1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 38 int len, int lnum, int offs); 39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 40 struct ubifs_zbranch *zbr, void *node); 41 42 /* 43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 44 * @NAME_LESS: name corresponding to the first argument is less than second 45 * @NAME_MATCHES: names match 46 * @NAME_GREATER: name corresponding to the second argument is greater than 47 * first 48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 49 * 50 * These constants were introduce to improve readability. 51 */ 52 enum { 53 NAME_LESS = 0, 54 NAME_MATCHES = 1, 55 NAME_GREATER = 2, 56 NOT_ON_MEDIA = 3, 57 }; 58 59 /** 60 * insert_old_idx - record an index node obsoleted since the last commit start. 61 * @c: UBIFS file-system description object 62 * @lnum: LEB number of obsoleted index node 63 * @offs: offset of obsoleted index node 64 * 65 * Returns %0 on success, and a negative error code on failure. 66 * 67 * For recovery, there must always be a complete intact version of the index on 68 * flash at all times. That is called the "old index". It is the index as at the 69 * time of the last successful commit. Many of the index nodes in the old index 70 * may be dirty, but they must not be erased until the next successful commit 71 * (at which point that index becomes the old index). 72 * 73 * That means that the garbage collection and the in-the-gaps method of 74 * committing must be able to determine if an index node is in the old index. 75 * Most of the old index nodes can be found by looking up the TNC using the 76 * 'lookup_znode()' function. However, some of the old index nodes may have 77 * been deleted from the current index or may have been changed so much that 78 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 79 * That is what this function does. The RB-tree is ordered by LEB number and 80 * offset because they uniquely identify the old index node. 81 */ 82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 83 { 84 struct ubifs_old_idx *old_idx, *o; 85 struct rb_node **p, *parent = NULL; 86 87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 88 if (unlikely(!old_idx)) 89 return -ENOMEM; 90 old_idx->lnum = lnum; 91 old_idx->offs = offs; 92 93 p = &c->old_idx.rb_node; 94 while (*p) { 95 parent = *p; 96 o = rb_entry(parent, struct ubifs_old_idx, rb); 97 if (lnum < o->lnum) 98 p = &(*p)->rb_left; 99 else if (lnum > o->lnum) 100 p = &(*p)->rb_right; 101 else if (offs < o->offs) 102 p = &(*p)->rb_left; 103 else if (offs > o->offs) 104 p = &(*p)->rb_right; 105 else { 106 ubifs_err(c, "old idx added twice!"); 107 kfree(old_idx); 108 return 0; 109 } 110 } 111 rb_link_node(&old_idx->rb, parent, p); 112 rb_insert_color(&old_idx->rb, &c->old_idx); 113 return 0; 114 } 115 116 /** 117 * insert_old_idx_znode - record a znode obsoleted since last commit start. 118 * @c: UBIFS file-system description object 119 * @znode: znode of obsoleted index node 120 * 121 * Returns %0 on success, and a negative error code on failure. 122 */ 123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 124 { 125 if (znode->parent) { 126 struct ubifs_zbranch *zbr; 127 128 zbr = &znode->parent->zbranch[znode->iip]; 129 if (zbr->len) 130 return insert_old_idx(c, zbr->lnum, zbr->offs); 131 } else 132 if (c->zroot.len) 133 return insert_old_idx(c, c->zroot.lnum, 134 c->zroot.offs); 135 return 0; 136 } 137 138 /** 139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 140 * @c: UBIFS file-system description object 141 * @znode: znode of obsoleted index node 142 * 143 * Returns %0 on success, and a negative error code on failure. 144 */ 145 static int ins_clr_old_idx_znode(struct ubifs_info *c, 146 struct ubifs_znode *znode) 147 { 148 int err; 149 150 if (znode->parent) { 151 struct ubifs_zbranch *zbr; 152 153 zbr = &znode->parent->zbranch[znode->iip]; 154 if (zbr->len) { 155 err = insert_old_idx(c, zbr->lnum, zbr->offs); 156 if (err) 157 return err; 158 zbr->lnum = 0; 159 zbr->offs = 0; 160 zbr->len = 0; 161 } 162 } else 163 if (c->zroot.len) { 164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 165 if (err) 166 return err; 167 c->zroot.lnum = 0; 168 c->zroot.offs = 0; 169 c->zroot.len = 0; 170 } 171 return 0; 172 } 173 174 /** 175 * destroy_old_idx - destroy the old_idx RB-tree. 176 * @c: UBIFS file-system description object 177 * 178 * During start commit, the old_idx RB-tree is used to avoid overwriting index 179 * nodes that were in the index last commit but have since been deleted. This 180 * is necessary for recovery i.e. the old index must be kept intact until the 181 * new index is successfully written. The old-idx RB-tree is used for the 182 * in-the-gaps method of writing index nodes and is destroyed every commit. 183 */ 184 void destroy_old_idx(struct ubifs_info *c) 185 { 186 struct ubifs_old_idx *old_idx, *n; 187 188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 189 kfree(old_idx); 190 191 c->old_idx = RB_ROOT; 192 } 193 194 /** 195 * copy_znode - copy a dirty znode. 196 * @c: UBIFS file-system description object 197 * @znode: znode to copy 198 * 199 * A dirty znode being committed may not be changed, so it is copied. 200 */ 201 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 202 struct ubifs_znode *znode) 203 { 204 struct ubifs_znode *zn; 205 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 207 if (unlikely(!zn)) 208 return ERR_PTR(-ENOMEM); 209 210 zn->cnext = NULL; 211 __set_bit(DIRTY_ZNODE, &zn->flags); 212 __clear_bit(COW_ZNODE, &zn->flags); 213 214 ubifs_assert(!ubifs_zn_obsolete(znode)); 215 __set_bit(OBSOLETE_ZNODE, &znode->flags); 216 217 if (znode->level != 0) { 218 int i; 219 const int n = zn->child_cnt; 220 221 /* The children now have new parent */ 222 for (i = 0; i < n; i++) { 223 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 224 225 if (zbr->znode) 226 zbr->znode->parent = zn; 227 } 228 } 229 230 atomic_long_inc(&c->dirty_zn_cnt); 231 return zn; 232 } 233 234 /** 235 * add_idx_dirt - add dirt due to a dirty znode. 236 * @c: UBIFS file-system description object 237 * @lnum: LEB number of index node 238 * @dirt: size of index node 239 * 240 * This function updates lprops dirty space and the new size of the index. 241 */ 242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 243 { 244 c->calc_idx_sz -= ALIGN(dirt, 8); 245 return ubifs_add_dirt(c, lnum, dirt); 246 } 247 248 /** 249 * dirty_cow_znode - ensure a znode is not being committed. 250 * @c: UBIFS file-system description object 251 * @zbr: branch of znode to check 252 * 253 * Returns dirtied znode on success or negative error code on failure. 254 */ 255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 256 struct ubifs_zbranch *zbr) 257 { 258 struct ubifs_znode *znode = zbr->znode; 259 struct ubifs_znode *zn; 260 int err; 261 262 if (!ubifs_zn_cow(znode)) { 263 /* znode is not being committed */ 264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 265 atomic_long_inc(&c->dirty_zn_cnt); 266 atomic_long_dec(&c->clean_zn_cnt); 267 atomic_long_dec(&ubifs_clean_zn_cnt); 268 err = add_idx_dirt(c, zbr->lnum, zbr->len); 269 if (unlikely(err)) 270 return ERR_PTR(err); 271 } 272 return znode; 273 } 274 275 zn = copy_znode(c, znode); 276 if (IS_ERR(zn)) 277 return zn; 278 279 if (zbr->len) { 280 err = insert_old_idx(c, zbr->lnum, zbr->offs); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 err = add_idx_dirt(c, zbr->lnum, zbr->len); 284 } else 285 err = 0; 286 287 zbr->znode = zn; 288 zbr->lnum = 0; 289 zbr->offs = 0; 290 zbr->len = 0; 291 292 if (unlikely(err)) 293 return ERR_PTR(err); 294 return zn; 295 } 296 297 /** 298 * lnc_add - add a leaf node to the leaf node cache. 299 * @c: UBIFS file-system description object 300 * @zbr: zbranch of leaf node 301 * @node: leaf node 302 * 303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 304 * purpose of the leaf node cache is to save re-reading the same leaf node over 305 * and over again. Most things are cached by VFS, however the file system must 306 * cache directory entries for readdir and for resolving hash collisions. The 307 * present implementation of the leaf node cache is extremely simple, and 308 * allows for error returns that are not used but that may be needed if a more 309 * complex implementation is created. 310 * 311 * Note, this function does not add the @node object to LNC directly, but 312 * allocates a copy of the object and adds the copy to LNC. The reason for this 313 * is that @node has been allocated outside of the TNC subsystem and will be 314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 315 * may be changed at any time, e.g. freed by the shrinker. 316 */ 317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 318 const void *node) 319 { 320 int err; 321 void *lnc_node; 322 const struct ubifs_dent_node *dent = node; 323 324 ubifs_assert(!zbr->leaf); 325 ubifs_assert(zbr->len != 0); 326 ubifs_assert(is_hash_key(c, &zbr->key)); 327 328 err = ubifs_validate_entry(c, dent); 329 if (err) { 330 dump_stack(); 331 ubifs_dump_node(c, dent); 332 return err; 333 } 334 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 336 if (!lnc_node) 337 /* We don't have to have the cache, so no error */ 338 return 0; 339 340 zbr->leaf = lnc_node; 341 return 0; 342 } 343 344 /** 345 * lnc_add_directly - add a leaf node to the leaf-node-cache. 346 * @c: UBIFS file-system description object 347 * @zbr: zbranch of leaf node 348 * @node: leaf node 349 * 350 * This function is similar to 'lnc_add()', but it does not create a copy of 351 * @node but inserts @node to TNC directly. 352 */ 353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 354 void *node) 355 { 356 int err; 357 358 ubifs_assert(!zbr->leaf); 359 ubifs_assert(zbr->len != 0); 360 361 err = ubifs_validate_entry(c, node); 362 if (err) { 363 dump_stack(); 364 ubifs_dump_node(c, node); 365 return err; 366 } 367 368 zbr->leaf = node; 369 return 0; 370 } 371 372 /** 373 * lnc_free - remove a leaf node from the leaf node cache. 374 * @zbr: zbranch of leaf node 375 * @node: leaf node 376 */ 377 static void lnc_free(struct ubifs_zbranch *zbr) 378 { 379 if (!zbr->leaf) 380 return; 381 kfree(zbr->leaf); 382 zbr->leaf = NULL; 383 } 384 385 /** 386 * tnc_read_hashed_node - read a "hashed" leaf node. 387 * @c: UBIFS file-system description object 388 * @zbr: key and position of the node 389 * @node: node is returned here 390 * 391 * This function reads a "hashed" node defined by @zbr from the leaf node cache 392 * (in it is there) or from the hash media, in which case the node is also 393 * added to LNC. Returns zero in case of success or a negative negative error 394 * code in case of failure. 395 */ 396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 397 void *node) 398 { 399 int err; 400 401 ubifs_assert(is_hash_key(c, &zbr->key)); 402 403 if (zbr->leaf) { 404 /* Read from the leaf node cache */ 405 ubifs_assert(zbr->len != 0); 406 memcpy(node, zbr->leaf, zbr->len); 407 return 0; 408 } 409 410 if (c->replaying) { 411 err = fallible_read_node(c, &zbr->key, zbr, node); 412 /* 413 * When the node was not found, return -ENOENT, 0 otherwise. 414 * Negative return codes stay as-is. 415 */ 416 if (err == 0) 417 err = -ENOENT; 418 else if (err == 1) 419 err = 0; 420 } else { 421 err = ubifs_tnc_read_node(c, zbr, node); 422 } 423 if (err) 424 return err; 425 426 /* Add the node to the leaf node cache */ 427 err = lnc_add(c, zbr, node); 428 return err; 429 } 430 431 /** 432 * try_read_node - read a node if it is a node. 433 * @c: UBIFS file-system description object 434 * @buf: buffer to read to 435 * @type: node type 436 * @len: node length (not aligned) 437 * @lnum: LEB number of node to read 438 * @offs: offset of node to read 439 * 440 * This function tries to read a node of known type and length, checks it and 441 * stores it in @buf. This function returns %1 if a node is present and %0 if 442 * a node is not present. A negative error code is returned for I/O errors. 443 * This function performs that same function as ubifs_read_node except that 444 * it does not require that there is actually a node present and instead 445 * the return code indicates if a node was read. 446 * 447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 448 * is true (it is controlled by corresponding mount option). However, if 449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 451 * because during mounting or re-mounting from R/O mode to R/W mode we may read 452 * journal nodes (when replying the journal or doing the recovery) and the 453 * journal nodes may potentially be corrupted, so checking is required. 454 */ 455 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 456 int len, int lnum, int offs) 457 { 458 int err, node_len; 459 struct ubifs_ch *ch = buf; 460 uint32_t crc, node_crc; 461 462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 463 464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 465 if (err) { 466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 467 type, lnum, offs, err); 468 return err; 469 } 470 471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 472 return 0; 473 474 if (ch->node_type != type) 475 return 0; 476 477 node_len = le32_to_cpu(ch->len); 478 if (node_len != len) 479 return 0; 480 481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 482 !c->remounting_rw) 483 return 1; 484 485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 486 node_crc = le32_to_cpu(ch->crc); 487 if (crc != node_crc) 488 return 0; 489 490 return 1; 491 } 492 493 /** 494 * fallible_read_node - try to read a leaf node. 495 * @c: UBIFS file-system description object 496 * @key: key of node to read 497 * @zbr: position of node 498 * @node: node returned 499 * 500 * This function tries to read a node and returns %1 if the node is read, %0 501 * if the node is not present, and a negative error code in the case of error. 502 */ 503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 504 struct ubifs_zbranch *zbr, void *node) 505 { 506 int ret; 507 508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 509 510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 511 zbr->offs); 512 if (ret == 1) { 513 union ubifs_key node_key; 514 struct ubifs_dent_node *dent = node; 515 516 /* All nodes have key in the same place */ 517 key_read(c, &dent->key, &node_key); 518 if (keys_cmp(c, key, &node_key) != 0) 519 ret = 0; 520 } 521 if (ret == 0 && c->replaying) 522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 523 zbr->lnum, zbr->offs, zbr->len); 524 return ret; 525 } 526 527 /** 528 * matches_name - determine if a direntry or xattr entry matches a given name. 529 * @c: UBIFS file-system description object 530 * @zbr: zbranch of dent 531 * @nm: name to match 532 * 533 * This function checks if xentry/direntry referred by zbranch @zbr matches name 534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 536 * of failure, a negative error code is returned. 537 */ 538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 539 const struct fscrypt_name *nm) 540 { 541 struct ubifs_dent_node *dent; 542 int nlen, err; 543 544 /* If possible, match against the dent in the leaf node cache */ 545 if (!zbr->leaf) { 546 dent = kmalloc(zbr->len, GFP_NOFS); 547 if (!dent) 548 return -ENOMEM; 549 550 err = ubifs_tnc_read_node(c, zbr, dent); 551 if (err) 552 goto out_free; 553 554 /* Add the node to the leaf node cache */ 555 err = lnc_add_directly(c, zbr, dent); 556 if (err) 557 goto out_free; 558 } else 559 dent = zbr->leaf; 560 561 nlen = le16_to_cpu(dent->nlen); 562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 563 if (err == 0) { 564 if (nlen == fname_len(nm)) 565 return NAME_MATCHES; 566 else if (nlen < fname_len(nm)) 567 return NAME_LESS; 568 else 569 return NAME_GREATER; 570 } else if (err < 0) 571 return NAME_LESS; 572 else 573 return NAME_GREATER; 574 575 out_free: 576 kfree(dent); 577 return err; 578 } 579 580 /** 581 * get_znode - get a TNC znode that may not be loaded yet. 582 * @c: UBIFS file-system description object 583 * @znode: parent znode 584 * @n: znode branch slot number 585 * 586 * This function returns the znode or a negative error code. 587 */ 588 static struct ubifs_znode *get_znode(struct ubifs_info *c, 589 struct ubifs_znode *znode, int n) 590 { 591 struct ubifs_zbranch *zbr; 592 593 zbr = &znode->zbranch[n]; 594 if (zbr->znode) 595 znode = zbr->znode; 596 else 597 znode = ubifs_load_znode(c, zbr, znode, n); 598 return znode; 599 } 600 601 /** 602 * tnc_next - find next TNC entry. 603 * @c: UBIFS file-system description object 604 * @zn: znode is passed and returned here 605 * @n: znode branch slot number is passed and returned here 606 * 607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 608 * no next entry, or a negative error code otherwise. 609 */ 610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 611 { 612 struct ubifs_znode *znode = *zn; 613 int nn = *n; 614 615 nn += 1; 616 if (nn < znode->child_cnt) { 617 *n = nn; 618 return 0; 619 } 620 while (1) { 621 struct ubifs_znode *zp; 622 623 zp = znode->parent; 624 if (!zp) 625 return -ENOENT; 626 nn = znode->iip + 1; 627 znode = zp; 628 if (nn < znode->child_cnt) { 629 znode = get_znode(c, znode, nn); 630 if (IS_ERR(znode)) 631 return PTR_ERR(znode); 632 while (znode->level != 0) { 633 znode = get_znode(c, znode, 0); 634 if (IS_ERR(znode)) 635 return PTR_ERR(znode); 636 } 637 nn = 0; 638 break; 639 } 640 } 641 *zn = znode; 642 *n = nn; 643 return 0; 644 } 645 646 /** 647 * tnc_prev - find previous TNC entry. 648 * @c: UBIFS file-system description object 649 * @zn: znode is returned here 650 * @n: znode branch slot number is passed and returned here 651 * 652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 653 * there is no next entry, or a negative error code otherwise. 654 */ 655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 656 { 657 struct ubifs_znode *znode = *zn; 658 int nn = *n; 659 660 if (nn > 0) { 661 *n = nn - 1; 662 return 0; 663 } 664 while (1) { 665 struct ubifs_znode *zp; 666 667 zp = znode->parent; 668 if (!zp) 669 return -ENOENT; 670 nn = znode->iip - 1; 671 znode = zp; 672 if (nn >= 0) { 673 znode = get_znode(c, znode, nn); 674 if (IS_ERR(znode)) 675 return PTR_ERR(znode); 676 while (znode->level != 0) { 677 nn = znode->child_cnt - 1; 678 znode = get_znode(c, znode, nn); 679 if (IS_ERR(znode)) 680 return PTR_ERR(znode); 681 } 682 nn = znode->child_cnt - 1; 683 break; 684 } 685 } 686 *zn = znode; 687 *n = nn; 688 return 0; 689 } 690 691 /** 692 * resolve_collision - resolve a collision. 693 * @c: UBIFS file-system description object 694 * @key: key of a directory or extended attribute entry 695 * @zn: znode is returned here 696 * @n: zbranch number is passed and returned here 697 * @nm: name of the entry 698 * 699 * This function is called for "hashed" keys to make sure that the found key 700 * really corresponds to the looked up node (directory or extended attribute 701 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 702 * %0 is returned if @nm is not found and @zn and @n are set to the previous 703 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 704 * This means that @n may be set to %-1 if the leftmost key in @zn is the 705 * previous one. A negative error code is returned on failures. 706 */ 707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 708 struct ubifs_znode **zn, int *n, 709 const struct fscrypt_name *nm) 710 { 711 int err; 712 713 err = matches_name(c, &(*zn)->zbranch[*n], nm); 714 if (unlikely(err < 0)) 715 return err; 716 if (err == NAME_MATCHES) 717 return 1; 718 719 if (err == NAME_GREATER) { 720 /* Look left */ 721 while (1) { 722 err = tnc_prev(c, zn, n); 723 if (err == -ENOENT) { 724 ubifs_assert(*n == 0); 725 *n = -1; 726 return 0; 727 } 728 if (err < 0) 729 return err; 730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 731 /* 732 * We have found the branch after which we would 733 * like to insert, but inserting in this znode 734 * may still be wrong. Consider the following 3 735 * znodes, in the case where we are resolving a 736 * collision with Key2. 737 * 738 * znode zp 739 * ---------------------- 740 * level 1 | Key0 | Key1 | 741 * ----------------------- 742 * | | 743 * znode za | | znode zb 744 * ------------ ------------ 745 * level 0 | Key0 | | Key2 | 746 * ------------ ------------ 747 * 748 * The lookup finds Key2 in znode zb. Lets say 749 * there is no match and the name is greater so 750 * we look left. When we find Key0, we end up 751 * here. If we return now, we will insert into 752 * znode za at slot n = 1. But that is invalid 753 * according to the parent's keys. Key2 must 754 * be inserted into znode zb. 755 * 756 * Note, this problem is not relevant for the 757 * case when we go right, because 758 * 'tnc_insert()' would correct the parent key. 759 */ 760 if (*n == (*zn)->child_cnt - 1) { 761 err = tnc_next(c, zn, n); 762 if (err) { 763 /* Should be impossible */ 764 ubifs_assert(0); 765 if (err == -ENOENT) 766 err = -EINVAL; 767 return err; 768 } 769 ubifs_assert(*n == 0); 770 *n = -1; 771 } 772 return 0; 773 } 774 err = matches_name(c, &(*zn)->zbranch[*n], nm); 775 if (err < 0) 776 return err; 777 if (err == NAME_LESS) 778 return 0; 779 if (err == NAME_MATCHES) 780 return 1; 781 ubifs_assert(err == NAME_GREATER); 782 } 783 } else { 784 int nn = *n; 785 struct ubifs_znode *znode = *zn; 786 787 /* Look right */ 788 while (1) { 789 err = tnc_next(c, &znode, &nn); 790 if (err == -ENOENT) 791 return 0; 792 if (err < 0) 793 return err; 794 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 795 return 0; 796 err = matches_name(c, &znode->zbranch[nn], nm); 797 if (err < 0) 798 return err; 799 if (err == NAME_GREATER) 800 return 0; 801 *zn = znode; 802 *n = nn; 803 if (err == NAME_MATCHES) 804 return 1; 805 ubifs_assert(err == NAME_LESS); 806 } 807 } 808 } 809 810 /** 811 * fallible_matches_name - determine if a dent matches a given name. 812 * @c: UBIFS file-system description object 813 * @zbr: zbranch of dent 814 * @nm: name to match 815 * 816 * This is a "fallible" version of 'matches_name()' function which does not 817 * panic if the direntry/xentry referred by @zbr does not exist on the media. 818 * 819 * This function checks if xentry/direntry referred by zbranch @zbr matches name 820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 822 * if xentry/direntry referred by @zbr does not exist on the media. A negative 823 * error code is returned in case of failure. 824 */ 825 static int fallible_matches_name(struct ubifs_info *c, 826 struct ubifs_zbranch *zbr, 827 const struct fscrypt_name *nm) 828 { 829 struct ubifs_dent_node *dent; 830 int nlen, err; 831 832 /* If possible, match against the dent in the leaf node cache */ 833 if (!zbr->leaf) { 834 dent = kmalloc(zbr->len, GFP_NOFS); 835 if (!dent) 836 return -ENOMEM; 837 838 err = fallible_read_node(c, &zbr->key, zbr, dent); 839 if (err < 0) 840 goto out_free; 841 if (err == 0) { 842 /* The node was not present */ 843 err = NOT_ON_MEDIA; 844 goto out_free; 845 } 846 ubifs_assert(err == 1); 847 848 err = lnc_add_directly(c, zbr, dent); 849 if (err) 850 goto out_free; 851 } else 852 dent = zbr->leaf; 853 854 nlen = le16_to_cpu(dent->nlen); 855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 856 if (err == 0) { 857 if (nlen == fname_len(nm)) 858 return NAME_MATCHES; 859 else if (nlen < fname_len(nm)) 860 return NAME_LESS; 861 else 862 return NAME_GREATER; 863 } else if (err < 0) 864 return NAME_LESS; 865 else 866 return NAME_GREATER; 867 868 out_free: 869 kfree(dent); 870 return err; 871 } 872 873 /** 874 * fallible_resolve_collision - resolve a collision even if nodes are missing. 875 * @c: UBIFS file-system description object 876 * @key: key 877 * @zn: znode is returned here 878 * @n: branch number is passed and returned here 879 * @nm: name of directory entry 880 * @adding: indicates caller is adding a key to the TNC 881 * 882 * This is a "fallible" version of the 'resolve_collision()' function which 883 * does not panic if one of the nodes referred to by TNC does not exist on the 884 * media. This may happen when replaying the journal if a deleted node was 885 * Garbage-collected and the commit was not done. A branch that refers to a node 886 * that is not present is called a dangling branch. The following are the return 887 * codes for this function: 888 * o if @nm was found, %1 is returned and @zn and @n are set to the found 889 * branch; 890 * o if we are @adding and @nm was not found, %0 is returned; 891 * o if we are not @adding and @nm was not found, but a dangling branch was 892 * found, then %1 is returned and @zn and @n are set to the dangling branch; 893 * o a negative error code is returned in case of failure. 894 */ 895 static int fallible_resolve_collision(struct ubifs_info *c, 896 const union ubifs_key *key, 897 struct ubifs_znode **zn, int *n, 898 const struct fscrypt_name *nm, 899 int adding) 900 { 901 struct ubifs_znode *o_znode = NULL, *znode = *zn; 902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 903 904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 905 if (unlikely(cmp < 0)) 906 return cmp; 907 if (cmp == NAME_MATCHES) 908 return 1; 909 if (cmp == NOT_ON_MEDIA) { 910 o_znode = znode; 911 o_n = nn; 912 /* 913 * We are unlucky and hit a dangling branch straight away. 914 * Now we do not really know where to go to find the needed 915 * branch - to the left or to the right. Well, let's try left. 916 */ 917 unsure = 1; 918 } else if (!adding) 919 unsure = 1; /* Remove a dangling branch wherever it is */ 920 921 if (cmp == NAME_GREATER || unsure) { 922 /* Look left */ 923 while (1) { 924 err = tnc_prev(c, zn, n); 925 if (err == -ENOENT) { 926 ubifs_assert(*n == 0); 927 *n = -1; 928 break; 929 } 930 if (err < 0) 931 return err; 932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 933 /* See comments in 'resolve_collision()' */ 934 if (*n == (*zn)->child_cnt - 1) { 935 err = tnc_next(c, zn, n); 936 if (err) { 937 /* Should be impossible */ 938 ubifs_assert(0); 939 if (err == -ENOENT) 940 err = -EINVAL; 941 return err; 942 } 943 ubifs_assert(*n == 0); 944 *n = -1; 945 } 946 break; 947 } 948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 949 if (err < 0) 950 return err; 951 if (err == NAME_MATCHES) 952 return 1; 953 if (err == NOT_ON_MEDIA) { 954 o_znode = *zn; 955 o_n = *n; 956 continue; 957 } 958 if (!adding) 959 continue; 960 if (err == NAME_LESS) 961 break; 962 else 963 unsure = 0; 964 } 965 } 966 967 if (cmp == NAME_LESS || unsure) { 968 /* Look right */ 969 *zn = znode; 970 *n = nn; 971 while (1) { 972 err = tnc_next(c, &znode, &nn); 973 if (err == -ENOENT) 974 break; 975 if (err < 0) 976 return err; 977 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 978 break; 979 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 980 if (err < 0) 981 return err; 982 if (err == NAME_GREATER) 983 break; 984 *zn = znode; 985 *n = nn; 986 if (err == NAME_MATCHES) 987 return 1; 988 if (err == NOT_ON_MEDIA) { 989 o_znode = znode; 990 o_n = nn; 991 } 992 } 993 } 994 995 /* Never match a dangling branch when adding */ 996 if (adding || !o_znode) 997 return 0; 998 999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1001 o_znode->zbranch[o_n].len); 1002 *zn = o_znode; 1003 *n = o_n; 1004 return 1; 1005 } 1006 1007 /** 1008 * matches_position - determine if a zbranch matches a given position. 1009 * @zbr: zbranch of dent 1010 * @lnum: LEB number of dent to match 1011 * @offs: offset of dent to match 1012 * 1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1014 */ 1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1016 { 1017 if (zbr->lnum == lnum && zbr->offs == offs) 1018 return 1; 1019 else 1020 return 0; 1021 } 1022 1023 /** 1024 * resolve_collision_directly - resolve a collision directly. 1025 * @c: UBIFS file-system description object 1026 * @key: key of directory entry 1027 * @zn: znode is passed and returned here 1028 * @n: zbranch number is passed and returned here 1029 * @lnum: LEB number of dent node to match 1030 * @offs: offset of dent node to match 1031 * 1032 * This function is used for "hashed" keys to make sure the found directory or 1033 * extended attribute entry node is what was looked for. It is used when the 1034 * flash address of the right node is known (@lnum:@offs) which makes it much 1035 * easier to resolve collisions (no need to read entries and match full 1036 * names). This function returns %1 and sets @zn and @n if the collision is 1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1038 * previous directory entry. Otherwise a negative error code is returned. 1039 */ 1040 static int resolve_collision_directly(struct ubifs_info *c, 1041 const union ubifs_key *key, 1042 struct ubifs_znode **zn, int *n, 1043 int lnum, int offs) 1044 { 1045 struct ubifs_znode *znode; 1046 int nn, err; 1047 1048 znode = *zn; 1049 nn = *n; 1050 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1051 return 1; 1052 1053 /* Look left */ 1054 while (1) { 1055 err = tnc_prev(c, &znode, &nn); 1056 if (err == -ENOENT) 1057 break; 1058 if (err < 0) 1059 return err; 1060 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1061 break; 1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1063 *zn = znode; 1064 *n = nn; 1065 return 1; 1066 } 1067 } 1068 1069 /* Look right */ 1070 znode = *zn; 1071 nn = *n; 1072 while (1) { 1073 err = tnc_next(c, &znode, &nn); 1074 if (err == -ENOENT) 1075 return 0; 1076 if (err < 0) 1077 return err; 1078 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1079 return 0; 1080 *zn = znode; 1081 *n = nn; 1082 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1083 return 1; 1084 } 1085 } 1086 1087 /** 1088 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1089 * @c: UBIFS file-system description object 1090 * @znode: znode to dirty 1091 * 1092 * If we do not have a unique key that resides in a znode, then we cannot 1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1094 * This function records the path back to the last dirty ancestor, and then 1095 * dirties the znodes on that path. 1096 */ 1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1098 struct ubifs_znode *znode) 1099 { 1100 struct ubifs_znode *zp; 1101 int *path = c->bottom_up_buf, p = 0; 1102 1103 ubifs_assert(c->zroot.znode); 1104 ubifs_assert(znode); 1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1106 kfree(c->bottom_up_buf); 1107 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1108 GFP_NOFS); 1109 if (!c->bottom_up_buf) 1110 return ERR_PTR(-ENOMEM); 1111 path = c->bottom_up_buf; 1112 } 1113 if (c->zroot.znode->level) { 1114 /* Go up until parent is dirty */ 1115 while (1) { 1116 int n; 1117 1118 zp = znode->parent; 1119 if (!zp) 1120 break; 1121 n = znode->iip; 1122 ubifs_assert(p < c->zroot.znode->level); 1123 path[p++] = n; 1124 if (!zp->cnext && ubifs_zn_dirty(znode)) 1125 break; 1126 znode = zp; 1127 } 1128 } 1129 1130 /* Come back down, dirtying as we go */ 1131 while (1) { 1132 struct ubifs_zbranch *zbr; 1133 1134 zp = znode->parent; 1135 if (zp) { 1136 ubifs_assert(path[p - 1] >= 0); 1137 ubifs_assert(path[p - 1] < zp->child_cnt); 1138 zbr = &zp->zbranch[path[--p]]; 1139 znode = dirty_cow_znode(c, zbr); 1140 } else { 1141 ubifs_assert(znode == c->zroot.znode); 1142 znode = dirty_cow_znode(c, &c->zroot); 1143 } 1144 if (IS_ERR(znode) || !p) 1145 break; 1146 ubifs_assert(path[p - 1] >= 0); 1147 ubifs_assert(path[p - 1] < znode->child_cnt); 1148 znode = znode->zbranch[path[p - 1]].znode; 1149 } 1150 1151 return znode; 1152 } 1153 1154 /** 1155 * ubifs_lookup_level0 - search for zero-level znode. 1156 * @c: UBIFS file-system description object 1157 * @key: key to lookup 1158 * @zn: znode is returned here 1159 * @n: znode branch slot number is returned here 1160 * 1161 * This function looks up the TNC tree and search for zero-level znode which 1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1163 * cases: 1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1165 * is returned and slot number of the matched branch is stored in @n; 1166 * o not exact match, which means that zero-level znode does not contain 1167 * @key, then %0 is returned and slot number of the closest branch is stored 1168 * in @n; 1169 * o @key is so small that it is even less than the lowest key of the 1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1171 * 1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1173 * function reads corresponding indexing nodes and inserts them to TNC. In 1174 * case of failure, a negative error code is returned. 1175 */ 1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1177 struct ubifs_znode **zn, int *n) 1178 { 1179 int err, exact; 1180 struct ubifs_znode *znode; 1181 unsigned long time = get_seconds(); 1182 1183 dbg_tnck(key, "search key "); 1184 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1185 1186 znode = c->zroot.znode; 1187 if (unlikely(!znode)) { 1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1189 if (IS_ERR(znode)) 1190 return PTR_ERR(znode); 1191 } 1192 1193 znode->time = time; 1194 1195 while (1) { 1196 struct ubifs_zbranch *zbr; 1197 1198 exact = ubifs_search_zbranch(c, znode, key, n); 1199 1200 if (znode->level == 0) 1201 break; 1202 1203 if (*n < 0) 1204 *n = 0; 1205 zbr = &znode->zbranch[*n]; 1206 1207 if (zbr->znode) { 1208 znode->time = time; 1209 znode = zbr->znode; 1210 continue; 1211 } 1212 1213 /* znode is not in TNC cache, load it from the media */ 1214 znode = ubifs_load_znode(c, zbr, znode, *n); 1215 if (IS_ERR(znode)) 1216 return PTR_ERR(znode); 1217 } 1218 1219 *zn = znode; 1220 if (exact || !is_hash_key(c, key) || *n != -1) { 1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1222 return exact; 1223 } 1224 1225 /* 1226 * Here is a tricky place. We have not found the key and this is a 1227 * "hashed" key, which may collide. The rest of the code deals with 1228 * situations like this: 1229 * 1230 * | 3 | 5 | 1231 * / \ 1232 * | 3 | 5 | | 6 | 7 | (x) 1233 * 1234 * Or more a complex example: 1235 * 1236 * | 1 | 5 | 1237 * / \ 1238 * | 1 | 3 | | 5 | 8 | 1239 * \ / 1240 * | 5 | 5 | | 6 | 7 | (x) 1241 * 1242 * In the examples, if we are looking for key "5", we may reach nodes 1243 * marked with "(x)". In this case what we have do is to look at the 1244 * left and see if there is "5" key there. If there is, we have to 1245 * return it. 1246 * 1247 * Note, this whole situation is possible because we allow to have 1248 * elements which are equivalent to the next key in the parent in the 1249 * children of current znode. For example, this happens if we split a 1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1251 * like this: 1252 * | 3 | 5 | 1253 * / \ 1254 * | 3 | 5 | | 5 | 6 | 7 | 1255 * ^ 1256 * And this becomes what is at the first "picture" after key "5" marked 1257 * with "^" is removed. What could be done is we could prohibit 1258 * splitting in the middle of the colliding sequence. Also, when 1259 * removing the leftmost key, we would have to correct the key of the 1260 * parent node, which would introduce additional complications. Namely, 1261 * if we changed the leftmost key of the parent znode, the garbage 1262 * collector would be unable to find it (GC is doing this when GC'ing 1263 * indexing LEBs). Although we already have an additional RB-tree where 1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1265 * after the commit. But anyway, this does not look easy to implement 1266 * so we did not try this. 1267 */ 1268 err = tnc_prev(c, &znode, n); 1269 if (err == -ENOENT) { 1270 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1271 *n = -1; 1272 return 0; 1273 } 1274 if (unlikely(err < 0)) 1275 return err; 1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1277 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1278 *n = -1; 1279 return 0; 1280 } 1281 1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1283 *zn = znode; 1284 return 1; 1285 } 1286 1287 /** 1288 * lookup_level0_dirty - search for zero-level znode dirtying. 1289 * @c: UBIFS file-system description object 1290 * @key: key to lookup 1291 * @zn: znode is returned here 1292 * @n: znode branch slot number is returned here 1293 * 1294 * This function looks up the TNC tree and search for zero-level znode which 1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1296 * cases: 1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1298 * is returned and slot number of the matched branch is stored in @n; 1299 * o not exact match, which means that zero-level znode does not contain @key 1300 * then %0 is returned and slot number of the closed branch is stored in 1301 * @n; 1302 * o @key is so small that it is even less than the lowest key of the 1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1304 * 1305 * Additionally all znodes in the path from the root to the located zero-level 1306 * znode are marked as dirty. 1307 * 1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1309 * function reads corresponding indexing nodes and inserts them to TNC. In 1310 * case of failure, a negative error code is returned. 1311 */ 1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1313 struct ubifs_znode **zn, int *n) 1314 { 1315 int err, exact; 1316 struct ubifs_znode *znode; 1317 unsigned long time = get_seconds(); 1318 1319 dbg_tnck(key, "search and dirty key "); 1320 1321 znode = c->zroot.znode; 1322 if (unlikely(!znode)) { 1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1324 if (IS_ERR(znode)) 1325 return PTR_ERR(znode); 1326 } 1327 1328 znode = dirty_cow_znode(c, &c->zroot); 1329 if (IS_ERR(znode)) 1330 return PTR_ERR(znode); 1331 1332 znode->time = time; 1333 1334 while (1) { 1335 struct ubifs_zbranch *zbr; 1336 1337 exact = ubifs_search_zbranch(c, znode, key, n); 1338 1339 if (znode->level == 0) 1340 break; 1341 1342 if (*n < 0) 1343 *n = 0; 1344 zbr = &znode->zbranch[*n]; 1345 1346 if (zbr->znode) { 1347 znode->time = time; 1348 znode = dirty_cow_znode(c, zbr); 1349 if (IS_ERR(znode)) 1350 return PTR_ERR(znode); 1351 continue; 1352 } 1353 1354 /* znode is not in TNC cache, load it from the media */ 1355 znode = ubifs_load_znode(c, zbr, znode, *n); 1356 if (IS_ERR(znode)) 1357 return PTR_ERR(znode); 1358 znode = dirty_cow_znode(c, zbr); 1359 if (IS_ERR(znode)) 1360 return PTR_ERR(znode); 1361 } 1362 1363 *zn = znode; 1364 if (exact || !is_hash_key(c, key) || *n != -1) { 1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1366 return exact; 1367 } 1368 1369 /* 1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1371 * code. 1372 */ 1373 err = tnc_prev(c, &znode, n); 1374 if (err == -ENOENT) { 1375 *n = -1; 1376 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1377 return 0; 1378 } 1379 if (unlikely(err < 0)) 1380 return err; 1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1382 *n = -1; 1383 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1384 return 0; 1385 } 1386 1387 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1388 znode = dirty_cow_bottom_up(c, znode); 1389 if (IS_ERR(znode)) 1390 return PTR_ERR(znode); 1391 } 1392 1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1394 *zn = znode; 1395 return 1; 1396 } 1397 1398 /** 1399 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1400 * @c: UBIFS file-system description object 1401 * @lnum: LEB number 1402 * @gc_seq1: garbage collection sequence number 1403 * 1404 * This function determines if @lnum may have been garbage collected since 1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1406 * %0 is returned. 1407 */ 1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1409 { 1410 int gc_seq2, gced_lnum; 1411 1412 gced_lnum = c->gced_lnum; 1413 smp_rmb(); 1414 gc_seq2 = c->gc_seq; 1415 /* Same seq means no GC */ 1416 if (gc_seq1 == gc_seq2) 1417 return 0; 1418 /* Different by more than 1 means we don't know */ 1419 if (gc_seq1 + 1 != gc_seq2) 1420 return 1; 1421 /* 1422 * We have seen the sequence number has increased by 1. Now we need to 1423 * be sure we read the right LEB number, so read it again. 1424 */ 1425 smp_rmb(); 1426 if (gced_lnum != c->gced_lnum) 1427 return 1; 1428 /* Finally we can check lnum */ 1429 if (gced_lnum == lnum) 1430 return 1; 1431 return 0; 1432 } 1433 1434 /** 1435 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1436 * @c: UBIFS file-system description object 1437 * @key: node key to lookup 1438 * @node: the node is returned here 1439 * @lnum: LEB number is returned here 1440 * @offs: offset is returned here 1441 * 1442 * This function looks up and reads node with key @key. The caller has to make 1443 * sure the @node buffer is large enough to fit the node. Returns zero in case 1444 * of success, %-ENOENT if the node was not found, and a negative error code in 1445 * case of failure. The node location can be returned in @lnum and @offs. 1446 */ 1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1448 void *node, int *lnum, int *offs) 1449 { 1450 int found, n, err, safely = 0, gc_seq1; 1451 struct ubifs_znode *znode; 1452 struct ubifs_zbranch zbr, *zt; 1453 1454 again: 1455 mutex_lock(&c->tnc_mutex); 1456 found = ubifs_lookup_level0(c, key, &znode, &n); 1457 if (!found) { 1458 err = -ENOENT; 1459 goto out; 1460 } else if (found < 0) { 1461 err = found; 1462 goto out; 1463 } 1464 zt = &znode->zbranch[n]; 1465 if (lnum) { 1466 *lnum = zt->lnum; 1467 *offs = zt->offs; 1468 } 1469 if (is_hash_key(c, key)) { 1470 /* 1471 * In this case the leaf node cache gets used, so we pass the 1472 * address of the zbranch and keep the mutex locked 1473 */ 1474 err = tnc_read_hashed_node(c, zt, node); 1475 goto out; 1476 } 1477 if (safely) { 1478 err = ubifs_tnc_read_node(c, zt, node); 1479 goto out; 1480 } 1481 /* Drop the TNC mutex prematurely and race with garbage collection */ 1482 zbr = znode->zbranch[n]; 1483 gc_seq1 = c->gc_seq; 1484 mutex_unlock(&c->tnc_mutex); 1485 1486 if (ubifs_get_wbuf(c, zbr.lnum)) { 1487 /* We do not GC journal heads */ 1488 err = ubifs_tnc_read_node(c, &zbr, node); 1489 return err; 1490 } 1491 1492 err = fallible_read_node(c, key, &zbr, node); 1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1494 /* 1495 * The node may have been GC'ed out from under us so try again 1496 * while keeping the TNC mutex locked. 1497 */ 1498 safely = 1; 1499 goto again; 1500 } 1501 return 0; 1502 1503 out: 1504 mutex_unlock(&c->tnc_mutex); 1505 return err; 1506 } 1507 1508 /** 1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1510 * @c: UBIFS file-system description object 1511 * @bu: bulk-read parameters and results 1512 * 1513 * Lookup consecutive data node keys for the same inode that reside 1514 * consecutively in the same LEB. This function returns zero in case of success 1515 * and a negative error code in case of failure. 1516 * 1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1519 * maximum possible amount of nodes for bulk-read. 1520 */ 1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1522 { 1523 int n, err = 0, lnum = -1, uninitialized_var(offs); 1524 int uninitialized_var(len); 1525 unsigned int block = key_block(c, &bu->key); 1526 struct ubifs_znode *znode; 1527 1528 bu->cnt = 0; 1529 bu->blk_cnt = 0; 1530 bu->eof = 0; 1531 1532 mutex_lock(&c->tnc_mutex); 1533 /* Find first key */ 1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1535 if (err < 0) 1536 goto out; 1537 if (err) { 1538 /* Key found */ 1539 len = znode->zbranch[n].len; 1540 /* The buffer must be big enough for at least 1 node */ 1541 if (len > bu->buf_len) { 1542 err = -EINVAL; 1543 goto out; 1544 } 1545 /* Add this key */ 1546 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1547 bu->blk_cnt += 1; 1548 lnum = znode->zbranch[n].lnum; 1549 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1550 } 1551 while (1) { 1552 struct ubifs_zbranch *zbr; 1553 union ubifs_key *key; 1554 unsigned int next_block; 1555 1556 /* Find next key */ 1557 err = tnc_next(c, &znode, &n); 1558 if (err) 1559 goto out; 1560 zbr = &znode->zbranch[n]; 1561 key = &zbr->key; 1562 /* See if there is another data key for this file */ 1563 if (key_inum(c, key) != key_inum(c, &bu->key) || 1564 key_type(c, key) != UBIFS_DATA_KEY) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 if (lnum < 0) { 1569 /* First key found */ 1570 lnum = zbr->lnum; 1571 offs = ALIGN(zbr->offs + zbr->len, 8); 1572 len = zbr->len; 1573 if (len > bu->buf_len) { 1574 err = -EINVAL; 1575 goto out; 1576 } 1577 } else { 1578 /* 1579 * The data nodes must be in consecutive positions in 1580 * the same LEB. 1581 */ 1582 if (zbr->lnum != lnum || zbr->offs != offs) 1583 goto out; 1584 offs += ALIGN(zbr->len, 8); 1585 len = ALIGN(len, 8) + zbr->len; 1586 /* Must not exceed buffer length */ 1587 if (len > bu->buf_len) 1588 goto out; 1589 } 1590 /* Allow for holes */ 1591 next_block = key_block(c, key); 1592 bu->blk_cnt += (next_block - block - 1); 1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1594 goto out; 1595 block = next_block; 1596 /* Add this key */ 1597 bu->zbranch[bu->cnt++] = *zbr; 1598 bu->blk_cnt += 1; 1599 /* See if we have room for more */ 1600 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1601 goto out; 1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1603 goto out; 1604 } 1605 out: 1606 if (err == -ENOENT) { 1607 bu->eof = 1; 1608 err = 0; 1609 } 1610 bu->gc_seq = c->gc_seq; 1611 mutex_unlock(&c->tnc_mutex); 1612 if (err) 1613 return err; 1614 /* 1615 * An enormous hole could cause bulk-read to encompass too many 1616 * page cache pages, so limit the number here. 1617 */ 1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1619 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1620 /* 1621 * Ensure that bulk-read covers a whole number of page cache 1622 * pages. 1623 */ 1624 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1626 return 0; 1627 if (bu->eof) { 1628 /* At the end of file we can round up */ 1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1630 return 0; 1631 } 1632 /* Exclude data nodes that do not make up a whole page cache page */ 1633 block = key_block(c, &bu->key) + bu->blk_cnt; 1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1635 while (bu->cnt) { 1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1637 break; 1638 bu->cnt -= 1; 1639 } 1640 return 0; 1641 } 1642 1643 /** 1644 * read_wbuf - bulk-read from a LEB with a wbuf. 1645 * @wbuf: wbuf that may overlap the read 1646 * @buf: buffer into which to read 1647 * @len: read length 1648 * @lnum: LEB number from which to read 1649 * @offs: offset from which to read 1650 * 1651 * This functions returns %0 on success or a negative error code on failure. 1652 */ 1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1654 int offs) 1655 { 1656 const struct ubifs_info *c = wbuf->c; 1657 int rlen, overlap; 1658 1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1660 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1661 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1662 ubifs_assert(offs + len <= c->leb_size); 1663 1664 spin_lock(&wbuf->lock); 1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1666 if (!overlap) { 1667 /* We may safely unlock the write-buffer and read the data */ 1668 spin_unlock(&wbuf->lock); 1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1670 } 1671 1672 /* Don't read under wbuf */ 1673 rlen = wbuf->offs - offs; 1674 if (rlen < 0) 1675 rlen = 0; 1676 1677 /* Copy the rest from the write-buffer */ 1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1679 spin_unlock(&wbuf->lock); 1680 1681 if (rlen > 0) 1682 /* Read everything that goes before write-buffer */ 1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * validate_data_node - validate data nodes for bulk-read. 1690 * @c: UBIFS file-system description object 1691 * @buf: buffer containing data node to validate 1692 * @zbr: zbranch of data node to validate 1693 * 1694 * This functions returns %0 on success or a negative error code on failure. 1695 */ 1696 static int validate_data_node(struct ubifs_info *c, void *buf, 1697 struct ubifs_zbranch *zbr) 1698 { 1699 union ubifs_key key1; 1700 struct ubifs_ch *ch = buf; 1701 int err, len; 1702 1703 if (ch->node_type != UBIFS_DATA_NODE) { 1704 ubifs_err(c, "bad node type (%d but expected %d)", 1705 ch->node_type, UBIFS_DATA_NODE); 1706 goto out_err; 1707 } 1708 1709 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1710 if (err) { 1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1712 goto out; 1713 } 1714 1715 len = le32_to_cpu(ch->len); 1716 if (len != zbr->len) { 1717 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1718 goto out_err; 1719 } 1720 1721 /* Make sure the key of the read node is correct */ 1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1723 if (!keys_eq(c, &zbr->key, &key1)) { 1724 ubifs_err(c, "bad key in node at LEB %d:%d", 1725 zbr->lnum, zbr->offs); 1726 dbg_tnck(&zbr->key, "looked for key "); 1727 dbg_tnck(&key1, "found node's key "); 1728 goto out_err; 1729 } 1730 1731 return 0; 1732 1733 out_err: 1734 err = -EINVAL; 1735 out: 1736 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1737 ubifs_dump_node(c, buf); 1738 dump_stack(); 1739 return err; 1740 } 1741 1742 /** 1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1744 * @c: UBIFS file-system description object 1745 * @bu: bulk-read parameters and results 1746 * 1747 * This functions reads and validates the data nodes that were identified by the 1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1749 * -EAGAIN to indicate a race with GC, or another negative error code on 1750 * failure. 1751 */ 1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1753 { 1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1755 struct ubifs_wbuf *wbuf; 1756 void *buf; 1757 1758 len = bu->zbranch[bu->cnt - 1].offs; 1759 len += bu->zbranch[bu->cnt - 1].len - offs; 1760 if (len > bu->buf_len) { 1761 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1762 return -EINVAL; 1763 } 1764 1765 /* Do the read */ 1766 wbuf = ubifs_get_wbuf(c, lnum); 1767 if (wbuf) 1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1769 else 1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1771 1772 /* Check for a race with GC */ 1773 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1774 return -EAGAIN; 1775 1776 if (err && err != -EBADMSG) { 1777 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1778 lnum, offs, err); 1779 dump_stack(); 1780 dbg_tnck(&bu->key, "key "); 1781 return err; 1782 } 1783 1784 /* Validate the nodes read */ 1785 buf = bu->buf; 1786 for (i = 0; i < bu->cnt; i++) { 1787 err = validate_data_node(c, buf, &bu->zbranch[i]); 1788 if (err) 1789 return err; 1790 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * do_lookup_nm- look up a "hashed" node. 1798 * @c: UBIFS file-system description object 1799 * @key: node key to lookup 1800 * @node: the node is returned here 1801 * @nm: node name 1802 * 1803 * This function looks up and reads a node which contains name hash in the key. 1804 * Since the hash may have collisions, there may be many nodes with the same 1805 * key, so we have to sequentially look to all of them until the needed one is 1806 * found. This function returns zero in case of success, %-ENOENT if the node 1807 * was not found, and a negative error code in case of failure. 1808 */ 1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1810 void *node, const struct fscrypt_name *nm) 1811 { 1812 int found, n, err; 1813 struct ubifs_znode *znode; 1814 1815 dbg_tnck(key, "key "); 1816 mutex_lock(&c->tnc_mutex); 1817 found = ubifs_lookup_level0(c, key, &znode, &n); 1818 if (!found) { 1819 err = -ENOENT; 1820 goto out_unlock; 1821 } else if (found < 0) { 1822 err = found; 1823 goto out_unlock; 1824 } 1825 1826 ubifs_assert(n >= 0); 1827 1828 err = resolve_collision(c, key, &znode, &n, nm); 1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1830 if (unlikely(err < 0)) 1831 goto out_unlock; 1832 if (err == 0) { 1833 err = -ENOENT; 1834 goto out_unlock; 1835 } 1836 1837 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1838 1839 out_unlock: 1840 mutex_unlock(&c->tnc_mutex); 1841 return err; 1842 } 1843 1844 /** 1845 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1846 * @c: UBIFS file-system description object 1847 * @key: node key to lookup 1848 * @node: the node is returned here 1849 * @nm: node name 1850 * 1851 * This function looks up and reads a node which contains name hash in the key. 1852 * Since the hash may have collisions, there may be many nodes with the same 1853 * key, so we have to sequentially look to all of them until the needed one is 1854 * found. This function returns zero in case of success, %-ENOENT if the node 1855 * was not found, and a negative error code in case of failure. 1856 */ 1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1858 void *node, const struct fscrypt_name *nm) 1859 { 1860 int err, len; 1861 const struct ubifs_dent_node *dent = node; 1862 1863 /* 1864 * We assume that in most of the cases there are no name collisions and 1865 * 'ubifs_tnc_lookup()' returns us the right direntry. 1866 */ 1867 err = ubifs_tnc_lookup(c, key, node); 1868 if (err) 1869 return err; 1870 1871 len = le16_to_cpu(dent->nlen); 1872 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1873 return 0; 1874 1875 /* 1876 * Unluckily, there are hash collisions and we have to iterate over 1877 * them look at each direntry with colliding name hash sequentially. 1878 */ 1879 1880 return do_lookup_nm(c, key, node, nm); 1881 } 1882 1883 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1884 struct ubifs_dent_node *dent, uint32_t cookie, 1885 struct ubifs_znode **zn, int *n) 1886 { 1887 int err; 1888 struct ubifs_znode *znode = *zn; 1889 struct ubifs_zbranch *zbr; 1890 union ubifs_key *dkey; 1891 1892 for (;;) { 1893 zbr = &znode->zbranch[*n]; 1894 dkey = &zbr->key; 1895 1896 if (key_inum(c, dkey) != key_inum(c, key) || 1897 key_type(c, dkey) != key_type(c, key)) { 1898 return -ENOENT; 1899 } 1900 1901 err = tnc_read_hashed_node(c, zbr, dent); 1902 if (err) 1903 return err; 1904 1905 if (key_hash(c, key) == key_hash(c, dkey) && 1906 le32_to_cpu(dent->cookie) == cookie) { 1907 *zn = znode; 1908 return 0; 1909 } 1910 1911 err = tnc_next(c, &znode, n); 1912 if (err) 1913 return err; 1914 } 1915 } 1916 1917 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1918 struct ubifs_dent_node *dent, uint32_t cookie) 1919 { 1920 int n, err; 1921 struct ubifs_znode *znode; 1922 union ubifs_key start_key; 1923 1924 ubifs_assert(is_hash_key(c, key)); 1925 1926 lowest_dent_key(c, &start_key, key_inum(c, key)); 1927 1928 mutex_lock(&c->tnc_mutex); 1929 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1930 if (unlikely(err < 0)) 1931 goto out_unlock; 1932 1933 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 1934 1935 out_unlock: 1936 mutex_unlock(&c->tnc_mutex); 1937 return err; 1938 } 1939 1940 /** 1941 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1942 * @c: UBIFS file-system description object 1943 * @key: node key to lookup 1944 * @node: the node is returned here 1945 * @cookie: node cookie for collision resolution 1946 * 1947 * This function looks up and reads a node which contains name hash in the key. 1948 * Since the hash may have collisions, there may be many nodes with the same 1949 * key, so we have to sequentially look to all of them until the needed one 1950 * with the same cookie value is found. 1951 * This function returns zero in case of success, %-ENOENT if the node 1952 * was not found, and a negative error code in case of failure. 1953 */ 1954 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1955 void *node, uint32_t cookie) 1956 { 1957 int err; 1958 const struct ubifs_dent_node *dent = node; 1959 1960 if (!c->double_hash) 1961 return -EOPNOTSUPP; 1962 1963 /* 1964 * We assume that in most of the cases there are no name collisions and 1965 * 'ubifs_tnc_lookup()' returns us the right direntry. 1966 */ 1967 err = ubifs_tnc_lookup(c, key, node); 1968 if (err) 1969 return err; 1970 1971 if (le32_to_cpu(dent->cookie) == cookie) 1972 return 0; 1973 1974 /* 1975 * Unluckily, there are hash collisions and we have to iterate over 1976 * them look at each direntry with colliding name hash sequentially. 1977 */ 1978 return do_lookup_dh(c, key, node, cookie); 1979 } 1980 1981 /** 1982 * correct_parent_keys - correct parent znodes' keys. 1983 * @c: UBIFS file-system description object 1984 * @znode: znode to correct parent znodes for 1985 * 1986 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1987 * zbranch changes, keys of parent znodes have to be corrected. This helper 1988 * function is called in such situations and corrects the keys if needed. 1989 */ 1990 static void correct_parent_keys(const struct ubifs_info *c, 1991 struct ubifs_znode *znode) 1992 { 1993 union ubifs_key *key, *key1; 1994 1995 ubifs_assert(znode->parent); 1996 ubifs_assert(znode->iip == 0); 1997 1998 key = &znode->zbranch[0].key; 1999 key1 = &znode->parent->zbranch[0].key; 2000 2001 while (keys_cmp(c, key, key1) < 0) { 2002 key_copy(c, key, key1); 2003 znode = znode->parent; 2004 znode->alt = 1; 2005 if (!znode->parent || znode->iip) 2006 break; 2007 key1 = &znode->parent->zbranch[0].key; 2008 } 2009 } 2010 2011 /** 2012 * insert_zbranch - insert a zbranch into a znode. 2013 * @znode: znode into which to insert 2014 * @zbr: zbranch to insert 2015 * @n: slot number to insert to 2016 * 2017 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2018 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2019 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2020 * slot, zbranches starting from @n have to be moved right. 2021 */ 2022 static void insert_zbranch(struct ubifs_znode *znode, 2023 const struct ubifs_zbranch *zbr, int n) 2024 { 2025 int i; 2026 2027 ubifs_assert(ubifs_zn_dirty(znode)); 2028 2029 if (znode->level) { 2030 for (i = znode->child_cnt; i > n; i--) { 2031 znode->zbranch[i] = znode->zbranch[i - 1]; 2032 if (znode->zbranch[i].znode) 2033 znode->zbranch[i].znode->iip = i; 2034 } 2035 if (zbr->znode) 2036 zbr->znode->iip = n; 2037 } else 2038 for (i = znode->child_cnt; i > n; i--) 2039 znode->zbranch[i] = znode->zbranch[i - 1]; 2040 2041 znode->zbranch[n] = *zbr; 2042 znode->child_cnt += 1; 2043 2044 /* 2045 * After inserting at slot zero, the lower bound of the key range of 2046 * this znode may have changed. If this znode is subsequently split 2047 * then the upper bound of the key range may change, and furthermore 2048 * it could change to be lower than the original lower bound. If that 2049 * happens, then it will no longer be possible to find this znode in the 2050 * TNC using the key from the index node on flash. That is bad because 2051 * if it is not found, we will assume it is obsolete and may overwrite 2052 * it. Then if there is an unclean unmount, we will start using the 2053 * old index which will be broken. 2054 * 2055 * So we first mark znodes that have insertions at slot zero, and then 2056 * if they are split we add their lnum/offs to the old_idx tree. 2057 */ 2058 if (n == 0) 2059 znode->alt = 1; 2060 } 2061 2062 /** 2063 * tnc_insert - insert a node into TNC. 2064 * @c: UBIFS file-system description object 2065 * @znode: znode to insert into 2066 * @zbr: branch to insert 2067 * @n: slot number to insert new zbranch to 2068 * 2069 * This function inserts a new node described by @zbr into znode @znode. If 2070 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2071 * are splat as well if needed. Returns zero in case of success or a negative 2072 * error code in case of failure. 2073 */ 2074 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2075 struct ubifs_zbranch *zbr, int n) 2076 { 2077 struct ubifs_znode *zn, *zi, *zp; 2078 int i, keep, move, appending = 0; 2079 union ubifs_key *key = &zbr->key, *key1; 2080 2081 ubifs_assert(n >= 0 && n <= c->fanout); 2082 2083 /* Implement naive insert for now */ 2084 again: 2085 zp = znode->parent; 2086 if (znode->child_cnt < c->fanout) { 2087 ubifs_assert(n != c->fanout); 2088 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2089 2090 insert_zbranch(znode, zbr, n); 2091 2092 /* Ensure parent's key is correct */ 2093 if (n == 0 && zp && znode->iip == 0) 2094 correct_parent_keys(c, znode); 2095 2096 return 0; 2097 } 2098 2099 /* 2100 * Unfortunately, @znode does not have more empty slots and we have to 2101 * split it. 2102 */ 2103 dbg_tnck(key, "splitting level %d, key ", znode->level); 2104 2105 if (znode->alt) 2106 /* 2107 * We can no longer be sure of finding this znode by key, so we 2108 * record it in the old_idx tree. 2109 */ 2110 ins_clr_old_idx_znode(c, znode); 2111 2112 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2113 if (!zn) 2114 return -ENOMEM; 2115 zn->parent = zp; 2116 zn->level = znode->level; 2117 2118 /* Decide where to split */ 2119 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2120 /* Try not to split consecutive data keys */ 2121 if (n == c->fanout) { 2122 key1 = &znode->zbranch[n - 1].key; 2123 if (key_inum(c, key1) == key_inum(c, key) && 2124 key_type(c, key1) == UBIFS_DATA_KEY) 2125 appending = 1; 2126 } else 2127 goto check_split; 2128 } else if (appending && n != c->fanout) { 2129 /* Try not to split consecutive data keys */ 2130 appending = 0; 2131 check_split: 2132 if (n >= (c->fanout + 1) / 2) { 2133 key1 = &znode->zbranch[0].key; 2134 if (key_inum(c, key1) == key_inum(c, key) && 2135 key_type(c, key1) == UBIFS_DATA_KEY) { 2136 key1 = &znode->zbranch[n].key; 2137 if (key_inum(c, key1) != key_inum(c, key) || 2138 key_type(c, key1) != UBIFS_DATA_KEY) { 2139 keep = n; 2140 move = c->fanout - keep; 2141 zi = znode; 2142 goto do_split; 2143 } 2144 } 2145 } 2146 } 2147 2148 if (appending) { 2149 keep = c->fanout; 2150 move = 0; 2151 } else { 2152 keep = (c->fanout + 1) / 2; 2153 move = c->fanout - keep; 2154 } 2155 2156 /* 2157 * Although we don't at present, we could look at the neighbors and see 2158 * if we can move some zbranches there. 2159 */ 2160 2161 if (n < keep) { 2162 /* Insert into existing znode */ 2163 zi = znode; 2164 move += 1; 2165 keep -= 1; 2166 } else { 2167 /* Insert into new znode */ 2168 zi = zn; 2169 n -= keep; 2170 /* Re-parent */ 2171 if (zn->level != 0) 2172 zbr->znode->parent = zn; 2173 } 2174 2175 do_split: 2176 2177 __set_bit(DIRTY_ZNODE, &zn->flags); 2178 atomic_long_inc(&c->dirty_zn_cnt); 2179 2180 zn->child_cnt = move; 2181 znode->child_cnt = keep; 2182 2183 dbg_tnc("moving %d, keeping %d", move, keep); 2184 2185 /* Move zbranch */ 2186 for (i = 0; i < move; i++) { 2187 zn->zbranch[i] = znode->zbranch[keep + i]; 2188 /* Re-parent */ 2189 if (zn->level != 0) 2190 if (zn->zbranch[i].znode) { 2191 zn->zbranch[i].znode->parent = zn; 2192 zn->zbranch[i].znode->iip = i; 2193 } 2194 } 2195 2196 /* Insert new key and branch */ 2197 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2198 2199 insert_zbranch(zi, zbr, n); 2200 2201 /* Insert new znode (produced by spitting) into the parent */ 2202 if (zp) { 2203 if (n == 0 && zi == znode && znode->iip == 0) 2204 correct_parent_keys(c, znode); 2205 2206 /* Locate insertion point */ 2207 n = znode->iip + 1; 2208 2209 /* Tail recursion */ 2210 zbr->key = zn->zbranch[0].key; 2211 zbr->znode = zn; 2212 zbr->lnum = 0; 2213 zbr->offs = 0; 2214 zbr->len = 0; 2215 znode = zp; 2216 2217 goto again; 2218 } 2219 2220 /* We have to split root znode */ 2221 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2222 2223 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2224 if (!zi) 2225 return -ENOMEM; 2226 2227 zi->child_cnt = 2; 2228 zi->level = znode->level + 1; 2229 2230 __set_bit(DIRTY_ZNODE, &zi->flags); 2231 atomic_long_inc(&c->dirty_zn_cnt); 2232 2233 zi->zbranch[0].key = znode->zbranch[0].key; 2234 zi->zbranch[0].znode = znode; 2235 zi->zbranch[0].lnum = c->zroot.lnum; 2236 zi->zbranch[0].offs = c->zroot.offs; 2237 zi->zbranch[0].len = c->zroot.len; 2238 zi->zbranch[1].key = zn->zbranch[0].key; 2239 zi->zbranch[1].znode = zn; 2240 2241 c->zroot.lnum = 0; 2242 c->zroot.offs = 0; 2243 c->zroot.len = 0; 2244 c->zroot.znode = zi; 2245 2246 zn->parent = zi; 2247 zn->iip = 1; 2248 znode->parent = zi; 2249 znode->iip = 0; 2250 2251 return 0; 2252 } 2253 2254 /** 2255 * ubifs_tnc_add - add a node to TNC. 2256 * @c: UBIFS file-system description object 2257 * @key: key to add 2258 * @lnum: LEB number of node 2259 * @offs: node offset 2260 * @len: node length 2261 * 2262 * This function adds a node with key @key to TNC. The node may be new or it may 2263 * obsolete some existing one. Returns %0 on success or negative error code on 2264 * failure. 2265 */ 2266 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2267 int offs, int len) 2268 { 2269 int found, n, err = 0; 2270 struct ubifs_znode *znode; 2271 2272 mutex_lock(&c->tnc_mutex); 2273 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2274 found = lookup_level0_dirty(c, key, &znode, &n); 2275 if (!found) { 2276 struct ubifs_zbranch zbr; 2277 2278 zbr.znode = NULL; 2279 zbr.lnum = lnum; 2280 zbr.offs = offs; 2281 zbr.len = len; 2282 key_copy(c, key, &zbr.key); 2283 err = tnc_insert(c, znode, &zbr, n + 1); 2284 } else if (found == 1) { 2285 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2286 2287 lnc_free(zbr); 2288 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2289 zbr->lnum = lnum; 2290 zbr->offs = offs; 2291 zbr->len = len; 2292 } else 2293 err = found; 2294 if (!err) 2295 err = dbg_check_tnc(c, 0); 2296 mutex_unlock(&c->tnc_mutex); 2297 2298 return err; 2299 } 2300 2301 /** 2302 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2303 * @c: UBIFS file-system description object 2304 * @key: key to add 2305 * @old_lnum: LEB number of old node 2306 * @old_offs: old node offset 2307 * @lnum: LEB number of node 2308 * @offs: node offset 2309 * @len: node length 2310 * 2311 * This function replaces a node with key @key in the TNC only if the old node 2312 * is found. This function is called by garbage collection when node are moved. 2313 * Returns %0 on success or negative error code on failure. 2314 */ 2315 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2316 int old_lnum, int old_offs, int lnum, int offs, int len) 2317 { 2318 int found, n, err = 0; 2319 struct ubifs_znode *znode; 2320 2321 mutex_lock(&c->tnc_mutex); 2322 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2323 old_offs, lnum, offs, len); 2324 found = lookup_level0_dirty(c, key, &znode, &n); 2325 if (found < 0) { 2326 err = found; 2327 goto out_unlock; 2328 } 2329 2330 if (found == 1) { 2331 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2332 2333 found = 0; 2334 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2335 lnc_free(zbr); 2336 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2337 if (err) 2338 goto out_unlock; 2339 zbr->lnum = lnum; 2340 zbr->offs = offs; 2341 zbr->len = len; 2342 found = 1; 2343 } else if (is_hash_key(c, key)) { 2344 found = resolve_collision_directly(c, key, &znode, &n, 2345 old_lnum, old_offs); 2346 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2347 found, znode, n, old_lnum, old_offs); 2348 if (found < 0) { 2349 err = found; 2350 goto out_unlock; 2351 } 2352 2353 if (found) { 2354 /* Ensure the znode is dirtied */ 2355 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2356 znode = dirty_cow_bottom_up(c, znode); 2357 if (IS_ERR(znode)) { 2358 err = PTR_ERR(znode); 2359 goto out_unlock; 2360 } 2361 } 2362 zbr = &znode->zbranch[n]; 2363 lnc_free(zbr); 2364 err = ubifs_add_dirt(c, zbr->lnum, 2365 zbr->len); 2366 if (err) 2367 goto out_unlock; 2368 zbr->lnum = lnum; 2369 zbr->offs = offs; 2370 zbr->len = len; 2371 } 2372 } 2373 } 2374 2375 if (!found) 2376 err = ubifs_add_dirt(c, lnum, len); 2377 2378 if (!err) 2379 err = dbg_check_tnc(c, 0); 2380 2381 out_unlock: 2382 mutex_unlock(&c->tnc_mutex); 2383 return err; 2384 } 2385 2386 /** 2387 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2388 * @c: UBIFS file-system description object 2389 * @key: key to add 2390 * @lnum: LEB number of node 2391 * @offs: node offset 2392 * @len: node length 2393 * @nm: node name 2394 * 2395 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2396 * may have collisions, like directory entry keys. 2397 */ 2398 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2399 int lnum, int offs, int len, 2400 const struct fscrypt_name *nm) 2401 { 2402 int found, n, err = 0; 2403 struct ubifs_znode *znode; 2404 2405 mutex_lock(&c->tnc_mutex); 2406 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2407 found = lookup_level0_dirty(c, key, &znode, &n); 2408 if (found < 0) { 2409 err = found; 2410 goto out_unlock; 2411 } 2412 2413 if (found == 1) { 2414 if (c->replaying) 2415 found = fallible_resolve_collision(c, key, &znode, &n, 2416 nm, 1); 2417 else 2418 found = resolve_collision(c, key, &znode, &n, nm); 2419 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2420 if (found < 0) { 2421 err = found; 2422 goto out_unlock; 2423 } 2424 2425 /* Ensure the znode is dirtied */ 2426 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2427 znode = dirty_cow_bottom_up(c, znode); 2428 if (IS_ERR(znode)) { 2429 err = PTR_ERR(znode); 2430 goto out_unlock; 2431 } 2432 } 2433 2434 if (found == 1) { 2435 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2436 2437 lnc_free(zbr); 2438 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2439 zbr->lnum = lnum; 2440 zbr->offs = offs; 2441 zbr->len = len; 2442 goto out_unlock; 2443 } 2444 } 2445 2446 if (!found) { 2447 struct ubifs_zbranch zbr; 2448 2449 zbr.znode = NULL; 2450 zbr.lnum = lnum; 2451 zbr.offs = offs; 2452 zbr.len = len; 2453 key_copy(c, key, &zbr.key); 2454 err = tnc_insert(c, znode, &zbr, n + 1); 2455 if (err) 2456 goto out_unlock; 2457 if (c->replaying) { 2458 /* 2459 * We did not find it in the index so there may be a 2460 * dangling branch still in the index. So we remove it 2461 * by passing 'ubifs_tnc_remove_nm()' the same key but 2462 * an unmatchable name. 2463 */ 2464 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2465 2466 err = dbg_check_tnc(c, 0); 2467 mutex_unlock(&c->tnc_mutex); 2468 if (err) 2469 return err; 2470 return ubifs_tnc_remove_nm(c, key, &noname); 2471 } 2472 } 2473 2474 out_unlock: 2475 if (!err) 2476 err = dbg_check_tnc(c, 0); 2477 mutex_unlock(&c->tnc_mutex); 2478 return err; 2479 } 2480 2481 /** 2482 * tnc_delete - delete a znode form TNC. 2483 * @c: UBIFS file-system description object 2484 * @znode: znode to delete from 2485 * @n: zbranch slot number to delete 2486 * 2487 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2488 * case of success and a negative error code in case of failure. 2489 */ 2490 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2491 { 2492 struct ubifs_zbranch *zbr; 2493 struct ubifs_znode *zp; 2494 int i, err; 2495 2496 /* Delete without merge for now */ 2497 ubifs_assert(znode->level == 0); 2498 ubifs_assert(n >= 0 && n < c->fanout); 2499 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2500 2501 zbr = &znode->zbranch[n]; 2502 lnc_free(zbr); 2503 2504 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2505 if (err) { 2506 ubifs_dump_znode(c, znode); 2507 return err; 2508 } 2509 2510 /* We do not "gap" zbranch slots */ 2511 for (i = n; i < znode->child_cnt - 1; i++) 2512 znode->zbranch[i] = znode->zbranch[i + 1]; 2513 znode->child_cnt -= 1; 2514 2515 if (znode->child_cnt > 0) 2516 return 0; 2517 2518 /* 2519 * This was the last zbranch, we have to delete this znode from the 2520 * parent. 2521 */ 2522 2523 do { 2524 ubifs_assert(!ubifs_zn_obsolete(znode)); 2525 ubifs_assert(ubifs_zn_dirty(znode)); 2526 2527 zp = znode->parent; 2528 n = znode->iip; 2529 2530 atomic_long_dec(&c->dirty_zn_cnt); 2531 2532 err = insert_old_idx_znode(c, znode); 2533 if (err) 2534 return err; 2535 2536 if (znode->cnext) { 2537 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2538 atomic_long_inc(&c->clean_zn_cnt); 2539 atomic_long_inc(&ubifs_clean_zn_cnt); 2540 } else 2541 kfree(znode); 2542 znode = zp; 2543 } while (znode->child_cnt == 1); /* while removing last child */ 2544 2545 /* Remove from znode, entry n - 1 */ 2546 znode->child_cnt -= 1; 2547 ubifs_assert(znode->level != 0); 2548 for (i = n; i < znode->child_cnt; i++) { 2549 znode->zbranch[i] = znode->zbranch[i + 1]; 2550 if (znode->zbranch[i].znode) 2551 znode->zbranch[i].znode->iip = i; 2552 } 2553 2554 /* 2555 * If this is the root and it has only 1 child then 2556 * collapse the tree. 2557 */ 2558 if (!znode->parent) { 2559 while (znode->child_cnt == 1 && znode->level != 0) { 2560 zp = znode; 2561 zbr = &znode->zbranch[0]; 2562 znode = get_znode(c, znode, 0); 2563 if (IS_ERR(znode)) 2564 return PTR_ERR(znode); 2565 znode = dirty_cow_znode(c, zbr); 2566 if (IS_ERR(znode)) 2567 return PTR_ERR(znode); 2568 znode->parent = NULL; 2569 znode->iip = 0; 2570 if (c->zroot.len) { 2571 err = insert_old_idx(c, c->zroot.lnum, 2572 c->zroot.offs); 2573 if (err) 2574 return err; 2575 } 2576 c->zroot.lnum = zbr->lnum; 2577 c->zroot.offs = zbr->offs; 2578 c->zroot.len = zbr->len; 2579 c->zroot.znode = znode; 2580 ubifs_assert(!ubifs_zn_obsolete(zp)); 2581 ubifs_assert(ubifs_zn_dirty(zp)); 2582 atomic_long_dec(&c->dirty_zn_cnt); 2583 2584 if (zp->cnext) { 2585 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2586 atomic_long_inc(&c->clean_zn_cnt); 2587 atomic_long_inc(&ubifs_clean_zn_cnt); 2588 } else 2589 kfree(zp); 2590 } 2591 } 2592 2593 return 0; 2594 } 2595 2596 /** 2597 * ubifs_tnc_remove - remove an index entry of a node. 2598 * @c: UBIFS file-system description object 2599 * @key: key of node 2600 * 2601 * Returns %0 on success or negative error code on failure. 2602 */ 2603 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2604 { 2605 int found, n, err = 0; 2606 struct ubifs_znode *znode; 2607 2608 mutex_lock(&c->tnc_mutex); 2609 dbg_tnck(key, "key "); 2610 found = lookup_level0_dirty(c, key, &znode, &n); 2611 if (found < 0) { 2612 err = found; 2613 goto out_unlock; 2614 } 2615 if (found == 1) 2616 err = tnc_delete(c, znode, n); 2617 if (!err) 2618 err = dbg_check_tnc(c, 0); 2619 2620 out_unlock: 2621 mutex_unlock(&c->tnc_mutex); 2622 return err; 2623 } 2624 2625 /** 2626 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2627 * @c: UBIFS file-system description object 2628 * @key: key of node 2629 * @nm: directory entry name 2630 * 2631 * Returns %0 on success or negative error code on failure. 2632 */ 2633 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2634 const struct fscrypt_name *nm) 2635 { 2636 int n, err; 2637 struct ubifs_znode *znode; 2638 2639 mutex_lock(&c->tnc_mutex); 2640 dbg_tnck(key, "key "); 2641 err = lookup_level0_dirty(c, key, &znode, &n); 2642 if (err < 0) 2643 goto out_unlock; 2644 2645 if (err) { 2646 if (c->replaying) 2647 err = fallible_resolve_collision(c, key, &znode, &n, 2648 nm, 0); 2649 else 2650 err = resolve_collision(c, key, &znode, &n, nm); 2651 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2652 if (err < 0) 2653 goto out_unlock; 2654 if (err) { 2655 /* Ensure the znode is dirtied */ 2656 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2657 znode = dirty_cow_bottom_up(c, znode); 2658 if (IS_ERR(znode)) { 2659 err = PTR_ERR(znode); 2660 goto out_unlock; 2661 } 2662 } 2663 err = tnc_delete(c, znode, n); 2664 } 2665 } 2666 2667 out_unlock: 2668 if (!err) 2669 err = dbg_check_tnc(c, 0); 2670 mutex_unlock(&c->tnc_mutex); 2671 return err; 2672 } 2673 2674 /** 2675 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2676 * @c: UBIFS file-system description object 2677 * @key: key of node 2678 * @cookie: node cookie for collision resolution 2679 * 2680 * Returns %0 on success or negative error code on failure. 2681 */ 2682 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2683 uint32_t cookie) 2684 { 2685 int n, err; 2686 struct ubifs_znode *znode; 2687 struct ubifs_dent_node *dent; 2688 struct ubifs_zbranch *zbr; 2689 2690 if (!c->double_hash) 2691 return -EOPNOTSUPP; 2692 2693 mutex_lock(&c->tnc_mutex); 2694 err = lookup_level0_dirty(c, key, &znode, &n); 2695 if (err <= 0) 2696 goto out_unlock; 2697 2698 zbr = &znode->zbranch[n]; 2699 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2700 if (!dent) { 2701 err = -ENOMEM; 2702 goto out_unlock; 2703 } 2704 2705 err = tnc_read_hashed_node(c, zbr, dent); 2706 if (err) 2707 goto out_free; 2708 2709 /* If the cookie does not match, we're facing a hash collision. */ 2710 if (le32_to_cpu(dent->cookie) != cookie) { 2711 union ubifs_key start_key; 2712 2713 lowest_dent_key(c, &start_key, key_inum(c, key)); 2714 2715 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2716 if (unlikely(err < 0)) 2717 goto out_free; 2718 2719 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 2720 if (err) 2721 goto out_free; 2722 } 2723 2724 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2725 znode = dirty_cow_bottom_up(c, znode); 2726 if (IS_ERR(znode)) { 2727 err = PTR_ERR(znode); 2728 goto out_free; 2729 } 2730 } 2731 err = tnc_delete(c, znode, n); 2732 2733 out_free: 2734 kfree(dent); 2735 out_unlock: 2736 if (!err) 2737 err = dbg_check_tnc(c, 0); 2738 mutex_unlock(&c->tnc_mutex); 2739 return err; 2740 } 2741 2742 /** 2743 * key_in_range - determine if a key falls within a range of keys. 2744 * @c: UBIFS file-system description object 2745 * @key: key to check 2746 * @from_key: lowest key in range 2747 * @to_key: highest key in range 2748 * 2749 * This function returns %1 if the key is in range and %0 otherwise. 2750 */ 2751 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2752 union ubifs_key *from_key, union ubifs_key *to_key) 2753 { 2754 if (keys_cmp(c, key, from_key) < 0) 2755 return 0; 2756 if (keys_cmp(c, key, to_key) > 0) 2757 return 0; 2758 return 1; 2759 } 2760 2761 /** 2762 * ubifs_tnc_remove_range - remove index entries in range. 2763 * @c: UBIFS file-system description object 2764 * @from_key: lowest key to remove 2765 * @to_key: highest key to remove 2766 * 2767 * This function removes index entries starting at @from_key and ending at 2768 * @to_key. This function returns zero in case of success and a negative error 2769 * code in case of failure. 2770 */ 2771 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2772 union ubifs_key *to_key) 2773 { 2774 int i, n, k, err = 0; 2775 struct ubifs_znode *znode; 2776 union ubifs_key *key; 2777 2778 mutex_lock(&c->tnc_mutex); 2779 while (1) { 2780 /* Find first level 0 znode that contains keys to remove */ 2781 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2782 if (err < 0) 2783 goto out_unlock; 2784 2785 if (err) 2786 key = from_key; 2787 else { 2788 err = tnc_next(c, &znode, &n); 2789 if (err == -ENOENT) { 2790 err = 0; 2791 goto out_unlock; 2792 } 2793 if (err < 0) 2794 goto out_unlock; 2795 key = &znode->zbranch[n].key; 2796 if (!key_in_range(c, key, from_key, to_key)) { 2797 err = 0; 2798 goto out_unlock; 2799 } 2800 } 2801 2802 /* Ensure the znode is dirtied */ 2803 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2804 znode = dirty_cow_bottom_up(c, znode); 2805 if (IS_ERR(znode)) { 2806 err = PTR_ERR(znode); 2807 goto out_unlock; 2808 } 2809 } 2810 2811 /* Remove all keys in range except the first */ 2812 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2813 key = &znode->zbranch[i].key; 2814 if (!key_in_range(c, key, from_key, to_key)) 2815 break; 2816 lnc_free(&znode->zbranch[i]); 2817 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2818 znode->zbranch[i].len); 2819 if (err) { 2820 ubifs_dump_znode(c, znode); 2821 goto out_unlock; 2822 } 2823 dbg_tnck(key, "removing key "); 2824 } 2825 if (k) { 2826 for (i = n + 1 + k; i < znode->child_cnt; i++) 2827 znode->zbranch[i - k] = znode->zbranch[i]; 2828 znode->child_cnt -= k; 2829 } 2830 2831 /* Now delete the first */ 2832 err = tnc_delete(c, znode, n); 2833 if (err) 2834 goto out_unlock; 2835 } 2836 2837 out_unlock: 2838 if (!err) 2839 err = dbg_check_tnc(c, 0); 2840 mutex_unlock(&c->tnc_mutex); 2841 return err; 2842 } 2843 2844 /** 2845 * ubifs_tnc_remove_ino - remove an inode from TNC. 2846 * @c: UBIFS file-system description object 2847 * @inum: inode number to remove 2848 * 2849 * This function remove inode @inum and all the extended attributes associated 2850 * with the anode from TNC and returns zero in case of success or a negative 2851 * error code in case of failure. 2852 */ 2853 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2854 { 2855 union ubifs_key key1, key2; 2856 struct ubifs_dent_node *xent, *pxent = NULL; 2857 struct fscrypt_name nm = {0}; 2858 2859 dbg_tnc("ino %lu", (unsigned long)inum); 2860 2861 /* 2862 * Walk all extended attribute entries and remove them together with 2863 * corresponding extended attribute inodes. 2864 */ 2865 lowest_xent_key(c, &key1, inum); 2866 while (1) { 2867 ino_t xattr_inum; 2868 int err; 2869 2870 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2871 if (IS_ERR(xent)) { 2872 err = PTR_ERR(xent); 2873 if (err == -ENOENT) 2874 break; 2875 return err; 2876 } 2877 2878 xattr_inum = le64_to_cpu(xent->inum); 2879 dbg_tnc("xent '%s', ino %lu", xent->name, 2880 (unsigned long)xattr_inum); 2881 2882 ubifs_evict_xattr_inode(c, xattr_inum); 2883 2884 fname_name(&nm) = xent->name; 2885 fname_len(&nm) = le16_to_cpu(xent->nlen); 2886 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2887 if (err) { 2888 kfree(xent); 2889 return err; 2890 } 2891 2892 lowest_ino_key(c, &key1, xattr_inum); 2893 highest_ino_key(c, &key2, xattr_inum); 2894 err = ubifs_tnc_remove_range(c, &key1, &key2); 2895 if (err) { 2896 kfree(xent); 2897 return err; 2898 } 2899 2900 kfree(pxent); 2901 pxent = xent; 2902 key_read(c, &xent->key, &key1); 2903 } 2904 2905 kfree(pxent); 2906 lowest_ino_key(c, &key1, inum); 2907 highest_ino_key(c, &key2, inum); 2908 2909 return ubifs_tnc_remove_range(c, &key1, &key2); 2910 } 2911 2912 /** 2913 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2914 * @c: UBIFS file-system description object 2915 * @key: key of last entry 2916 * @nm: name of last entry found or %NULL 2917 * 2918 * This function finds and reads the next directory or extended attribute entry 2919 * after the given key (@key) if there is one. @nm is used to resolve 2920 * collisions. 2921 * 2922 * If the name of the current entry is not known and only the key is known, 2923 * @nm->name has to be %NULL. In this case the semantics of this function is a 2924 * little bit different and it returns the entry corresponding to this key, not 2925 * the next one. If the key was not found, the closest "right" entry is 2926 * returned. 2927 * 2928 * If the fist entry has to be found, @key has to contain the lowest possible 2929 * key value for this inode and @name has to be %NULL. 2930 * 2931 * This function returns the found directory or extended attribute entry node 2932 * in case of success, %-ENOENT is returned if no entry was found, and a 2933 * negative error code is returned in case of failure. 2934 */ 2935 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2936 union ubifs_key *key, 2937 const struct fscrypt_name *nm) 2938 { 2939 int n, err, type = key_type(c, key); 2940 struct ubifs_znode *znode; 2941 struct ubifs_dent_node *dent; 2942 struct ubifs_zbranch *zbr; 2943 union ubifs_key *dkey; 2944 2945 dbg_tnck(key, "key "); 2946 ubifs_assert(is_hash_key(c, key)); 2947 2948 mutex_lock(&c->tnc_mutex); 2949 err = ubifs_lookup_level0(c, key, &znode, &n); 2950 if (unlikely(err < 0)) 2951 goto out_unlock; 2952 2953 if (fname_len(nm) > 0) { 2954 if (err) { 2955 /* Handle collisions */ 2956 if (c->replaying) 2957 err = fallible_resolve_collision(c, key, &znode, &n, 2958 nm, 0); 2959 else 2960 err = resolve_collision(c, key, &znode, &n, nm); 2961 dbg_tnc("rc returned %d, znode %p, n %d", 2962 err, znode, n); 2963 if (unlikely(err < 0)) 2964 goto out_unlock; 2965 } 2966 2967 /* Now find next entry */ 2968 err = tnc_next(c, &znode, &n); 2969 if (unlikely(err)) 2970 goto out_unlock; 2971 } else { 2972 /* 2973 * The full name of the entry was not given, in which case the 2974 * behavior of this function is a little different and it 2975 * returns current entry, not the next one. 2976 */ 2977 if (!err) { 2978 /* 2979 * However, the given key does not exist in the TNC 2980 * tree and @znode/@n variables contain the closest 2981 * "preceding" element. Switch to the next one. 2982 */ 2983 err = tnc_next(c, &znode, &n); 2984 if (err) 2985 goto out_unlock; 2986 } 2987 } 2988 2989 zbr = &znode->zbranch[n]; 2990 dent = kmalloc(zbr->len, GFP_NOFS); 2991 if (unlikely(!dent)) { 2992 err = -ENOMEM; 2993 goto out_unlock; 2994 } 2995 2996 /* 2997 * The above 'tnc_next()' call could lead us to the next inode, check 2998 * this. 2999 */ 3000 dkey = &zbr->key; 3001 if (key_inum(c, dkey) != key_inum(c, key) || 3002 key_type(c, dkey) != type) { 3003 err = -ENOENT; 3004 goto out_free; 3005 } 3006 3007 err = tnc_read_hashed_node(c, zbr, dent); 3008 if (unlikely(err)) 3009 goto out_free; 3010 3011 mutex_unlock(&c->tnc_mutex); 3012 return dent; 3013 3014 out_free: 3015 kfree(dent); 3016 out_unlock: 3017 mutex_unlock(&c->tnc_mutex); 3018 return ERR_PTR(err); 3019 } 3020 3021 /** 3022 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3023 * @c: UBIFS file-system description object 3024 * 3025 * Destroy left-over obsolete znodes from a failed commit. 3026 */ 3027 static void tnc_destroy_cnext(struct ubifs_info *c) 3028 { 3029 struct ubifs_znode *cnext; 3030 3031 if (!c->cnext) 3032 return; 3033 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 3034 cnext = c->cnext; 3035 do { 3036 struct ubifs_znode *znode = cnext; 3037 3038 cnext = cnext->cnext; 3039 if (ubifs_zn_obsolete(znode)) 3040 kfree(znode); 3041 } while (cnext && cnext != c->cnext); 3042 } 3043 3044 /** 3045 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3046 * @c: UBIFS file-system description object 3047 */ 3048 void ubifs_tnc_close(struct ubifs_info *c) 3049 { 3050 tnc_destroy_cnext(c); 3051 if (c->zroot.znode) { 3052 long n, freed; 3053 3054 n = atomic_long_read(&c->clean_zn_cnt); 3055 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 3056 ubifs_assert(freed == n); 3057 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3058 } 3059 kfree(c->gap_lebs); 3060 kfree(c->ilebs); 3061 destroy_old_idx(c); 3062 } 3063 3064 /** 3065 * left_znode - get the znode to the left. 3066 * @c: UBIFS file-system description object 3067 * @znode: znode 3068 * 3069 * This function returns a pointer to the znode to the left of @znode or NULL if 3070 * there is not one. A negative error code is returned on failure. 3071 */ 3072 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3073 struct ubifs_znode *znode) 3074 { 3075 int level = znode->level; 3076 3077 while (1) { 3078 int n = znode->iip - 1; 3079 3080 /* Go up until we can go left */ 3081 znode = znode->parent; 3082 if (!znode) 3083 return NULL; 3084 if (n >= 0) { 3085 /* Now go down the rightmost branch to 'level' */ 3086 znode = get_znode(c, znode, n); 3087 if (IS_ERR(znode)) 3088 return znode; 3089 while (znode->level != level) { 3090 n = znode->child_cnt - 1; 3091 znode = get_znode(c, znode, n); 3092 if (IS_ERR(znode)) 3093 return znode; 3094 } 3095 break; 3096 } 3097 } 3098 return znode; 3099 } 3100 3101 /** 3102 * right_znode - get the znode to the right. 3103 * @c: UBIFS file-system description object 3104 * @znode: znode 3105 * 3106 * This function returns a pointer to the znode to the right of @znode or NULL 3107 * if there is not one. A negative error code is returned on failure. 3108 */ 3109 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3110 struct ubifs_znode *znode) 3111 { 3112 int level = znode->level; 3113 3114 while (1) { 3115 int n = znode->iip + 1; 3116 3117 /* Go up until we can go right */ 3118 znode = znode->parent; 3119 if (!znode) 3120 return NULL; 3121 if (n < znode->child_cnt) { 3122 /* Now go down the leftmost branch to 'level' */ 3123 znode = get_znode(c, znode, n); 3124 if (IS_ERR(znode)) 3125 return znode; 3126 while (znode->level != level) { 3127 znode = get_znode(c, znode, 0); 3128 if (IS_ERR(znode)) 3129 return znode; 3130 } 3131 break; 3132 } 3133 } 3134 return znode; 3135 } 3136 3137 /** 3138 * lookup_znode - find a particular indexing node from TNC. 3139 * @c: UBIFS file-system description object 3140 * @key: index node key to lookup 3141 * @level: index node level 3142 * @lnum: index node LEB number 3143 * @offs: index node offset 3144 * 3145 * This function searches an indexing node by its first key @key and its 3146 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3147 * nodes it traverses to TNC. This function is called for indexing nodes which 3148 * were found on the media by scanning, for example when garbage-collecting or 3149 * when doing in-the-gaps commit. This means that the indexing node which is 3150 * looked for does not have to have exactly the same leftmost key @key, because 3151 * the leftmost key may have been changed, in which case TNC will contain a 3152 * dirty znode which still refers the same @lnum:@offs. This function is clever 3153 * enough to recognize such indexing nodes. 3154 * 3155 * Note, if a znode was deleted or changed too much, then this function will 3156 * not find it. For situations like this UBIFS has the old index RB-tree 3157 * (indexed by @lnum:@offs). 3158 * 3159 * This function returns a pointer to the znode found or %NULL if it is not 3160 * found. A negative error code is returned on failure. 3161 */ 3162 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3163 union ubifs_key *key, int level, 3164 int lnum, int offs) 3165 { 3166 struct ubifs_znode *znode, *zn; 3167 int n, nn; 3168 3169 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 3170 3171 /* 3172 * The arguments have probably been read off flash, so don't assume 3173 * they are valid. 3174 */ 3175 if (level < 0) 3176 return ERR_PTR(-EINVAL); 3177 3178 /* Get the root znode */ 3179 znode = c->zroot.znode; 3180 if (!znode) { 3181 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3182 if (IS_ERR(znode)) 3183 return znode; 3184 } 3185 /* Check if it is the one we are looking for */ 3186 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3187 return znode; 3188 /* Descend to the parent level i.e. (level + 1) */ 3189 if (level >= znode->level) 3190 return NULL; 3191 while (1) { 3192 ubifs_search_zbranch(c, znode, key, &n); 3193 if (n < 0) { 3194 /* 3195 * We reached a znode where the leftmost key is greater 3196 * than the key we are searching for. This is the same 3197 * situation as the one described in a huge comment at 3198 * the end of the 'ubifs_lookup_level0()' function. And 3199 * for exactly the same reasons we have to try to look 3200 * left before giving up. 3201 */ 3202 znode = left_znode(c, znode); 3203 if (!znode) 3204 return NULL; 3205 if (IS_ERR(znode)) 3206 return znode; 3207 ubifs_search_zbranch(c, znode, key, &n); 3208 ubifs_assert(n >= 0); 3209 } 3210 if (znode->level == level + 1) 3211 break; 3212 znode = get_znode(c, znode, n); 3213 if (IS_ERR(znode)) 3214 return znode; 3215 } 3216 /* Check if the child is the one we are looking for */ 3217 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3218 return get_znode(c, znode, n); 3219 /* If the key is unique, there is nowhere else to look */ 3220 if (!is_hash_key(c, key)) 3221 return NULL; 3222 /* 3223 * The key is not unique and so may be also in the znodes to either 3224 * side. 3225 */ 3226 zn = znode; 3227 nn = n; 3228 /* Look left */ 3229 while (1) { 3230 /* Move one branch to the left */ 3231 if (n) 3232 n -= 1; 3233 else { 3234 znode = left_znode(c, znode); 3235 if (!znode) 3236 break; 3237 if (IS_ERR(znode)) 3238 return znode; 3239 n = znode->child_cnt - 1; 3240 } 3241 /* Check it */ 3242 if (znode->zbranch[n].lnum == lnum && 3243 znode->zbranch[n].offs == offs) 3244 return get_znode(c, znode, n); 3245 /* Stop if the key is less than the one we are looking for */ 3246 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3247 break; 3248 } 3249 /* Back to the middle */ 3250 znode = zn; 3251 n = nn; 3252 /* Look right */ 3253 while (1) { 3254 /* Move one branch to the right */ 3255 if (++n >= znode->child_cnt) { 3256 znode = right_znode(c, znode); 3257 if (!znode) 3258 break; 3259 if (IS_ERR(znode)) 3260 return znode; 3261 n = 0; 3262 } 3263 /* Check it */ 3264 if (znode->zbranch[n].lnum == lnum && 3265 znode->zbranch[n].offs == offs) 3266 return get_znode(c, znode, n); 3267 /* Stop if the key is greater than the one we are looking for */ 3268 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3269 break; 3270 } 3271 return NULL; 3272 } 3273 3274 /** 3275 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3276 * @c: UBIFS file-system description object 3277 * @key: key of index node 3278 * @level: index node level 3279 * @lnum: LEB number of index node 3280 * @offs: offset of index node 3281 * 3282 * This function returns %0 if the index node is not referred to in the TNC, %1 3283 * if the index node is referred to in the TNC and the corresponding znode is 3284 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3285 * znode is clean, and a negative error code in case of failure. 3286 * 3287 * Note, the @key argument has to be the key of the first child. Also note, 3288 * this function relies on the fact that 0:0 is never a valid LEB number and 3289 * offset for a main-area node. 3290 */ 3291 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3292 int lnum, int offs) 3293 { 3294 struct ubifs_znode *znode; 3295 3296 znode = lookup_znode(c, key, level, lnum, offs); 3297 if (!znode) 3298 return 0; 3299 if (IS_ERR(znode)) 3300 return PTR_ERR(znode); 3301 3302 return ubifs_zn_dirty(znode) ? 1 : 2; 3303 } 3304 3305 /** 3306 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3307 * @c: UBIFS file-system description object 3308 * @key: node key 3309 * @lnum: node LEB number 3310 * @offs: node offset 3311 * 3312 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3313 * not, and a negative error code in case of failure. 3314 * 3315 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3316 * and offset for a main-area node. 3317 */ 3318 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3319 int lnum, int offs) 3320 { 3321 struct ubifs_zbranch *zbr; 3322 struct ubifs_znode *znode, *zn; 3323 int n, found, err, nn; 3324 const int unique = !is_hash_key(c, key); 3325 3326 found = ubifs_lookup_level0(c, key, &znode, &n); 3327 if (found < 0) 3328 return found; /* Error code */ 3329 if (!found) 3330 return 0; 3331 zbr = &znode->zbranch[n]; 3332 if (lnum == zbr->lnum && offs == zbr->offs) 3333 return 1; /* Found it */ 3334 if (unique) 3335 return 0; 3336 /* 3337 * Because the key is not unique, we have to look left 3338 * and right as well 3339 */ 3340 zn = znode; 3341 nn = n; 3342 /* Look left */ 3343 while (1) { 3344 err = tnc_prev(c, &znode, &n); 3345 if (err == -ENOENT) 3346 break; 3347 if (err) 3348 return err; 3349 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3350 break; 3351 zbr = &znode->zbranch[n]; 3352 if (lnum == zbr->lnum && offs == zbr->offs) 3353 return 1; /* Found it */ 3354 } 3355 /* Look right */ 3356 znode = zn; 3357 n = nn; 3358 while (1) { 3359 err = tnc_next(c, &znode, &n); 3360 if (err) { 3361 if (err == -ENOENT) 3362 return 0; 3363 return err; 3364 } 3365 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3366 break; 3367 zbr = &znode->zbranch[n]; 3368 if (lnum == zbr->lnum && offs == zbr->offs) 3369 return 1; /* Found it */ 3370 } 3371 return 0; 3372 } 3373 3374 /** 3375 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3376 * @c: UBIFS file-system description object 3377 * @key: node key 3378 * @level: index node level (if it is an index node) 3379 * @lnum: node LEB number 3380 * @offs: node offset 3381 * @is_idx: non-zero if the node is an index node 3382 * 3383 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3384 * negative error code in case of failure. For index nodes, @key has to be the 3385 * key of the first child. An index node is considered to be in the TNC only if 3386 * the corresponding znode is clean or has not been loaded. 3387 */ 3388 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3389 int lnum, int offs, int is_idx) 3390 { 3391 int err; 3392 3393 mutex_lock(&c->tnc_mutex); 3394 if (is_idx) { 3395 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3396 if (err < 0) 3397 goto out_unlock; 3398 if (err == 1) 3399 /* The index node was found but it was dirty */ 3400 err = 0; 3401 else if (err == 2) 3402 /* The index node was found and it was clean */ 3403 err = 1; 3404 else 3405 BUG_ON(err != 0); 3406 } else 3407 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3408 3409 out_unlock: 3410 mutex_unlock(&c->tnc_mutex); 3411 return err; 3412 } 3413 3414 /** 3415 * ubifs_dirty_idx_node - dirty an index node. 3416 * @c: UBIFS file-system description object 3417 * @key: index node key 3418 * @level: index node level 3419 * @lnum: index node LEB number 3420 * @offs: index node offset 3421 * 3422 * This function loads and dirties an index node so that it can be garbage 3423 * collected. The @key argument has to be the key of the first child. This 3424 * function relies on the fact that 0:0 is never a valid LEB number and offset 3425 * for a main-area node. Returns %0 on success and a negative error code on 3426 * failure. 3427 */ 3428 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3429 int lnum, int offs) 3430 { 3431 struct ubifs_znode *znode; 3432 int err = 0; 3433 3434 mutex_lock(&c->tnc_mutex); 3435 znode = lookup_znode(c, key, level, lnum, offs); 3436 if (!znode) 3437 goto out_unlock; 3438 if (IS_ERR(znode)) { 3439 err = PTR_ERR(znode); 3440 goto out_unlock; 3441 } 3442 znode = dirty_cow_bottom_up(c, znode); 3443 if (IS_ERR(znode)) { 3444 err = PTR_ERR(znode); 3445 goto out_unlock; 3446 } 3447 3448 out_unlock: 3449 mutex_unlock(&c->tnc_mutex); 3450 return err; 3451 } 3452 3453 /** 3454 * dbg_check_inode_size - check if inode size is correct. 3455 * @c: UBIFS file-system description object 3456 * @inum: inode number 3457 * @size: inode size 3458 * 3459 * This function makes sure that the inode size (@size) is correct and it does 3460 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3461 * if it has a data page beyond @size, and other negative error code in case of 3462 * other errors. 3463 */ 3464 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3465 loff_t size) 3466 { 3467 int err, n; 3468 union ubifs_key from_key, to_key, *key; 3469 struct ubifs_znode *znode; 3470 unsigned int block; 3471 3472 if (!S_ISREG(inode->i_mode)) 3473 return 0; 3474 if (!dbg_is_chk_gen(c)) 3475 return 0; 3476 3477 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3478 data_key_init(c, &from_key, inode->i_ino, block); 3479 highest_data_key(c, &to_key, inode->i_ino); 3480 3481 mutex_lock(&c->tnc_mutex); 3482 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3483 if (err < 0) 3484 goto out_unlock; 3485 3486 if (err) { 3487 key = &from_key; 3488 goto out_dump; 3489 } 3490 3491 err = tnc_next(c, &znode, &n); 3492 if (err == -ENOENT) { 3493 err = 0; 3494 goto out_unlock; 3495 } 3496 if (err < 0) 3497 goto out_unlock; 3498 3499 ubifs_assert(err == 0); 3500 key = &znode->zbranch[n].key; 3501 if (!key_in_range(c, key, &from_key, &to_key)) 3502 goto out_unlock; 3503 3504 out_dump: 3505 block = key_block(c, key); 3506 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3507 (unsigned long)inode->i_ino, size, 3508 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3509 mutex_unlock(&c->tnc_mutex); 3510 ubifs_dump_inode(c, inode); 3511 dump_stack(); 3512 return -EINVAL; 3513 3514 out_unlock: 3515 mutex_unlock(&c->tnc_mutex); 3516 return err; 3517 } 3518