1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include "ubifs.h" 26 27 /** 28 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 29 * @c: UBIFS file-system description object 30 * @idx: buffer in which to place new index node 31 * @znode: znode from which to make new index node 32 * @lnum: LEB number where new index node will be written 33 * @offs: offset where new index node will be written 34 * @len: length of new index node 35 */ 36 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 37 struct ubifs_znode *znode, int lnum, int offs, int len) 38 { 39 struct ubifs_znode *zp; 40 int i, err; 41 42 /* Make index node */ 43 idx->ch.node_type = UBIFS_IDX_NODE; 44 idx->child_cnt = cpu_to_le16(znode->child_cnt); 45 idx->level = cpu_to_le16(znode->level); 46 for (i = 0; i < znode->child_cnt; i++) { 47 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 48 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 49 50 key_write_idx(c, &zbr->key, &br->key); 51 br->lnum = cpu_to_le32(zbr->lnum); 52 br->offs = cpu_to_le32(zbr->offs); 53 br->len = cpu_to_le32(zbr->len); 54 if (!zbr->lnum || !zbr->len) { 55 ubifs_err("bad ref in znode"); 56 dbg_dump_znode(c, znode); 57 if (zbr->znode) 58 dbg_dump_znode(c, zbr->znode); 59 } 60 } 61 ubifs_prepare_node(c, idx, len, 0); 62 63 #ifdef CONFIG_UBIFS_FS_DEBUG 64 znode->lnum = lnum; 65 znode->offs = offs; 66 znode->len = len; 67 #endif 68 69 err = insert_old_idx_znode(c, znode); 70 71 /* Update the parent */ 72 zp = znode->parent; 73 if (zp) { 74 struct ubifs_zbranch *zbr; 75 76 zbr = &zp->zbranch[znode->iip]; 77 zbr->lnum = lnum; 78 zbr->offs = offs; 79 zbr->len = len; 80 } else { 81 c->zroot.lnum = lnum; 82 c->zroot.offs = offs; 83 c->zroot.len = len; 84 } 85 c->calc_idx_sz += ALIGN(len, 8); 86 87 atomic_long_dec(&c->dirty_zn_cnt); 88 89 ubifs_assert(ubifs_zn_dirty(znode)); 90 ubifs_assert(test_bit(COW_ZNODE, &znode->flags)); 91 92 __clear_bit(DIRTY_ZNODE, &znode->flags); 93 __clear_bit(COW_ZNODE, &znode->flags); 94 95 return err; 96 } 97 98 /** 99 * fill_gap - make index nodes in gaps in dirty index LEBs. 100 * @c: UBIFS file-system description object 101 * @lnum: LEB number that gap appears in 102 * @gap_start: offset of start of gap 103 * @gap_end: offset of end of gap 104 * @dirt: adds dirty space to this 105 * 106 * This function returns the number of index nodes written into the gap. 107 */ 108 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 109 int *dirt) 110 { 111 int len, gap_remains, gap_pos, written, pad_len; 112 113 ubifs_assert((gap_start & 7) == 0); 114 ubifs_assert((gap_end & 7) == 0); 115 ubifs_assert(gap_end >= gap_start); 116 117 gap_remains = gap_end - gap_start; 118 if (!gap_remains) 119 return 0; 120 gap_pos = gap_start; 121 written = 0; 122 while (c->enext) { 123 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 124 if (len < gap_remains) { 125 struct ubifs_znode *znode = c->enext; 126 const int alen = ALIGN(len, 8); 127 int err; 128 129 ubifs_assert(alen <= gap_remains); 130 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 131 lnum, gap_pos, len); 132 if (err) 133 return err; 134 gap_remains -= alen; 135 gap_pos += alen; 136 c->enext = znode->cnext; 137 if (c->enext == c->cnext) 138 c->enext = NULL; 139 written += 1; 140 } else 141 break; 142 } 143 if (gap_end == c->leb_size) { 144 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 145 /* Pad to end of min_io_size */ 146 pad_len = c->ileb_len - gap_pos; 147 } else 148 /* Pad to end of gap */ 149 pad_len = gap_remains; 150 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 151 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 152 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 153 *dirt += pad_len; 154 return written; 155 } 156 157 /** 158 * find_old_idx - find an index node obsoleted since the last commit start. 159 * @c: UBIFS file-system description object 160 * @lnum: LEB number of obsoleted index node 161 * @offs: offset of obsoleted index node 162 * 163 * Returns %1 if found and %0 otherwise. 164 */ 165 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 166 { 167 struct ubifs_old_idx *o; 168 struct rb_node *p; 169 170 p = c->old_idx.rb_node; 171 while (p) { 172 o = rb_entry(p, struct ubifs_old_idx, rb); 173 if (lnum < o->lnum) 174 p = p->rb_left; 175 else if (lnum > o->lnum) 176 p = p->rb_right; 177 else if (offs < o->offs) 178 p = p->rb_left; 179 else if (offs > o->offs) 180 p = p->rb_right; 181 else 182 return 1; 183 } 184 return 0; 185 } 186 187 /** 188 * is_idx_node_in_use - determine if an index node can be overwritten. 189 * @c: UBIFS file-system description object 190 * @key: key of index node 191 * @level: index node level 192 * @lnum: LEB number of index node 193 * @offs: offset of index node 194 * 195 * If @key / @lnum / @offs identify an index node that was not part of the old 196 * index, then this function returns %0 (obsolete). Else if the index node was 197 * part of the old index but is now dirty %1 is returned, else if it is clean %2 198 * is returned. A negative error code is returned on failure. 199 */ 200 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 201 int level, int lnum, int offs) 202 { 203 int ret; 204 205 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 206 if (ret < 0) 207 return ret; /* Error code */ 208 if (ret == 0) 209 if (find_old_idx(c, lnum, offs)) 210 return 1; 211 return ret; 212 } 213 214 /** 215 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 216 * @c: UBIFS file-system description object 217 * @p: return LEB number here 218 * 219 * This function lays out new index nodes for dirty znodes using in-the-gaps 220 * method of TNC commit. 221 * This function merely puts the next znode into the next gap, making no attempt 222 * to try to maximise the number of znodes that fit. 223 * This function returns the number of index nodes written into the gaps, or a 224 * negative error code on failure. 225 */ 226 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 227 { 228 struct ubifs_scan_leb *sleb; 229 struct ubifs_scan_node *snod; 230 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 231 232 tot_written = 0; 233 /* Get an index LEB with lots of obsolete index nodes */ 234 lnum = ubifs_find_dirty_idx_leb(c); 235 if (lnum < 0) 236 /* 237 * There also may be dirt in the index head that could be 238 * filled, however we do not check there at present. 239 */ 240 return lnum; /* Error code */ 241 *p = lnum; 242 dbg_gc("LEB %d", lnum); 243 /* 244 * Scan the index LEB. We use the generic scan for this even though 245 * it is more comprehensive and less efficient than is needed for this 246 * purpose. 247 */ 248 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf); 249 c->ileb_len = 0; 250 if (IS_ERR(sleb)) 251 return PTR_ERR(sleb); 252 gap_start = 0; 253 list_for_each_entry(snod, &sleb->nodes, list) { 254 struct ubifs_idx_node *idx; 255 int in_use, level; 256 257 ubifs_assert(snod->type == UBIFS_IDX_NODE); 258 idx = snod->node; 259 key_read(c, ubifs_idx_key(c, idx), &snod->key); 260 level = le16_to_cpu(idx->level); 261 /* Determine if the index node is in use (not obsolete) */ 262 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 263 snod->offs); 264 if (in_use < 0) { 265 ubifs_scan_destroy(sleb); 266 return in_use; /* Error code */ 267 } 268 if (in_use) { 269 if (in_use == 1) 270 dirt += ALIGN(snod->len, 8); 271 /* 272 * The obsolete index nodes form gaps that can be 273 * overwritten. This gap has ended because we have 274 * found an index node that is still in use 275 * i.e. not obsolete 276 */ 277 gap_end = snod->offs; 278 /* Try to fill gap */ 279 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 280 if (written < 0) { 281 ubifs_scan_destroy(sleb); 282 return written; /* Error code */ 283 } 284 tot_written += written; 285 gap_start = ALIGN(snod->offs + snod->len, 8); 286 } 287 } 288 ubifs_scan_destroy(sleb); 289 c->ileb_len = c->leb_size; 290 gap_end = c->leb_size; 291 /* Try to fill gap */ 292 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 293 if (written < 0) 294 return written; /* Error code */ 295 tot_written += written; 296 if (tot_written == 0) { 297 struct ubifs_lprops lp; 298 299 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 300 err = ubifs_read_one_lp(c, lnum, &lp); 301 if (err) 302 return err; 303 if (lp.free == c->leb_size) { 304 /* 305 * We must have snatched this LEB from the idx_gc list 306 * so we need to correct the free and dirty space. 307 */ 308 err = ubifs_change_one_lp(c, lnum, 309 c->leb_size - c->ileb_len, 310 dirt, 0, 0, 0); 311 if (err) 312 return err; 313 } 314 return 0; 315 } 316 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 317 0, 0, 0); 318 if (err) 319 return err; 320 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len, 321 UBI_SHORTTERM); 322 if (err) 323 return err; 324 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 325 return tot_written; 326 } 327 328 /** 329 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 330 * @c: UBIFS file-system description object 331 * @cnt: number of znodes to commit 332 * 333 * This function returns the number of empty LEBs needed to commit @cnt znodes 334 * to the current index head. The number is not exact and may be more than 335 * needed. 336 */ 337 static int get_leb_cnt(struct ubifs_info *c, int cnt) 338 { 339 int d; 340 341 /* Assume maximum index node size (i.e. overestimate space needed) */ 342 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 343 if (cnt < 0) 344 cnt = 0; 345 d = c->leb_size / c->max_idx_node_sz; 346 return DIV_ROUND_UP(cnt, d); 347 } 348 349 /** 350 * layout_in_gaps - in-the-gaps method of committing TNC. 351 * @c: UBIFS file-system description object 352 * @cnt: number of dirty znodes to commit. 353 * 354 * This function lays out new index nodes for dirty znodes using in-the-gaps 355 * method of TNC commit. 356 * 357 * This function returns %0 on success and a negative error code on failure. 358 */ 359 static int layout_in_gaps(struct ubifs_info *c, int cnt) 360 { 361 int err, leb_needed_cnt, written, *p; 362 363 dbg_gc("%d znodes to write", cnt); 364 365 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS); 366 if (!c->gap_lebs) 367 return -ENOMEM; 368 369 p = c->gap_lebs; 370 do { 371 ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs); 372 written = layout_leb_in_gaps(c, p); 373 if (written < 0) { 374 err = written; 375 if (err == -ENOSPC) { 376 if (!dbg_force_in_the_gaps_enabled) { 377 /* 378 * Do not print scary warnings if the 379 * debugging option which forces 380 * in-the-gaps is enabled. 381 */ 382 ubifs_err("out of space"); 383 spin_lock(&c->space_lock); 384 dbg_dump_budg(c); 385 spin_unlock(&c->space_lock); 386 dbg_dump_lprops(c); 387 } 388 /* Try to commit anyway */ 389 err = 0; 390 break; 391 } 392 kfree(c->gap_lebs); 393 c->gap_lebs = NULL; 394 return err; 395 } 396 p++; 397 cnt -= written; 398 leb_needed_cnt = get_leb_cnt(c, cnt); 399 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 400 leb_needed_cnt, c->ileb_cnt); 401 } while (leb_needed_cnt > c->ileb_cnt); 402 403 *p = -1; 404 return 0; 405 } 406 407 /** 408 * layout_in_empty_space - layout index nodes in empty space. 409 * @c: UBIFS file-system description object 410 * 411 * This function lays out new index nodes for dirty znodes using empty LEBs. 412 * 413 * This function returns %0 on success and a negative error code on failure. 414 */ 415 static int layout_in_empty_space(struct ubifs_info *c) 416 { 417 struct ubifs_znode *znode, *cnext, *zp; 418 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 419 int wlen, blen, err; 420 421 cnext = c->enext; 422 if (!cnext) 423 return 0; 424 425 lnum = c->ihead_lnum; 426 buf_offs = c->ihead_offs; 427 428 buf_len = ubifs_idx_node_sz(c, c->fanout); 429 buf_len = ALIGN(buf_len, c->min_io_size); 430 used = 0; 431 avail = buf_len; 432 433 /* Ensure there is enough room for first write */ 434 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 435 if (buf_offs + next_len > c->leb_size) 436 lnum = -1; 437 438 while (1) { 439 znode = cnext; 440 441 len = ubifs_idx_node_sz(c, znode->child_cnt); 442 443 /* Determine the index node position */ 444 if (lnum == -1) { 445 if (c->ileb_nxt >= c->ileb_cnt) { 446 ubifs_err("out of space"); 447 return -ENOSPC; 448 } 449 lnum = c->ilebs[c->ileb_nxt++]; 450 buf_offs = 0; 451 used = 0; 452 avail = buf_len; 453 } 454 455 offs = buf_offs + used; 456 457 #ifdef CONFIG_UBIFS_FS_DEBUG 458 znode->lnum = lnum; 459 znode->offs = offs; 460 znode->len = len; 461 #endif 462 463 /* Update the parent */ 464 zp = znode->parent; 465 if (zp) { 466 struct ubifs_zbranch *zbr; 467 int i; 468 469 i = znode->iip; 470 zbr = &zp->zbranch[i]; 471 zbr->lnum = lnum; 472 zbr->offs = offs; 473 zbr->len = len; 474 } else { 475 c->zroot.lnum = lnum; 476 c->zroot.offs = offs; 477 c->zroot.len = len; 478 } 479 c->calc_idx_sz += ALIGN(len, 8); 480 481 /* 482 * Once lprops is updated, we can decrease the dirty znode count 483 * but it is easier to just do it here. 484 */ 485 atomic_long_dec(&c->dirty_zn_cnt); 486 487 /* 488 * Calculate the next index node length to see if there is 489 * enough room for it 490 */ 491 cnext = znode->cnext; 492 if (cnext == c->cnext) 493 next_len = 0; 494 else 495 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 496 497 if (c->min_io_size == 1) { 498 buf_offs += ALIGN(len, 8); 499 if (next_len) { 500 if (buf_offs + next_len <= c->leb_size) 501 continue; 502 err = ubifs_update_one_lp(c, lnum, 0, 503 c->leb_size - buf_offs, 0, 0); 504 if (err) 505 return err; 506 lnum = -1; 507 continue; 508 } 509 err = ubifs_update_one_lp(c, lnum, 510 c->leb_size - buf_offs, 0, 0, 0); 511 if (err) 512 return err; 513 break; 514 } 515 516 /* Update buffer positions */ 517 wlen = used + len; 518 used += ALIGN(len, 8); 519 avail -= ALIGN(len, 8); 520 521 if (next_len != 0 && 522 buf_offs + used + next_len <= c->leb_size && 523 avail > 0) 524 continue; 525 526 if (avail <= 0 && next_len && 527 buf_offs + used + next_len <= c->leb_size) 528 blen = buf_len; 529 else 530 blen = ALIGN(wlen, c->min_io_size); 531 532 /* The buffer is full or there are no more znodes to do */ 533 buf_offs += blen; 534 if (next_len) { 535 if (buf_offs + next_len > c->leb_size) { 536 err = ubifs_update_one_lp(c, lnum, 537 c->leb_size - buf_offs, blen - used, 538 0, 0); 539 if (err) 540 return err; 541 lnum = -1; 542 } 543 used -= blen; 544 if (used < 0) 545 used = 0; 546 avail = buf_len - used; 547 continue; 548 } 549 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 550 blen - used, 0, 0); 551 if (err) 552 return err; 553 break; 554 } 555 556 #ifdef CONFIG_UBIFS_FS_DEBUG 557 c->new_ihead_lnum = lnum; 558 c->new_ihead_offs = buf_offs; 559 #endif 560 561 return 0; 562 } 563 564 /** 565 * layout_commit - determine positions of index nodes to commit. 566 * @c: UBIFS file-system description object 567 * @no_space: indicates that insufficient empty LEBs were allocated 568 * @cnt: number of znodes to commit 569 * 570 * Calculate and update the positions of index nodes to commit. If there were 571 * an insufficient number of empty LEBs allocated, then index nodes are placed 572 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 573 * this purpose, an obsolete index node is one that was not in the index as at 574 * the end of the last commit. To write "in-the-gaps" requires that those index 575 * LEBs are updated atomically in-place. 576 */ 577 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 578 { 579 int err; 580 581 if (no_space) { 582 err = layout_in_gaps(c, cnt); 583 if (err) 584 return err; 585 } 586 err = layout_in_empty_space(c); 587 return err; 588 } 589 590 /** 591 * find_first_dirty - find first dirty znode. 592 * @znode: znode to begin searching from 593 */ 594 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 595 { 596 int i, cont; 597 598 if (!znode) 599 return NULL; 600 601 while (1) { 602 if (znode->level == 0) { 603 if (ubifs_zn_dirty(znode)) 604 return znode; 605 return NULL; 606 } 607 cont = 0; 608 for (i = 0; i < znode->child_cnt; i++) { 609 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 610 611 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 612 znode = zbr->znode; 613 cont = 1; 614 break; 615 } 616 } 617 if (!cont) { 618 if (ubifs_zn_dirty(znode)) 619 return znode; 620 return NULL; 621 } 622 } 623 } 624 625 /** 626 * find_next_dirty - find next dirty znode. 627 * @znode: znode to begin searching from 628 */ 629 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 630 { 631 int n = znode->iip + 1; 632 633 znode = znode->parent; 634 if (!znode) 635 return NULL; 636 for (; n < znode->child_cnt; n++) { 637 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 638 639 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 640 return find_first_dirty(zbr->znode); 641 } 642 return znode; 643 } 644 645 /** 646 * get_znodes_to_commit - create list of dirty znodes to commit. 647 * @c: UBIFS file-system description object 648 * 649 * This function returns the number of znodes to commit. 650 */ 651 static int get_znodes_to_commit(struct ubifs_info *c) 652 { 653 struct ubifs_znode *znode, *cnext; 654 int cnt = 0; 655 656 c->cnext = find_first_dirty(c->zroot.znode); 657 znode = c->enext = c->cnext; 658 if (!znode) { 659 dbg_cmt("no znodes to commit"); 660 return 0; 661 } 662 cnt += 1; 663 while (1) { 664 ubifs_assert(!test_bit(COW_ZNODE, &znode->flags)); 665 __set_bit(COW_ZNODE, &znode->flags); 666 znode->alt = 0; 667 cnext = find_next_dirty(znode); 668 if (!cnext) { 669 znode->cnext = c->cnext; 670 break; 671 } 672 znode->cnext = cnext; 673 znode = cnext; 674 cnt += 1; 675 } 676 dbg_cmt("committing %d znodes", cnt); 677 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 678 return cnt; 679 } 680 681 /** 682 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 683 * @c: UBIFS file-system description object 684 * @cnt: number of znodes to commit 685 * 686 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 687 * empty LEBs. %0 is returned on success, otherwise a negative error code 688 * is returned. 689 */ 690 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 691 { 692 int i, leb_cnt, lnum; 693 694 c->ileb_cnt = 0; 695 c->ileb_nxt = 0; 696 leb_cnt = get_leb_cnt(c, cnt); 697 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 698 if (!leb_cnt) 699 return 0; 700 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS); 701 if (!c->ilebs) 702 return -ENOMEM; 703 for (i = 0; i < leb_cnt; i++) { 704 lnum = ubifs_find_free_leb_for_idx(c); 705 if (lnum < 0) 706 return lnum; 707 c->ilebs[c->ileb_cnt++] = lnum; 708 dbg_cmt("LEB %d", lnum); 709 } 710 if (dbg_force_in_the_gaps()) 711 return -ENOSPC; 712 return 0; 713 } 714 715 /** 716 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 717 * @c: UBIFS file-system description object 718 * 719 * It is possible that we allocate more empty LEBs for the commit than we need. 720 * This functions frees the surplus. 721 * 722 * This function returns %0 on success and a negative error code on failure. 723 */ 724 static int free_unused_idx_lebs(struct ubifs_info *c) 725 { 726 int i, err = 0, lnum, er; 727 728 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 729 lnum = c->ilebs[i]; 730 dbg_cmt("LEB %d", lnum); 731 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 732 LPROPS_INDEX | LPROPS_TAKEN, 0); 733 if (!err) 734 err = er; 735 } 736 return err; 737 } 738 739 /** 740 * free_idx_lebs - free unused LEBs after commit end. 741 * @c: UBIFS file-system description object 742 * 743 * This function returns %0 on success and a negative error code on failure. 744 */ 745 static int free_idx_lebs(struct ubifs_info *c) 746 { 747 int err; 748 749 err = free_unused_idx_lebs(c); 750 kfree(c->ilebs); 751 c->ilebs = NULL; 752 return err; 753 } 754 755 /** 756 * ubifs_tnc_start_commit - start TNC commit. 757 * @c: UBIFS file-system description object 758 * @zroot: new index root position is returned here 759 * 760 * This function prepares the list of indexing nodes to commit and lays out 761 * their positions on flash. If there is not enough free space it uses the 762 * in-gap commit method. Returns zero in case of success and a negative error 763 * code in case of failure. 764 */ 765 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 766 { 767 int err = 0, cnt; 768 769 mutex_lock(&c->tnc_mutex); 770 err = dbg_check_tnc(c, 1); 771 if (err) 772 goto out; 773 cnt = get_znodes_to_commit(c); 774 if (cnt != 0) { 775 int no_space = 0; 776 777 err = alloc_idx_lebs(c, cnt); 778 if (err == -ENOSPC) 779 no_space = 1; 780 else if (err) 781 goto out_free; 782 err = layout_commit(c, no_space, cnt); 783 if (err) 784 goto out_free; 785 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 786 err = free_unused_idx_lebs(c); 787 if (err) 788 goto out; 789 } 790 destroy_old_idx(c); 791 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 792 793 err = ubifs_save_dirty_idx_lnums(c); 794 if (err) 795 goto out; 796 797 spin_lock(&c->space_lock); 798 /* 799 * Although we have not finished committing yet, update size of the 800 * committed index ('c->old_idx_sz') and zero out the index growth 801 * budget. It is OK to do this now, because we've reserved all the 802 * space which is needed to commit the index, and it is save for the 803 * budgeting subsystem to assume the index is already committed, 804 * even though it is not. 805 */ 806 c->old_idx_sz = c->calc_idx_sz; 807 c->budg_uncommitted_idx = 0; 808 spin_unlock(&c->space_lock); 809 mutex_unlock(&c->tnc_mutex); 810 811 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 812 dbg_cmt("size of index %llu", c->calc_idx_sz); 813 return err; 814 815 out_free: 816 free_idx_lebs(c); 817 out: 818 mutex_unlock(&c->tnc_mutex); 819 return err; 820 } 821 822 /** 823 * write_index - write index nodes. 824 * @c: UBIFS file-system description object 825 * 826 * This function writes the index nodes whose positions were laid out in the 827 * layout_in_empty_space function. 828 */ 829 static int write_index(struct ubifs_info *c) 830 { 831 struct ubifs_idx_node *idx; 832 struct ubifs_znode *znode, *cnext; 833 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 834 int avail, wlen, err, lnum_pos = 0; 835 836 cnext = c->enext; 837 if (!cnext) 838 return 0; 839 840 /* 841 * Always write index nodes to the index head so that index nodes and 842 * other types of nodes are never mixed in the same erase block. 843 */ 844 lnum = c->ihead_lnum; 845 buf_offs = c->ihead_offs; 846 847 /* Allocate commit buffer */ 848 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 849 used = 0; 850 avail = buf_len; 851 852 /* Ensure there is enough room for first write */ 853 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 854 if (buf_offs + next_len > c->leb_size) { 855 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 856 LPROPS_TAKEN); 857 if (err) 858 return err; 859 lnum = -1; 860 } 861 862 while (1) { 863 cond_resched(); 864 865 znode = cnext; 866 idx = c->cbuf + used; 867 868 /* Make index node */ 869 idx->ch.node_type = UBIFS_IDX_NODE; 870 idx->child_cnt = cpu_to_le16(znode->child_cnt); 871 idx->level = cpu_to_le16(znode->level); 872 for (i = 0; i < znode->child_cnt; i++) { 873 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 874 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 875 876 key_write_idx(c, &zbr->key, &br->key); 877 br->lnum = cpu_to_le32(zbr->lnum); 878 br->offs = cpu_to_le32(zbr->offs); 879 br->len = cpu_to_le32(zbr->len); 880 if (!zbr->lnum || !zbr->len) { 881 ubifs_err("bad ref in znode"); 882 dbg_dump_znode(c, znode); 883 if (zbr->znode) 884 dbg_dump_znode(c, zbr->znode); 885 } 886 } 887 len = ubifs_idx_node_sz(c, znode->child_cnt); 888 ubifs_prepare_node(c, idx, len, 0); 889 890 /* Determine the index node position */ 891 if (lnum == -1) { 892 lnum = c->ilebs[lnum_pos++]; 893 buf_offs = 0; 894 used = 0; 895 avail = buf_len; 896 } 897 offs = buf_offs + used; 898 899 #ifdef CONFIG_UBIFS_FS_DEBUG 900 if (lnum != znode->lnum || offs != znode->offs || 901 len != znode->len) { 902 ubifs_err("inconsistent znode posn"); 903 return -EINVAL; 904 } 905 #endif 906 907 /* Grab some stuff from znode while we still can */ 908 cnext = znode->cnext; 909 910 ubifs_assert(ubifs_zn_dirty(znode)); 911 ubifs_assert(test_bit(COW_ZNODE, &znode->flags)); 912 913 /* 914 * It is important that other threads should see %DIRTY_ZNODE 915 * flag cleared before %COW_ZNODE. Specifically, it matters in 916 * the 'dirty_cow_znode()' function. This is the reason for the 917 * first barrier. Also, we want the bit changes to be seen to 918 * other threads ASAP, to avoid unnecesarry copying, which is 919 * the reason for the second barrier. 920 */ 921 clear_bit(DIRTY_ZNODE, &znode->flags); 922 smp_mb__before_clear_bit(); 923 clear_bit(COW_ZNODE, &znode->flags); 924 smp_mb__after_clear_bit(); 925 926 /* Do not access znode from this point on */ 927 928 /* Update buffer positions */ 929 wlen = used + len; 930 used += ALIGN(len, 8); 931 avail -= ALIGN(len, 8); 932 933 /* 934 * Calculate the next index node length to see if there is 935 * enough room for it 936 */ 937 if (cnext == c->cnext) 938 next_len = 0; 939 else 940 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 941 942 if (c->min_io_size == 1) { 943 /* 944 * Write the prepared index node immediately if there is 945 * no minimum IO size 946 */ 947 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, 948 wlen, UBI_SHORTTERM); 949 if (err) 950 return err; 951 buf_offs += ALIGN(wlen, 8); 952 if (next_len) { 953 used = 0; 954 avail = buf_len; 955 if (buf_offs + next_len > c->leb_size) { 956 err = ubifs_update_one_lp(c, lnum, 957 LPROPS_NC, 0, 0, LPROPS_TAKEN); 958 if (err) 959 return err; 960 lnum = -1; 961 } 962 continue; 963 } 964 } else { 965 int blen, nxt_offs = buf_offs + used + next_len; 966 967 if (next_len && nxt_offs <= c->leb_size) { 968 if (avail > 0) 969 continue; 970 else 971 blen = buf_len; 972 } else { 973 wlen = ALIGN(wlen, 8); 974 blen = ALIGN(wlen, c->min_io_size); 975 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 976 } 977 /* 978 * The buffer is full or there are no more znodes 979 * to do 980 */ 981 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, 982 blen, UBI_SHORTTERM); 983 if (err) 984 return err; 985 buf_offs += blen; 986 if (next_len) { 987 if (nxt_offs > c->leb_size) { 988 err = ubifs_update_one_lp(c, lnum, 989 LPROPS_NC, 0, 0, LPROPS_TAKEN); 990 if (err) 991 return err; 992 lnum = -1; 993 } 994 used -= blen; 995 if (used < 0) 996 used = 0; 997 avail = buf_len - used; 998 memmove(c->cbuf, c->cbuf + blen, used); 999 continue; 1000 } 1001 } 1002 break; 1003 } 1004 1005 #ifdef CONFIG_UBIFS_FS_DEBUG 1006 if (lnum != c->new_ihead_lnum || buf_offs != c->new_ihead_offs) { 1007 ubifs_err("inconsistent ihead"); 1008 return -EINVAL; 1009 } 1010 #endif 1011 1012 c->ihead_lnum = lnum; 1013 c->ihead_offs = buf_offs; 1014 1015 return 0; 1016 } 1017 1018 /** 1019 * free_obsolete_znodes - free obsolete znodes. 1020 * @c: UBIFS file-system description object 1021 * 1022 * At the end of commit end, obsolete znodes are freed. 1023 */ 1024 static void free_obsolete_znodes(struct ubifs_info *c) 1025 { 1026 struct ubifs_znode *znode, *cnext; 1027 1028 cnext = c->cnext; 1029 do { 1030 znode = cnext; 1031 cnext = znode->cnext; 1032 if (test_bit(OBSOLETE_ZNODE, &znode->flags)) 1033 kfree(znode); 1034 else { 1035 znode->cnext = NULL; 1036 atomic_long_inc(&c->clean_zn_cnt); 1037 atomic_long_inc(&ubifs_clean_zn_cnt); 1038 } 1039 } while (cnext != c->cnext); 1040 } 1041 1042 /** 1043 * return_gap_lebs - return LEBs used by the in-gap commit method. 1044 * @c: UBIFS file-system description object 1045 * 1046 * This function clears the "taken" flag for the LEBs which were used by the 1047 * "commit in-the-gaps" method. 1048 */ 1049 static int return_gap_lebs(struct ubifs_info *c) 1050 { 1051 int *p, err; 1052 1053 if (!c->gap_lebs) 1054 return 0; 1055 1056 dbg_cmt(""); 1057 for (p = c->gap_lebs; *p != -1; p++) { 1058 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1059 LPROPS_TAKEN, 0); 1060 if (err) 1061 return err; 1062 } 1063 1064 kfree(c->gap_lebs); 1065 c->gap_lebs = NULL; 1066 return 0; 1067 } 1068 1069 /** 1070 * ubifs_tnc_end_commit - update the TNC for commit end. 1071 * @c: UBIFS file-system description object 1072 * 1073 * Write the dirty znodes. 1074 */ 1075 int ubifs_tnc_end_commit(struct ubifs_info *c) 1076 { 1077 int err; 1078 1079 if (!c->cnext) 1080 return 0; 1081 1082 err = return_gap_lebs(c); 1083 if (err) 1084 return err; 1085 1086 err = write_index(c); 1087 if (err) 1088 return err; 1089 1090 mutex_lock(&c->tnc_mutex); 1091 1092 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1093 1094 free_obsolete_znodes(c); 1095 1096 c->cnext = NULL; 1097 kfree(c->ilebs); 1098 c->ilebs = NULL; 1099 1100 mutex_unlock(&c->tnc_mutex); 1101 1102 return 0; 1103 } 1104