, znode->child_cnt);
887 		ubifs_prepare_node(c, idx, len, 0);
888 
889 		/* Determine the index node position */
890 		if (lnum == -1) {
891 			lnum = c->ilebs[lnum_pos++];
892 			buf_offs = 0;
893 			used = 0;
894 			avail = buf_len;
895 		}
896 		offs = buf_offs + used;
897 
898 #ifdef CONFIG_UBIFS_FS_DEBUG
899 		if (lnum != znode->lnum || offs != znode->offs ||
900 		    len != znode->len) {
901 			ubifs_err("inconsistent znode posn");
902 			return -EINVAL;
903 		}
904 #endif
905 
906 		/* Grab some stuff from znode while we still can */
907 		cnext = znode->cnext;
908 
909 		ubifs_assert(ubifs_zn_dirty(znode));
910 		ubifs_assert(test_bit(COW_ZNODE, &znode->flags));
911 
912 		/*
913 		 * It is important that other threads should see %DIRTY_ZNODE
914 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
915 		 * the 'dirty_cow_znode()' function. This is the reason for the
916 		 * first barrier. Also, we want the bit changes to be seen to
917 		 * other threads ASAP, to avoid unnecesarry copying, which is
918 		 * the reason for the second barrier.
919 		 */
920 		clear_bit(DIRTY_ZNODE, &znode->flags);
921 		smp_mb__before_clear_bit();
922 		clear_bit(COW_ZNODE, &znode->flags);
923 		smp_mb__after_clear_bit();
924 
925 		/* Do not access znode from this point on */
926 
927 		/* Update buffer positions */
928 		wlen = used + len;
929 		used += ALIGN(len, 8);
930 		avail -= ALIGN(len, 8);
931 
932 		/*
933 		 * Calculate the next index node length to see if there is
934 		 * enough room for it
935 		 */
936 		if (cnext == c->cnext)
937 			next_len = 0;
938 		else
939 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
940 
941 		if (c->min_io_size == 1) {
942 			/*
943 			 * Write the prepared index node immediately if there is
944 			 * no minimum IO size
945 			 */
946 			err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs,
947 					      wlen, UBI_SHORTTERM);
948 			if (err)
949 				return err;
950 			buf_offs += ALIGN(wlen, 8);
951 			if (next_len) {
952 				used = 0;
953 				avail = buf_len;
954 				if (buf_offs + next_len > c->leb_size) {
955 					err = ubifs_update_one_lp(c, lnum,
956 						LPROPS_NC, 0, 0, LPROPS_TAKEN);
957 					if (err)
958 						return err;
959 					lnum = -1;
960 				}
961 				continue;
962 			}
963 		} else {
964 			int blen, nxt_offs = buf_offs + used + next_len;
965 
966 			if (next_len && nxt_offs <= c->leb_size) {
967 				if (avail > 0)
968 					continue;
969 				else
970 					blen = buf_len;
971 			} else {
972 				wlen = ALIGN(wlen, 8);
973 				blen = ALIGN(wlen, c->min_io_size);
974 				ubifs_pad(c, c->cbuf + wlen, blen - wlen);
975 			}
976 			/*
977 			 * The buffer is full or there are no more znodes
978 			 * to do
979 			 */
980 			err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs,
981 					      blen, UBI_SHORTTERM);
982 			if (err)
983 				return err;
984 			buf_offs += blen;
985 			if (next_len) {
986 				if (nxt_offs > c->leb_size) {
987 					err = ubifs_update_one_lp(c, lnum,
988 						LPROPS_NC, 0, 0, LPROPS_TAKEN);
989 					if (err)
990 						return err;
991 					lnum = -1;
992 				}
993 				used -= blen;
994 				if (used < 0)
995 					used = 0;
996 				avail = buf_len - used;
997 				memmove(c->cbuf, c->cbuf + blen, used);
998 				continue;
999 			}
1000 		}
1001 		break;
1002 	}
1003 
1004 #ifdef CONFIG_UBIFS_FS_DEBUG
1005 	if (lnum != c->new_ihead_lnum || buf_offs != c->new_ihead_offs) {
1006 		ubifs_err("inconsistent ihead");
1007 		return -EINVAL;
1008 	}
1009 #endif
1010 
1011 	c->ihead_lnum = lnum;
1012 	c->ihead_offs = buf_offs;
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  * free_obsolete_znodes - free obsolete znodes.
1019  * @c: UBIFS file-system description object
1020  *
1021  * At the end of commit end, obsolete znodes are freed.
1022  */
1023 static void free_obsolete_znodes(struct ubifs_info *c)
1024 {
1025 	struct ubifs_znode *znode, *cnext;
1026 
1027 	cnext = c->cnext;
1028 	do {
1029 		znode = cnext;
1030 		cnext = znode->cnext;
1031 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
1032 			kfree(znode);
1033 		else {
1034 			znode->cnext = NULL;
1035 			atomic_long_inc(&c->clean_zn_cnt);
1036 			atomic_long_inc(&ubifs_clean_zn_cnt);
1037 		}
1038 	} while (cnext != c->cnext);
1039 }
1040 
1041 /**
1042  * return_gap_lebs - return LEBs used by the in-gap commit method.
1043  * @c: UBIFS file-system description object
1044  *
1045  * This function clears the "taken" flag for the LEBs which were used by the
1046  * "commit in-the-gaps" method.
1047  */
1048 static int return_gap_lebs(struct ubifs_info *c)
1049 {
1050 	int *p, err;
1051 
1052 	if (!c->gap_lebs)
1053 		return 0;
1054 
1055 	dbg_cmt("");
1056 	for (p = c->gap_lebs; *p != -1; p++) {
1057 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1058 					  LPROPS_TAKEN, 0);
1059 		if (err)
1060 			return err;
1061 	}
1062 
1063 	kfree(c->gap_lebs);
1064 	c->gap_lebs = NULL;
1065 	return 0;
1066 }
1067 
1068 /**
1069  * ubifs_tnc_end_commit - update the TNC for commit end.
1070  * @c: UBIFS file-system description object
1071  *
1072  * Write the dirty znodes.
1073  */
1074 int ubifs_tnc_end_commit(struct ubifs_info *c)
1075 {
1076 	int err;
1077 
1078 	if (!c->cnext)
1079 		return 0;
1080 
1081 	err = return_gap_lebs(c);
1082 	if (err)
1083 		return err;
1084 
1085 	err = write_index(c);
1086 	if (err)
1087 		return err;
1088 
1089 	mutex_lock(&c->tnc_mutex);
1090 
1091 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1092 
1093 	free_obsolete_znodes(c);
1094 
1095 	c->cnext = NULL;
1096 	kfree(c->ilebs);
1097 	c->ilebs = NULL;
1098 
1099 	mutex_unlock(&c->tnc_mutex);
1100 
1101 	return 0;
1102 }
1103