1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include <linux/random.h> 26 #include "ubifs.h" 27 28 /** 29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 30 * @c: UBIFS file-system description object 31 * @idx: buffer in which to place new index node 32 * @znode: znode from which to make new index node 33 * @lnum: LEB number where new index node will be written 34 * @offs: offset where new index node will be written 35 * @len: length of new index node 36 */ 37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 38 struct ubifs_znode *znode, int lnum, int offs, int len) 39 { 40 struct ubifs_znode *zp; 41 int i, err; 42 43 /* Make index node */ 44 idx->ch.node_type = UBIFS_IDX_NODE; 45 idx->child_cnt = cpu_to_le16(znode->child_cnt); 46 idx->level = cpu_to_le16(znode->level); 47 for (i = 0; i < znode->child_cnt; i++) { 48 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 49 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 50 51 key_write_idx(c, &zbr->key, &br->key); 52 br->lnum = cpu_to_le32(zbr->lnum); 53 br->offs = cpu_to_le32(zbr->offs); 54 br->len = cpu_to_le32(zbr->len); 55 if (!zbr->lnum || !zbr->len) { 56 ubifs_err("bad ref in znode"); 57 dbg_dump_znode(c, znode); 58 if (zbr->znode) 59 dbg_dump_znode(c, zbr->znode); 60 } 61 } 62 ubifs_prepare_node(c, idx, len, 0); 63 64 #ifdef CONFIG_UBIFS_FS_DEBUG 65 znode->lnum = lnum; 66 znode->offs = offs; 67 znode->len = len; 68 #endif 69 70 err = insert_old_idx_znode(c, znode); 71 72 /* Update the parent */ 73 zp = znode->parent; 74 if (zp) { 75 struct ubifs_zbranch *zbr; 76 77 zbr = &zp->zbranch[znode->iip]; 78 zbr->lnum = lnum; 79 zbr->offs = offs; 80 zbr->len = len; 81 } else { 82 c->zroot.lnum = lnum; 83 c->zroot.offs = offs; 84 c->zroot.len = len; 85 } 86 c->calc_idx_sz += ALIGN(len, 8); 87 88 atomic_long_dec(&c->dirty_zn_cnt); 89 90 ubifs_assert(ubifs_zn_dirty(znode)); 91 ubifs_assert(ubifs_zn_cow(znode)); 92 93 /* 94 * Note, unlike 'write_index()' we do not add memory barriers here 95 * because this function is called with @c->tnc_mutex locked. 96 */ 97 __clear_bit(DIRTY_ZNODE, &znode->flags); 98 __clear_bit(COW_ZNODE, &znode->flags); 99 100 return err; 101 } 102 103 /** 104 * fill_gap - make index nodes in gaps in dirty index LEBs. 105 * @c: UBIFS file-system description object 106 * @lnum: LEB number that gap appears in 107 * @gap_start: offset of start of gap 108 * @gap_end: offset of end of gap 109 * @dirt: adds dirty space to this 110 * 111 * This function returns the number of index nodes written into the gap. 112 */ 113 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 114 int *dirt) 115 { 116 int len, gap_remains, gap_pos, written, pad_len; 117 118 ubifs_assert((gap_start & 7) == 0); 119 ubifs_assert((gap_end & 7) == 0); 120 ubifs_assert(gap_end >= gap_start); 121 122 gap_remains = gap_end - gap_start; 123 if (!gap_remains) 124 return 0; 125 gap_pos = gap_start; 126 written = 0; 127 while (c->enext) { 128 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 129 if (len < gap_remains) { 130 struct ubifs_znode *znode = c->enext; 131 const int alen = ALIGN(len, 8); 132 int err; 133 134 ubifs_assert(alen <= gap_remains); 135 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 136 lnum, gap_pos, len); 137 if (err) 138 return err; 139 gap_remains -= alen; 140 gap_pos += alen; 141 c->enext = znode->cnext; 142 if (c->enext == c->cnext) 143 c->enext = NULL; 144 written += 1; 145 } else 146 break; 147 } 148 if (gap_end == c->leb_size) { 149 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 150 /* Pad to end of min_io_size */ 151 pad_len = c->ileb_len - gap_pos; 152 } else 153 /* Pad to end of gap */ 154 pad_len = gap_remains; 155 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 156 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 157 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 158 *dirt += pad_len; 159 return written; 160 } 161 162 /** 163 * find_old_idx - find an index node obsoleted since the last commit start. 164 * @c: UBIFS file-system description object 165 * @lnum: LEB number of obsoleted index node 166 * @offs: offset of obsoleted index node 167 * 168 * Returns %1 if found and %0 otherwise. 169 */ 170 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 171 { 172 struct ubifs_old_idx *o; 173 struct rb_node *p; 174 175 p = c->old_idx.rb_node; 176 while (p) { 177 o = rb_entry(p, struct ubifs_old_idx, rb); 178 if (lnum < o->lnum) 179 p = p->rb_left; 180 else if (lnum > o->lnum) 181 p = p->rb_right; 182 else if (offs < o->offs) 183 p = p->rb_left; 184 else if (offs > o->offs) 185 p = p->rb_right; 186 else 187 return 1; 188 } 189 return 0; 190 } 191 192 /** 193 * is_idx_node_in_use - determine if an index node can be overwritten. 194 * @c: UBIFS file-system description object 195 * @key: key of index node 196 * @level: index node level 197 * @lnum: LEB number of index node 198 * @offs: offset of index node 199 * 200 * If @key / @lnum / @offs identify an index node that was not part of the old 201 * index, then this function returns %0 (obsolete). Else if the index node was 202 * part of the old index but is now dirty %1 is returned, else if it is clean %2 203 * is returned. A negative error code is returned on failure. 204 */ 205 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 206 int level, int lnum, int offs) 207 { 208 int ret; 209 210 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 211 if (ret < 0) 212 return ret; /* Error code */ 213 if (ret == 0) 214 if (find_old_idx(c, lnum, offs)) 215 return 1; 216 return ret; 217 } 218 219 /** 220 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 221 * @c: UBIFS file-system description object 222 * @p: return LEB number here 223 * 224 * This function lays out new index nodes for dirty znodes using in-the-gaps 225 * method of TNC commit. 226 * This function merely puts the next znode into the next gap, making no attempt 227 * to try to maximise the number of znodes that fit. 228 * This function returns the number of index nodes written into the gaps, or a 229 * negative error code on failure. 230 */ 231 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 232 { 233 struct ubifs_scan_leb *sleb; 234 struct ubifs_scan_node *snod; 235 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 236 237 tot_written = 0; 238 /* Get an index LEB with lots of obsolete index nodes */ 239 lnum = ubifs_find_dirty_idx_leb(c); 240 if (lnum < 0) 241 /* 242 * There also may be dirt in the index head that could be 243 * filled, however we do not check there at present. 244 */ 245 return lnum; /* Error code */ 246 *p = lnum; 247 dbg_gc("LEB %d", lnum); 248 /* 249 * Scan the index LEB. We use the generic scan for this even though 250 * it is more comprehensive and less efficient than is needed for this 251 * purpose. 252 */ 253 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); 254 c->ileb_len = 0; 255 if (IS_ERR(sleb)) 256 return PTR_ERR(sleb); 257 gap_start = 0; 258 list_for_each_entry(snod, &sleb->nodes, list) { 259 struct ubifs_idx_node *idx; 260 int in_use, level; 261 262 ubifs_assert(snod->type == UBIFS_IDX_NODE); 263 idx = snod->node; 264 key_read(c, ubifs_idx_key(c, idx), &snod->key); 265 level = le16_to_cpu(idx->level); 266 /* Determine if the index node is in use (not obsolete) */ 267 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 268 snod->offs); 269 if (in_use < 0) { 270 ubifs_scan_destroy(sleb); 271 return in_use; /* Error code */ 272 } 273 if (in_use) { 274 if (in_use == 1) 275 dirt += ALIGN(snod->len, 8); 276 /* 277 * The obsolete index nodes form gaps that can be 278 * overwritten. This gap has ended because we have 279 * found an index node that is still in use 280 * i.e. not obsolete 281 */ 282 gap_end = snod->offs; 283 /* Try to fill gap */ 284 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 285 if (written < 0) { 286 ubifs_scan_destroy(sleb); 287 return written; /* Error code */ 288 } 289 tot_written += written; 290 gap_start = ALIGN(snod->offs + snod->len, 8); 291 } 292 } 293 ubifs_scan_destroy(sleb); 294 c->ileb_len = c->leb_size; 295 gap_end = c->leb_size; 296 /* Try to fill gap */ 297 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 298 if (written < 0) 299 return written; /* Error code */ 300 tot_written += written; 301 if (tot_written == 0) { 302 struct ubifs_lprops lp; 303 304 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 305 err = ubifs_read_one_lp(c, lnum, &lp); 306 if (err) 307 return err; 308 if (lp.free == c->leb_size) { 309 /* 310 * We must have snatched this LEB from the idx_gc list 311 * so we need to correct the free and dirty space. 312 */ 313 err = ubifs_change_one_lp(c, lnum, 314 c->leb_size - c->ileb_len, 315 dirt, 0, 0, 0); 316 if (err) 317 return err; 318 } 319 return 0; 320 } 321 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 322 0, 0, 0); 323 if (err) 324 return err; 325 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len, 326 UBI_SHORTTERM); 327 if (err) 328 return err; 329 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 330 return tot_written; 331 } 332 333 /** 334 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 335 * @c: UBIFS file-system description object 336 * @cnt: number of znodes to commit 337 * 338 * This function returns the number of empty LEBs needed to commit @cnt znodes 339 * to the current index head. The number is not exact and may be more than 340 * needed. 341 */ 342 static int get_leb_cnt(struct ubifs_info *c, int cnt) 343 { 344 int d; 345 346 /* Assume maximum index node size (i.e. overestimate space needed) */ 347 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 348 if (cnt < 0) 349 cnt = 0; 350 d = c->leb_size / c->max_idx_node_sz; 351 return DIV_ROUND_UP(cnt, d); 352 } 353 354 /** 355 * layout_in_gaps - in-the-gaps method of committing TNC. 356 * @c: UBIFS file-system description object 357 * @cnt: number of dirty znodes to commit. 358 * 359 * This function lays out new index nodes for dirty znodes using in-the-gaps 360 * method of TNC commit. 361 * 362 * This function returns %0 on success and a negative error code on failure. 363 */ 364 static int layout_in_gaps(struct ubifs_info *c, int cnt) 365 { 366 int err, leb_needed_cnt, written, *p; 367 368 dbg_gc("%d znodes to write", cnt); 369 370 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS); 371 if (!c->gap_lebs) 372 return -ENOMEM; 373 374 p = c->gap_lebs; 375 do { 376 ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs); 377 written = layout_leb_in_gaps(c, p); 378 if (written < 0) { 379 err = written; 380 if (err != -ENOSPC) { 381 kfree(c->gap_lebs); 382 c->gap_lebs = NULL; 383 return err; 384 } 385 if (!dbg_is_chk_index(c)) { 386 /* 387 * Do not print scary warnings if the debugging 388 * option which forces in-the-gaps is enabled. 389 */ 390 ubifs_warn("out of space"); 391 dbg_dump_budg(c, &c->bi); 392 dbg_dump_lprops(c); 393 } 394 /* Try to commit anyway */ 395 err = 0; 396 break; 397 } 398 p++; 399 cnt -= written; 400 leb_needed_cnt = get_leb_cnt(c, cnt); 401 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 402 leb_needed_cnt, c->ileb_cnt); 403 } while (leb_needed_cnt > c->ileb_cnt); 404 405 *p = -1; 406 return 0; 407 } 408 409 /** 410 * layout_in_empty_space - layout index nodes in empty space. 411 * @c: UBIFS file-system description object 412 * 413 * This function lays out new index nodes for dirty znodes using empty LEBs. 414 * 415 * This function returns %0 on success and a negative error code on failure. 416 */ 417 static int layout_in_empty_space(struct ubifs_info *c) 418 { 419 struct ubifs_znode *znode, *cnext, *zp; 420 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 421 int wlen, blen, err; 422 423 cnext = c->enext; 424 if (!cnext) 425 return 0; 426 427 lnum = c->ihead_lnum; 428 buf_offs = c->ihead_offs; 429 430 buf_len = ubifs_idx_node_sz(c, c->fanout); 431 buf_len = ALIGN(buf_len, c->min_io_size); 432 used = 0; 433 avail = buf_len; 434 435 /* Ensure there is enough room for first write */ 436 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 437 if (buf_offs + next_len > c->leb_size) 438 lnum = -1; 439 440 while (1) { 441 znode = cnext; 442 443 len = ubifs_idx_node_sz(c, znode->child_cnt); 444 445 /* Determine the index node position */ 446 if (lnum == -1) { 447 if (c->ileb_nxt >= c->ileb_cnt) { 448 ubifs_err("out of space"); 449 return -ENOSPC; 450 } 451 lnum = c->ilebs[c->ileb_nxt++]; 452 buf_offs = 0; 453 used = 0; 454 avail = buf_len; 455 } 456 457 offs = buf_offs + used; 458 459 #ifdef CONFIG_UBIFS_FS_DEBUG 460 znode->lnum = lnum; 461 znode->offs = offs; 462 znode->len = len; 463 #endif 464 465 /* Update the parent */ 466 zp = znode->parent; 467 if (zp) { 468 struct ubifs_zbranch *zbr; 469 int i; 470 471 i = znode->iip; 472 zbr = &zp->zbranch[i]; 473 zbr->lnum = lnum; 474 zbr->offs = offs; 475 zbr->len = len; 476 } else { 477 c->zroot.lnum = lnum; 478 c->zroot.offs = offs; 479 c->zroot.len = len; 480 } 481 c->calc_idx_sz += ALIGN(len, 8); 482 483 /* 484 * Once lprops is updated, we can decrease the dirty znode count 485 * but it is easier to just do it here. 486 */ 487 atomic_long_dec(&c->dirty_zn_cnt); 488 489 /* 490 * Calculate the next index node length to see if there is 491 * enough room for it 492 */ 493 cnext = znode->cnext; 494 if (cnext == c->cnext) 495 next_len = 0; 496 else 497 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 498 499 /* Update buffer positions */ 500 wlen = used + len; 501 used += ALIGN(len, 8); 502 avail -= ALIGN(len, 8); 503 504 if (next_len != 0 && 505 buf_offs + used + next_len <= c->leb_size && 506 avail > 0) 507 continue; 508 509 if (avail <= 0 && next_len && 510 buf_offs + used + next_len <= c->leb_size) 511 blen = buf_len; 512 else 513 blen = ALIGN(wlen, c->min_io_size); 514 515 /* The buffer is full or there are no more znodes to do */ 516 buf_offs += blen; 517 if (next_len) { 518 if (buf_offs + next_len > c->leb_size) { 519 err = ubifs_update_one_lp(c, lnum, 520 c->leb_size - buf_offs, blen - used, 521 0, 0); 522 if (err) 523 return err; 524 lnum = -1; 525 } 526 used -= blen; 527 if (used < 0) 528 used = 0; 529 avail = buf_len - used; 530 continue; 531 } 532 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 533 blen - used, 0, 0); 534 if (err) 535 return err; 536 break; 537 } 538 539 #ifdef CONFIG_UBIFS_FS_DEBUG 540 c->dbg->new_ihead_lnum = lnum; 541 c->dbg->new_ihead_offs = buf_offs; 542 #endif 543 544 return 0; 545 } 546 547 /** 548 * layout_commit - determine positions of index nodes to commit. 549 * @c: UBIFS file-system description object 550 * @no_space: indicates that insufficient empty LEBs were allocated 551 * @cnt: number of znodes to commit 552 * 553 * Calculate and update the positions of index nodes to commit. If there were 554 * an insufficient number of empty LEBs allocated, then index nodes are placed 555 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 556 * this purpose, an obsolete index node is one that was not in the index as at 557 * the end of the last commit. To write "in-the-gaps" requires that those index 558 * LEBs are updated atomically in-place. 559 */ 560 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 561 { 562 int err; 563 564 if (no_space) { 565 err = layout_in_gaps(c, cnt); 566 if (err) 567 return err; 568 } 569 err = layout_in_empty_space(c); 570 return err; 571 } 572 573 /** 574 * find_first_dirty - find first dirty znode. 575 * @znode: znode to begin searching from 576 */ 577 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 578 { 579 int i, cont; 580 581 if (!znode) 582 return NULL; 583 584 while (1) { 585 if (znode->level == 0) { 586 if (ubifs_zn_dirty(znode)) 587 return znode; 588 return NULL; 589 } 590 cont = 0; 591 for (i = 0; i < znode->child_cnt; i++) { 592 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 593 594 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 595 znode = zbr->znode; 596 cont = 1; 597 break; 598 } 599 } 600 if (!cont) { 601 if (ubifs_zn_dirty(znode)) 602 return znode; 603 return NULL; 604 } 605 } 606 } 607 608 /** 609 * find_next_dirty - find next dirty znode. 610 * @znode: znode to begin searching from 611 */ 612 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 613 { 614 int n = znode->iip + 1; 615 616 znode = znode->parent; 617 if (!znode) 618 return NULL; 619 for (; n < znode->child_cnt; n++) { 620 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 621 622 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 623 return find_first_dirty(zbr->znode); 624 } 625 return znode; 626 } 627 628 /** 629 * get_znodes_to_commit - create list of dirty znodes to commit. 630 * @c: UBIFS file-system description object 631 * 632 * This function returns the number of znodes to commit. 633 */ 634 static int get_znodes_to_commit(struct ubifs_info *c) 635 { 636 struct ubifs_znode *znode, *cnext; 637 int cnt = 0; 638 639 c->cnext = find_first_dirty(c->zroot.znode); 640 znode = c->enext = c->cnext; 641 if (!znode) { 642 dbg_cmt("no znodes to commit"); 643 return 0; 644 } 645 cnt += 1; 646 while (1) { 647 ubifs_assert(!ubifs_zn_cow(znode)); 648 __set_bit(COW_ZNODE, &znode->flags); 649 znode->alt = 0; 650 cnext = find_next_dirty(znode); 651 if (!cnext) { 652 znode->cnext = c->cnext; 653 break; 654 } 655 znode->cnext = cnext; 656 znode = cnext; 657 cnt += 1; 658 } 659 dbg_cmt("committing %d znodes", cnt); 660 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 661 return cnt; 662 } 663 664 /** 665 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 666 * @c: UBIFS file-system description object 667 * @cnt: number of znodes to commit 668 * 669 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 670 * empty LEBs. %0 is returned on success, otherwise a negative error code 671 * is returned. 672 */ 673 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 674 { 675 int i, leb_cnt, lnum; 676 677 c->ileb_cnt = 0; 678 c->ileb_nxt = 0; 679 leb_cnt = get_leb_cnt(c, cnt); 680 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 681 if (!leb_cnt) 682 return 0; 683 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS); 684 if (!c->ilebs) 685 return -ENOMEM; 686 for (i = 0; i < leb_cnt; i++) { 687 lnum = ubifs_find_free_leb_for_idx(c); 688 if (lnum < 0) 689 return lnum; 690 c->ilebs[c->ileb_cnt++] = lnum; 691 dbg_cmt("LEB %d", lnum); 692 } 693 if (dbg_is_chk_index(c) && !(random32() & 7)) 694 return -ENOSPC; 695 return 0; 696 } 697 698 /** 699 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 700 * @c: UBIFS file-system description object 701 * 702 * It is possible that we allocate more empty LEBs for the commit than we need. 703 * This functions frees the surplus. 704 * 705 * This function returns %0 on success and a negative error code on failure. 706 */ 707 static int free_unused_idx_lebs(struct ubifs_info *c) 708 { 709 int i, err = 0, lnum, er; 710 711 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 712 lnum = c->ilebs[i]; 713 dbg_cmt("LEB %d", lnum); 714 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 715 LPROPS_INDEX | LPROPS_TAKEN, 0); 716 if (!err) 717 err = er; 718 } 719 return err; 720 } 721 722 /** 723 * free_idx_lebs - free unused LEBs after commit end. 724 * @c: UBIFS file-system description object 725 * 726 * This function returns %0 on success and a negative error code on failure. 727 */ 728 static int free_idx_lebs(struct ubifs_info *c) 729 { 730 int err; 731 732 err = free_unused_idx_lebs(c); 733 kfree(c->ilebs); 734 c->ilebs = NULL; 735 return err; 736 } 737 738 /** 739 * ubifs_tnc_start_commit - start TNC commit. 740 * @c: UBIFS file-system description object 741 * @zroot: new index root position is returned here 742 * 743 * This function prepares the list of indexing nodes to commit and lays out 744 * their positions on flash. If there is not enough free space it uses the 745 * in-gap commit method. Returns zero in case of success and a negative error 746 * code in case of failure. 747 */ 748 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 749 { 750 int err = 0, cnt; 751 752 mutex_lock(&c->tnc_mutex); 753 err = dbg_check_tnc(c, 1); 754 if (err) 755 goto out; 756 cnt = get_znodes_to_commit(c); 757 if (cnt != 0) { 758 int no_space = 0; 759 760 err = alloc_idx_lebs(c, cnt); 761 if (err == -ENOSPC) 762 no_space = 1; 763 else if (err) 764 goto out_free; 765 err = layout_commit(c, no_space, cnt); 766 if (err) 767 goto out_free; 768 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 769 err = free_unused_idx_lebs(c); 770 if (err) 771 goto out; 772 } 773 destroy_old_idx(c); 774 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 775 776 err = ubifs_save_dirty_idx_lnums(c); 777 if (err) 778 goto out; 779 780 spin_lock(&c->space_lock); 781 /* 782 * Although we have not finished committing yet, update size of the 783 * committed index ('c->bi.old_idx_sz') and zero out the index growth 784 * budget. It is OK to do this now, because we've reserved all the 785 * space which is needed to commit the index, and it is save for the 786 * budgeting subsystem to assume the index is already committed, 787 * even though it is not. 788 */ 789 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 790 c->bi.old_idx_sz = c->calc_idx_sz; 791 c->bi.uncommitted_idx = 0; 792 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 793 spin_unlock(&c->space_lock); 794 mutex_unlock(&c->tnc_mutex); 795 796 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 797 dbg_cmt("size of index %llu", c->calc_idx_sz); 798 return err; 799 800 out_free: 801 free_idx_lebs(c); 802 out: 803 mutex_unlock(&c->tnc_mutex); 804 return err; 805 } 806 807 /** 808 * write_index - write index nodes. 809 * @c: UBIFS file-system description object 810 * 811 * This function writes the index nodes whose positions were laid out in the 812 * layout_in_empty_space function. 813 */ 814 static int write_index(struct ubifs_info *c) 815 { 816 struct ubifs_idx_node *idx; 817 struct ubifs_znode *znode, *cnext; 818 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 819 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; 820 821 cnext = c->enext; 822 if (!cnext) 823 return 0; 824 825 /* 826 * Always write index nodes to the index head so that index nodes and 827 * other types of nodes are never mixed in the same erase block. 828 */ 829 lnum = c->ihead_lnum; 830 buf_offs = c->ihead_offs; 831 832 /* Allocate commit buffer */ 833 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 834 used = 0; 835 avail = buf_len; 836 837 /* Ensure there is enough room for first write */ 838 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 839 if (buf_offs + next_len > c->leb_size) { 840 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 841 LPROPS_TAKEN); 842 if (err) 843 return err; 844 lnum = -1; 845 } 846 847 while (1) { 848 cond_resched(); 849 850 znode = cnext; 851 idx = c->cbuf + used; 852 853 /* Make index node */ 854 idx->ch.node_type = UBIFS_IDX_NODE; 855 idx->child_cnt = cpu_to_le16(znode->child_cnt); 856 idx->level = cpu_to_le16(znode->level); 857 for (i = 0; i < znode->child_cnt; i++) { 858 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 859 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 860 861 key_write_idx(c, &zbr->key, &br->key); 862 br->lnum = cpu_to_le32(zbr->lnum); 863 br->offs = cpu_to_le32(zbr->offs); 864 br->len = cpu_to_le32(zbr->len); 865 if (!zbr->lnum || !zbr->len) { 866 ubifs_err("bad ref in znode"); 867 dbg_dump_znode(c, znode); 868 if (zbr->znode) 869 dbg_dump_znode(c, zbr->znode); 870 } 871 } 872 len = ubifs_idx_node_sz(c, znode->child_cnt); 873 ubifs_prepare_node(c, idx, len, 0); 874 875 /* Determine the index node position */ 876 if (lnum == -1) { 877 lnum = c->ilebs[lnum_pos++]; 878 buf_offs = 0; 879 used = 0; 880 avail = buf_len; 881 } 882 offs = buf_offs + used; 883 884 #ifdef CONFIG_UBIFS_FS_DEBUG 885 if (lnum != znode->lnum || offs != znode->offs || 886 len != znode->len) { 887 ubifs_err("inconsistent znode posn"); 888 return -EINVAL; 889 } 890 #endif 891 892 /* Grab some stuff from znode while we still can */ 893 cnext = znode->cnext; 894 895 ubifs_assert(ubifs_zn_dirty(znode)); 896 ubifs_assert(ubifs_zn_cow(znode)); 897 898 /* 899 * It is important that other threads should see %DIRTY_ZNODE 900 * flag cleared before %COW_ZNODE. Specifically, it matters in 901 * the 'dirty_cow_znode()' function. This is the reason for the 902 * first barrier. Also, we want the bit changes to be seen to 903 * other threads ASAP, to avoid unnecesarry copying, which is 904 * the reason for the second barrier. 905 */ 906 clear_bit(DIRTY_ZNODE, &znode->flags); 907 smp_mb__before_clear_bit(); 908 clear_bit(COW_ZNODE, &znode->flags); 909 smp_mb__after_clear_bit(); 910 911 /* 912 * We have marked the znode as clean but have not updated the 913 * @c->clean_zn_cnt counter. If this znode becomes dirty again 914 * before 'free_obsolete_znodes()' is called, then 915 * @c->clean_zn_cnt will be decremented before it gets 916 * incremented (resulting in 2 decrements for the same znode). 917 * This means that @c->clean_zn_cnt may become negative for a 918 * while. 919 * 920 * Q: why we cannot increment @c->clean_zn_cnt? 921 * A: because we do not have the @c->tnc_mutex locked, and the 922 * following code would be racy and buggy: 923 * 924 * if (!ubifs_zn_obsolete(znode)) { 925 * atomic_long_inc(&c->clean_zn_cnt); 926 * atomic_long_inc(&ubifs_clean_zn_cnt); 927 * } 928 * 929 * Thus, we just delay the @c->clean_zn_cnt update until we 930 * have the mutex locked. 931 */ 932 933 /* Do not access znode from this point on */ 934 935 /* Update buffer positions */ 936 wlen = used + len; 937 used += ALIGN(len, 8); 938 avail -= ALIGN(len, 8); 939 940 /* 941 * Calculate the next index node length to see if there is 942 * enough room for it 943 */ 944 if (cnext == c->cnext) 945 next_len = 0; 946 else 947 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 948 949 nxt_offs = buf_offs + used + next_len; 950 if (next_len && nxt_offs <= c->leb_size) { 951 if (avail > 0) 952 continue; 953 else 954 blen = buf_len; 955 } else { 956 wlen = ALIGN(wlen, 8); 957 blen = ALIGN(wlen, c->min_io_size); 958 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 959 } 960 961 /* The buffer is full or there are no more znodes to do */ 962 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen, 963 UBI_SHORTTERM); 964 if (err) 965 return err; 966 buf_offs += blen; 967 if (next_len) { 968 if (nxt_offs > c->leb_size) { 969 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 970 0, LPROPS_TAKEN); 971 if (err) 972 return err; 973 lnum = -1; 974 } 975 used -= blen; 976 if (used < 0) 977 used = 0; 978 avail = buf_len - used; 979 memmove(c->cbuf, c->cbuf + blen, used); 980 continue; 981 } 982 break; 983 } 984 985 #ifdef CONFIG_UBIFS_FS_DEBUG 986 if (lnum != c->dbg->new_ihead_lnum || 987 buf_offs != c->dbg->new_ihead_offs) { 988 ubifs_err("inconsistent ihead"); 989 return -EINVAL; 990 } 991 #endif 992 993 c->ihead_lnum = lnum; 994 c->ihead_offs = buf_offs; 995 996 return 0; 997 } 998 999 /** 1000 * free_obsolete_znodes - free obsolete znodes. 1001 * @c: UBIFS file-system description object 1002 * 1003 * At the end of commit end, obsolete znodes are freed. 1004 */ 1005 static void free_obsolete_znodes(struct ubifs_info *c) 1006 { 1007 struct ubifs_znode *znode, *cnext; 1008 1009 cnext = c->cnext; 1010 do { 1011 znode = cnext; 1012 cnext = znode->cnext; 1013 if (ubifs_zn_obsolete(znode)) 1014 kfree(znode); 1015 else { 1016 znode->cnext = NULL; 1017 atomic_long_inc(&c->clean_zn_cnt); 1018 atomic_long_inc(&ubifs_clean_zn_cnt); 1019 } 1020 } while (cnext != c->cnext); 1021 } 1022 1023 /** 1024 * return_gap_lebs - return LEBs used by the in-gap commit method. 1025 * @c: UBIFS file-system description object 1026 * 1027 * This function clears the "taken" flag for the LEBs which were used by the 1028 * "commit in-the-gaps" method. 1029 */ 1030 static int return_gap_lebs(struct ubifs_info *c) 1031 { 1032 int *p, err; 1033 1034 if (!c->gap_lebs) 1035 return 0; 1036 1037 dbg_cmt(""); 1038 for (p = c->gap_lebs; *p != -1; p++) { 1039 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1040 LPROPS_TAKEN, 0); 1041 if (err) 1042 return err; 1043 } 1044 1045 kfree(c->gap_lebs); 1046 c->gap_lebs = NULL; 1047 return 0; 1048 } 1049 1050 /** 1051 * ubifs_tnc_end_commit - update the TNC for commit end. 1052 * @c: UBIFS file-system description object 1053 * 1054 * Write the dirty znodes. 1055 */ 1056 int ubifs_tnc_end_commit(struct ubifs_info *c) 1057 { 1058 int err; 1059 1060 if (!c->cnext) 1061 return 0; 1062 1063 err = return_gap_lebs(c); 1064 if (err) 1065 return err; 1066 1067 err = write_index(c); 1068 if (err) 1069 return err; 1070 1071 mutex_lock(&c->tnc_mutex); 1072 1073 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1074 1075 free_obsolete_znodes(c); 1076 1077 c->cnext = NULL; 1078 kfree(c->ilebs); 1079 c->ilebs = NULL; 1080 1081 mutex_unlock(&c->tnc_mutex); 1082 1083 return 0; 1084 } 1085