xref: /openbmc/linux/fs/ubifs/tnc_commit.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /* This file implements TNC functions for committing */
24 
25 #include <linux/random.h>
26 #include "ubifs.h"
27 
28 /**
29  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30  * @c: UBIFS file-system description object
31  * @idx: buffer in which to place new index node
32  * @znode: znode from which to make new index node
33  * @lnum: LEB number where new index node will be written
34  * @offs: offset where new index node will be written
35  * @len: length of new index node
36  */
37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
38 			 struct ubifs_znode *znode, int lnum, int offs, int len)
39 {
40 	struct ubifs_znode *zp;
41 	int i, err;
42 
43 	/* Make index node */
44 	idx->ch.node_type = UBIFS_IDX_NODE;
45 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
46 	idx->level = cpu_to_le16(znode->level);
47 	for (i = 0; i < znode->child_cnt; i++) {
48 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
49 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
50 
51 		key_write_idx(c, &zbr->key, &br->key);
52 		br->lnum = cpu_to_le32(zbr->lnum);
53 		br->offs = cpu_to_le32(zbr->offs);
54 		br->len = cpu_to_le32(zbr->len);
55 		if (!zbr->lnum || !zbr->len) {
56 			ubifs_err(c, "bad ref in znode");
57 			ubifs_dump_znode(c, znode);
58 			if (zbr->znode)
59 				ubifs_dump_znode(c, zbr->znode);
60 
61 			return -EINVAL;
62 		}
63 	}
64 	ubifs_prepare_node(c, idx, len, 0);
65 
66 	znode->lnum = lnum;
67 	znode->offs = offs;
68 	znode->len = len;
69 
70 	err = insert_old_idx_znode(c, znode);
71 
72 	/* Update the parent */
73 	zp = znode->parent;
74 	if (zp) {
75 		struct ubifs_zbranch *zbr;
76 
77 		zbr = &zp->zbranch[znode->iip];
78 		zbr->lnum = lnum;
79 		zbr->offs = offs;
80 		zbr->len = len;
81 	} else {
82 		c->zroot.lnum = lnum;
83 		c->zroot.offs = offs;
84 		c->zroot.len = len;
85 	}
86 	c->calc_idx_sz += ALIGN(len, 8);
87 
88 	atomic_long_dec(&c->dirty_zn_cnt);
89 
90 	ubifs_assert(ubifs_zn_dirty(znode));
91 	ubifs_assert(ubifs_zn_cow(znode));
92 
93 	/*
94 	 * Note, unlike 'write_index()' we do not add memory barriers here
95 	 * because this function is called with @c->tnc_mutex locked.
96 	 */
97 	__clear_bit(DIRTY_ZNODE, &znode->flags);
98 	__clear_bit(COW_ZNODE, &znode->flags);
99 
100 	return err;
101 }
102 
103 /**
104  * fill_gap - make index nodes in gaps in dirty index LEBs.
105  * @c: UBIFS file-system description object
106  * @lnum: LEB number that gap appears in
107  * @gap_start: offset of start of gap
108  * @gap_end: offset of end of gap
109  * @dirt: adds dirty space to this
110  *
111  * This function returns the number of index nodes written into the gap.
112  */
113 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
114 		    int *dirt)
115 {
116 	int len, gap_remains, gap_pos, written, pad_len;
117 
118 	ubifs_assert((gap_start & 7) == 0);
119 	ubifs_assert((gap_end & 7) == 0);
120 	ubifs_assert(gap_end >= gap_start);
121 
122 	gap_remains = gap_end - gap_start;
123 	if (!gap_remains)
124 		return 0;
125 	gap_pos = gap_start;
126 	written = 0;
127 	while (c->enext) {
128 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
129 		if (len < gap_remains) {
130 			struct ubifs_znode *znode = c->enext;
131 			const int alen = ALIGN(len, 8);
132 			int err;
133 
134 			ubifs_assert(alen <= gap_remains);
135 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
136 					    lnum, gap_pos, len);
137 			if (err)
138 				return err;
139 			gap_remains -= alen;
140 			gap_pos += alen;
141 			c->enext = znode->cnext;
142 			if (c->enext == c->cnext)
143 				c->enext = NULL;
144 			written += 1;
145 		} else
146 			break;
147 	}
148 	if (gap_end == c->leb_size) {
149 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
150 		/* Pad to end of min_io_size */
151 		pad_len = c->ileb_len - gap_pos;
152 	} else
153 		/* Pad to end of gap */
154 		pad_len = gap_remains;
155 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
156 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
157 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
158 	*dirt += pad_len;
159 	return written;
160 }
161 
162 /**
163  * find_old_idx - find an index node obsoleted since the last commit start.
164  * @c: UBIFS file-system description object
165  * @lnum: LEB number of obsoleted index node
166  * @offs: offset of obsoleted index node
167  *
168  * Returns %1 if found and %0 otherwise.
169  */
170 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
171 {
172 	struct ubifs_old_idx *o;
173 	struct rb_node *p;
174 
175 	p = c->old_idx.rb_node;
176 	while (p) {
177 		o = rb_entry(p, struct ubifs_old_idx, rb);
178 		if (lnum < o->lnum)
179 			p = p->rb_left;
180 		else if (lnum > o->lnum)
181 			p = p->rb_right;
182 		else if (offs < o->offs)
183 			p = p->rb_left;
184 		else if (offs > o->offs)
185 			p = p->rb_right;
186 		else
187 			return 1;
188 	}
189 	return 0;
190 }
191 
192 /**
193  * is_idx_node_in_use - determine if an index node can be overwritten.
194  * @c: UBIFS file-system description object
195  * @key: key of index node
196  * @level: index node level
197  * @lnum: LEB number of index node
198  * @offs: offset of index node
199  *
200  * If @key / @lnum / @offs identify an index node that was not part of the old
201  * index, then this function returns %0 (obsolete).  Else if the index node was
202  * part of the old index but is now dirty %1 is returned, else if it is clean %2
203  * is returned. A negative error code is returned on failure.
204  */
205 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
206 			      int level, int lnum, int offs)
207 {
208 	int ret;
209 
210 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
211 	if (ret < 0)
212 		return ret; /* Error code */
213 	if (ret == 0)
214 		if (find_old_idx(c, lnum, offs))
215 			return 1;
216 	return ret;
217 }
218 
219 /**
220  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
221  * @c: UBIFS file-system description object
222  * @p: return LEB number here
223  *
224  * This function lays out new index nodes for dirty znodes using in-the-gaps
225  * method of TNC commit.
226  * This function merely puts the next znode into the next gap, making no attempt
227  * to try to maximise the number of znodes that fit.
228  * This function returns the number of index nodes written into the gaps, or a
229  * negative error code on failure.
230  */
231 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
232 {
233 	struct ubifs_scan_leb *sleb;
234 	struct ubifs_scan_node *snod;
235 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
236 
237 	tot_written = 0;
238 	/* Get an index LEB with lots of obsolete index nodes */
239 	lnum = ubifs_find_dirty_idx_leb(c);
240 	if (lnum < 0)
241 		/*
242 		 * There also may be dirt in the index head that could be
243 		 * filled, however we do not check there at present.
244 		 */
245 		return lnum; /* Error code */
246 	*p = lnum;
247 	dbg_gc("LEB %d", lnum);
248 	/*
249 	 * Scan the index LEB.  We use the generic scan for this even though
250 	 * it is more comprehensive and less efficient than is needed for this
251 	 * purpose.
252 	 */
253 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
254 	c->ileb_len = 0;
255 	if (IS_ERR(sleb))
256 		return PTR_ERR(sleb);
257 	gap_start = 0;
258 	list_for_each_entry(snod, &sleb->nodes, list) {
259 		struct ubifs_idx_node *idx;
260 		int in_use, level;
261 
262 		ubifs_assert(snod->type == UBIFS_IDX_NODE);
263 		idx = snod->node;
264 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
265 		level = le16_to_cpu(idx->level);
266 		/* Determine if the index node is in use (not obsolete) */
267 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
268 					    snod->offs);
269 		if (in_use < 0) {
270 			ubifs_scan_destroy(sleb);
271 			return in_use; /* Error code */
272 		}
273 		if (in_use) {
274 			if (in_use == 1)
275 				dirt += ALIGN(snod->len, 8);
276 			/*
277 			 * The obsolete index nodes form gaps that can be
278 			 * overwritten.  This gap has ended because we have
279 			 * found an index node that is still in use
280 			 * i.e. not obsolete
281 			 */
282 			gap_end = snod->offs;
283 			/* Try to fill gap */
284 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
285 			if (written < 0) {
286 				ubifs_scan_destroy(sleb);
287 				return written; /* Error code */
288 			}
289 			tot_written += written;
290 			gap_start = ALIGN(snod->offs + snod->len, 8);
291 		}
292 	}
293 	ubifs_scan_destroy(sleb);
294 	c->ileb_len = c->leb_size;
295 	gap_end = c->leb_size;
296 	/* Try to fill gap */
297 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
298 	if (written < 0)
299 		return written; /* Error code */
300 	tot_written += written;
301 	if (tot_written == 0) {
302 		struct ubifs_lprops lp;
303 
304 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
305 		err = ubifs_read_one_lp(c, lnum, &lp);
306 		if (err)
307 			return err;
308 		if (lp.free == c->leb_size) {
309 			/*
310 			 * We must have snatched this LEB from the idx_gc list
311 			 * so we need to correct the free and dirty space.
312 			 */
313 			err = ubifs_change_one_lp(c, lnum,
314 						  c->leb_size - c->ileb_len,
315 						  dirt, 0, 0, 0);
316 			if (err)
317 				return err;
318 		}
319 		return 0;
320 	}
321 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
322 				  0, 0, 0);
323 	if (err)
324 		return err;
325 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
326 	if (err)
327 		return err;
328 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
329 	return tot_written;
330 }
331 
332 /**
333  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
334  * @c: UBIFS file-system description object
335  * @cnt: number of znodes to commit
336  *
337  * This function returns the number of empty LEBs needed to commit @cnt znodes
338  * to the current index head.  The number is not exact and may be more than
339  * needed.
340  */
341 static int get_leb_cnt(struct ubifs_info *c, int cnt)
342 {
343 	int d;
344 
345 	/* Assume maximum index node size (i.e. overestimate space needed) */
346 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
347 	if (cnt < 0)
348 		cnt = 0;
349 	d = c->leb_size / c->max_idx_node_sz;
350 	return DIV_ROUND_UP(cnt, d);
351 }
352 
353 /**
354  * layout_in_gaps - in-the-gaps method of committing TNC.
355  * @c: UBIFS file-system description object
356  * @cnt: number of dirty znodes to commit.
357  *
358  * This function lays out new index nodes for dirty znodes using in-the-gaps
359  * method of TNC commit.
360  *
361  * This function returns %0 on success and a negative error code on failure.
362  */
363 static int layout_in_gaps(struct ubifs_info *c, int cnt)
364 {
365 	int err, leb_needed_cnt, written, *p;
366 
367 	dbg_gc("%d znodes to write", cnt);
368 
369 	c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
370 	if (!c->gap_lebs)
371 		return -ENOMEM;
372 
373 	p = c->gap_lebs;
374 	do {
375 		ubifs_assert(p < c->gap_lebs + c->lst.idx_lebs);
376 		written = layout_leb_in_gaps(c, p);
377 		if (written < 0) {
378 			err = written;
379 			if (err != -ENOSPC) {
380 				kfree(c->gap_lebs);
381 				c->gap_lebs = NULL;
382 				return err;
383 			}
384 			if (!dbg_is_chk_index(c)) {
385 				/*
386 				 * Do not print scary warnings if the debugging
387 				 * option which forces in-the-gaps is enabled.
388 				 */
389 				ubifs_warn(c, "out of space");
390 				ubifs_dump_budg(c, &c->bi);
391 				ubifs_dump_lprops(c);
392 			}
393 			/* Try to commit anyway */
394 			break;
395 		}
396 		p++;
397 		cnt -= written;
398 		leb_needed_cnt = get_leb_cnt(c, cnt);
399 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
400 		       leb_needed_cnt, c->ileb_cnt);
401 	} while (leb_needed_cnt > c->ileb_cnt);
402 
403 	*p = -1;
404 	return 0;
405 }
406 
407 /**
408  * layout_in_empty_space - layout index nodes in empty space.
409  * @c: UBIFS file-system description object
410  *
411  * This function lays out new index nodes for dirty znodes using empty LEBs.
412  *
413  * This function returns %0 on success and a negative error code on failure.
414  */
415 static int layout_in_empty_space(struct ubifs_info *c)
416 {
417 	struct ubifs_znode *znode, *cnext, *zp;
418 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
419 	int wlen, blen, err;
420 
421 	cnext = c->enext;
422 	if (!cnext)
423 		return 0;
424 
425 	lnum = c->ihead_lnum;
426 	buf_offs = c->ihead_offs;
427 
428 	buf_len = ubifs_idx_node_sz(c, c->fanout);
429 	buf_len = ALIGN(buf_len, c->min_io_size);
430 	used = 0;
431 	avail = buf_len;
432 
433 	/* Ensure there is enough room for first write */
434 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
435 	if (buf_offs + next_len > c->leb_size)
436 		lnum = -1;
437 
438 	while (1) {
439 		znode = cnext;
440 
441 		len = ubifs_idx_node_sz(c, znode->child_cnt);
442 
443 		/* Determine the index node position */
444 		if (lnum == -1) {
445 			if (c->ileb_nxt >= c->ileb_cnt) {
446 				ubifs_err(c, "out of space");
447 				return -ENOSPC;
448 			}
449 			lnum = c->ilebs[c->ileb_nxt++];
450 			buf_offs = 0;
451 			used = 0;
452 			avail = buf_len;
453 		}
454 
455 		offs = buf_offs + used;
456 
457 		znode->lnum = lnum;
458 		znode->offs = offs;
459 		znode->len = len;
460 
461 		/* Update the parent */
462 		zp = znode->parent;
463 		if (zp) {
464 			struct ubifs_zbranch *zbr;
465 			int i;
466 
467 			i = znode->iip;
468 			zbr = &zp->zbranch[i];
469 			zbr->lnum = lnum;
470 			zbr->offs = offs;
471 			zbr->len = len;
472 		} else {
473 			c->zroot.lnum = lnum;
474 			c->zroot.offs = offs;
475 			c->zroot.len = len;
476 		}
477 		c->calc_idx_sz += ALIGN(len, 8);
478 
479 		/*
480 		 * Once lprops is updated, we can decrease the dirty znode count
481 		 * but it is easier to just do it here.
482 		 */
483 		atomic_long_dec(&c->dirty_zn_cnt);
484 
485 		/*
486 		 * Calculate the next index node length to see if there is
487 		 * enough room for it
488 		 */
489 		cnext = znode->cnext;
490 		if (cnext == c->cnext)
491 			next_len = 0;
492 		else
493 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
494 
495 		/* Update buffer positions */
496 		wlen = used + len;
497 		used += ALIGN(len, 8);
498 		avail -= ALIGN(len, 8);
499 
500 		if (next_len != 0 &&
501 		    buf_offs + used + next_len <= c->leb_size &&
502 		    avail > 0)
503 			continue;
504 
505 		if (avail <= 0 && next_len &&
506 		    buf_offs + used + next_len <= c->leb_size)
507 			blen = buf_len;
508 		else
509 			blen = ALIGN(wlen, c->min_io_size);
510 
511 		/* The buffer is full or there are no more znodes to do */
512 		buf_offs += blen;
513 		if (next_len) {
514 			if (buf_offs + next_len > c->leb_size) {
515 				err = ubifs_update_one_lp(c, lnum,
516 					c->leb_size - buf_offs, blen - used,
517 					0, 0);
518 				if (err)
519 					return err;
520 				lnum = -1;
521 			}
522 			used -= blen;
523 			if (used < 0)
524 				used = 0;
525 			avail = buf_len - used;
526 			continue;
527 		}
528 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
529 					  blen - used, 0, 0);
530 		if (err)
531 			return err;
532 		break;
533 	}
534 
535 	c->dbg->new_ihead_lnum = lnum;
536 	c->dbg->new_ihead_offs = buf_offs;
537 
538 	return 0;
539 }
540 
541 /**
542  * layout_commit - determine positions of index nodes to commit.
543  * @c: UBIFS file-system description object
544  * @no_space: indicates that insufficient empty LEBs were allocated
545  * @cnt: number of znodes to commit
546  *
547  * Calculate and update the positions of index nodes to commit.  If there were
548  * an insufficient number of empty LEBs allocated, then index nodes are placed
549  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
550  * this purpose, an obsolete index node is one that was not in the index as at
551  * the end of the last commit.  To write "in-the-gaps" requires that those index
552  * LEBs are updated atomically in-place.
553  */
554 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
555 {
556 	int err;
557 
558 	if (no_space) {
559 		err = layout_in_gaps(c, cnt);
560 		if (err)
561 			return err;
562 	}
563 	err = layout_in_empty_space(c);
564 	return err;
565 }
566 
567 /**
568  * find_first_dirty - find first dirty znode.
569  * @znode: znode to begin searching from
570  */
571 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
572 {
573 	int i, cont;
574 
575 	if (!znode)
576 		return NULL;
577 
578 	while (1) {
579 		if (znode->level == 0) {
580 			if (ubifs_zn_dirty(znode))
581 				return znode;
582 			return NULL;
583 		}
584 		cont = 0;
585 		for (i = 0; i < znode->child_cnt; i++) {
586 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
587 
588 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
589 				znode = zbr->znode;
590 				cont = 1;
591 				break;
592 			}
593 		}
594 		if (!cont) {
595 			if (ubifs_zn_dirty(znode))
596 				return znode;
597 			return NULL;
598 		}
599 	}
600 }
601 
602 /**
603  * find_next_dirty - find next dirty znode.
604  * @znode: znode to begin searching from
605  */
606 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
607 {
608 	int n = znode->iip + 1;
609 
610 	znode = znode->parent;
611 	if (!znode)
612 		return NULL;
613 	for (; n < znode->child_cnt; n++) {
614 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
615 
616 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
617 			return find_first_dirty(zbr->znode);
618 	}
619 	return znode;
620 }
621 
622 /**
623  * get_znodes_to_commit - create list of dirty znodes to commit.
624  * @c: UBIFS file-system description object
625  *
626  * This function returns the number of znodes to commit.
627  */
628 static int get_znodes_to_commit(struct ubifs_info *c)
629 {
630 	struct ubifs_znode *znode, *cnext;
631 	int cnt = 0;
632 
633 	c->cnext = find_first_dirty(c->zroot.znode);
634 	znode = c->enext = c->cnext;
635 	if (!znode) {
636 		dbg_cmt("no znodes to commit");
637 		return 0;
638 	}
639 	cnt += 1;
640 	while (1) {
641 		ubifs_assert(!ubifs_zn_cow(znode));
642 		__set_bit(COW_ZNODE, &znode->flags);
643 		znode->alt = 0;
644 		cnext = find_next_dirty(znode);
645 		if (!cnext) {
646 			znode->cnext = c->cnext;
647 			break;
648 		}
649 		znode->cnext = cnext;
650 		znode = cnext;
651 		cnt += 1;
652 	}
653 	dbg_cmt("committing %d znodes", cnt);
654 	ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
655 	return cnt;
656 }
657 
658 /**
659  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
660  * @c: UBIFS file-system description object
661  * @cnt: number of znodes to commit
662  *
663  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
664  * empty LEBs.  %0 is returned on success, otherwise a negative error code
665  * is returned.
666  */
667 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
668 {
669 	int i, leb_cnt, lnum;
670 
671 	c->ileb_cnt = 0;
672 	c->ileb_nxt = 0;
673 	leb_cnt = get_leb_cnt(c, cnt);
674 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
675 	if (!leb_cnt)
676 		return 0;
677 	c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
678 	if (!c->ilebs)
679 		return -ENOMEM;
680 	for (i = 0; i < leb_cnt; i++) {
681 		lnum = ubifs_find_free_leb_for_idx(c);
682 		if (lnum < 0)
683 			return lnum;
684 		c->ilebs[c->ileb_cnt++] = lnum;
685 		dbg_cmt("LEB %d", lnum);
686 	}
687 	if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
688 		return -ENOSPC;
689 	return 0;
690 }
691 
692 /**
693  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
694  * @c: UBIFS file-system description object
695  *
696  * It is possible that we allocate more empty LEBs for the commit than we need.
697  * This functions frees the surplus.
698  *
699  * This function returns %0 on success and a negative error code on failure.
700  */
701 static int free_unused_idx_lebs(struct ubifs_info *c)
702 {
703 	int i, err = 0, lnum, er;
704 
705 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
706 		lnum = c->ilebs[i];
707 		dbg_cmt("LEB %d", lnum);
708 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
709 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
710 		if (!err)
711 			err = er;
712 	}
713 	return err;
714 }
715 
716 /**
717  * free_idx_lebs - free unused LEBs after commit end.
718  * @c: UBIFS file-system description object
719  *
720  * This function returns %0 on success and a negative error code on failure.
721  */
722 static int free_idx_lebs(struct ubifs_info *c)
723 {
724 	int err;
725 
726 	err = free_unused_idx_lebs(c);
727 	kfree(c->ilebs);
728 	c->ilebs = NULL;
729 	return err;
730 }
731 
732 /**
733  * ubifs_tnc_start_commit - start TNC commit.
734  * @c: UBIFS file-system description object
735  * @zroot: new index root position is returned here
736  *
737  * This function prepares the list of indexing nodes to commit and lays out
738  * their positions on flash. If there is not enough free space it uses the
739  * in-gap commit method. Returns zero in case of success and a negative error
740  * code in case of failure.
741  */
742 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
743 {
744 	int err = 0, cnt;
745 
746 	mutex_lock(&c->tnc_mutex);
747 	err = dbg_check_tnc(c, 1);
748 	if (err)
749 		goto out;
750 	cnt = get_znodes_to_commit(c);
751 	if (cnt != 0) {
752 		int no_space = 0;
753 
754 		err = alloc_idx_lebs(c, cnt);
755 		if (err == -ENOSPC)
756 			no_space = 1;
757 		else if (err)
758 			goto out_free;
759 		err = layout_commit(c, no_space, cnt);
760 		if (err)
761 			goto out_free;
762 		ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
763 		err = free_unused_idx_lebs(c);
764 		if (err)
765 			goto out;
766 	}
767 	destroy_old_idx(c);
768 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
769 
770 	err = ubifs_save_dirty_idx_lnums(c);
771 	if (err)
772 		goto out;
773 
774 	spin_lock(&c->space_lock);
775 	/*
776 	 * Although we have not finished committing yet, update size of the
777 	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
778 	 * budget. It is OK to do this now, because we've reserved all the
779 	 * space which is needed to commit the index, and it is save for the
780 	 * budgeting subsystem to assume the index is already committed,
781 	 * even though it is not.
782 	 */
783 	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
784 	c->bi.old_idx_sz = c->calc_idx_sz;
785 	c->bi.uncommitted_idx = 0;
786 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
787 	spin_unlock(&c->space_lock);
788 	mutex_unlock(&c->tnc_mutex);
789 
790 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
791 	dbg_cmt("size of index %llu", c->calc_idx_sz);
792 	return err;
793 
794 out_free:
795 	free_idx_lebs(c);
796 out:
797 	mutex_unlock(&c->tnc_mutex);
798 	return err;
799 }
800 
801 /**
802  * write_index - write index nodes.
803  * @c: UBIFS file-system description object
804  *
805  * This function writes the index nodes whose positions were laid out in the
806  * layout_in_empty_space function.
807  */
808 static int write_index(struct ubifs_info *c)
809 {
810 	struct ubifs_idx_node *idx;
811 	struct ubifs_znode *znode, *cnext;
812 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
813 	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
814 
815 	cnext = c->enext;
816 	if (!cnext)
817 		return 0;
818 
819 	/*
820 	 * Always write index nodes to the index head so that index nodes and
821 	 * other types of nodes are never mixed in the same erase block.
822 	 */
823 	lnum = c->ihead_lnum;
824 	buf_offs = c->ihead_offs;
825 
826 	/* Allocate commit buffer */
827 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
828 	used = 0;
829 	avail = buf_len;
830 
831 	/* Ensure there is enough room for first write */
832 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
833 	if (buf_offs + next_len > c->leb_size) {
834 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
835 					  LPROPS_TAKEN);
836 		if (err)
837 			return err;
838 		lnum = -1;
839 	}
840 
841 	while (1) {
842 		cond_resched();
843 
844 		znode = cnext;
845 		idx = c->cbuf + used;
846 
847 		/* Make index node */
848 		idx->ch.node_type = UBIFS_IDX_NODE;
849 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
850 		idx->level = cpu_to_le16(znode->level);
851 		for (i = 0; i < znode->child_cnt; i++) {
852 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
853 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
854 
855 			key_write_idx(c, &zbr->key, &br->key);
856 			br->lnum = cpu_to_le32(zbr->lnum);
857 			br->offs = cpu_to_le32(zbr->offs);
858 			br->len = cpu_to_le32(zbr->len);
859 			if (!zbr->lnum || !zbr->len) {
860 				ubifs_err(c, "bad ref in znode");
861 				ubifs_dump_znode(c, znode);
862 				if (zbr->znode)
863 					ubifs_dump_znode(c, zbr->znode);
864 
865 				return -EINVAL;
866 			}
867 		}
868 		len = ubifs_idx_node_sz(c, znode->child_cnt);
869 		ubifs_prepare_node(c, idx, len, 0);
870 
871 		/* Determine the index node position */
872 		if (lnum == -1) {
873 			lnum = c->ilebs[lnum_pos++];
874 			buf_offs = 0;
875 			used = 0;
876 			avail = buf_len;
877 		}
878 		offs = buf_offs + used;
879 
880 		if (lnum != znode->lnum || offs != znode->offs ||
881 		    len != znode->len) {
882 			ubifs_err(c, "inconsistent znode posn");
883 			return -EINVAL;
884 		}
885 
886 		/* Grab some stuff from znode while we still can */
887 		cnext = znode->cnext;
888 
889 		ubifs_assert(ubifs_zn_dirty(znode));
890 		ubifs_assert(ubifs_zn_cow(znode));
891 
892 		/*
893 		 * It is important that other threads should see %DIRTY_ZNODE
894 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
895 		 * the 'dirty_cow_znode()' function. This is the reason for the
896 		 * first barrier. Also, we want the bit changes to be seen to
897 		 * other threads ASAP, to avoid unnecesarry copying, which is
898 		 * the reason for the second barrier.
899 		 */
900 		clear_bit(DIRTY_ZNODE, &znode->flags);
901 		smp_mb__before_atomic();
902 		clear_bit(COW_ZNODE, &znode->flags);
903 		smp_mb__after_atomic();
904 
905 		/*
906 		 * We have marked the znode as clean but have not updated the
907 		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
908 		 * before 'free_obsolete_znodes()' is called, then
909 		 * @c->clean_zn_cnt will be decremented before it gets
910 		 * incremented (resulting in 2 decrements for the same znode).
911 		 * This means that @c->clean_zn_cnt may become negative for a
912 		 * while.
913 		 *
914 		 * Q: why we cannot increment @c->clean_zn_cnt?
915 		 * A: because we do not have the @c->tnc_mutex locked, and the
916 		 *    following code would be racy and buggy:
917 		 *
918 		 *    if (!ubifs_zn_obsolete(znode)) {
919 		 *            atomic_long_inc(&c->clean_zn_cnt);
920 		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
921 		 *    }
922 		 *
923 		 *    Thus, we just delay the @c->clean_zn_cnt update until we
924 		 *    have the mutex locked.
925 		 */
926 
927 		/* Do not access znode from this point on */
928 
929 		/* Update buffer positions */
930 		wlen = used + len;
931 		used += ALIGN(len, 8);
932 		avail -= ALIGN(len, 8);
933 
934 		/*
935 		 * Calculate the next index node length to see if there is
936 		 * enough room for it
937 		 */
938 		if (cnext == c->cnext)
939 			next_len = 0;
940 		else
941 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
942 
943 		nxt_offs = buf_offs + used + next_len;
944 		if (next_len && nxt_offs <= c->leb_size) {
945 			if (avail > 0)
946 				continue;
947 			else
948 				blen = buf_len;
949 		} else {
950 			wlen = ALIGN(wlen, 8);
951 			blen = ALIGN(wlen, c->min_io_size);
952 			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
953 		}
954 
955 		/* The buffer is full or there are no more znodes to do */
956 		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
957 		if (err)
958 			return err;
959 		buf_offs += blen;
960 		if (next_len) {
961 			if (nxt_offs > c->leb_size) {
962 				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
963 							  0, LPROPS_TAKEN);
964 				if (err)
965 					return err;
966 				lnum = -1;
967 			}
968 			used -= blen;
969 			if (used < 0)
970 				used = 0;
971 			avail = buf_len - used;
972 			memmove(c->cbuf, c->cbuf + blen, used);
973 			continue;
974 		}
975 		break;
976 	}
977 
978 	if (lnum != c->dbg->new_ihead_lnum ||
979 	    buf_offs != c->dbg->new_ihead_offs) {
980 		ubifs_err(c, "inconsistent ihead");
981 		return -EINVAL;
982 	}
983 
984 	c->ihead_lnum = lnum;
985 	c->ihead_offs = buf_offs;
986 
987 	return 0;
988 }
989 
990 /**
991  * free_obsolete_znodes - free obsolete znodes.
992  * @c: UBIFS file-system description object
993  *
994  * At the end of commit end, obsolete znodes are freed.
995  */
996 static void free_obsolete_znodes(struct ubifs_info *c)
997 {
998 	struct ubifs_znode *znode, *cnext;
999 
1000 	cnext = c->cnext;
1001 	do {
1002 		znode = cnext;
1003 		cnext = znode->cnext;
1004 		if (ubifs_zn_obsolete(znode))
1005 			kfree(znode);
1006 		else {
1007 			znode->cnext = NULL;
1008 			atomic_long_inc(&c->clean_zn_cnt);
1009 			atomic_long_inc(&ubifs_clean_zn_cnt);
1010 		}
1011 	} while (cnext != c->cnext);
1012 }
1013 
1014 /**
1015  * return_gap_lebs - return LEBs used by the in-gap commit method.
1016  * @c: UBIFS file-system description object
1017  *
1018  * This function clears the "taken" flag for the LEBs which were used by the
1019  * "commit in-the-gaps" method.
1020  */
1021 static int return_gap_lebs(struct ubifs_info *c)
1022 {
1023 	int *p, err;
1024 
1025 	if (!c->gap_lebs)
1026 		return 0;
1027 
1028 	dbg_cmt("");
1029 	for (p = c->gap_lebs; *p != -1; p++) {
1030 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1031 					  LPROPS_TAKEN, 0);
1032 		if (err)
1033 			return err;
1034 	}
1035 
1036 	kfree(c->gap_lebs);
1037 	c->gap_lebs = NULL;
1038 	return 0;
1039 }
1040 
1041 /**
1042  * ubifs_tnc_end_commit - update the TNC for commit end.
1043  * @c: UBIFS file-system description object
1044  *
1045  * Write the dirty znodes.
1046  */
1047 int ubifs_tnc_end_commit(struct ubifs_info *c)
1048 {
1049 	int err;
1050 
1051 	if (!c->cnext)
1052 		return 0;
1053 
1054 	err = return_gap_lebs(c);
1055 	if (err)
1056 		return err;
1057 
1058 	err = write_index(c);
1059 	if (err)
1060 		return err;
1061 
1062 	mutex_lock(&c->tnc_mutex);
1063 
1064 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1065 
1066 	free_obsolete_znodes(c);
1067 
1068 	c->cnext = NULL;
1069 	kfree(c->ilebs);
1070 	c->ilebs = NULL;
1071 
1072 	mutex_unlock(&c->tnc_mutex);
1073 
1074 	return 0;
1075 }
1076