xref: /openbmc/linux/fs/ubifs/tnc.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /*
37  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38  * @NAME_LESS: name corresponding to the first argument is less than second
39  * @NAME_MATCHES: names match
40  * @NAME_GREATER: name corresponding to the second argument is greater than
41  *                first
42  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43  *
44  * These constants were introduce to improve readability.
45  */
46 enum {
47 	NAME_LESS    = 0,
48 	NAME_MATCHES = 1,
49 	NAME_GREATER = 2,
50 	NOT_ON_MEDIA = 3,
51 };
52 
53 /**
54  * insert_old_idx - record an index node obsoleted since the last commit start.
55  * @c: UBIFS file-system description object
56  * @lnum: LEB number of obsoleted index node
57  * @offs: offset of obsoleted index node
58  *
59  * Returns %0 on success, and a negative error code on failure.
60  *
61  * For recovery, there must always be a complete intact version of the index on
62  * flash at all times. That is called the "old index". It is the index as at the
63  * time of the last successful commit. Many of the index nodes in the old index
64  * may be dirty, but they must not be erased until the next successful commit
65  * (at which point that index becomes the old index).
66  *
67  * That means that the garbage collection and the in-the-gaps method of
68  * committing must be able to determine if an index node is in the old index.
69  * Most of the old index nodes can be found by looking up the TNC using the
70  * 'lookup_znode()' function. However, some of the old index nodes may have
71  * been deleted from the current index or may have been changed so much that
72  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73  * That is what this function does. The RB-tree is ordered by LEB number and
74  * offset because they uniquely identify the old index node.
75  */
76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77 {
78 	struct ubifs_old_idx *old_idx, *o;
79 	struct rb_node **p, *parent = NULL;
80 
81 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 	if (unlikely(!old_idx))
83 		return -ENOMEM;
84 	old_idx->lnum = lnum;
85 	old_idx->offs = offs;
86 
87 	p = &c->old_idx.rb_node;
88 	while (*p) {
89 		parent = *p;
90 		o = rb_entry(parent, struct ubifs_old_idx, rb);
91 		if (lnum < o->lnum)
92 			p = &(*p)->rb_left;
93 		else if (lnum > o->lnum)
94 			p = &(*p)->rb_right;
95 		else if (offs < o->offs)
96 			p = &(*p)->rb_left;
97 		else if (offs > o->offs)
98 			p = &(*p)->rb_right;
99 		else {
100 			ubifs_err("old idx added twice!");
101 			kfree(old_idx);
102 			return 0;
103 		}
104 	}
105 	rb_link_node(&old_idx->rb, parent, p);
106 	rb_insert_color(&old_idx->rb, &c->old_idx);
107 	return 0;
108 }
109 
110 /**
111  * insert_old_idx_znode - record a znode obsoleted since last commit start.
112  * @c: UBIFS file-system description object
113  * @znode: znode of obsoleted index node
114  *
115  * Returns %0 on success, and a negative error code on failure.
116  */
117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118 {
119 	if (znode->parent) {
120 		struct ubifs_zbranch *zbr;
121 
122 		zbr = &znode->parent->zbranch[znode->iip];
123 		if (zbr->len)
124 			return insert_old_idx(c, zbr->lnum, zbr->offs);
125 	} else
126 		if (c->zroot.len)
127 			return insert_old_idx(c, c->zroot.lnum,
128 					      c->zroot.offs);
129 	return 0;
130 }
131 
132 /**
133  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134  * @c: UBIFS file-system description object
135  * @znode: znode of obsoleted index node
136  *
137  * Returns %0 on success, and a negative error code on failure.
138  */
139 static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 				 struct ubifs_znode *znode)
141 {
142 	int err;
143 
144 	if (znode->parent) {
145 		struct ubifs_zbranch *zbr;
146 
147 		zbr = &znode->parent->zbranch[znode->iip];
148 		if (zbr->len) {
149 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 			if (err)
151 				return err;
152 			zbr->lnum = 0;
153 			zbr->offs = 0;
154 			zbr->len = 0;
155 		}
156 	} else
157 		if (c->zroot.len) {
158 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 			if (err)
160 				return err;
161 			c->zroot.lnum = 0;
162 			c->zroot.offs = 0;
163 			c->zroot.len = 0;
164 		}
165 	return 0;
166 }
167 
168 /**
169  * destroy_old_idx - destroy the old_idx RB-tree.
170  * @c: UBIFS file-system description object
171  *
172  * During start commit, the old_idx RB-tree is used to avoid overwriting index
173  * nodes that were in the index last commit but have since been deleted.  This
174  * is necessary for recovery i.e. the old index must be kept intact until the
175  * new index is successfully written.  The old-idx RB-tree is used for the
176  * in-the-gaps method of writing index nodes and is destroyed every commit.
177  */
178 void destroy_old_idx(struct ubifs_info *c)
179 {
180 	struct rb_node *this = c->old_idx.rb_node;
181 	struct ubifs_old_idx *old_idx;
182 
183 	while (this) {
184 		if (this->rb_left) {
185 			this = this->rb_left;
186 			continue;
187 		} else if (this->rb_right) {
188 			this = this->rb_right;
189 			continue;
190 		}
191 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 		this = rb_parent(this);
193 		if (this) {
194 			if (this->rb_left == &old_idx->rb)
195 				this->rb_left = NULL;
196 			else
197 				this->rb_right = NULL;
198 		}
199 		kfree(old_idx);
200 	}
201 	c->old_idx = RB_ROOT;
202 }
203 
204 /**
205  * copy_znode - copy a dirty znode.
206  * @c: UBIFS file-system description object
207  * @znode: znode to copy
208  *
209  * A dirty znode being committed may not be changed, so it is copied.
210  */
211 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 				      struct ubifs_znode *znode)
213 {
214 	struct ubifs_znode *zn;
215 
216 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 	if (unlikely(!zn))
218 		return ERR_PTR(-ENOMEM);
219 
220 	memcpy(zn, znode, c->max_znode_sz);
221 	zn->cnext = NULL;
222 	__set_bit(DIRTY_ZNODE, &zn->flags);
223 	__clear_bit(COW_ZNODE, &zn->flags);
224 
225 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
227 
228 	if (znode->level != 0) {
229 		int i;
230 		const int n = zn->child_cnt;
231 
232 		/* The children now have new parent */
233 		for (i = 0; i < n; i++) {
234 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
235 
236 			if (zbr->znode)
237 				zbr->znode->parent = zn;
238 		}
239 	}
240 
241 	atomic_long_inc(&c->dirty_zn_cnt);
242 	return zn;
243 }
244 
245 /**
246  * add_idx_dirt - add dirt due to a dirty znode.
247  * @c: UBIFS file-system description object
248  * @lnum: LEB number of index node
249  * @dirt: size of index node
250  *
251  * This function updates lprops dirty space and the new size of the index.
252  */
253 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254 {
255 	c->calc_idx_sz -= ALIGN(dirt, 8);
256 	return ubifs_add_dirt(c, lnum, dirt);
257 }
258 
259 /**
260  * dirty_cow_znode - ensure a znode is not being committed.
261  * @c: UBIFS file-system description object
262  * @zbr: branch of znode to check
263  *
264  * Returns dirtied znode on success or negative error code on failure.
265  */
266 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 					   struct ubifs_zbranch *zbr)
268 {
269 	struct ubifs_znode *znode = zbr->znode;
270 	struct ubifs_znode *zn;
271 	int err;
272 
273 	if (!test_bit(COW_ZNODE, &znode->flags)) {
274 		/* znode is not being committed */
275 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 			atomic_long_inc(&c->dirty_zn_cnt);
277 			atomic_long_dec(&c->clean_zn_cnt);
278 			atomic_long_dec(&ubifs_clean_zn_cnt);
279 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 			if (unlikely(err))
281 				return ERR_PTR(err);
282 		}
283 		return znode;
284 	}
285 
286 	zn = copy_znode(c, znode);
287 	if (unlikely(IS_ERR(zn)))
288 		return zn;
289 
290 	if (zbr->len) {
291 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 		if (unlikely(err))
293 			return ERR_PTR(err);
294 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 	} else
296 		err = 0;
297 
298 	zbr->znode = zn;
299 	zbr->lnum = 0;
300 	zbr->offs = 0;
301 	zbr->len = 0;
302 
303 	if (unlikely(err))
304 		return ERR_PTR(err);
305 	return zn;
306 }
307 
308 /**
309  * lnc_add - add a leaf node to the leaf node cache.
310  * @c: UBIFS file-system description object
311  * @zbr: zbranch of leaf node
312  * @node: leaf node
313  *
314  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315  * purpose of the leaf node cache is to save re-reading the same leaf node over
316  * and over again. Most things are cached by VFS, however the file system must
317  * cache directory entries for readdir and for resolving hash collisions. The
318  * present implementation of the leaf node cache is extremely simple, and
319  * allows for error returns that are not used but that may be needed if a more
320  * complex implementation is created.
321  *
322  * Note, this function does not add the @node object to LNC directly, but
323  * allocates a copy of the object and adds the copy to LNC. The reason for this
324  * is that @node has been allocated outside of the TNC subsystem and will be
325  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326  * may be changed at any time, e.g. freed by the shrinker.
327  */
328 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 		   const void *node)
330 {
331 	int err;
332 	void *lnc_node;
333 	const struct ubifs_dent_node *dent = node;
334 
335 	ubifs_assert(!zbr->leaf);
336 	ubifs_assert(zbr->len != 0);
337 	ubifs_assert(is_hash_key(c, &zbr->key));
338 
339 	err = ubifs_validate_entry(c, dent);
340 	if (err) {
341 		dbg_dump_stack();
342 		dbg_dump_node(c, dent);
343 		return err;
344 	}
345 
346 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 	if (!lnc_node)
348 		/* We don't have to have the cache, so no error */
349 		return 0;
350 
351 	memcpy(lnc_node, node, zbr->len);
352 	zbr->leaf = lnc_node;
353 	return 0;
354 }
355 
356  /**
357  * lnc_add_directly - add a leaf node to the leaf-node-cache.
358  * @c: UBIFS file-system description object
359  * @zbr: zbranch of leaf node
360  * @node: leaf node
361  *
362  * This function is similar to 'lnc_add()', but it does not create a copy of
363  * @node but inserts @node to TNC directly.
364  */
365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 			    void *node)
367 {
368 	int err;
369 
370 	ubifs_assert(!zbr->leaf);
371 	ubifs_assert(zbr->len != 0);
372 
373 	err = ubifs_validate_entry(c, node);
374 	if (err) {
375 		dbg_dump_stack();
376 		dbg_dump_node(c, node);
377 		return err;
378 	}
379 
380 	zbr->leaf = node;
381 	return 0;
382 }
383 
384 /**
385  * lnc_free - remove a leaf node from the leaf node cache.
386  * @zbr: zbranch of leaf node
387  * @node: leaf node
388  */
389 static void lnc_free(struct ubifs_zbranch *zbr)
390 {
391 	if (!zbr->leaf)
392 		return;
393 	kfree(zbr->leaf);
394 	zbr->leaf = NULL;
395 }
396 
397 /**
398  * tnc_read_node_nm - read a "hashed" leaf node.
399  * @c: UBIFS file-system description object
400  * @zbr: key and position of the node
401  * @node: node is returned here
402  *
403  * This function reads a "hashed" node defined by @zbr from the leaf node cache
404  * (in it is there) or from the hash media, in which case the node is also
405  * added to LNC. Returns zero in case of success or a negative negative error
406  * code in case of failure.
407  */
408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 			    void *node)
410 {
411 	int err;
412 
413 	ubifs_assert(is_hash_key(c, &zbr->key));
414 
415 	if (zbr->leaf) {
416 		/* Read from the leaf node cache */
417 		ubifs_assert(zbr->len != 0);
418 		memcpy(node, zbr->leaf, zbr->len);
419 		return 0;
420 	}
421 
422 	err = ubifs_tnc_read_node(c, zbr, node);
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  */
447 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 			 int len, int lnum, int offs)
449 {
450 	int err, node_len;
451 	struct ubifs_ch *ch = buf;
452 	uint32_t crc, node_crc;
453 
454 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455 
456 	err = ubi_read(c->ubi, lnum, buf, offs, len);
457 	if (err) {
458 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 			  type, lnum, offs, err);
460 		return err;
461 	}
462 
463 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 		return 0;
465 
466 	if (ch->node_type != type)
467 		return 0;
468 
469 	node_len = le32_to_cpu(ch->len);
470 	if (node_len != len)
471 		return 0;
472 
473 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
474 	node_crc = le32_to_cpu(ch->crc);
475 	if (crc != node_crc)
476 		return 0;
477 
478 	return 1;
479 }
480 
481 /**
482  * fallible_read_node - try to read a leaf node.
483  * @c: UBIFS file-system description object
484  * @key:  key of node to read
485  * @zbr:  position of node
486  * @node: node returned
487  *
488  * This function tries to read a node and returns %1 if the node is read, %0
489  * if the node is not present, and a negative error code in the case of error.
490  */
491 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
492 			      struct ubifs_zbranch *zbr, void *node)
493 {
494 	int ret;
495 
496 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
497 
498 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
499 			    zbr->offs);
500 	if (ret == 1) {
501 		union ubifs_key node_key;
502 		struct ubifs_dent_node *dent = node;
503 
504 		/* All nodes have key in the same place */
505 		key_read(c, &dent->key, &node_key);
506 		if (keys_cmp(c, key, &node_key) != 0)
507 			ret = 0;
508 	}
509 	if (ret == 0)
510 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
511 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
512 	return ret;
513 }
514 
515 /**
516  * matches_name - determine if a direntry or xattr entry matches a given name.
517  * @c: UBIFS file-system description object
518  * @zbr: zbranch of dent
519  * @nm: name to match
520  *
521  * This function checks if xentry/direntry referred by zbranch @zbr matches name
522  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
523  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
524  * of failure, a negative error code is returned.
525  */
526 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
527 			const struct qstr *nm)
528 {
529 	struct ubifs_dent_node *dent;
530 	int nlen, err;
531 
532 	/* If possible, match against the dent in the leaf node cache */
533 	if (!zbr->leaf) {
534 		dent = kmalloc(zbr->len, GFP_NOFS);
535 		if (!dent)
536 			return -ENOMEM;
537 
538 		err = ubifs_tnc_read_node(c, zbr, dent);
539 		if (err)
540 			goto out_free;
541 
542 		/* Add the node to the leaf node cache */
543 		err = lnc_add_directly(c, zbr, dent);
544 		if (err)
545 			goto out_free;
546 	} else
547 		dent = zbr->leaf;
548 
549 	nlen = le16_to_cpu(dent->nlen);
550 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
551 	if (err == 0) {
552 		if (nlen == nm->len)
553 			return NAME_MATCHES;
554 		else if (nlen < nm->len)
555 			return NAME_LESS;
556 		else
557 			return NAME_GREATER;
558 	} else if (err < 0)
559 		return NAME_LESS;
560 	else
561 		return NAME_GREATER;
562 
563 out_free:
564 	kfree(dent);
565 	return err;
566 }
567 
568 /**
569  * get_znode - get a TNC znode that may not be loaded yet.
570  * @c: UBIFS file-system description object
571  * @znode: parent znode
572  * @n: znode branch slot number
573  *
574  * This function returns the znode or a negative error code.
575  */
576 static struct ubifs_znode *get_znode(struct ubifs_info *c,
577 				     struct ubifs_znode *znode, int n)
578 {
579 	struct ubifs_zbranch *zbr;
580 
581 	zbr = &znode->zbranch[n];
582 	if (zbr->znode)
583 		znode = zbr->znode;
584 	else
585 		znode = ubifs_load_znode(c, zbr, znode, n);
586 	return znode;
587 }
588 
589 /**
590  * tnc_next - find next TNC entry.
591  * @c: UBIFS file-system description object
592  * @zn: znode is passed and returned here
593  * @n: znode branch slot number is passed and returned here
594  *
595  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
596  * no next entry, or a negative error code otherwise.
597  */
598 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
599 {
600 	struct ubifs_znode *znode = *zn;
601 	int nn = *n;
602 
603 	nn += 1;
604 	if (nn < znode->child_cnt) {
605 		*n = nn;
606 		return 0;
607 	}
608 	while (1) {
609 		struct ubifs_znode *zp;
610 
611 		zp = znode->parent;
612 		if (!zp)
613 			return -ENOENT;
614 		nn = znode->iip + 1;
615 		znode = zp;
616 		if (nn < znode->child_cnt) {
617 			znode = get_znode(c, znode, nn);
618 			if (IS_ERR(znode))
619 				return PTR_ERR(znode);
620 			while (znode->level != 0) {
621 				znode = get_znode(c, znode, 0);
622 				if (IS_ERR(znode))
623 					return PTR_ERR(znode);
624 			}
625 			nn = 0;
626 			break;
627 		}
628 	}
629 	*zn = znode;
630 	*n = nn;
631 	return 0;
632 }
633 
634 /**
635  * tnc_prev - find previous TNC entry.
636  * @c: UBIFS file-system description object
637  * @zn: znode is returned here
638  * @n: znode branch slot number is passed and returned here
639  *
640  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
641  * there is no next entry, or a negative error code otherwise.
642  */
643 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
644 {
645 	struct ubifs_znode *znode = *zn;
646 	int nn = *n;
647 
648 	if (nn > 0) {
649 		*n = nn - 1;
650 		return 0;
651 	}
652 	while (1) {
653 		struct ubifs_znode *zp;
654 
655 		zp = znode->parent;
656 		if (!zp)
657 			return -ENOENT;
658 		nn = znode->iip - 1;
659 		znode = zp;
660 		if (nn >= 0) {
661 			znode = get_znode(c, znode, nn);
662 			if (IS_ERR(znode))
663 				return PTR_ERR(znode);
664 			while (znode->level != 0) {
665 				nn = znode->child_cnt - 1;
666 				znode = get_znode(c, znode, nn);
667 				if (IS_ERR(znode))
668 					return PTR_ERR(znode);
669 			}
670 			nn = znode->child_cnt - 1;
671 			break;
672 		}
673 	}
674 	*zn = znode;
675 	*n = nn;
676 	return 0;
677 }
678 
679 /**
680  * resolve_collision - resolve a collision.
681  * @c: UBIFS file-system description object
682  * @key: key of a directory or extended attribute entry
683  * @zn: znode is returned here
684  * @n: zbranch number is passed and returned here
685  * @nm: name of the entry
686  *
687  * This function is called for "hashed" keys to make sure that the found key
688  * really corresponds to the looked up node (directory or extended attribute
689  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
690  * %0 is returned if @nm is not found and @zn and @n are set to the previous
691  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
692  * This means that @n may be set to %-1 if the leftmost key in @zn is the
693  * previous one. A negative error code is returned on failures.
694  */
695 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
696 			     struct ubifs_znode **zn, int *n,
697 			     const struct qstr *nm)
698 {
699 	int err;
700 
701 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
702 	if (unlikely(err < 0))
703 		return err;
704 	if (err == NAME_MATCHES)
705 		return 1;
706 
707 	if (err == NAME_GREATER) {
708 		/* Look left */
709 		while (1) {
710 			err = tnc_prev(c, zn, n);
711 			if (err == -ENOENT) {
712 				ubifs_assert(*n == 0);
713 				*n = -1;
714 				return 0;
715 			}
716 			if (err < 0)
717 				return err;
718 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
719 				/*
720 				 * We have found the branch after which we would
721 				 * like to insert, but inserting in this znode
722 				 * may still be wrong. Consider the following 3
723 				 * znodes, in the case where we are resolving a
724 				 * collision with Key2.
725 				 *
726 				 *                  znode zp
727 				 *            ----------------------
728 				 * level 1     |  Key0  |  Key1  |
729 				 *            -----------------------
730 				 *                 |            |
731 				 *       znode za  |            |  znode zb
732 				 *          ------------      ------------
733 				 * level 0  |  Key0  |        |  Key2  |
734 				 *          ------------      ------------
735 				 *
736 				 * The lookup finds Key2 in znode zb. Lets say
737 				 * there is no match and the name is greater so
738 				 * we look left. When we find Key0, we end up
739 				 * here. If we return now, we will insert into
740 				 * znode za at slot n = 1.  But that is invalid
741 				 * according to the parent's keys.  Key2 must
742 				 * be inserted into znode zb.
743 				 *
744 				 * Note, this problem is not relevant for the
745 				 * case when we go right, because
746 				 * 'tnc_insert()' would correct the parent key.
747 				 */
748 				if (*n == (*zn)->child_cnt - 1) {
749 					err = tnc_next(c, zn, n);
750 					if (err) {
751 						/* Should be impossible */
752 						ubifs_assert(0);
753 						if (err == -ENOENT)
754 							err = -EINVAL;
755 						return err;
756 					}
757 					ubifs_assert(*n == 0);
758 					*n = -1;
759 				}
760 				return 0;
761 			}
762 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
763 			if (err < 0)
764 				return err;
765 			if (err == NAME_LESS)
766 				return 0;
767 			if (err == NAME_MATCHES)
768 				return 1;
769 			ubifs_assert(err == NAME_GREATER);
770 		}
771 	} else {
772 		int nn = *n;
773 		struct ubifs_znode *znode = *zn;
774 
775 		/* Look right */
776 		while (1) {
777 			err = tnc_next(c, &znode, &nn);
778 			if (err == -ENOENT)
779 				return 0;
780 			if (err < 0)
781 				return err;
782 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
783 				return 0;
784 			err = matches_name(c, &znode->zbranch[nn], nm);
785 			if (err < 0)
786 				return err;
787 			if (err == NAME_GREATER)
788 				return 0;
789 			*zn = znode;
790 			*n = nn;
791 			if (err == NAME_MATCHES)
792 				return 1;
793 			ubifs_assert(err == NAME_LESS);
794 		}
795 	}
796 }
797 
798 /**
799  * fallible_matches_name - determine if a dent matches a given name.
800  * @c: UBIFS file-system description object
801  * @zbr: zbranch of dent
802  * @nm: name to match
803  *
804  * This is a "fallible" version of 'matches_name()' function which does not
805  * panic if the direntry/xentry referred by @zbr does not exist on the media.
806  *
807  * This function checks if xentry/direntry referred by zbranch @zbr matches name
808  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
809  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
810  * if xentry/direntry referred by @zbr does not exist on the media. A negative
811  * error code is returned in case of failure.
812  */
813 static int fallible_matches_name(struct ubifs_info *c,
814 				 struct ubifs_zbranch *zbr,
815 				 const struct qstr *nm)
816 {
817 	struct ubifs_dent_node *dent;
818 	int nlen, err;
819 
820 	/* If possible, match against the dent in the leaf node cache */
821 	if (!zbr->leaf) {
822 		dent = kmalloc(zbr->len, GFP_NOFS);
823 		if (!dent)
824 			return -ENOMEM;
825 
826 		err = fallible_read_node(c, &zbr->key, zbr, dent);
827 		if (err < 0)
828 			goto out_free;
829 		if (err == 0) {
830 			/* The node was not present */
831 			err = NOT_ON_MEDIA;
832 			goto out_free;
833 		}
834 		ubifs_assert(err == 1);
835 
836 		err = lnc_add_directly(c, zbr, dent);
837 		if (err)
838 			goto out_free;
839 	} else
840 		dent = zbr->leaf;
841 
842 	nlen = le16_to_cpu(dent->nlen);
843 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
844 	if (err == 0) {
845 		if (nlen == nm->len)
846 			return NAME_MATCHES;
847 		else if (nlen < nm->len)
848 			return NAME_LESS;
849 		else
850 			return NAME_GREATER;
851 	} else if (err < 0)
852 		return NAME_LESS;
853 	else
854 		return NAME_GREATER;
855 
856 out_free:
857 	kfree(dent);
858 	return err;
859 }
860 
861 /**
862  * fallible_resolve_collision - resolve a collision even if nodes are missing.
863  * @c: UBIFS file-system description object
864  * @key: key
865  * @zn: znode is returned here
866  * @n: branch number is passed and returned here
867  * @nm: name of directory entry
868  * @adding: indicates caller is adding a key to the TNC
869  *
870  * This is a "fallible" version of the 'resolve_collision()' function which
871  * does not panic if one of the nodes referred to by TNC does not exist on the
872  * media. This may happen when replaying the journal if a deleted node was
873  * Garbage-collected and the commit was not done. A branch that refers to a node
874  * that is not present is called a dangling branch. The following are the return
875  * codes for this function:
876  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
877  *    branch;
878  *  o if we are @adding and @nm was not found, %0 is returned;
879  *  o if we are not @adding and @nm was not found, but a dangling branch was
880  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
881  *  o a negative error code is returned in case of failure.
882  */
883 static int fallible_resolve_collision(struct ubifs_info *c,
884 				      const union ubifs_key *key,
885 				      struct ubifs_znode **zn, int *n,
886 				      const struct qstr *nm, int adding)
887 {
888 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
889 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
890 
891 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
892 	if (unlikely(cmp < 0))
893 		return cmp;
894 	if (cmp == NAME_MATCHES)
895 		return 1;
896 	if (cmp == NOT_ON_MEDIA) {
897 		o_znode = znode;
898 		o_n = nn;
899 		/*
900 		 * We are unlucky and hit a dangling branch straight away.
901 		 * Now we do not really know where to go to find the needed
902 		 * branch - to the left or to the right. Well, let's try left.
903 		 */
904 		unsure = 1;
905 	} else if (!adding)
906 		unsure = 1; /* Remove a dangling branch wherever it is */
907 
908 	if (cmp == NAME_GREATER || unsure) {
909 		/* Look left */
910 		while (1) {
911 			err = tnc_prev(c, zn, n);
912 			if (err == -ENOENT) {
913 				ubifs_assert(*n == 0);
914 				*n = -1;
915 				break;
916 			}
917 			if (err < 0)
918 				return err;
919 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
920 				/* See comments in 'resolve_collision()' */
921 				if (*n == (*zn)->child_cnt - 1) {
922 					err = tnc_next(c, zn, n);
923 					if (err) {
924 						/* Should be impossible */
925 						ubifs_assert(0);
926 						if (err == -ENOENT)
927 							err = -EINVAL;
928 						return err;
929 					}
930 					ubifs_assert(*n == 0);
931 					*n = -1;
932 				}
933 				break;
934 			}
935 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
936 			if (err < 0)
937 				return err;
938 			if (err == NAME_MATCHES)
939 				return 1;
940 			if (err == NOT_ON_MEDIA) {
941 				o_znode = *zn;
942 				o_n = *n;
943 				continue;
944 			}
945 			if (!adding)
946 				continue;
947 			if (err == NAME_LESS)
948 				break;
949 			else
950 				unsure = 0;
951 		}
952 	}
953 
954 	if (cmp == NAME_LESS || unsure) {
955 		/* Look right */
956 		*zn = znode;
957 		*n = nn;
958 		while (1) {
959 			err = tnc_next(c, &znode, &nn);
960 			if (err == -ENOENT)
961 				break;
962 			if (err < 0)
963 				return err;
964 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
965 				break;
966 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
967 			if (err < 0)
968 				return err;
969 			if (err == NAME_GREATER)
970 				break;
971 			*zn = znode;
972 			*n = nn;
973 			if (err == NAME_MATCHES)
974 				return 1;
975 			if (err == NOT_ON_MEDIA) {
976 				o_znode = znode;
977 				o_n = nn;
978 			}
979 		}
980 	}
981 
982 	/* Never match a dangling branch when adding */
983 	if (adding || !o_znode)
984 		return 0;
985 
986 	dbg_mnt("dangling match LEB %d:%d len %d %s",
987 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
988 		o_znode->zbranch[o_n].len, DBGKEY(key));
989 	*zn = o_znode;
990 	*n = o_n;
991 	return 1;
992 }
993 
994 /**
995  * matches_position - determine if a zbranch matches a given position.
996  * @zbr: zbranch of dent
997  * @lnum: LEB number of dent to match
998  * @offs: offset of dent to match
999  *
1000  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1001  */
1002 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1003 {
1004 	if (zbr->lnum == lnum && zbr->offs == offs)
1005 		return 1;
1006 	else
1007 		return 0;
1008 }
1009 
1010 /**
1011  * resolve_collision_directly - resolve a collision directly.
1012  * @c: UBIFS file-system description object
1013  * @key: key of directory entry
1014  * @zn: znode is passed and returned here
1015  * @n: zbranch number is passed and returned here
1016  * @lnum: LEB number of dent node to match
1017  * @offs: offset of dent node to match
1018  *
1019  * This function is used for "hashed" keys to make sure the found directory or
1020  * extended attribute entry node is what was looked for. It is used when the
1021  * flash address of the right node is known (@lnum:@offs) which makes it much
1022  * easier to resolve collisions (no need to read entries and match full
1023  * names). This function returns %1 and sets @zn and @n if the collision is
1024  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1025  * previous directory entry. Otherwise a negative error code is returned.
1026  */
1027 static int resolve_collision_directly(struct ubifs_info *c,
1028 				      const union ubifs_key *key,
1029 				      struct ubifs_znode **zn, int *n,
1030 				      int lnum, int offs)
1031 {
1032 	struct ubifs_znode *znode;
1033 	int nn, err;
1034 
1035 	znode = *zn;
1036 	nn = *n;
1037 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1038 		return 1;
1039 
1040 	/* Look left */
1041 	while (1) {
1042 		err = tnc_prev(c, &znode, &nn);
1043 		if (err == -ENOENT)
1044 			break;
1045 		if (err < 0)
1046 			return err;
1047 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1048 			break;
1049 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1050 			*zn = znode;
1051 			*n = nn;
1052 			return 1;
1053 		}
1054 	}
1055 
1056 	/* Look right */
1057 	znode = *zn;
1058 	nn = *n;
1059 	while (1) {
1060 		err = tnc_next(c, &znode, &nn);
1061 		if (err == -ENOENT)
1062 			return 0;
1063 		if (err < 0)
1064 			return err;
1065 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1066 			return 0;
1067 		*zn = znode;
1068 		*n = nn;
1069 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1070 			return 1;
1071 	}
1072 }
1073 
1074 /**
1075  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1076  * @c: UBIFS file-system description object
1077  * @znode: znode to dirty
1078  *
1079  * If we do not have a unique key that resides in a znode, then we cannot
1080  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1081  * This function records the path back to the last dirty ancestor, and then
1082  * dirties the znodes on that path.
1083  */
1084 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1085 					       struct ubifs_znode *znode)
1086 {
1087 	struct ubifs_znode *zp;
1088 	int *path = c->bottom_up_buf, p = 0;
1089 
1090 	ubifs_assert(c->zroot.znode);
1091 	ubifs_assert(znode);
1092 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1093 		kfree(c->bottom_up_buf);
1094 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1095 					   GFP_NOFS);
1096 		if (!c->bottom_up_buf)
1097 			return ERR_PTR(-ENOMEM);
1098 		path = c->bottom_up_buf;
1099 	}
1100 	if (c->zroot.znode->level) {
1101 		/* Go up until parent is dirty */
1102 		while (1) {
1103 			int n;
1104 
1105 			zp = znode->parent;
1106 			if (!zp)
1107 				break;
1108 			n = znode->iip;
1109 			ubifs_assert(p < c->zroot.znode->level);
1110 			path[p++] = n;
1111 			if (!zp->cnext && ubifs_zn_dirty(znode))
1112 				break;
1113 			znode = zp;
1114 		}
1115 	}
1116 
1117 	/* Come back down, dirtying as we go */
1118 	while (1) {
1119 		struct ubifs_zbranch *zbr;
1120 
1121 		zp = znode->parent;
1122 		if (zp) {
1123 			ubifs_assert(path[p - 1] >= 0);
1124 			ubifs_assert(path[p - 1] < zp->child_cnt);
1125 			zbr = &zp->zbranch[path[--p]];
1126 			znode = dirty_cow_znode(c, zbr);
1127 		} else {
1128 			ubifs_assert(znode == c->zroot.znode);
1129 			znode = dirty_cow_znode(c, &c->zroot);
1130 		}
1131 		if (unlikely(IS_ERR(znode)) || !p)
1132 			break;
1133 		ubifs_assert(path[p - 1] >= 0);
1134 		ubifs_assert(path[p - 1] < znode->child_cnt);
1135 		znode = znode->zbranch[path[p - 1]].znode;
1136 	}
1137 
1138 	return znode;
1139 }
1140 
1141 /**
1142  * ubifs_lookup_level0 - search for zero-level znode.
1143  * @c: UBIFS file-system description object
1144  * @key:  key to lookup
1145  * @zn: znode is returned here
1146  * @n: znode branch slot number is returned here
1147  *
1148  * This function looks up the TNC tree and search for zero-level znode which
1149  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1150  * cases:
1151  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1152  *     is returned and slot number of the matched branch is stored in @n;
1153  *   o not exact match, which means that zero-level znode does not contain
1154  *     @key, then %0 is returned and slot number of the closed branch is stored
1155  *     in  @n;
1156  *   o @key is so small that it is even less than the lowest key of the
1157  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1158  *
1159  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1160  * function reads corresponding indexing nodes and inserts them to TNC. In
1161  * case of failure, a negative error code is returned.
1162  */
1163 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1164 			struct ubifs_znode **zn, int *n)
1165 {
1166 	int err, exact;
1167 	struct ubifs_znode *znode;
1168 	unsigned long time = get_seconds();
1169 
1170 	dbg_tnc("search key %s", DBGKEY(key));
1171 
1172 	znode = c->zroot.znode;
1173 	if (unlikely(!znode)) {
1174 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1175 		if (IS_ERR(znode))
1176 			return PTR_ERR(znode);
1177 	}
1178 
1179 	znode->time = time;
1180 
1181 	while (1) {
1182 		struct ubifs_zbranch *zbr;
1183 
1184 		exact = ubifs_search_zbranch(c, znode, key, n);
1185 
1186 		if (znode->level == 0)
1187 			break;
1188 
1189 		if (*n < 0)
1190 			*n = 0;
1191 		zbr = &znode->zbranch[*n];
1192 
1193 		if (zbr->znode) {
1194 			znode->time = time;
1195 			znode = zbr->znode;
1196 			continue;
1197 		}
1198 
1199 		/* znode is not in TNC cache, load it from the media */
1200 		znode = ubifs_load_znode(c, zbr, znode, *n);
1201 		if (IS_ERR(znode))
1202 			return PTR_ERR(znode);
1203 	}
1204 
1205 	*zn = znode;
1206 	if (exact || !is_hash_key(c, key) || *n != -1) {
1207 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1208 		return exact;
1209 	}
1210 
1211 	/*
1212 	 * Here is a tricky place. We have not found the key and this is a
1213 	 * "hashed" key, which may collide. The rest of the code deals with
1214 	 * situations like this:
1215 	 *
1216 	 *                  | 3 | 5 |
1217 	 *                  /       \
1218 	 *          | 3 | 5 |      | 6 | 7 | (x)
1219 	 *
1220 	 * Or more a complex example:
1221 	 *
1222 	 *                | 1 | 5 |
1223 	 *                /       \
1224 	 *       | 1 | 3 |         | 5 | 8 |
1225 	 *              \           /
1226 	 *          | 5 | 5 |   | 6 | 7 | (x)
1227 	 *
1228 	 * In the examples, if we are looking for key "5", we may reach nodes
1229 	 * marked with "(x)". In this case what we have do is to look at the
1230 	 * left and see if there is "5" key there. If there is, we have to
1231 	 * return it.
1232 	 *
1233 	 * Note, this whole situation is possible because we allow to have
1234 	 * elements which are equivalent to the next key in the parent in the
1235 	 * children of current znode. For example, this happens if we split a
1236 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1237 	 * like this:
1238 	 *                      | 3 | 5 |
1239 	 *                       /     \
1240 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1241 	 *                              ^
1242 	 * And this becomes what is at the first "picture" after key "5" marked
1243 	 * with "^" is removed. What could be done is we could prohibit
1244 	 * splitting in the middle of the colliding sequence. Also, when
1245 	 * removing the leftmost key, we would have to correct the key of the
1246 	 * parent node, which would introduce additional complications. Namely,
1247 	 * if we changed the the leftmost key of the parent znode, the garbage
1248 	 * collector would be unable to find it (GC is doing this when GC'ing
1249 	 * indexing LEBs). Although we already have an additional RB-tree where
1250 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1251 	 * after the commit. But anyway, this does not look easy to implement
1252 	 * so we did not try this.
1253 	 */
1254 	err = tnc_prev(c, &znode, n);
1255 	if (err == -ENOENT) {
1256 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 		*n = -1;
1258 		return 0;
1259 	}
1260 	if (unlikely(err < 0))
1261 		return err;
1262 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1263 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264 		*n = -1;
1265 		return 0;
1266 	}
1267 
1268 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1269 	*zn = znode;
1270 	return 1;
1271 }
1272 
1273 /**
1274  * lookup_level0_dirty - search for zero-level znode dirtying.
1275  * @c: UBIFS file-system description object
1276  * @key:  key to lookup
1277  * @zn: znode is returned here
1278  * @n: znode branch slot number is returned here
1279  *
1280  * This function looks up the TNC tree and search for zero-level znode which
1281  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1282  * cases:
1283  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1284  *     is returned and slot number of the matched branch is stored in @n;
1285  *   o not exact match, which means that zero-level znode does not contain @key
1286  *     then %0 is returned and slot number of the closed branch is stored in
1287  *     @n;
1288  *   o @key is so small that it is even less than the lowest key of the
1289  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1290  *
1291  * Additionally all znodes in the path from the root to the located zero-level
1292  * znode are marked as dirty.
1293  *
1294  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1295  * function reads corresponding indexing nodes and inserts them to TNC. In
1296  * case of failure, a negative error code is returned.
1297  */
1298 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1299 			       struct ubifs_znode **zn, int *n)
1300 {
1301 	int err, exact;
1302 	struct ubifs_znode *znode;
1303 	unsigned long time = get_seconds();
1304 
1305 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1306 
1307 	znode = c->zroot.znode;
1308 	if (unlikely(!znode)) {
1309 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1310 		if (IS_ERR(znode))
1311 			return PTR_ERR(znode);
1312 	}
1313 
1314 	znode = dirty_cow_znode(c, &c->zroot);
1315 	if (IS_ERR(znode))
1316 		return PTR_ERR(znode);
1317 
1318 	znode->time = time;
1319 
1320 	while (1) {
1321 		struct ubifs_zbranch *zbr;
1322 
1323 		exact = ubifs_search_zbranch(c, znode, key, n);
1324 
1325 		if (znode->level == 0)
1326 			break;
1327 
1328 		if (*n < 0)
1329 			*n = 0;
1330 		zbr = &znode->zbranch[*n];
1331 
1332 		if (zbr->znode) {
1333 			znode->time = time;
1334 			znode = dirty_cow_znode(c, zbr);
1335 			if (IS_ERR(znode))
1336 				return PTR_ERR(znode);
1337 			continue;
1338 		}
1339 
1340 		/* znode is not in TNC cache, load it from the media */
1341 		znode = ubifs_load_znode(c, zbr, znode, *n);
1342 		if (IS_ERR(znode))
1343 			return PTR_ERR(znode);
1344 		znode = dirty_cow_znode(c, zbr);
1345 		if (IS_ERR(znode))
1346 			return PTR_ERR(znode);
1347 	}
1348 
1349 	*zn = znode;
1350 	if (exact || !is_hash_key(c, key) || *n != -1) {
1351 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1352 		return exact;
1353 	}
1354 
1355 	/*
1356 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1357 	 * code.
1358 	 */
1359 	err = tnc_prev(c, &znode, n);
1360 	if (err == -ENOENT) {
1361 		*n = -1;
1362 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 		return 0;
1364 	}
1365 	if (unlikely(err < 0))
1366 		return err;
1367 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1368 		*n = -1;
1369 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370 		return 0;
1371 	}
1372 
1373 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1374 		znode = dirty_cow_bottom_up(c, znode);
1375 		if (IS_ERR(znode))
1376 			return PTR_ERR(znode);
1377 	}
1378 
1379 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1380 	*zn = znode;
1381 	return 1;
1382 }
1383 
1384 /**
1385  * ubifs_tnc_lookup - look up a file-system node.
1386  * @c: UBIFS file-system description object
1387  * @key: node key to lookup
1388  * @node: the node is returned here
1389  *
1390  * This function look up and reads node with key @key. The caller has to make
1391  * sure the @node buffer is large enough to fit the node. Returns zero in case
1392  * of success, %-ENOENT if the node was not found, and a negative error code in
1393  * case of failure.
1394  */
1395 int ubifs_tnc_lookup(struct ubifs_info *c, const union ubifs_key *key,
1396 		     void *node)
1397 {
1398 	int found, n, err;
1399 	struct ubifs_znode *znode;
1400 	struct ubifs_zbranch zbr, *zt;
1401 
1402 	mutex_lock(&c->tnc_mutex);
1403 	found = ubifs_lookup_level0(c, key, &znode, &n);
1404 	if (!found) {
1405 		err = -ENOENT;
1406 		goto out;
1407 	} else if (found < 0) {
1408 		err = found;
1409 		goto out;
1410 	}
1411 	zt = &znode->zbranch[n];
1412 	if (is_hash_key(c, key)) {
1413 		/*
1414 		 * In this case the leaf node cache gets used, so we pass the
1415 		 * address of the zbranch and keep the mutex locked
1416 		 */
1417 		err = tnc_read_node_nm(c, zt, node);
1418 		goto out;
1419 	}
1420 	zbr = znode->zbranch[n];
1421 	mutex_unlock(&c->tnc_mutex);
1422 
1423 	err = ubifs_tnc_read_node(c, &zbr, node);
1424 	return err;
1425 
1426 out:
1427 	mutex_unlock(&c->tnc_mutex);
1428 	return err;
1429 }
1430 
1431 /**
1432  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1433  * @c: UBIFS file-system description object
1434  * @key: node key to lookup
1435  * @node: the node is returned here
1436  * @lnum: LEB number is returned here
1437  * @offs: offset is returned here
1438  *
1439  * This function is the same as 'ubifs_tnc_lookup()' but it returns the node
1440  * location also. See 'ubifs_tnc_lookup()'.
1441  */
1442 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1443 		     void *node, int *lnum, int *offs)
1444 {
1445 	int found, n, err;
1446 	struct ubifs_znode *znode;
1447 	struct ubifs_zbranch zbr, *zt;
1448 
1449 	mutex_lock(&c->tnc_mutex);
1450 	found = ubifs_lookup_level0(c, key, &znode, &n);
1451 	if (!found) {
1452 		err = -ENOENT;
1453 		goto out;
1454 	} else if (found < 0) {
1455 		err = found;
1456 		goto out;
1457 	}
1458 	zt = &znode->zbranch[n];
1459 	if (is_hash_key(c, key)) {
1460 		/*
1461 		 * In this case the leaf node cache gets used, so we pass the
1462 		 * address of the zbranch and keep the mutex locked
1463 		 */
1464 		*lnum = zt->lnum;
1465 		*offs = zt->offs;
1466 		err = tnc_read_node_nm(c, zt, node);
1467 		goto out;
1468 	}
1469 	zbr = znode->zbranch[n];
1470 	mutex_unlock(&c->tnc_mutex);
1471 
1472 	*lnum = zbr.lnum;
1473 	*offs = zbr.offs;
1474 
1475 	err = ubifs_tnc_read_node(c, &zbr, node);
1476 	return err;
1477 
1478 out:
1479 	mutex_unlock(&c->tnc_mutex);
1480 	return err;
1481 }
1482 
1483 /**
1484  * do_lookup_nm- look up a "hashed" node.
1485  * @c: UBIFS file-system description object
1486  * @key: node key to lookup
1487  * @node: the node is returned here
1488  * @nm: node name
1489  *
1490  * This function look up and reads a node which contains name hash in the key.
1491  * Since the hash may have collisions, there may be many nodes with the same
1492  * key, so we have to sequentially look to all of them until the needed one is
1493  * found. This function returns zero in case of success, %-ENOENT if the node
1494  * was not found, and a negative error code in case of failure.
1495  */
1496 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1497 			void *node, const struct qstr *nm)
1498 {
1499 	int found, n, err;
1500 	struct ubifs_znode *znode;
1501 	struct ubifs_zbranch zbr;
1502 
1503 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1504 	mutex_lock(&c->tnc_mutex);
1505 	found = ubifs_lookup_level0(c, key, &znode, &n);
1506 	if (!found) {
1507 		err = -ENOENT;
1508 		goto out_unlock;
1509 	} else if (found < 0) {
1510 		err = found;
1511 		goto out_unlock;
1512 	}
1513 
1514 	ubifs_assert(n >= 0);
1515 
1516 	err = resolve_collision(c, key, &znode, &n, nm);
1517 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1518 	if (unlikely(err < 0))
1519 		goto out_unlock;
1520 	if (err == 0) {
1521 		err = -ENOENT;
1522 		goto out_unlock;
1523 	}
1524 
1525 	zbr = znode->zbranch[n];
1526 	mutex_unlock(&c->tnc_mutex);
1527 
1528 	err = tnc_read_node_nm(c, &zbr, node);
1529 	return err;
1530 
1531 out_unlock:
1532 	mutex_unlock(&c->tnc_mutex);
1533 	return err;
1534 }
1535 
1536 /**
1537  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1538  * @c: UBIFS file-system description object
1539  * @key: node key to lookup
1540  * @node: the node is returned here
1541  * @nm: node name
1542  *
1543  * This function look up and reads a node which contains name hash in the key.
1544  * Since the hash may have collisions, there may be many nodes with the same
1545  * key, so we have to sequentially look to all of them until the needed one is
1546  * found. This function returns zero in case of success, %-ENOENT if the node
1547  * was not found, and a negative error code in case of failure.
1548  */
1549 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1550 			void *node, const struct qstr *nm)
1551 {
1552 	int err, len;
1553 	const struct ubifs_dent_node *dent = node;
1554 
1555 	/*
1556 	 * We assume that in most of the cases there are no name collisions and
1557 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1558 	 */
1559 	err = ubifs_tnc_lookup(c, key, node);
1560 	if (err)
1561 		return err;
1562 
1563 	len = le16_to_cpu(dent->nlen);
1564 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1565 		return 0;
1566 
1567 	/*
1568 	 * Unluckily, there are hash collisions and we have to iterate over
1569 	 * them look at each direntry with colliding name hash sequentially.
1570 	 */
1571 	return do_lookup_nm(c, key, node, nm);
1572 }
1573 
1574 /**
1575  * correct_parent_keys - correct parent znodes' keys.
1576  * @c: UBIFS file-system description object
1577  * @znode: znode to correct parent znodes for
1578  *
1579  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1580  * zbranch changes, keys of parent znodes have to be corrected. This helper
1581  * function is called in such situations and corrects the keys if needed.
1582  */
1583 static void correct_parent_keys(const struct ubifs_info *c,
1584 				struct ubifs_znode *znode)
1585 {
1586 	union ubifs_key *key, *key1;
1587 
1588 	ubifs_assert(znode->parent);
1589 	ubifs_assert(znode->iip == 0);
1590 
1591 	key = &znode->zbranch[0].key;
1592 	key1 = &znode->parent->zbranch[0].key;
1593 
1594 	while (keys_cmp(c, key, key1) < 0) {
1595 		key_copy(c, key, key1);
1596 		znode = znode->parent;
1597 		znode->alt = 1;
1598 		if (!znode->parent || znode->iip)
1599 			break;
1600 		key1 = &znode->parent->zbranch[0].key;
1601 	}
1602 }
1603 
1604 /**
1605  * insert_zbranch - insert a zbranch into a znode.
1606  * @znode: znode into which to insert
1607  * @zbr: zbranch to insert
1608  * @n: slot number to insert to
1609  *
1610  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1611  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1612  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1613  * slot, zbranches starting from @n have to be moved right.
1614  */
1615 static void insert_zbranch(struct ubifs_znode *znode,
1616 			   const struct ubifs_zbranch *zbr, int n)
1617 {
1618 	int i;
1619 
1620 	ubifs_assert(ubifs_zn_dirty(znode));
1621 
1622 	if (znode->level) {
1623 		for (i = znode->child_cnt; i > n; i--) {
1624 			znode->zbranch[i] = znode->zbranch[i - 1];
1625 			if (znode->zbranch[i].znode)
1626 				znode->zbranch[i].znode->iip = i;
1627 		}
1628 		if (zbr->znode)
1629 			zbr->znode->iip = n;
1630 	} else
1631 		for (i = znode->child_cnt; i > n; i--)
1632 			znode->zbranch[i] = znode->zbranch[i - 1];
1633 
1634 	znode->zbranch[n] = *zbr;
1635 	znode->child_cnt += 1;
1636 
1637 	/*
1638 	 * After inserting at slot zero, the lower bound of the key range of
1639 	 * this znode may have changed. If this znode is subsequently split
1640 	 * then the upper bound of the key range may change, and furthermore
1641 	 * it could change to be lower than the original lower bound. If that
1642 	 * happens, then it will no longer be possible to find this znode in the
1643 	 * TNC using the key from the index node on flash. That is bad because
1644 	 * if it is not found, we will assume it is obsolete and may overwrite
1645 	 * it. Then if there is an unclean unmount, we will start using the
1646 	 * old index which will be broken.
1647 	 *
1648 	 * So we first mark znodes that have insertions at slot zero, and then
1649 	 * if they are split we add their lnum/offs to the old_idx tree.
1650 	 */
1651 	if (n == 0)
1652 		znode->alt = 1;
1653 }
1654 
1655 /**
1656  * tnc_insert - insert a node into TNC.
1657  * @c: UBIFS file-system description object
1658  * @znode: znode to insert into
1659  * @zbr: branch to insert
1660  * @n: slot number to insert new zbranch to
1661  *
1662  * This function inserts a new node described by @zbr into znode @znode. If
1663  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1664  * are splat as well if needed. Returns zero in case of success or a negative
1665  * error code in case of failure.
1666  */
1667 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1668 		      struct ubifs_zbranch *zbr, int n)
1669 {
1670 	struct ubifs_znode *zn, *zi, *zp;
1671 	int i, keep, move, appending = 0;
1672 	union ubifs_key *key = &zbr->key;
1673 
1674 	ubifs_assert(n >= 0 && n <= c->fanout);
1675 
1676 	/* Implement naive insert for now */
1677 again:
1678 	zp = znode->parent;
1679 	if (znode->child_cnt < c->fanout) {
1680 		ubifs_assert(n != c->fanout);
1681 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1682 			DBGKEY(key));
1683 
1684 		insert_zbranch(znode, zbr, n);
1685 
1686 		/* Ensure parent's key is correct */
1687 		if (n == 0 && zp && znode->iip == 0)
1688 			correct_parent_keys(c, znode);
1689 
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * Unfortunately, @znode does not have more empty slots and we have to
1695 	 * split it.
1696 	 */
1697 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1698 
1699 	if (znode->alt)
1700 		/*
1701 		 * We can no longer be sure of finding this znode by key, so we
1702 		 * record it in the old_idx tree.
1703 		 */
1704 		ins_clr_old_idx_znode(c, znode);
1705 
1706 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1707 	if (!zn)
1708 		return -ENOMEM;
1709 	zn->parent = zp;
1710 	zn->level = znode->level;
1711 
1712 	/* Decide where to split */
1713 	if (znode->level == 0 && n == c->fanout &&
1714 	    key_type(c, key) == UBIFS_DATA_KEY) {
1715 		union ubifs_key *key1;
1716 
1717 		/*
1718 		 * If this is an inode which is being appended - do not split
1719 		 * it because no other zbranches can be inserted between
1720 		 * zbranches of consecutive data nodes anyway.
1721 		 */
1722 		key1 = &znode->zbranch[n - 1].key;
1723 		if (key_inum(c, key1) == key_inum(c, key) &&
1724 		    key_type(c, key1) == UBIFS_DATA_KEY &&
1725 		    key_block(c, key1) == key_block(c, key) - 1)
1726 			appending = 1;
1727 	}
1728 
1729 	if (appending) {
1730 		keep = c->fanout;
1731 		move = 0;
1732 	} else {
1733 		keep = (c->fanout + 1) / 2;
1734 		move = c->fanout - keep;
1735 	}
1736 
1737 	/*
1738 	 * Although we don't at present, we could look at the neighbors and see
1739 	 * if we can move some zbranches there.
1740 	 */
1741 
1742 	if (n < keep) {
1743 		/* Insert into existing znode */
1744 		zi = znode;
1745 		move += 1;
1746 		keep -= 1;
1747 	} else {
1748 		/* Insert into new znode */
1749 		zi = zn;
1750 		n -= keep;
1751 		/* Re-parent */
1752 		if (zn->level != 0)
1753 			zbr->znode->parent = zn;
1754 	}
1755 
1756 	__set_bit(DIRTY_ZNODE, &zn->flags);
1757 	atomic_long_inc(&c->dirty_zn_cnt);
1758 
1759 	zn->child_cnt = move;
1760 	znode->child_cnt = keep;
1761 
1762 	dbg_tnc("moving %d, keeping %d", move, keep);
1763 
1764 	/* Move zbranch */
1765 	for (i = 0; i < move; i++) {
1766 		zn->zbranch[i] = znode->zbranch[keep + i];
1767 		/* Re-parent */
1768 		if (zn->level != 0)
1769 			if (zn->zbranch[i].znode) {
1770 				zn->zbranch[i].znode->parent = zn;
1771 				zn->zbranch[i].znode->iip = i;
1772 			}
1773 	}
1774 
1775 	/* Insert new key and branch */
1776 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
1777 
1778 	insert_zbranch(zi, zbr, n);
1779 
1780 	/* Insert new znode (produced by spitting) into the parent */
1781 	if (zp) {
1782 		i = n;
1783 		/* Locate insertion point */
1784 		n = znode->iip + 1;
1785 		if (appending && n != c->fanout)
1786 			appending = 0;
1787 
1788 		if (i == 0 && zi == znode && znode->iip == 0)
1789 			correct_parent_keys(c, znode);
1790 
1791 		/* Tail recursion */
1792 		zbr->key = zn->zbranch[0].key;
1793 		zbr->znode = zn;
1794 		zbr->lnum = 0;
1795 		zbr->offs = 0;
1796 		zbr->len = 0;
1797 		znode = zp;
1798 
1799 		goto again;
1800 	}
1801 
1802 	/* We have to split root znode */
1803 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
1804 
1805 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
1806 	if (!zi)
1807 		return -ENOMEM;
1808 
1809 	zi->child_cnt = 2;
1810 	zi->level = znode->level + 1;
1811 
1812 	__set_bit(DIRTY_ZNODE, &zi->flags);
1813 	atomic_long_inc(&c->dirty_zn_cnt);
1814 
1815 	zi->zbranch[0].key = znode->zbranch[0].key;
1816 	zi->zbranch[0].znode = znode;
1817 	zi->zbranch[0].lnum = c->zroot.lnum;
1818 	zi->zbranch[0].offs = c->zroot.offs;
1819 	zi->zbranch[0].len = c->zroot.len;
1820 	zi->zbranch[1].key = zn->zbranch[0].key;
1821 	zi->zbranch[1].znode = zn;
1822 
1823 	c->zroot.lnum = 0;
1824 	c->zroot.offs = 0;
1825 	c->zroot.len = 0;
1826 	c->zroot.znode = zi;
1827 
1828 	zn->parent = zi;
1829 	zn->iip = 1;
1830 	znode->parent = zi;
1831 	znode->iip = 0;
1832 
1833 	return 0;
1834 }
1835 
1836 /**
1837  * ubifs_tnc_add - add a node to TNC.
1838  * @c: UBIFS file-system description object
1839  * @key: key to add
1840  * @lnum: LEB number of node
1841  * @offs: node offset
1842  * @len: node length
1843  *
1844  * This function adds a node with key @key to TNC. The node may be new or it may
1845  * obsolete some existing one. Returns %0 on success or negative error code on
1846  * failure.
1847  */
1848 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
1849 		  int offs, int len)
1850 {
1851 	int found, n, err = 0;
1852 	struct ubifs_znode *znode;
1853 
1854 	mutex_lock(&c->tnc_mutex);
1855 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
1856 	found = lookup_level0_dirty(c, key, &znode, &n);
1857 	if (!found) {
1858 		struct ubifs_zbranch zbr;
1859 
1860 		zbr.znode = NULL;
1861 		zbr.lnum = lnum;
1862 		zbr.offs = offs;
1863 		zbr.len = len;
1864 		key_copy(c, key, &zbr.key);
1865 		err = tnc_insert(c, znode, &zbr, n + 1);
1866 	} else if (found == 1) {
1867 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
1868 
1869 		lnc_free(zbr);
1870 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1871 		zbr->lnum = lnum;
1872 		zbr->offs = offs;
1873 		zbr->len = len;
1874 	} else
1875 		err = found;
1876 	if (!err)
1877 		err = dbg_check_tnc(c, 0);
1878 	mutex_unlock(&c->tnc_mutex);
1879 
1880 	return err;
1881 }
1882 
1883 /**
1884  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
1885  * @c: UBIFS file-system description object
1886  * @key: key to add
1887  * @old_lnum: LEB number of old node
1888  * @old_offs: old node offset
1889  * @lnum: LEB number of node
1890  * @offs: node offset
1891  * @len: node length
1892  *
1893  * This function replaces a node with key @key in the TNC only if the old node
1894  * is found.  This function is called by garbage collection when node are moved.
1895  * Returns %0 on success or negative error code on failure.
1896  */
1897 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
1898 		      int old_lnum, int old_offs, int lnum, int offs, int len)
1899 {
1900 	int found, n, err = 0;
1901 	struct ubifs_znode *znode;
1902 
1903 	mutex_lock(&c->tnc_mutex);
1904 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
1905 		old_offs, lnum, offs, len, DBGKEY(key));
1906 	found = lookup_level0_dirty(c, key, &znode, &n);
1907 	if (found < 0) {
1908 		err = found;
1909 		goto out_unlock;
1910 	}
1911 
1912 	if (found == 1) {
1913 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
1914 
1915 		found = 0;
1916 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
1917 			lnc_free(zbr);
1918 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1919 			if (err)
1920 				goto out_unlock;
1921 			zbr->lnum = lnum;
1922 			zbr->offs = offs;
1923 			zbr->len = len;
1924 			found = 1;
1925 		} else if (is_hash_key(c, key)) {
1926 			found = resolve_collision_directly(c, key, &znode, &n,
1927 							   old_lnum, old_offs);
1928 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
1929 				found, znode, n, old_lnum, old_offs);
1930 			if (found < 0) {
1931 				err = found;
1932 				goto out_unlock;
1933 			}
1934 
1935 			if (found) {
1936 				/* Ensure the znode is dirtied */
1937 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
1938 					    znode = dirty_cow_bottom_up(c,
1939 									znode);
1940 					    if (IS_ERR(znode)) {
1941 						    err = PTR_ERR(znode);
1942 						    goto out_unlock;
1943 					    }
1944 				}
1945 				zbr = &znode->zbranch[n];
1946 				lnc_free(zbr);
1947 				err = ubifs_add_dirt(c, zbr->lnum,
1948 						     zbr->len);
1949 				if (err)
1950 					goto out_unlock;
1951 				zbr->lnum = lnum;
1952 				zbr->offs = offs;
1953 				zbr->len = len;
1954 			}
1955 		}
1956 	}
1957 
1958 	if (!found)
1959 		err = ubifs_add_dirt(c, lnum, len);
1960 
1961 	if (!err)
1962 		err = dbg_check_tnc(c, 0);
1963 
1964 out_unlock:
1965 	mutex_unlock(&c->tnc_mutex);
1966 	return err;
1967 }
1968 
1969 /**
1970  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
1971  * @c: UBIFS file-system description object
1972  * @key: key to add
1973  * @lnum: LEB number of node
1974  * @offs: node offset
1975  * @len: node length
1976  * @nm: node name
1977  *
1978  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
1979  * may have collisions, like directory entry keys.
1980  */
1981 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
1982 		     int lnum, int offs, int len, const struct qstr *nm)
1983 {
1984 	int found, n, err = 0;
1985 	struct ubifs_znode *znode;
1986 
1987 	mutex_lock(&c->tnc_mutex);
1988 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
1989 		DBGKEY(key));
1990 	found = lookup_level0_dirty(c, key, &znode, &n);
1991 	if (found < 0) {
1992 		err = found;
1993 		goto out_unlock;
1994 	}
1995 
1996 	if (found == 1) {
1997 		if (c->replaying)
1998 			found = fallible_resolve_collision(c, key, &znode, &n,
1999 							   nm, 1);
2000 		else
2001 			found = resolve_collision(c, key, &znode, &n, nm);
2002 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2003 		if (found < 0) {
2004 			err = found;
2005 			goto out_unlock;
2006 		}
2007 
2008 		/* Ensure the znode is dirtied */
2009 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2010 			    znode = dirty_cow_bottom_up(c, znode);
2011 			    if (IS_ERR(znode)) {
2012 				    err = PTR_ERR(znode);
2013 				    goto out_unlock;
2014 			    }
2015 		}
2016 
2017 		if (found == 1) {
2018 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2019 
2020 			lnc_free(zbr);
2021 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2022 			zbr->lnum = lnum;
2023 			zbr->offs = offs;
2024 			zbr->len = len;
2025 			goto out_unlock;
2026 		}
2027 	}
2028 
2029 	if (!found) {
2030 		struct ubifs_zbranch zbr;
2031 
2032 		zbr.znode = NULL;
2033 		zbr.lnum = lnum;
2034 		zbr.offs = offs;
2035 		zbr.len = len;
2036 		key_copy(c, key, &zbr.key);
2037 		err = tnc_insert(c, znode, &zbr, n + 1);
2038 		if (err)
2039 			goto out_unlock;
2040 		if (c->replaying) {
2041 			/*
2042 			 * We did not find it in the index so there may be a
2043 			 * dangling branch still in the index. So we remove it
2044 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2045 			 * an unmatchable name.
2046 			 */
2047 			struct qstr noname = { .len = 0, .name = "" };
2048 
2049 			err = dbg_check_tnc(c, 0);
2050 			mutex_unlock(&c->tnc_mutex);
2051 			if (err)
2052 				return err;
2053 			return ubifs_tnc_remove_nm(c, key, &noname);
2054 		}
2055 	}
2056 
2057 out_unlock:
2058 	if (!err)
2059 		err = dbg_check_tnc(c, 0);
2060 	mutex_unlock(&c->tnc_mutex);
2061 	return err;
2062 }
2063 
2064 /**
2065  * tnc_delete - delete a znode form TNC.
2066  * @c: UBIFS file-system description object
2067  * @znode: znode to delete from
2068  * @n: zbranch slot number to delete
2069  *
2070  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2071  * case of success and a negative error code in case of failure.
2072  */
2073 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2074 {
2075 	struct ubifs_zbranch *zbr;
2076 	struct ubifs_znode *zp;
2077 	int i, err;
2078 
2079 	/* Delete without merge for now */
2080 	ubifs_assert(znode->level == 0);
2081 	ubifs_assert(n >= 0 && n < c->fanout);
2082 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2083 
2084 	zbr = &znode->zbranch[n];
2085 	lnc_free(zbr);
2086 
2087 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2088 	if (err) {
2089 		dbg_dump_znode(c, znode);
2090 		return err;
2091 	}
2092 
2093 	/* We do not "gap" zbranch slots */
2094 	for (i = n; i < znode->child_cnt - 1; i++)
2095 		znode->zbranch[i] = znode->zbranch[i + 1];
2096 	znode->child_cnt -= 1;
2097 
2098 	if (znode->child_cnt > 0)
2099 		return 0;
2100 
2101 	/*
2102 	 * This was the last zbranch, we have to delete this znode from the
2103 	 * parent.
2104 	 */
2105 
2106 	do {
2107 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2108 		ubifs_assert(ubifs_zn_dirty(znode));
2109 
2110 		zp = znode->parent;
2111 		n = znode->iip;
2112 
2113 		atomic_long_dec(&c->dirty_zn_cnt);
2114 
2115 		err = insert_old_idx_znode(c, znode);
2116 		if (err)
2117 			return err;
2118 
2119 		if (znode->cnext) {
2120 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2121 			atomic_long_inc(&c->clean_zn_cnt);
2122 			atomic_long_inc(&ubifs_clean_zn_cnt);
2123 		} else
2124 			kfree(znode);
2125 		znode = zp;
2126 	} while (znode->child_cnt == 1); /* while removing last child */
2127 
2128 	/* Remove from znode, entry n - 1 */
2129 	znode->child_cnt -= 1;
2130 	ubifs_assert(znode->level != 0);
2131 	for (i = n; i < znode->child_cnt; i++) {
2132 		znode->zbranch[i] = znode->zbranch[i + 1];
2133 		if (znode->zbranch[i].znode)
2134 			znode->zbranch[i].znode->iip = i;
2135 	}
2136 
2137 	/*
2138 	 * If this is the root and it has only 1 child then
2139 	 * collapse the tree.
2140 	 */
2141 	if (!znode->parent) {
2142 		while (znode->child_cnt == 1 && znode->level != 0) {
2143 			zp = znode;
2144 			zbr = &znode->zbranch[0];
2145 			znode = get_znode(c, znode, 0);
2146 			if (IS_ERR(znode))
2147 				return PTR_ERR(znode);
2148 			znode = dirty_cow_znode(c, zbr);
2149 			if (IS_ERR(znode))
2150 				return PTR_ERR(znode);
2151 			znode->parent = NULL;
2152 			znode->iip = 0;
2153 			if (c->zroot.len) {
2154 				err = insert_old_idx(c, c->zroot.lnum,
2155 						     c->zroot.offs);
2156 				if (err)
2157 					return err;
2158 			}
2159 			c->zroot.lnum = zbr->lnum;
2160 			c->zroot.offs = zbr->offs;
2161 			c->zroot.len = zbr->len;
2162 			c->zroot.znode = znode;
2163 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2164 				     &zp->flags));
2165 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2166 			atomic_long_dec(&c->dirty_zn_cnt);
2167 
2168 			if (zp->cnext) {
2169 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2170 				atomic_long_inc(&c->clean_zn_cnt);
2171 				atomic_long_inc(&ubifs_clean_zn_cnt);
2172 			} else
2173 				kfree(zp);
2174 		}
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /**
2181  * ubifs_tnc_remove - remove an index entry of a node.
2182  * @c: UBIFS file-system description object
2183  * @key: key of node
2184  *
2185  * Returns %0 on success or negative error code on failure.
2186  */
2187 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2188 {
2189 	int found, n, err = 0;
2190 	struct ubifs_znode *znode;
2191 
2192 	mutex_lock(&c->tnc_mutex);
2193 	dbg_tnc("key %s", DBGKEY(key));
2194 	found = lookup_level0_dirty(c, key, &znode, &n);
2195 	if (found < 0) {
2196 		err = found;
2197 		goto out_unlock;
2198 	}
2199 	if (found == 1)
2200 		err = tnc_delete(c, znode, n);
2201 	if (!err)
2202 		err = dbg_check_tnc(c, 0);
2203 
2204 out_unlock:
2205 	mutex_unlock(&c->tnc_mutex);
2206 	return err;
2207 }
2208 
2209 /**
2210  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2211  * @c: UBIFS file-system description object
2212  * @key: key of node
2213  * @nm: directory entry name
2214  *
2215  * Returns %0 on success or negative error code on failure.
2216  */
2217 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2218 			const struct qstr *nm)
2219 {
2220 	int n, err;
2221 	struct ubifs_znode *znode;
2222 
2223 	mutex_lock(&c->tnc_mutex);
2224 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2225 	err = lookup_level0_dirty(c, key, &znode, &n);
2226 	if (err < 0)
2227 		goto out_unlock;
2228 
2229 	if (err) {
2230 		if (c->replaying)
2231 			err = fallible_resolve_collision(c, key, &znode, &n,
2232 							 nm, 0);
2233 		else
2234 			err = resolve_collision(c, key, &znode, &n, nm);
2235 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2236 		if (err < 0)
2237 			goto out_unlock;
2238 		if (err) {
2239 			/* Ensure the znode is dirtied */
2240 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2241 				    znode = dirty_cow_bottom_up(c, znode);
2242 				    if (IS_ERR(znode)) {
2243 					    err = PTR_ERR(znode);
2244 					    goto out_unlock;
2245 				    }
2246 			}
2247 			err = tnc_delete(c, znode, n);
2248 		}
2249 	}
2250 
2251 out_unlock:
2252 	if (!err)
2253 		err = dbg_check_tnc(c, 0);
2254 	mutex_unlock(&c->tnc_mutex);
2255 	return err;
2256 }
2257 
2258 /**
2259  * key_in_range - determine if a key falls within a range of keys.
2260  * @c: UBIFS file-system description object
2261  * @key: key to check
2262  * @from_key: lowest key in range
2263  * @to_key: highest key in range
2264  *
2265  * This function returns %1 if the key is in range and %0 otherwise.
2266  */
2267 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2268 			union ubifs_key *from_key, union ubifs_key *to_key)
2269 {
2270 	if (keys_cmp(c, key, from_key) < 0)
2271 		return 0;
2272 	if (keys_cmp(c, key, to_key) > 0)
2273 		return 0;
2274 	return 1;
2275 }
2276 
2277 /**
2278  * ubifs_tnc_remove_range - remove index entries in range.
2279  * @c: UBIFS file-system description object
2280  * @from_key: lowest key to remove
2281  * @to_key: highest key to remove
2282  *
2283  * This function removes index entries starting at @from_key and ending at
2284  * @to_key.  This function returns zero in case of success and a negative error
2285  * code in case of failure.
2286  */
2287 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2288 			   union ubifs_key *to_key)
2289 {
2290 	int i, n, k, err = 0;
2291 	struct ubifs_znode *znode;
2292 	union ubifs_key *key;
2293 
2294 	mutex_lock(&c->tnc_mutex);
2295 	while (1) {
2296 		/* Find first level 0 znode that contains keys to remove */
2297 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2298 		if (err < 0)
2299 			goto out_unlock;
2300 
2301 		if (err)
2302 			key = from_key;
2303 		else {
2304 			err = tnc_next(c, &znode, &n);
2305 			if (err == -ENOENT) {
2306 				err = 0;
2307 				goto out_unlock;
2308 			}
2309 			if (err < 0)
2310 				goto out_unlock;
2311 			key = &znode->zbranch[n].key;
2312 			if (!key_in_range(c, key, from_key, to_key)) {
2313 				err = 0;
2314 				goto out_unlock;
2315 			}
2316 		}
2317 
2318 		/* Ensure the znode is dirtied */
2319 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2320 			    znode = dirty_cow_bottom_up(c, znode);
2321 			    if (IS_ERR(znode)) {
2322 				    err = PTR_ERR(znode);
2323 				    goto out_unlock;
2324 			    }
2325 		}
2326 
2327 		/* Remove all keys in range except the first */
2328 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2329 			key = &znode->zbranch[i].key;
2330 			if (!key_in_range(c, key, from_key, to_key))
2331 				break;
2332 			lnc_free(&znode->zbranch[i]);
2333 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2334 					     znode->zbranch[i].len);
2335 			if (err) {
2336 				dbg_dump_znode(c, znode);
2337 				goto out_unlock;
2338 			}
2339 			dbg_tnc("removing %s", DBGKEY(key));
2340 		}
2341 		if (k) {
2342 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2343 				znode->zbranch[i - k] = znode->zbranch[i];
2344 			znode->child_cnt -= k;
2345 		}
2346 
2347 		/* Now delete the first */
2348 		err = tnc_delete(c, znode, n);
2349 		if (err)
2350 			goto out_unlock;
2351 	}
2352 
2353 out_unlock:
2354 	if (!err)
2355 		err = dbg_check_tnc(c, 0);
2356 	mutex_unlock(&c->tnc_mutex);
2357 	return err;
2358 }
2359 
2360 /**
2361  * ubifs_tnc_remove_ino - remove an inode from TNC.
2362  * @c: UBIFS file-system description object
2363  * @inum: inode number to remove
2364  *
2365  * This function remove inode @inum and all the extended attributes associated
2366  * with the anode from TNC and returns zero in case of success or a negative
2367  * error code in case of failure.
2368  */
2369 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2370 {
2371 	union ubifs_key key1, key2;
2372 	struct ubifs_dent_node *xent, *pxent = NULL;
2373 	struct qstr nm = { .name = NULL };
2374 
2375 	dbg_tnc("ino %lu", inum);
2376 
2377 	/*
2378 	 * Walk all extended attribute entries and remove them together with
2379 	 * corresponding extended attribute inodes.
2380 	 */
2381 	lowest_xent_key(c, &key1, inum);
2382 	while (1) {
2383 		ino_t xattr_inum;
2384 		int err;
2385 
2386 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2387 		if (IS_ERR(xent)) {
2388 			err = PTR_ERR(xent);
2389 			if (err == -ENOENT)
2390 				break;
2391 			return err;
2392 		}
2393 
2394 		xattr_inum = le64_to_cpu(xent->inum);
2395 		dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2396 
2397 		nm.name = xent->name;
2398 		nm.len = le16_to_cpu(xent->nlen);
2399 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2400 		if (err) {
2401 			kfree(xent);
2402 			return err;
2403 		}
2404 
2405 		lowest_ino_key(c, &key1, xattr_inum);
2406 		highest_ino_key(c, &key2, xattr_inum);
2407 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2408 		if (err) {
2409 			kfree(xent);
2410 			return err;
2411 		}
2412 
2413 		kfree(pxent);
2414 		pxent = xent;
2415 		key_read(c, &xent->key, &key1);
2416 	}
2417 
2418 	kfree(pxent);
2419 	lowest_ino_key(c, &key1, inum);
2420 	highest_ino_key(c, &key2, inum);
2421 
2422 	return ubifs_tnc_remove_range(c, &key1, &key2);
2423 }
2424 
2425 /**
2426  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2427  * @c: UBIFS file-system description object
2428  * @key: key of last entry
2429  * @nm: name of last entry found or %NULL
2430  *
2431  * This function finds and reads the next directory or extended attribute entry
2432  * after the given key (@key) if there is one. @nm is used to resolve
2433  * collisions.
2434  *
2435  * If the name of the current entry is not known and only the key is known,
2436  * @nm->name has to be %NULL. In this case the semantics of this function is a
2437  * little bit different and it returns the entry corresponding to this key, not
2438  * the next one. If the key was not found, the closest "right" entry is
2439  * returned.
2440  *
2441  * If the fist entry has to be found, @key has to contain the lowest possible
2442  * key value for this inode and @name has to be %NULL.
2443  *
2444  * This function returns the found directory or extended attribute entry node
2445  * in case of success, %-ENOENT is returned if no entry was found, and a
2446  * negative error code is returned in case of failure.
2447  */
2448 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2449 					   union ubifs_key *key,
2450 					   const struct qstr *nm)
2451 {
2452 	int n, err, type = key_type(c, key);
2453 	struct ubifs_znode *znode;
2454 	struct ubifs_dent_node *dent;
2455 	struct ubifs_zbranch *zbr;
2456 	union ubifs_key *dkey;
2457 
2458 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2459 	ubifs_assert(is_hash_key(c, key));
2460 
2461 	mutex_lock(&c->tnc_mutex);
2462 	err = ubifs_lookup_level0(c, key, &znode, &n);
2463 	if (unlikely(err < 0))
2464 		goto out_unlock;
2465 
2466 	if (nm->name) {
2467 		if (err) {
2468 			/* Handle collisions */
2469 			err = resolve_collision(c, key, &znode, &n, nm);
2470 			dbg_tnc("rc returned %d, znode %p, n %d",
2471 				err, znode, n);
2472 			if (unlikely(err < 0))
2473 				goto out_unlock;
2474 		}
2475 
2476 		/* Now find next entry */
2477 		err = tnc_next(c, &znode, &n);
2478 		if (unlikely(err))
2479 			goto out_unlock;
2480 	} else {
2481 		/*
2482 		 * The full name of the entry was not given, in which case the
2483 		 * behavior of this function is a little different and it
2484 		 * returns current entry, not the next one.
2485 		 */
2486 		if (!err) {
2487 			/*
2488 			 * However, the given key does not exist in the TNC
2489 			 * tree and @znode/@n variables contain the closest
2490 			 * "preceding" element. Switch to the next one.
2491 			 */
2492 			err = tnc_next(c, &znode, &n);
2493 			if (err)
2494 				goto out_unlock;
2495 		}
2496 	}
2497 
2498 	zbr = &znode->zbranch[n];
2499 	dent = kmalloc(zbr->len, GFP_NOFS);
2500 	if (unlikely(!dent)) {
2501 		err = -ENOMEM;
2502 		goto out_unlock;
2503 	}
2504 
2505 	/*
2506 	 * The above 'tnc_next()' call could lead us to the next inode, check
2507 	 * this.
2508 	 */
2509 	dkey = &zbr->key;
2510 	if (key_inum(c, dkey) != key_inum(c, key) ||
2511 	    key_type(c, dkey) != type) {
2512 		err = -ENOENT;
2513 		goto out_free;
2514 	}
2515 
2516 	err = tnc_read_node_nm(c, zbr, dent);
2517 	if (unlikely(err))
2518 		goto out_free;
2519 
2520 	mutex_unlock(&c->tnc_mutex);
2521 	return dent;
2522 
2523 out_free:
2524 	kfree(dent);
2525 out_unlock:
2526 	mutex_unlock(&c->tnc_mutex);
2527 	return ERR_PTR(err);
2528 }
2529 
2530 /**
2531  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2532  * @c: UBIFS file-system description object
2533  *
2534  * Destroy left-over obsolete znodes from a failed commit.
2535  */
2536 static void tnc_destroy_cnext(struct ubifs_info *c)
2537 {
2538 	struct ubifs_znode *cnext;
2539 
2540 	if (!c->cnext)
2541 		return;
2542 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2543 	cnext = c->cnext;
2544 	do {
2545 		struct ubifs_znode *znode = cnext;
2546 
2547 		cnext = cnext->cnext;
2548 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2549 			kfree(znode);
2550 	} while (cnext && cnext != c->cnext);
2551 }
2552 
2553 /**
2554  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2555  * @c: UBIFS file-system description object
2556  */
2557 void ubifs_tnc_close(struct ubifs_info *c)
2558 {
2559 	long clean_freed;
2560 
2561 	tnc_destroy_cnext(c);
2562 	if (c->zroot.znode) {
2563 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2564 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2565 	}
2566 	kfree(c->gap_lebs);
2567 	kfree(c->ilebs);
2568 	destroy_old_idx(c);
2569 }
2570 
2571 /**
2572  * left_znode - get the znode to the left.
2573  * @c: UBIFS file-system description object
2574  * @znode: znode
2575  *
2576  * This function returns a pointer to the znode to the left of @znode or NULL if
2577  * there is not one. A negative error code is returned on failure.
2578  */
2579 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2580 				      struct ubifs_znode *znode)
2581 {
2582 	int level = znode->level;
2583 
2584 	while (1) {
2585 		int n = znode->iip - 1;
2586 
2587 		/* Go up until we can go left */
2588 		znode = znode->parent;
2589 		if (!znode)
2590 			return NULL;
2591 		if (n >= 0) {
2592 			/* Now go down the rightmost branch to 'level' */
2593 			znode = get_znode(c, znode, n);
2594 			if (IS_ERR(znode))
2595 				return znode;
2596 			while (znode->level != level) {
2597 				n = znode->child_cnt - 1;
2598 				znode = get_znode(c, znode, n);
2599 				if (IS_ERR(znode))
2600 					return znode;
2601 			}
2602 			break;
2603 		}
2604 	}
2605 	return znode;
2606 }
2607 
2608 /**
2609  * right_znode - get the znode to the right.
2610  * @c: UBIFS file-system description object
2611  * @znode: znode
2612  *
2613  * This function returns a pointer to the znode to the right of @znode or NULL
2614  * if there is not one. A negative error code is returned on failure.
2615  */
2616 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2617 				       struct ubifs_znode *znode)
2618 {
2619 	int level = znode->level;
2620 
2621 	while (1) {
2622 		int n = znode->iip + 1;
2623 
2624 		/* Go up until we can go right */
2625 		znode = znode->parent;
2626 		if (!znode)
2627 			return NULL;
2628 		if (n < znode->child_cnt) {
2629 			/* Now go down the leftmost branch to 'level' */
2630 			znode = get_znode(c, znode, n);
2631 			if (IS_ERR(znode))
2632 				return znode;
2633 			while (znode->level != level) {
2634 				znode = get_znode(c, znode, 0);
2635 				if (IS_ERR(znode))
2636 					return znode;
2637 			}
2638 			break;
2639 		}
2640 	}
2641 	return znode;
2642 }
2643 
2644 /**
2645  * lookup_znode - find a particular indexing node from TNC.
2646  * @c: UBIFS file-system description object
2647  * @key: index node key to lookup
2648  * @level: index node level
2649  * @lnum: index node LEB number
2650  * @offs: index node offset
2651  *
2652  * This function searches an indexing node by its first key @key and its
2653  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2654  * nodes it traverses to TNC. This function is called fro indexing nodes which
2655  * were found on the media by scanning, for example when garbage-collecting or
2656  * when doing in-the-gaps commit. This means that the indexing node which is
2657  * looked for does not have to have exactly the same leftmost key @key, because
2658  * the leftmost key may have been changed, in which case TNC will contain a
2659  * dirty znode which still refers the same @lnum:@offs. This function is clever
2660  * enough to recognize such indexing nodes.
2661  *
2662  * Note, if a znode was deleted or changed too much, then this function will
2663  * not find it. For situations like this UBIFS has the old index RB-tree
2664  * (indexed by @lnum:@offs).
2665  *
2666  * This function returns a pointer to the znode found or %NULL if it is not
2667  * found. A negative error code is returned on failure.
2668  */
2669 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2670 					union ubifs_key *key, int level,
2671 					int lnum, int offs)
2672 {
2673 	struct ubifs_znode *znode, *zn;
2674 	int n, nn;
2675 
2676 	/*
2677 	 * The arguments have probably been read off flash, so don't assume
2678 	 * they are valid.
2679 	 */
2680 	if (level < 0)
2681 		return ERR_PTR(-EINVAL);
2682 
2683 	/* Get the root znode */
2684 	znode = c->zroot.znode;
2685 	if (!znode) {
2686 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2687 		if (IS_ERR(znode))
2688 			return znode;
2689 	}
2690 	/* Check if it is the one we are looking for */
2691 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2692 		return znode;
2693 	/* Descend to the parent level i.e. (level + 1) */
2694 	if (level >= znode->level)
2695 		return NULL;
2696 	while (1) {
2697 		ubifs_search_zbranch(c, znode, key, &n);
2698 		if (n < 0) {
2699 			/*
2700 			 * We reached a znode where the leftmost key is greater
2701 			 * than the key we are searching for. This is the same
2702 			 * situation as the one described in a huge comment at
2703 			 * the end of the 'ubifs_lookup_level0()' function. And
2704 			 * for exactly the same reasons we have to try to look
2705 			 * left before giving up.
2706 			 */
2707 			znode = left_znode(c, znode);
2708 			if (!znode)
2709 				return NULL;
2710 			if (IS_ERR(znode))
2711 				return znode;
2712 			ubifs_search_zbranch(c, znode, key, &n);
2713 			ubifs_assert(n >= 0);
2714 		}
2715 		if (znode->level == level + 1)
2716 			break;
2717 		znode = get_znode(c, znode, n);
2718 		if (IS_ERR(znode))
2719 			return znode;
2720 	}
2721 	/* Check if the child is the one we are looking for */
2722 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
2723 		return get_znode(c, znode, n);
2724 	/* If the key is unique, there is nowhere else to look */
2725 	if (!is_hash_key(c, key))
2726 		return NULL;
2727 	/*
2728 	 * The key is not unique and so may be also in the znodes to either
2729 	 * side.
2730 	 */
2731 	zn = znode;
2732 	nn = n;
2733 	/* Look left */
2734 	while (1) {
2735 		/* Move one branch to the left */
2736 		if (n)
2737 			n -= 1;
2738 		else {
2739 			znode = left_znode(c, znode);
2740 			if (!znode)
2741 				break;
2742 			if (IS_ERR(znode))
2743 				return znode;
2744 			n = znode->child_cnt - 1;
2745 		}
2746 		/* Check it */
2747 		if (znode->zbranch[n].lnum == lnum &&
2748 		    znode->zbranch[n].offs == offs)
2749 			return get_znode(c, znode, n);
2750 		/* Stop if the key is less than the one we are looking for */
2751 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
2752 			break;
2753 	}
2754 	/* Back to the middle */
2755 	znode = zn;
2756 	n = nn;
2757 	/* Look right */
2758 	while (1) {
2759 		/* Move one branch to the right */
2760 		if (++n >= znode->child_cnt) {
2761 			znode = right_znode(c, znode);
2762 			if (!znode)
2763 				break;
2764 			if (IS_ERR(znode))
2765 				return znode;
2766 			n = 0;
2767 		}
2768 		/* Check it */
2769 		if (znode->zbranch[n].lnum == lnum &&
2770 		    znode->zbranch[n].offs == offs)
2771 			return get_znode(c, znode, n);
2772 		/* Stop if the key is greater than the one we are looking for */
2773 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
2774 			break;
2775 	}
2776 	return NULL;
2777 }
2778 
2779 /**
2780  * is_idx_node_in_tnc - determine if an index node is in the TNC.
2781  * @c: UBIFS file-system description object
2782  * @key: key of index node
2783  * @level: index node level
2784  * @lnum: LEB number of index node
2785  * @offs: offset of index node
2786  *
2787  * This function returns %0 if the index node is not referred to in the TNC, %1
2788  * if the index node is referred to in the TNC and the corresponding znode is
2789  * dirty, %2 if an index node is referred to in the TNC and the corresponding
2790  * znode is clean, and a negative error code in case of failure.
2791  *
2792  * Note, the @key argument has to be the key of the first child. Also note,
2793  * this function relies on the fact that 0:0 is never a valid LEB number and
2794  * offset for a main-area node.
2795  */
2796 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
2797 		       int lnum, int offs)
2798 {
2799 	struct ubifs_znode *znode;
2800 
2801 	znode = lookup_znode(c, key, level, lnum, offs);
2802 	if (!znode)
2803 		return 0;
2804 	if (IS_ERR(znode))
2805 		return PTR_ERR(znode);
2806 
2807 	return ubifs_zn_dirty(znode) ? 1 : 2;
2808 }
2809 
2810 /**
2811  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
2812  * @c: UBIFS file-system description object
2813  * @key: node key
2814  * @lnum: node LEB number
2815  * @offs: node offset
2816  *
2817  * This function returns %1 if the node is referred to in the TNC, %0 if it is
2818  * not, and a negative error code in case of failure.
2819  *
2820  * Note, this function relies on the fact that 0:0 is never a valid LEB number
2821  * and offset for a main-area node.
2822  */
2823 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
2824 			       int lnum, int offs)
2825 {
2826 	struct ubifs_zbranch *zbr;
2827 	struct ubifs_znode *znode, *zn;
2828 	int n, found, err, nn;
2829 	const int unique = !is_hash_key(c, key);
2830 
2831 	found = ubifs_lookup_level0(c, key, &znode, &n);
2832 	if (found < 0)
2833 		return found; /* Error code */
2834 	if (!found)
2835 		return 0;
2836 	zbr = &znode->zbranch[n];
2837 	if (lnum == zbr->lnum && offs == zbr->offs)
2838 		return 1; /* Found it */
2839 	if (unique)
2840 		return 0;
2841 	/*
2842 	 * Because the key is not unique, we have to look left
2843 	 * and right as well
2844 	 */
2845 	zn = znode;
2846 	nn = n;
2847 	/* Look left */
2848 	while (1) {
2849 		err = tnc_prev(c, &znode, &n);
2850 		if (err == -ENOENT)
2851 			break;
2852 		if (err)
2853 			return err;
2854 		if (keys_cmp(c, key, &znode->zbranch[n].key))
2855 			break;
2856 		zbr = &znode->zbranch[n];
2857 		if (lnum == zbr->lnum && offs == zbr->offs)
2858 			return 1; /* Found it */
2859 	}
2860 	/* Look right */
2861 	znode = zn;
2862 	n = nn;
2863 	while (1) {
2864 		err = tnc_next(c, &znode, &n);
2865 		if (err) {
2866 			if (err == -ENOENT)
2867 				return 0;
2868 			return err;
2869 		}
2870 		if (keys_cmp(c, key, &znode->zbranch[n].key))
2871 			break;
2872 		zbr = &znode->zbranch[n];
2873 		if (lnum == zbr->lnum && offs == zbr->offs)
2874 			return 1; /* Found it */
2875 	}
2876 	return 0;
2877 }
2878 
2879 /**
2880  * ubifs_tnc_has_node - determine whether a node is in the TNC.
2881  * @c: UBIFS file-system description object
2882  * @key: node key
2883  * @level: index node level (if it is an index node)
2884  * @lnum: node LEB number
2885  * @offs: node offset
2886  * @is_idx: non-zero if the node is an index node
2887  *
2888  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
2889  * negative error code in case of failure. For index nodes, @key has to be the
2890  * key of the first child. An index node is considered to be in the TNC only if
2891  * the corresponding znode is clean or has not been loaded.
2892  */
2893 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
2894 		       int lnum, int offs, int is_idx)
2895 {
2896 	int err;
2897 
2898 	mutex_lock(&c->tnc_mutex);
2899 	if (is_idx) {
2900 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
2901 		if (err < 0)
2902 			goto out_unlock;
2903 		if (err == 1)
2904 			/* The index node was found but it was dirty */
2905 			err = 0;
2906 		else if (err == 2)
2907 			/* The index node was found and it was clean */
2908 			err = 1;
2909 		else
2910 			BUG_ON(err != 0);
2911 	} else
2912 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
2913 
2914 out_unlock:
2915 	mutex_unlock(&c->tnc_mutex);
2916 	return err;
2917 }
2918 
2919 /**
2920  * ubifs_dirty_idx_node - dirty an index node.
2921  * @c: UBIFS file-system description object
2922  * @key: index node key
2923  * @level: index node level
2924  * @lnum: index node LEB number
2925  * @offs: index node offset
2926  *
2927  * This function loads and dirties an index node so that it can be garbage
2928  * collected. The @key argument has to be the key of the first child. This
2929  * function relies on the fact that 0:0 is never a valid LEB number and offset
2930  * for a main-area node. Returns %0 on success and a negative error code on
2931  * failure.
2932  */
2933 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
2934 			 int lnum, int offs)
2935 {
2936 	struct ubifs_znode *znode;
2937 	int err = 0;
2938 
2939 	mutex_lock(&c->tnc_mutex);
2940 	znode = lookup_znode(c, key, level, lnum, offs);
2941 	if (!znode)
2942 		goto out_unlock;
2943 	if (IS_ERR(znode)) {
2944 		err = PTR_ERR(znode);
2945 		goto out_unlock;
2946 	}
2947 	znode = dirty_cow_bottom_up(c, znode);
2948 	if (IS_ERR(znode)) {
2949 		err = PTR_ERR(znode);
2950 		goto out_unlock;
2951 	}
2952 
2953 out_unlock:
2954 	mutex_unlock(&c->tnc_mutex);
2955 	return err;
2956 }
2957