1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include "ubifs.h" 26 27 /** 28 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 29 * @c: UBIFS file-system description object 30 * @idx: buffer in which to place new index node 31 * @znode: znode from which to make new index node 32 * @lnum: LEB number where new index node will be written 33 * @offs: offset where new index node will be written 34 * @len: length of new index node 35 */ 36 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 37 struct ubifs_znode *znode, int lnum, int offs, int len) 38 { 39 struct ubifs_znode *zp; 40 int i, err; 41 42 /* Make index node */ 43 idx->ch.node_type = UBIFS_IDX_NODE; 44 idx->child_cnt = cpu_to_le16(znode->child_cnt); 45 idx->level = cpu_to_le16(znode->level); 46 for (i = 0; i < znode->child_cnt; i++) { 47 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 48 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 49 50 key_write_idx(c, &zbr->key, &br->key); 51 br->lnum = cpu_to_le32(zbr->lnum); 52 br->offs = cpu_to_le32(zbr->offs); 53 br->len = cpu_to_le32(zbr->len); 54 if (!zbr->lnum || !zbr->len) { 55 ubifs_err("bad ref in znode"); 56 dbg_dump_znode(c, znode); 57 if (zbr->znode) 58 dbg_dump_znode(c, zbr->znode); 59 } 60 } 61 ubifs_prepare_node(c, idx, len, 0); 62 63 #ifdef CONFIG_UBIFS_FS_DEBUG 64 znode->lnum = lnum; 65 znode->offs = offs; 66 znode->len = len; 67 #endif 68 69 err = insert_old_idx_znode(c, znode); 70 71 /* Update the parent */ 72 zp = znode->parent; 73 if (zp) { 74 struct ubifs_zbranch *zbr; 75 76 zbr = &zp->zbranch[znode->iip]; 77 zbr->lnum = lnum; 78 zbr->offs = offs; 79 zbr->len = len; 80 } else { 81 c->zroot.lnum = lnum; 82 c->zroot.offs = offs; 83 c->zroot.len = len; 84 } 85 c->calc_idx_sz += ALIGN(len, 8); 86 87 atomic_long_dec(&c->dirty_zn_cnt); 88 89 ubifs_assert(ubifs_zn_dirty(znode)); 90 ubifs_assert(test_bit(COW_ZNODE, &znode->flags)); 91 92 __clear_bit(DIRTY_ZNODE, &znode->flags); 93 __clear_bit(COW_ZNODE, &znode->flags); 94 95 return err; 96 } 97 98 /** 99 * fill_gap - make index nodes in gaps in dirty index LEBs. 100 * @c: UBIFS file-system description object 101 * @lnum: LEB number that gap appears in 102 * @gap_start: offset of start of gap 103 * @gap_end: offset of end of gap 104 * @dirt: adds dirty space to this 105 * 106 * This function returns the number of index nodes written into the gap. 107 */ 108 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 109 int *dirt) 110 { 111 int len, gap_remains, gap_pos, written, pad_len; 112 113 ubifs_assert((gap_start & 7) == 0); 114 ubifs_assert((gap_end & 7) == 0); 115 ubifs_assert(gap_end >= gap_start); 116 117 gap_remains = gap_end - gap_start; 118 if (!gap_remains) 119 return 0; 120 gap_pos = gap_start; 121 written = 0; 122 while (c->enext) { 123 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 124 if (len < gap_remains) { 125 struct ubifs_znode *znode = c->enext; 126 const int alen = ALIGN(len, 8); 127 int err; 128 129 ubifs_assert(alen <= gap_remains); 130 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 131 lnum, gap_pos, len); 132 if (err) 133 return err; 134 gap_remains -= alen; 135 gap_pos += alen; 136 c->enext = znode->cnext; 137 if (c->enext == c->cnext) 138 c->enext = NULL; 139 written += 1; 140 } else 141 break; 142 } 143 if (gap_end == c->leb_size) { 144 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 145 /* Pad to end of min_io_size */ 146 pad_len = c->ileb_len - gap_pos; 147 } else 148 /* Pad to end of gap */ 149 pad_len = gap_remains; 150 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 151 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 152 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 153 *dirt += pad_len; 154 return written; 155 } 156 157 /** 158 * find_old_idx - find an index node obsoleted since the last commit start. 159 * @c: UBIFS file-system description object 160 * @lnum: LEB number of obsoleted index node 161 * @offs: offset of obsoleted index node 162 * 163 * Returns %1 if found and %0 otherwise. 164 */ 165 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 166 { 167 struct ubifs_old_idx *o; 168 struct rb_node *p; 169 170 p = c->old_idx.rb_node; 171 while (p) { 172 o = rb_entry(p, struct ubifs_old_idx, rb); 173 if (lnum < o->lnum) 174 p = p->rb_left; 175 else if (lnum > o->lnum) 176 p = p->rb_right; 177 else if (offs < o->offs) 178 p = p->rb_left; 179 else if (offs > o->offs) 180 p = p->rb_right; 181 else 182 return 1; 183 } 184 return 0; 185 } 186 187 /** 188 * is_idx_node_in_use - determine if an index node can be overwritten. 189 * @c: UBIFS file-system description object 190 * @key: key of index node 191 * @level: index node level 192 * @lnum: LEB number of index node 193 * @offs: offset of index node 194 * 195 * If @key / @lnum / @offs identify an index node that was not part of the old 196 * index, then this function returns %0 (obsolete). Else if the index node was 197 * part of the old index but is now dirty %1 is returned, else if it is clean %2 198 * is returned. A negative error code is returned on failure. 199 */ 200 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 201 int level, int lnum, int offs) 202 { 203 int ret; 204 205 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 206 if (ret < 0) 207 return ret; /* Error code */ 208 if (ret == 0) 209 if (find_old_idx(c, lnum, offs)) 210 return 1; 211 return ret; 212 } 213 214 /** 215 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 216 * @c: UBIFS file-system description object 217 * @p: return LEB number here 218 * 219 * This function lays out new index nodes for dirty znodes using in-the-gaps 220 * method of TNC commit. 221 * This function merely puts the next znode into the next gap, making no attempt 222 * to try to maximise the number of znodes that fit. 223 * This function returns the number of index nodes written into the gaps, or a 224 * negative error code on failure. 225 */ 226 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 227 { 228 struct ubifs_scan_leb *sleb; 229 struct ubifs_scan_node *snod; 230 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 231 232 tot_written = 0; 233 /* Get an index LEB with lots of obsolete index nodes */ 234 lnum = ubifs_find_dirty_idx_leb(c); 235 if (lnum < 0) 236 /* 237 * There also may be dirt in the index head that could be 238 * filled, however we do not check there at present. 239 */ 240 return lnum; /* Error code */ 241 *p = lnum; 242 dbg_gc("LEB %d", lnum); 243 /* 244 * Scan the index LEB. We use the generic scan for this even though 245 * it is more comprehensive and less efficient than is needed for this 246 * purpose. 247 */ 248 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf); 249 c->ileb_len = 0; 250 if (IS_ERR(sleb)) 251 return PTR_ERR(sleb); 252 gap_start = 0; 253 list_for_each_entry(snod, &sleb->nodes, list) { 254 struct ubifs_idx_node *idx; 255 int in_use, level; 256 257 ubifs_assert(snod->type == UBIFS_IDX_NODE); 258 idx = snod->node; 259 key_read(c, ubifs_idx_key(c, idx), &snod->key); 260 level = le16_to_cpu(idx->level); 261 /* Determine if the index node is in use (not obsolete) */ 262 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 263 snod->offs); 264 if (in_use < 0) { 265 ubifs_scan_destroy(sleb); 266 return in_use; /* Error code */ 267 } 268 if (in_use) { 269 if (in_use == 1) 270 dirt += ALIGN(snod->len, 8); 271 /* 272 * The obsolete index nodes form gaps that can be 273 * overwritten. This gap has ended because we have 274 * found an index node that is still in use 275 * i.e. not obsolete 276 */ 277 gap_end = snod->offs; 278 /* Try to fill gap */ 279 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 280 if (written < 0) { 281 ubifs_scan_destroy(sleb); 282 return written; /* Error code */ 283 } 284 tot_written += written; 285 gap_start = ALIGN(snod->offs + snod->len, 8); 286 } 287 } 288 ubifs_scan_destroy(sleb); 289 c->ileb_len = c->leb_size; 290 gap_end = c->leb_size; 291 /* Try to fill gap */ 292 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 293 if (written < 0) 294 return written; /* Error code */ 295 tot_written += written; 296 if (tot_written == 0) { 297 struct ubifs_lprops lp; 298 299 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 300 err = ubifs_read_one_lp(c, lnum, &lp); 301 if (err) 302 return err; 303 if (lp.free == c->leb_size) { 304 /* 305 * We must have snatched this LEB from the idx_gc list 306 * so we need to correct the free and dirty space. 307 */ 308 err = ubifs_change_one_lp(c, lnum, 309 c->leb_size - c->ileb_len, 310 dirt, 0, 0, 0); 311 if (err) 312 return err; 313 } 314 return 0; 315 } 316 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 317 0, 0, 0); 318 if (err) 319 return err; 320 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len, 321 UBI_SHORTTERM); 322 if (err) 323 return err; 324 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 325 return tot_written; 326 } 327 328 /** 329 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 330 * @c: UBIFS file-system description object 331 * @cnt: number of znodes to commit 332 * 333 * This function returns the number of empty LEBs needed to commit @cnt znodes 334 * to the current index head. The number is not exact and may be more than 335 * needed. 336 */ 337 static int get_leb_cnt(struct ubifs_info *c, int cnt) 338 { 339 int d; 340 341 /* Assume maximum index node size (i.e. overestimate space needed) */ 342 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 343 if (cnt < 0) 344 cnt = 0; 345 d = c->leb_size / c->max_idx_node_sz; 346 return DIV_ROUND_UP(cnt, d); 347 } 348 349 /** 350 * layout_in_gaps - in-the-gaps method of committing TNC. 351 * @c: UBIFS file-system description object 352 * @cnt: number of dirty znodes to commit. 353 * 354 * This function lays out new index nodes for dirty znodes using in-the-gaps 355 * method of TNC commit. 356 * 357 * This function returns %0 on success and a negative error code on failure. 358 */ 359 static int layout_in_gaps(struct ubifs_info *c, int cnt) 360 { 361 int err, leb_needed_cnt, written, *p; 362 363 dbg_gc("%d znodes to write", cnt); 364 365 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS); 366 if (!c->gap_lebs) 367 return -ENOMEM; 368 369 p = c->gap_lebs; 370 do { 371 ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs); 372 written = layout_leb_in_gaps(c, p); 373 if (written < 0) { 374 err = written; 375 if (err != -ENOSPC) { 376 kfree(c->gap_lebs); 377 c->gap_lebs = NULL; 378 return err; 379 } 380 if (!dbg_force_in_the_gaps_enabled) { 381 /* 382 * Do not print scary warnings if the debugging 383 * option which forces in-the-gaps is enabled. 384 */ 385 ubifs_err("out of space"); 386 spin_lock(&c->space_lock); 387 dbg_dump_budg(c); 388 spin_unlock(&c->space_lock); 389 dbg_dump_lprops(c); 390 } 391 /* Try to commit anyway */ 392 err = 0; 393 break; 394 } 395 p++; 396 cnt -= written; 397 leb_needed_cnt = get_leb_cnt(c, cnt); 398 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 399 leb_needed_cnt, c->ileb_cnt); 400 } while (leb_needed_cnt > c->ileb_cnt); 401 402 *p = -1; 403 return 0; 404 } 405 406 /** 407 * layout_in_empty_space - layout index nodes in empty space. 408 * @c: UBIFS file-system description object 409 * 410 * This function lays out new index nodes for dirty znodes using empty LEBs. 411 * 412 * This function returns %0 on success and a negative error code on failure. 413 */ 414 static int layout_in_empty_space(struct ubifs_info *c) 415 { 416 struct ubifs_znode *znode, *cnext, *zp; 417 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 418 int wlen, blen, err; 419 420 cnext = c->enext; 421 if (!cnext) 422 return 0; 423 424 lnum = c->ihead_lnum; 425 buf_offs = c->ihead_offs; 426 427 buf_len = ubifs_idx_node_sz(c, c->fanout); 428 buf_len = ALIGN(buf_len, c->min_io_size); 429 used = 0; 430 avail = buf_len; 431 432 /* Ensure there is enough room for first write */ 433 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 434 if (buf_offs + next_len > c->leb_size) 435 lnum = -1; 436 437 while (1) { 438 znode = cnext; 439 440 len = ubifs_idx_node_sz(c, znode->child_cnt); 441 442 /* Determine the index node position */ 443 if (lnum == -1) { 444 if (c->ileb_nxt >= c->ileb_cnt) { 445 ubifs_err("out of space"); 446 return -ENOSPC; 447 } 448 lnum = c->ilebs[c->ileb_nxt++]; 449 buf_offs = 0; 450 used = 0; 451 avail = buf_len; 452 } 453 454 offs = buf_offs + used; 455 456 #ifdef CONFIG_UBIFS_FS_DEBUG 457 znode->lnum = lnum; 458 znode->offs = offs; 459 znode->len = len; 460 #endif 461 462 /* Update the parent */ 463 zp = znode->parent; 464 if (zp) { 465 struct ubifs_zbranch *zbr; 466 int i; 467 468 i = znode->iip; 469 zbr = &zp->zbranch[i]; 470 zbr->lnum = lnum; 471 zbr->offs = offs; 472 zbr->len = len; 473 } else { 474 c->zroot.lnum = lnum; 475 c->zroot.offs = offs; 476 c->zroot.len = len; 477 } 478 c->calc_idx_sz += ALIGN(len, 8); 479 480 /* 481 * Once lprops is updated, we can decrease the dirty znode count 482 * but it is easier to just do it here. 483 */ 484 atomic_long_dec(&c->dirty_zn_cnt); 485 486 /* 487 * Calculate the next index node length to see if there is 488 * enough room for it 489 */ 490 cnext = znode->cnext; 491 if (cnext == c->cnext) 492 next_len = 0; 493 else 494 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 495 496 if (c->min_io_size == 1) { 497 buf_offs += ALIGN(len, 8); 498 if (next_len) { 499 if (buf_offs + next_len <= c->leb_size) 500 continue; 501 err = ubifs_update_one_lp(c, lnum, 0, 502 c->leb_size - buf_offs, 0, 0); 503 if (err) 504 return err; 505 lnum = -1; 506 continue; 507 } 508 err = ubifs_update_one_lp(c, lnum, 509 c->leb_size - buf_offs, 0, 0, 0); 510 if (err) 511 return err; 512 break; 513 } 514 515 /* Update buffer positions */ 516 wlen = used + len; 517 used += ALIGN(len, 8); 518 avail -= ALIGN(len, 8); 519 520 if (next_len != 0 && 521 buf_offs + used + next_len <= c->leb_size && 522 avail > 0) 523 continue; 524 525 if (avail <= 0 && next_len && 526 buf_offs + used + next_len <= c->leb_size) 527 blen = buf_len; 528 else 529 blen = ALIGN(wlen, c->min_io_size); 530 531 /* The buffer is full or there are no more znodes to do */ 532 buf_offs += blen; 533 if (next_len) { 534 if (buf_offs + next_len > c->leb_size) { 535 err = ubifs_update_one_lp(c, lnum, 536 c->leb_size - buf_offs, blen - used, 537 0, 0); 538 if (err) 539 return err; 540 lnum = -1; 541 } 542 used -= blen; 543 if (used < 0) 544 used = 0; 545 avail = buf_len - used; 546 continue; 547 } 548 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 549 blen - used, 0, 0); 550 if (err) 551 return err; 552 break; 553 } 554 555 #ifdef CONFIG_UBIFS_FS_DEBUG 556 c->new_ihead_lnum = lnum; 557 c->new_ihead_offs = buf_offs; 558 #endif 559 560 return 0; 561 } 562 563 /** 564 * layout_commit - determine positions of index nodes to commit. 565 * @c: UBIFS file-system description object 566 * @no_space: indicates that insufficient empty LEBs were allocated 567 * @cnt: number of znodes to commit 568 * 569 * Calculate and update the positions of index nodes to commit. If there were 570 * an insufficient number of empty LEBs allocated, then index nodes are placed 571 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 572 * this purpose, an obsolete index node is one that was not in the index as at 573 * the end of the last commit. To write "in-the-gaps" requires that those index 574 * LEBs are updated atomically in-place. 575 */ 576 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 577 { 578 int err; 579 580 if (no_space) { 581 err = layout_in_gaps(c, cnt); 582 if (err) 583 return err; 584 } 585 err = layout_in_empty_space(c); 586 return err; 587 } 588 589 /** 590 * find_first_dirty - find first dirty znode. 591 * @znode: znode to begin searching from 592 */ 593 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 594 { 595 int i, cont; 596 597 if (!znode) 598 return NULL; 599 600 while (1) { 601 if (znode->level == 0) { 602 if (ubifs_zn_dirty(znode)) 603 return znode; 604 return NULL; 605 } 606 cont = 0; 607 for (i = 0; i < znode->child_cnt; i++) { 608 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 609 610 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 611 znode = zbr->znode; 612 cont = 1; 613 break; 614 } 615 } 616 if (!cont) { 617 if (ubifs_zn_dirty(znode)) 618 return znode; 619 return NULL; 620 } 621 } 622 } 623 624 /** 625 * find_next_dirty - find next dirty znode. 626 * @znode: znode to begin searching from 627 */ 628 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 629 { 630 int n = znode->iip + 1; 631 632 znode = znode->parent; 633 if (!znode) 634 return NULL; 635 for (; n < znode->child_cnt; n++) { 636 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 637 638 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 639 return find_first_dirty(zbr->znode); 640 } 641 return znode; 642 } 643 644 /** 645 * get_znodes_to_commit - create list of dirty znodes to commit. 646 * @c: UBIFS file-system description object 647 * 648 * This function returns the number of znodes to commit. 649 */ 650 static int get_znodes_to_commit(struct ubifs_info *c) 651 { 652 struct ubifs_znode *znode, *cnext; 653 int cnt = 0; 654 655 c->cnext = find_first_dirty(c->zroot.znode); 656 znode = c->enext = c->cnext; 657 if (!znode) { 658 dbg_cmt("no znodes to commit"); 659 return 0; 660 } 661 cnt += 1; 662 while (1) { 663 ubifs_assert(!test_bit(COW_ZNODE, &znode->flags)); 664 __set_bit(COW_ZNODE, &znode->flags); 665 znode->alt = 0; 666 cnext = find_next_dirty(znode); 667 if (!cnext) { 668 znode->cnext = c->cnext; 669 break; 670 } 671 znode->cnext = cnext; 672 znode = cnext; 673 cnt += 1; 674 } 675 dbg_cmt("committing %d znodes", cnt); 676 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 677 return cnt; 678 } 679 680 /** 681 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 682 * @c: UBIFS file-system description object 683 * @cnt: number of znodes to commit 684 * 685 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 686 * empty LEBs. %0 is returned on success, otherwise a negative error code 687 * is returned. 688 */ 689 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 690 { 691 int i, leb_cnt, lnum; 692 693 c->ileb_cnt = 0; 694 c->ileb_nxt = 0; 695 leb_cnt = get_leb_cnt(c, cnt); 696 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 697 if (!leb_cnt) 698 return 0; 699 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS); 700 if (!c->ilebs) 701 return -ENOMEM; 702 for (i = 0; i < leb_cnt; i++) { 703 lnum = ubifs_find_free_leb_for_idx(c); 704 if (lnum < 0) 705 return lnum; 706 c->ilebs[c->ileb_cnt++] = lnum; 707 dbg_cmt("LEB %d", lnum); 708 } 709 if (dbg_force_in_the_gaps()) 710 return -ENOSPC; 711 return 0; 712 } 713 714 /** 715 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 716 * @c: UBIFS file-system description object 717 * 718 * It is possible that we allocate more empty LEBs for the commit than we need. 719 * This functions frees the surplus. 720 * 721 * This function returns %0 on success and a negative error code on failure. 722 */ 723 static int free_unused_idx_lebs(struct ubifs_info *c) 724 { 725 int i, err = 0, lnum, er; 726 727 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 728 lnum = c->ilebs[i]; 729 dbg_cmt("LEB %d", lnum); 730 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 731 LPROPS_INDEX | LPROPS_TAKEN, 0); 732 if (!err) 733 err = er; 734 } 735 return err; 736 } 737 738 /** 739 * free_idx_lebs - free unused LEBs after commit end. 740 * @c: UBIFS file-system description object 741 * 742 * This function returns %0 on success and a negative error code on failure. 743 */ 744 static int free_idx_lebs(struct ubifs_info *c) 745 { 746 int err; 747 748 err = free_unused_idx_lebs(c); 749 kfree(c->ilebs); 750 c->ilebs = NULL; 751 return err; 752 } 753 754 /** 755 * ubifs_tnc_start_commit - start TNC commit. 756 * @c: UBIFS file-system description object 757 * @zroot: new index root position is returned here 758 * 759 * This function prepares the list of indexing nodes to commit and lays out 760 * their positions on flash. If there is not enough free space it uses the 761 * in-gap commit method. Returns zero in case of success and a negative error 762 * code in case of failure. 763 */ 764 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 765 { 766 int err = 0, cnt; 767 768 mutex_lock(&c->tnc_mutex); 769 err = dbg_check_tnc(c, 1); 770 if (err) 771 goto out; 772 cnt = get_znodes_to_commit(c); 773 if (cnt != 0) { 774 int no_space = 0; 775 776 err = alloc_idx_lebs(c, cnt); 777 if (err == -ENOSPC) 778 no_space = 1; 779 else if (err) 780 goto out_free; 781 err = layout_commit(c, no_space, cnt); 782 if (err) 783 goto out_free; 784 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 785 err = free_unused_idx_lebs(c); 786 if (err) 787 goto out; 788 } 789 destroy_old_idx(c); 790 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 791 792 err = ubifs_save_dirty_idx_lnums(c); 793 if (err) 794 goto out; 795 796 spin_lock(&c->space_lock); 797 /* 798 * Although we have not finished committing yet, update size of the 799 * committed index ('c->old_idx_sz') and zero out the index growth 800 * budget. It is OK to do this now, because we've reserved all the 801 * space which is needed to commit the index, and it is save for the 802 * budgeting subsystem to assume the index is already committed, 803 * even though it is not. 804 */ 805 c->old_idx_sz = c->calc_idx_sz; 806 c->budg_uncommitted_idx = 0; 807 spin_unlock(&c->space_lock); 808 mutex_unlock(&c->tnc_mutex); 809 810 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 811 dbg_cmt("size of index %llu", c->calc_idx_sz); 812 return err; 813 814 out_free: 815 free_idx_lebs(c); 816 out: 817 mutex_unlock(&c->tnc_mutex); 818 return err; 819 } 820 821 /** 822 * write_index - write index nodes. 823 * @c: UBIFS file-system description object 824 * 825 * This function writes the index nodes whose positions were laid out in the 826 * layout_in_empty_space function. 827 */ 828 static int write_index(struct ubifs_info *c) 829 { 830 struct ubifs_idx_node *idx; 831 struct ubifs_znode *znode, *cnext; 832 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 833 int avail, wlen, err, lnum_pos = 0; 834 835 cnext = c->enext; 836 if (!cnext) 837 return 0; 838 839 /* 840 * Always write index nodes to the index head so that index nodes and 841 * other types of nodes are never mixed in the same erase block. 842 */ 843 lnum = c->ihead_lnum; 844 buf_offs = c->ihead_offs; 845 846 /* Allocate commit buffer */ 847 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 848 used = 0; 849 avail = buf_len; 850 851 /* Ensure there is enough room for first write */ 852 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 853 if (buf_offs + next_len > c->leb_size) { 854 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 855 LPROPS_TAKEN); 856 if (err) 857 return err; 858 lnum = -1; 859 } 860 861 while (1) { 862 cond_resched(); 863 864 znode = cnext; 865 idx = c->cbuf + used; 866 867 /* Make index node */ 868 idx->ch.node_type = UBIFS_IDX_NODE; 869 idx->child_cnt = cpu_to_le16(znode->child_cnt); 870 idx->level = cpu_to_le16(znode->level); 871 for (i = 0; i < znode->child_cnt; i++) { 872 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 873 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 874 875 key_write_idx(c, &zbr->key, &br->key); 876 br->lnum = cpu_to_le32(zbr->lnum); 877 br->offs = cpu_to_le32(zbr->offs); 878 br->len = cpu_to_le32(zbr->len); 879 if (!zbr->lnum || !zbr->len) { 880 ubifs_err("bad ref in znode"); 881 dbg_dump_znode(c, znode); 882 if (zbr->znode) 883 dbg_dump_znode(c, zbr->znode); 884 } 885 } 886 len = ubifs_idx_node_sz(c, znode->child_cnt); 887 ubifs_prepare_node(c, idx, len, 0); 888 889 /* Determine the index node position */ 890 if (lnum == -1) { 891 lnum = c->ilebs[lnum_pos++]; 892 buf_offs = 0; 893 used = 0; 894 avail = buf_len; 895 } 896 offs = buf_offs + used; 897 898 #ifdef CONFIG_UBIFS_FS_DEBUG 899 if (lnum != znode->lnum || offs != znode->offs || 900 len != znode->len) { 901 ubifs_err("inconsistent znode posn"); 902 return -EINVAL; 903 } 904 #endif 905 906 /* Grab some stuff from znode while we still can */ 907 cnext = znode->cnext; 908 909 ubifs_assert(ubifs_zn_dirty(znode)); 910 ubifs_assert(test_bit(COW_ZNODE, &znode->flags)); 911 912 /* 913 * It is important that other threads should see %DIRTY_ZNODE 914 * flag cleared before %COW_ZNODE. Specifically, it matters in 915 * the 'dirty_cow_znode()' function. This is the reason for the 916 * first barrier. Also, we want the bit changes to be seen to 917 * other threads ASAP, to avoid unnecesarry copying, which is 918 * the reason for the second barrier. 919 */ 920 clear_bit(DIRTY_ZNODE, &znode->flags); 921 smp_mb__before_clear_bit(); 922 clear_bit(COW_ZNODE, &znode->flags); 923 smp_mb__after_clear_bit(); 924 925 /* Do not access znode from this point on */ 926 927 /* Update buffer positions */ 928 wlen = used + len; 929 used += ALIGN(len, 8); 930 avail -= ALIGN(len, 8); 931 932 /* 933 * Calculate the next index node length to see if there is 934 * enough room for it 935 */ 936 if (cnext == c->cnext) 937 next_len = 0; 938 else 939 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 940 941 if (c->min_io_size == 1) { 942 /* 943 * Write the prepared index node immediately if there is 944 * no minimum IO size 945 */ 946 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, 947 wlen, UBI_SHORTTERM); 948 if (err) 949 return err; 950 buf_offs += ALIGN(wlen, 8); 951 if (next_len) { 952 used = 0; 953 avail = buf_len; 954 if (buf_offs + next_len > c->leb_size) { 955 err = ubifs_update_one_lp(c, lnum, 956 LPROPS_NC, 0, 0, LPROPS_TAKEN); 957 if (err) 958 return err; 959 lnum = -1; 960 } 961 continue; 962 } 963 } else { 964 int blen, nxt_offs = buf_offs + used + next_len; 965 966 if (next_len && nxt_offs <= c->leb_size) { 967 if (avail > 0) 968 continue; 969 else 970 blen = buf_len; 971 } else { 972 wlen = ALIGN(wlen, 8); 973 blen = ALIGN(wlen, c->min_io_size); 974 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 975 } 976 /* 977 * The buffer is full or there are no more znodes 978 * to do 979 */ 980 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, 981 blen, UBI_SHORTTERM); 982 if (err) 983 return err; 984 buf_offs += blen; 985 if (next_len) { 986 if (nxt_offs > c->leb_size) { 987 err = ubifs_update_one_lp(c, lnum, 988 LPROPS_NC, 0, 0, LPROPS_TAKEN); 989 if (err) 990 return err; 991 lnum = -1; 992 } 993 used -= blen; 994 if (used < 0) 995 used = 0; 996 avail = buf_len - used; 997 memmove(c->cbuf, c->cbuf + blen, used); 998 continue; 999 } 1000 } 1001 break; 1002 } 1003 1004 #ifdef CONFIG_UBIFS_FS_DEBUG 1005 if (lnum != c->new_ihead_lnum || buf_offs != c->new_ihead_offs) { 1006 ubifs_err("inconsistent ihead"); 1007 return -EINVAL; 1008 } 1009 #endif 1010 1011 c->ihead_lnum = lnum; 1012 c->ihead_offs = buf_offs; 1013 1014 return 0; 1015 } 1016 1017 /** 1018 * free_obsolete_znodes - free obsolete znodes. 1019 * @c: UBIFS file-system description object 1020 * 1021 * At the end of commit end, obsolete znodes are freed. 1022 */ 1023 static void free_obsolete_znodes(struct ubifs_info *c) 1024 { 1025 struct ubifs_znode *znode, *cnext; 1026 1027 cnext = c->cnext; 1028 do { 1029 znode = cnext; 1030 cnext = znode->cnext; 1031 if (test_bit(OBSOLETE_ZNODE, &znode->flags)) 1032 kfree(znode); 1033 else { 1034 znode->cnext = NULL; 1035 atomic_long_inc(&c->clean_zn_cnt); 1036 atomic_long_inc(&ubifs_clean_zn_cnt); 1037 } 1038 } while (cnext != c->cnext); 1039 } 1040 1041 /** 1042 * return_gap_lebs - return LEBs used by the in-gap commit method. 1043 * @c: UBIFS file-system description object 1044 * 1045 * This function clears the "taken" flag for the LEBs which were used by the 1046 * "commit in-the-gaps" method. 1047 */ 1048 static int return_gap_lebs(struct ubifs_info *c) 1049 { 1050 int *p, err; 1051 1052 if (!c->gap_lebs) 1053 return 0; 1054 1055 dbg_cmt(""); 1056 for (p = c->gap_lebs; *p != -1; p++) { 1057 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1058 LPROPS_TAKEN, 0); 1059 if (err) 1060 return err; 1061 } 1062 1063 kfree(c->gap_lebs); 1064 c->gap_lebs = NULL; 1065 return 0; 1066 } 1067 1068 /** 1069 * ubifs_tnc_end_commit - update the TNC for commit end. 1070 * @c: UBIFS file-system description object 1071 * 1072 * Write the dirty znodes. 1073 */ 1074 int ubifs_tnc_end_commit(struct ubifs_info *c) 1075 { 1076 int err; 1077 1078 if (!c->cnext) 1079 return 0; 1080 1081 err = return_gap_lebs(c); 1082 if (err) 1083 return err; 1084 1085 err = write_index(c); 1086 if (err) 1087 return err; 1088 1089 mutex_lock(&c->tnc_mutex); 1090 1091 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1092 1093 free_obsolete_znodes(c); 1094 1095 c->cnext = NULL; 1096 kfree(c->ilebs); 1097 c->ilebs = NULL; 1098 1099 mutex_unlock(&c->tnc_mutex); 1100 1101 return 0; 1102 } 1103