xref: /openbmc/linux/fs/ubifs/tnc.c (revision e58e871b)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 			 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 			      struct ubifs_zbranch *zbr, void *node);
41 
42 /*
43  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44  * @NAME_LESS: name corresponding to the first argument is less than second
45  * @NAME_MATCHES: names match
46  * @NAME_GREATER: name corresponding to the second argument is greater than
47  *                first
48  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49  *
50  * These constants were introduce to improve readability.
51  */
52 enum {
53 	NAME_LESS    = 0,
54 	NAME_MATCHES = 1,
55 	NAME_GREATER = 2,
56 	NOT_ON_MEDIA = 3,
57 };
58 
59 /**
60  * insert_old_idx - record an index node obsoleted since the last commit start.
61  * @c: UBIFS file-system description object
62  * @lnum: LEB number of obsoleted index node
63  * @offs: offset of obsoleted index node
64  *
65  * Returns %0 on success, and a negative error code on failure.
66  *
67  * For recovery, there must always be a complete intact version of the index on
68  * flash at all times. That is called the "old index". It is the index as at the
69  * time of the last successful commit. Many of the index nodes in the old index
70  * may be dirty, but they must not be erased until the next successful commit
71  * (at which point that index becomes the old index).
72  *
73  * That means that the garbage collection and the in-the-gaps method of
74  * committing must be able to determine if an index node is in the old index.
75  * Most of the old index nodes can be found by looking up the TNC using the
76  * 'lookup_znode()' function. However, some of the old index nodes may have
77  * been deleted from the current index or may have been changed so much that
78  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79  * That is what this function does. The RB-tree is ordered by LEB number and
80  * offset because they uniquely identify the old index node.
81  */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 	struct ubifs_old_idx *old_idx, *o;
85 	struct rb_node **p, *parent = NULL;
86 
87 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 	if (unlikely(!old_idx))
89 		return -ENOMEM;
90 	old_idx->lnum = lnum;
91 	old_idx->offs = offs;
92 
93 	p = &c->old_idx.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		o = rb_entry(parent, struct ubifs_old_idx, rb);
97 		if (lnum < o->lnum)
98 			p = &(*p)->rb_left;
99 		else if (lnum > o->lnum)
100 			p = &(*p)->rb_right;
101 		else if (offs < o->offs)
102 			p = &(*p)->rb_left;
103 		else if (offs > o->offs)
104 			p = &(*p)->rb_right;
105 		else {
106 			ubifs_err(c, "old idx added twice!");
107 			kfree(old_idx);
108 			return 0;
109 		}
110 	}
111 	rb_link_node(&old_idx->rb, parent, p);
112 	rb_insert_color(&old_idx->rb, &c->old_idx);
113 	return 0;
114 }
115 
116 /**
117  * insert_old_idx_znode - record a znode obsoleted since last commit start.
118  * @c: UBIFS file-system description object
119  * @znode: znode of obsoleted index node
120  *
121  * Returns %0 on success, and a negative error code on failure.
122  */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 	if (znode->parent) {
126 		struct ubifs_zbranch *zbr;
127 
128 		zbr = &znode->parent->zbranch[znode->iip];
129 		if (zbr->len)
130 			return insert_old_idx(c, zbr->lnum, zbr->offs);
131 	} else
132 		if (c->zroot.len)
133 			return insert_old_idx(c, c->zroot.lnum,
134 					      c->zroot.offs);
135 	return 0;
136 }
137 
138 /**
139  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140  * @c: UBIFS file-system description object
141  * @znode: znode of obsoleted index node
142  *
143  * Returns %0 on success, and a negative error code on failure.
144  */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 				 struct ubifs_znode *znode)
147 {
148 	int err;
149 
150 	if (znode->parent) {
151 		struct ubifs_zbranch *zbr;
152 
153 		zbr = &znode->parent->zbranch[znode->iip];
154 		if (zbr->len) {
155 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 			if (err)
157 				return err;
158 			zbr->lnum = 0;
159 			zbr->offs = 0;
160 			zbr->len = 0;
161 		}
162 	} else
163 		if (c->zroot.len) {
164 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 			if (err)
166 				return err;
167 			c->zroot.lnum = 0;
168 			c->zroot.offs = 0;
169 			c->zroot.len = 0;
170 		}
171 	return 0;
172 }
173 
174 /**
175  * destroy_old_idx - destroy the old_idx RB-tree.
176  * @c: UBIFS file-system description object
177  *
178  * During start commit, the old_idx RB-tree is used to avoid overwriting index
179  * nodes that were in the index last commit but have since been deleted.  This
180  * is necessary for recovery i.e. the old index must be kept intact until the
181  * new index is successfully written.  The old-idx RB-tree is used for the
182  * in-the-gaps method of writing index nodes and is destroyed every commit.
183  */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 	struct ubifs_old_idx *old_idx, *n;
187 
188 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 		kfree(old_idx);
190 
191 	c->old_idx = RB_ROOT;
192 }
193 
194 /**
195  * copy_znode - copy a dirty znode.
196  * @c: UBIFS file-system description object
197  * @znode: znode to copy
198  *
199  * A dirty znode being committed may not be changed, so it is copied.
200  */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 				      struct ubifs_znode *znode)
203 {
204 	struct ubifs_znode *zn;
205 
206 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 	if (unlikely(!zn))
208 		return ERR_PTR(-ENOMEM);
209 
210 	zn->cnext = NULL;
211 	__set_bit(DIRTY_ZNODE, &zn->flags);
212 	__clear_bit(COW_ZNODE, &zn->flags);
213 
214 	ubifs_assert(!ubifs_zn_obsolete(znode));
215 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
216 
217 	if (znode->level != 0) {
218 		int i;
219 		const int n = zn->child_cnt;
220 
221 		/* The children now have new parent */
222 		for (i = 0; i < n; i++) {
223 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
224 
225 			if (zbr->znode)
226 				zbr->znode->parent = zn;
227 		}
228 	}
229 
230 	atomic_long_inc(&c->dirty_zn_cnt);
231 	return zn;
232 }
233 
234 /**
235  * add_idx_dirt - add dirt due to a dirty znode.
236  * @c: UBIFS file-system description object
237  * @lnum: LEB number of index node
238  * @dirt: size of index node
239  *
240  * This function updates lprops dirty space and the new size of the index.
241  */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 	c->calc_idx_sz -= ALIGN(dirt, 8);
245 	return ubifs_add_dirt(c, lnum, dirt);
246 }
247 
248 /**
249  * dirty_cow_znode - ensure a znode is not being committed.
250  * @c: UBIFS file-system description object
251  * @zbr: branch of znode to check
252  *
253  * Returns dirtied znode on success or negative error code on failure.
254  */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 					   struct ubifs_zbranch *zbr)
257 {
258 	struct ubifs_znode *znode = zbr->znode;
259 	struct ubifs_znode *zn;
260 	int err;
261 
262 	if (!ubifs_zn_cow(znode)) {
263 		/* znode is not being committed */
264 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 			atomic_long_inc(&c->dirty_zn_cnt);
266 			atomic_long_dec(&c->clean_zn_cnt);
267 			atomic_long_dec(&ubifs_clean_zn_cnt);
268 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 			if (unlikely(err))
270 				return ERR_PTR(err);
271 		}
272 		return znode;
273 	}
274 
275 	zn = copy_znode(c, znode);
276 	if (IS_ERR(zn))
277 		return zn;
278 
279 	if (zbr->len) {
280 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 		if (unlikely(err))
282 			return ERR_PTR(err);
283 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 	} else
285 		err = 0;
286 
287 	zbr->znode = zn;
288 	zbr->lnum = 0;
289 	zbr->offs = 0;
290 	zbr->len = 0;
291 
292 	if (unlikely(err))
293 		return ERR_PTR(err);
294 	return zn;
295 }
296 
297 /**
298  * lnc_add - add a leaf node to the leaf node cache.
299  * @c: UBIFS file-system description object
300  * @zbr: zbranch of leaf node
301  * @node: leaf node
302  *
303  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304  * purpose of the leaf node cache is to save re-reading the same leaf node over
305  * and over again. Most things are cached by VFS, however the file system must
306  * cache directory entries for readdir and for resolving hash collisions. The
307  * present implementation of the leaf node cache is extremely simple, and
308  * allows for error returns that are not used but that may be needed if a more
309  * complex implementation is created.
310  *
311  * Note, this function does not add the @node object to LNC directly, but
312  * allocates a copy of the object and adds the copy to LNC. The reason for this
313  * is that @node has been allocated outside of the TNC subsystem and will be
314  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315  * may be changed at any time, e.g. freed by the shrinker.
316  */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 		   const void *node)
319 {
320 	int err;
321 	void *lnc_node;
322 	const struct ubifs_dent_node *dent = node;
323 
324 	ubifs_assert(!zbr->leaf);
325 	ubifs_assert(zbr->len != 0);
326 	ubifs_assert(is_hash_key(c, &zbr->key));
327 
328 	err = ubifs_validate_entry(c, dent);
329 	if (err) {
330 		dump_stack();
331 		ubifs_dump_node(c, dent);
332 		return err;
333 	}
334 
335 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 	if (!lnc_node)
337 		/* We don't have to have the cache, so no error */
338 		return 0;
339 
340 	zbr->leaf = lnc_node;
341 	return 0;
342 }
343 
344  /**
345  * lnc_add_directly - add a leaf node to the leaf-node-cache.
346  * @c: UBIFS file-system description object
347  * @zbr: zbranch of leaf node
348  * @node: leaf node
349  *
350  * This function is similar to 'lnc_add()', but it does not create a copy of
351  * @node but inserts @node to TNC directly.
352  */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 			    void *node)
355 {
356 	int err;
357 
358 	ubifs_assert(!zbr->leaf);
359 	ubifs_assert(zbr->len != 0);
360 
361 	err = ubifs_validate_entry(c, node);
362 	if (err) {
363 		dump_stack();
364 		ubifs_dump_node(c, node);
365 		return err;
366 	}
367 
368 	zbr->leaf = node;
369 	return 0;
370 }
371 
372 /**
373  * lnc_free - remove a leaf node from the leaf node cache.
374  * @zbr: zbranch of leaf node
375  * @node: leaf node
376  */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 	if (!zbr->leaf)
380 		return;
381 	kfree(zbr->leaf);
382 	zbr->leaf = NULL;
383 }
384 
385 /**
386  * tnc_read_hashed_node - read a "hashed" leaf node.
387  * @c: UBIFS file-system description object
388  * @zbr: key and position of the node
389  * @node: node is returned here
390  *
391  * This function reads a "hashed" node defined by @zbr from the leaf node cache
392  * (in it is there) or from the hash media, in which case the node is also
393  * added to LNC. Returns zero in case of success or a negative negative error
394  * code in case of failure.
395  */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 				void *node)
398 {
399 	int err;
400 
401 	ubifs_assert(is_hash_key(c, &zbr->key));
402 
403 	if (zbr->leaf) {
404 		/* Read from the leaf node cache */
405 		ubifs_assert(zbr->len != 0);
406 		memcpy(node, zbr->leaf, zbr->len);
407 		return 0;
408 	}
409 
410 	if (c->replaying) {
411 		err = fallible_read_node(c, &zbr->key, zbr, node);
412 		/*
413 		 * When the node was not found, return -ENOENT, 0 otherwise.
414 		 * Negative return codes stay as-is.
415 		 */
416 		if (err == 0)
417 			err = -ENOENT;
418 		else if (err == 1)
419 			err = 0;
420 	} else {
421 		err = ubifs_tnc_read_node(c, zbr, node);
422 	}
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  *
447  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448  * is true (it is controlled by corresponding mount option). However, if
449  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451  * because during mounting or re-mounting from R/O mode to R/W mode we may read
452  * journal nodes (when replying the journal or doing the recovery) and the
453  * journal nodes may potentially be corrupted, so checking is required.
454  */
455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 			 int len, int lnum, int offs)
457 {
458 	int err, node_len;
459 	struct ubifs_ch *ch = buf;
460 	uint32_t crc, node_crc;
461 
462 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463 
464 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 	if (err) {
466 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
467 			  type, lnum, offs, err);
468 		return err;
469 	}
470 
471 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 		return 0;
473 
474 	if (ch->node_type != type)
475 		return 0;
476 
477 	node_len = le32_to_cpu(ch->len);
478 	if (node_len != len)
479 		return 0;
480 
481 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 	    !c->remounting_rw)
483 		return 1;
484 
485 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 	node_crc = le32_to_cpu(ch->crc);
487 	if (crc != node_crc)
488 		return 0;
489 
490 	return 1;
491 }
492 
493 /**
494  * fallible_read_node - try to read a leaf node.
495  * @c: UBIFS file-system description object
496  * @key:  key of node to read
497  * @zbr:  position of node
498  * @node: node returned
499  *
500  * This function tries to read a node and returns %1 if the node is read, %0
501  * if the node is not present, and a negative error code in the case of error.
502  */
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 			      struct ubifs_zbranch *zbr, void *node)
505 {
506 	int ret;
507 
508 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509 
510 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 			    zbr->offs);
512 	if (ret == 1) {
513 		union ubifs_key node_key;
514 		struct ubifs_dent_node *dent = node;
515 
516 		/* All nodes have key in the same place */
517 		key_read(c, &dent->key, &node_key);
518 		if (keys_cmp(c, key, &node_key) != 0)
519 			ret = 0;
520 	}
521 	if (ret == 0 && c->replaying)
522 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 			zbr->lnum, zbr->offs, zbr->len);
524 	return ret;
525 }
526 
527 /**
528  * matches_name - determine if a direntry or xattr entry matches a given name.
529  * @c: UBIFS file-system description object
530  * @zbr: zbranch of dent
531  * @nm: name to match
532  *
533  * This function checks if xentry/direntry referred by zbranch @zbr matches name
534  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536  * of failure, a negative error code is returned.
537  */
538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 			const struct fscrypt_name *nm)
540 {
541 	struct ubifs_dent_node *dent;
542 	int nlen, err;
543 
544 	/* If possible, match against the dent in the leaf node cache */
545 	if (!zbr->leaf) {
546 		dent = kmalloc(zbr->len, GFP_NOFS);
547 		if (!dent)
548 			return -ENOMEM;
549 
550 		err = ubifs_tnc_read_node(c, zbr, dent);
551 		if (err)
552 			goto out_free;
553 
554 		/* Add the node to the leaf node cache */
555 		err = lnc_add_directly(c, zbr, dent);
556 		if (err)
557 			goto out_free;
558 	} else
559 		dent = zbr->leaf;
560 
561 	nlen = le16_to_cpu(dent->nlen);
562 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 	if (err == 0) {
564 		if (nlen == fname_len(nm))
565 			return NAME_MATCHES;
566 		else if (nlen < fname_len(nm))
567 			return NAME_LESS;
568 		else
569 			return NAME_GREATER;
570 	} else if (err < 0)
571 		return NAME_LESS;
572 	else
573 		return NAME_GREATER;
574 
575 out_free:
576 	kfree(dent);
577 	return err;
578 }
579 
580 /**
581  * get_znode - get a TNC znode that may not be loaded yet.
582  * @c: UBIFS file-system description object
583  * @znode: parent znode
584  * @n: znode branch slot number
585  *
586  * This function returns the znode or a negative error code.
587  */
588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 				     struct ubifs_znode *znode, int n)
590 {
591 	struct ubifs_zbranch *zbr;
592 
593 	zbr = &znode->zbranch[n];
594 	if (zbr->znode)
595 		znode = zbr->znode;
596 	else
597 		znode = ubifs_load_znode(c, zbr, znode, n);
598 	return znode;
599 }
600 
601 /**
602  * tnc_next - find next TNC entry.
603  * @c: UBIFS file-system description object
604  * @zn: znode is passed and returned here
605  * @n: znode branch slot number is passed and returned here
606  *
607  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608  * no next entry, or a negative error code otherwise.
609  */
610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 {
612 	struct ubifs_znode *znode = *zn;
613 	int nn = *n;
614 
615 	nn += 1;
616 	if (nn < znode->child_cnt) {
617 		*n = nn;
618 		return 0;
619 	}
620 	while (1) {
621 		struct ubifs_znode *zp;
622 
623 		zp = znode->parent;
624 		if (!zp)
625 			return -ENOENT;
626 		nn = znode->iip + 1;
627 		znode = zp;
628 		if (nn < znode->child_cnt) {
629 			znode = get_znode(c, znode, nn);
630 			if (IS_ERR(znode))
631 				return PTR_ERR(znode);
632 			while (znode->level != 0) {
633 				znode = get_znode(c, znode, 0);
634 				if (IS_ERR(znode))
635 					return PTR_ERR(znode);
636 			}
637 			nn = 0;
638 			break;
639 		}
640 	}
641 	*zn = znode;
642 	*n = nn;
643 	return 0;
644 }
645 
646 /**
647  * tnc_prev - find previous TNC entry.
648  * @c: UBIFS file-system description object
649  * @zn: znode is returned here
650  * @n: znode branch slot number is passed and returned here
651  *
652  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653  * there is no next entry, or a negative error code otherwise.
654  */
655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 {
657 	struct ubifs_znode *znode = *zn;
658 	int nn = *n;
659 
660 	if (nn > 0) {
661 		*n = nn - 1;
662 		return 0;
663 	}
664 	while (1) {
665 		struct ubifs_znode *zp;
666 
667 		zp = znode->parent;
668 		if (!zp)
669 			return -ENOENT;
670 		nn = znode->iip - 1;
671 		znode = zp;
672 		if (nn >= 0) {
673 			znode = get_znode(c, znode, nn);
674 			if (IS_ERR(znode))
675 				return PTR_ERR(znode);
676 			while (znode->level != 0) {
677 				nn = znode->child_cnt - 1;
678 				znode = get_znode(c, znode, nn);
679 				if (IS_ERR(znode))
680 					return PTR_ERR(znode);
681 			}
682 			nn = znode->child_cnt - 1;
683 			break;
684 		}
685 	}
686 	*zn = znode;
687 	*n = nn;
688 	return 0;
689 }
690 
691 /**
692  * resolve_collision - resolve a collision.
693  * @c: UBIFS file-system description object
694  * @key: key of a directory or extended attribute entry
695  * @zn: znode is returned here
696  * @n: zbranch number is passed and returned here
697  * @nm: name of the entry
698  *
699  * This function is called for "hashed" keys to make sure that the found key
700  * really corresponds to the looked up node (directory or extended attribute
701  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702  * %0 is returned if @nm is not found and @zn and @n are set to the previous
703  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704  * This means that @n may be set to %-1 if the leftmost key in @zn is the
705  * previous one. A negative error code is returned on failures.
706  */
707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 			     struct ubifs_znode **zn, int *n,
709 			     const struct fscrypt_name *nm)
710 {
711 	int err;
712 
713 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 	if (unlikely(err < 0))
715 		return err;
716 	if (err == NAME_MATCHES)
717 		return 1;
718 
719 	if (err == NAME_GREATER) {
720 		/* Look left */
721 		while (1) {
722 			err = tnc_prev(c, zn, n);
723 			if (err == -ENOENT) {
724 				ubifs_assert(*n == 0);
725 				*n = -1;
726 				return 0;
727 			}
728 			if (err < 0)
729 				return err;
730 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 				/*
732 				 * We have found the branch after which we would
733 				 * like to insert, but inserting in this znode
734 				 * may still be wrong. Consider the following 3
735 				 * znodes, in the case where we are resolving a
736 				 * collision with Key2.
737 				 *
738 				 *                  znode zp
739 				 *            ----------------------
740 				 * level 1     |  Key0  |  Key1  |
741 				 *            -----------------------
742 				 *                 |            |
743 				 *       znode za  |            |  znode zb
744 				 *          ------------      ------------
745 				 * level 0  |  Key0  |        |  Key2  |
746 				 *          ------------      ------------
747 				 *
748 				 * The lookup finds Key2 in znode zb. Lets say
749 				 * there is no match and the name is greater so
750 				 * we look left. When we find Key0, we end up
751 				 * here. If we return now, we will insert into
752 				 * znode za at slot n = 1.  But that is invalid
753 				 * according to the parent's keys.  Key2 must
754 				 * be inserted into znode zb.
755 				 *
756 				 * Note, this problem is not relevant for the
757 				 * case when we go right, because
758 				 * 'tnc_insert()' would correct the parent key.
759 				 */
760 				if (*n == (*zn)->child_cnt - 1) {
761 					err = tnc_next(c, zn, n);
762 					if (err) {
763 						/* Should be impossible */
764 						ubifs_assert(0);
765 						if (err == -ENOENT)
766 							err = -EINVAL;
767 						return err;
768 					}
769 					ubifs_assert(*n == 0);
770 					*n = -1;
771 				}
772 				return 0;
773 			}
774 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 			if (err < 0)
776 				return err;
777 			if (err == NAME_LESS)
778 				return 0;
779 			if (err == NAME_MATCHES)
780 				return 1;
781 			ubifs_assert(err == NAME_GREATER);
782 		}
783 	} else {
784 		int nn = *n;
785 		struct ubifs_znode *znode = *zn;
786 
787 		/* Look right */
788 		while (1) {
789 			err = tnc_next(c, &znode, &nn);
790 			if (err == -ENOENT)
791 				return 0;
792 			if (err < 0)
793 				return err;
794 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 				return 0;
796 			err = matches_name(c, &znode->zbranch[nn], nm);
797 			if (err < 0)
798 				return err;
799 			if (err == NAME_GREATER)
800 				return 0;
801 			*zn = znode;
802 			*n = nn;
803 			if (err == NAME_MATCHES)
804 				return 1;
805 			ubifs_assert(err == NAME_LESS);
806 		}
807 	}
808 }
809 
810 /**
811  * fallible_matches_name - determine if a dent matches a given name.
812  * @c: UBIFS file-system description object
813  * @zbr: zbranch of dent
814  * @nm: name to match
815  *
816  * This is a "fallible" version of 'matches_name()' function which does not
817  * panic if the direntry/xentry referred by @zbr does not exist on the media.
818  *
819  * This function checks if xentry/direntry referred by zbranch @zbr matches name
820  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822  * if xentry/direntry referred by @zbr does not exist on the media. A negative
823  * error code is returned in case of failure.
824  */
825 static int fallible_matches_name(struct ubifs_info *c,
826 				 struct ubifs_zbranch *zbr,
827 				 const struct fscrypt_name *nm)
828 {
829 	struct ubifs_dent_node *dent;
830 	int nlen, err;
831 
832 	/* If possible, match against the dent in the leaf node cache */
833 	if (!zbr->leaf) {
834 		dent = kmalloc(zbr->len, GFP_NOFS);
835 		if (!dent)
836 			return -ENOMEM;
837 
838 		err = fallible_read_node(c, &zbr->key, zbr, dent);
839 		if (err < 0)
840 			goto out_free;
841 		if (err == 0) {
842 			/* The node was not present */
843 			err = NOT_ON_MEDIA;
844 			goto out_free;
845 		}
846 		ubifs_assert(err == 1);
847 
848 		err = lnc_add_directly(c, zbr, dent);
849 		if (err)
850 			goto out_free;
851 	} else
852 		dent = zbr->leaf;
853 
854 	nlen = le16_to_cpu(dent->nlen);
855 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 	if (err == 0) {
857 		if (nlen == fname_len(nm))
858 			return NAME_MATCHES;
859 		else if (nlen < fname_len(nm))
860 			return NAME_LESS;
861 		else
862 			return NAME_GREATER;
863 	} else if (err < 0)
864 		return NAME_LESS;
865 	else
866 		return NAME_GREATER;
867 
868 out_free:
869 	kfree(dent);
870 	return err;
871 }
872 
873 /**
874  * fallible_resolve_collision - resolve a collision even if nodes are missing.
875  * @c: UBIFS file-system description object
876  * @key: key
877  * @zn: znode is returned here
878  * @n: branch number is passed and returned here
879  * @nm: name of directory entry
880  * @adding: indicates caller is adding a key to the TNC
881  *
882  * This is a "fallible" version of the 'resolve_collision()' function which
883  * does not panic if one of the nodes referred to by TNC does not exist on the
884  * media. This may happen when replaying the journal if a deleted node was
885  * Garbage-collected and the commit was not done. A branch that refers to a node
886  * that is not present is called a dangling branch. The following are the return
887  * codes for this function:
888  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
889  *    branch;
890  *  o if we are @adding and @nm was not found, %0 is returned;
891  *  o if we are not @adding and @nm was not found, but a dangling branch was
892  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
893  *  o a negative error code is returned in case of failure.
894  */
895 static int fallible_resolve_collision(struct ubifs_info *c,
896 				      const union ubifs_key *key,
897 				      struct ubifs_znode **zn, int *n,
898 				      const struct fscrypt_name *nm,
899 				      int adding)
900 {
901 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903 
904 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 	if (unlikely(cmp < 0))
906 		return cmp;
907 	if (cmp == NAME_MATCHES)
908 		return 1;
909 	if (cmp == NOT_ON_MEDIA) {
910 		o_znode = znode;
911 		o_n = nn;
912 		/*
913 		 * We are unlucky and hit a dangling branch straight away.
914 		 * Now we do not really know where to go to find the needed
915 		 * branch - to the left or to the right. Well, let's try left.
916 		 */
917 		unsure = 1;
918 	} else if (!adding)
919 		unsure = 1; /* Remove a dangling branch wherever it is */
920 
921 	if (cmp == NAME_GREATER || unsure) {
922 		/* Look left */
923 		while (1) {
924 			err = tnc_prev(c, zn, n);
925 			if (err == -ENOENT) {
926 				ubifs_assert(*n == 0);
927 				*n = -1;
928 				break;
929 			}
930 			if (err < 0)
931 				return err;
932 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 				/* See comments in 'resolve_collision()' */
934 				if (*n == (*zn)->child_cnt - 1) {
935 					err = tnc_next(c, zn, n);
936 					if (err) {
937 						/* Should be impossible */
938 						ubifs_assert(0);
939 						if (err == -ENOENT)
940 							err = -EINVAL;
941 						return err;
942 					}
943 					ubifs_assert(*n == 0);
944 					*n = -1;
945 				}
946 				break;
947 			}
948 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 			if (err < 0)
950 				return err;
951 			if (err == NAME_MATCHES)
952 				return 1;
953 			if (err == NOT_ON_MEDIA) {
954 				o_znode = *zn;
955 				o_n = *n;
956 				continue;
957 			}
958 			if (!adding)
959 				continue;
960 			if (err == NAME_LESS)
961 				break;
962 			else
963 				unsure = 0;
964 		}
965 	}
966 
967 	if (cmp == NAME_LESS || unsure) {
968 		/* Look right */
969 		*zn = znode;
970 		*n = nn;
971 		while (1) {
972 			err = tnc_next(c, &znode, &nn);
973 			if (err == -ENOENT)
974 				break;
975 			if (err < 0)
976 				return err;
977 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 				break;
979 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 			if (err < 0)
981 				return err;
982 			if (err == NAME_GREATER)
983 				break;
984 			*zn = znode;
985 			*n = nn;
986 			if (err == NAME_MATCHES)
987 				return 1;
988 			if (err == NOT_ON_MEDIA) {
989 				o_znode = znode;
990 				o_n = nn;
991 			}
992 		}
993 	}
994 
995 	/* Never match a dangling branch when adding */
996 	if (adding || !o_znode)
997 		return 0;
998 
999 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1000 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 		o_znode->zbranch[o_n].len);
1002 	*zn = o_znode;
1003 	*n = o_n;
1004 	return 1;
1005 }
1006 
1007 /**
1008  * matches_position - determine if a zbranch matches a given position.
1009  * @zbr: zbranch of dent
1010  * @lnum: LEB number of dent to match
1011  * @offs: offset of dent to match
1012  *
1013  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014  */
1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 {
1017 	if (zbr->lnum == lnum && zbr->offs == offs)
1018 		return 1;
1019 	else
1020 		return 0;
1021 }
1022 
1023 /**
1024  * resolve_collision_directly - resolve a collision directly.
1025  * @c: UBIFS file-system description object
1026  * @key: key of directory entry
1027  * @zn: znode is passed and returned here
1028  * @n: zbranch number is passed and returned here
1029  * @lnum: LEB number of dent node to match
1030  * @offs: offset of dent node to match
1031  *
1032  * This function is used for "hashed" keys to make sure the found directory or
1033  * extended attribute entry node is what was looked for. It is used when the
1034  * flash address of the right node is known (@lnum:@offs) which makes it much
1035  * easier to resolve collisions (no need to read entries and match full
1036  * names). This function returns %1 and sets @zn and @n if the collision is
1037  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038  * previous directory entry. Otherwise a negative error code is returned.
1039  */
1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 				      const union ubifs_key *key,
1042 				      struct ubifs_znode **zn, int *n,
1043 				      int lnum, int offs)
1044 {
1045 	struct ubifs_znode *znode;
1046 	int nn, err;
1047 
1048 	znode = *zn;
1049 	nn = *n;
1050 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 		return 1;
1052 
1053 	/* Look left */
1054 	while (1) {
1055 		err = tnc_prev(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			break;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			break;
1062 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 			*zn = znode;
1064 			*n = nn;
1065 			return 1;
1066 		}
1067 	}
1068 
1069 	/* Look right */
1070 	znode = *zn;
1071 	nn = *n;
1072 	while (1) {
1073 		err = tnc_next(c, &znode, &nn);
1074 		if (err == -ENOENT)
1075 			return 0;
1076 		if (err < 0)
1077 			return err;
1078 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 			return 0;
1080 		*zn = znode;
1081 		*n = nn;
1082 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 			return 1;
1084 	}
1085 }
1086 
1087 /**
1088  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089  * @c: UBIFS file-system description object
1090  * @znode: znode to dirty
1091  *
1092  * If we do not have a unique key that resides in a znode, then we cannot
1093  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094  * This function records the path back to the last dirty ancestor, and then
1095  * dirties the znodes on that path.
1096  */
1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 					       struct ubifs_znode *znode)
1099 {
1100 	struct ubifs_znode *zp;
1101 	int *path = c->bottom_up_buf, p = 0;
1102 
1103 	ubifs_assert(c->zroot.znode);
1104 	ubifs_assert(znode);
1105 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 		kfree(c->bottom_up_buf);
1107 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 					   GFP_NOFS);
1109 		if (!c->bottom_up_buf)
1110 			return ERR_PTR(-ENOMEM);
1111 		path = c->bottom_up_buf;
1112 	}
1113 	if (c->zroot.znode->level) {
1114 		/* Go up until parent is dirty */
1115 		while (1) {
1116 			int n;
1117 
1118 			zp = znode->parent;
1119 			if (!zp)
1120 				break;
1121 			n = znode->iip;
1122 			ubifs_assert(p < c->zroot.znode->level);
1123 			path[p++] = n;
1124 			if (!zp->cnext && ubifs_zn_dirty(znode))
1125 				break;
1126 			znode = zp;
1127 		}
1128 	}
1129 
1130 	/* Come back down, dirtying as we go */
1131 	while (1) {
1132 		struct ubifs_zbranch *zbr;
1133 
1134 		zp = znode->parent;
1135 		if (zp) {
1136 			ubifs_assert(path[p - 1] >= 0);
1137 			ubifs_assert(path[p - 1] < zp->child_cnt);
1138 			zbr = &zp->zbranch[path[--p]];
1139 			znode = dirty_cow_znode(c, zbr);
1140 		} else {
1141 			ubifs_assert(znode == c->zroot.znode);
1142 			znode = dirty_cow_znode(c, &c->zroot);
1143 		}
1144 		if (IS_ERR(znode) || !p)
1145 			break;
1146 		ubifs_assert(path[p - 1] >= 0);
1147 		ubifs_assert(path[p - 1] < znode->child_cnt);
1148 		znode = znode->zbranch[path[p - 1]].znode;
1149 	}
1150 
1151 	return znode;
1152 }
1153 
1154 /**
1155  * ubifs_lookup_level0 - search for zero-level znode.
1156  * @c: UBIFS file-system description object
1157  * @key:  key to lookup
1158  * @zn: znode is returned here
1159  * @n: znode branch slot number is returned here
1160  *
1161  * This function looks up the TNC tree and search for zero-level znode which
1162  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163  * cases:
1164  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165  *     is returned and slot number of the matched branch is stored in @n;
1166  *   o not exact match, which means that zero-level znode does not contain
1167  *     @key, then %0 is returned and slot number of the closest branch is stored
1168  *     in @n;
1169  *   o @key is so small that it is even less than the lowest key of the
1170  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171  *
1172  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173  * function reads corresponding indexing nodes and inserts them to TNC. In
1174  * case of failure, a negative error code is returned.
1175  */
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 			struct ubifs_znode **zn, int *n)
1178 {
1179 	int err, exact;
1180 	struct ubifs_znode *znode;
1181 	unsigned long time = get_seconds();
1182 
1183 	dbg_tnck(key, "search key ");
1184 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185 
1186 	znode = c->zroot.znode;
1187 	if (unlikely(!znode)) {
1188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 		if (IS_ERR(znode))
1190 			return PTR_ERR(znode);
1191 	}
1192 
1193 	znode->time = time;
1194 
1195 	while (1) {
1196 		struct ubifs_zbranch *zbr;
1197 
1198 		exact = ubifs_search_zbranch(c, znode, key, n);
1199 
1200 		if (znode->level == 0)
1201 			break;
1202 
1203 		if (*n < 0)
1204 			*n = 0;
1205 		zbr = &znode->zbranch[*n];
1206 
1207 		if (zbr->znode) {
1208 			znode->time = time;
1209 			znode = zbr->znode;
1210 			continue;
1211 		}
1212 
1213 		/* znode is not in TNC cache, load it from the media */
1214 		znode = ubifs_load_znode(c, zbr, znode, *n);
1215 		if (IS_ERR(znode))
1216 			return PTR_ERR(znode);
1217 	}
1218 
1219 	*zn = znode;
1220 	if (exact || !is_hash_key(c, key) || *n != -1) {
1221 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 		return exact;
1223 	}
1224 
1225 	/*
1226 	 * Here is a tricky place. We have not found the key and this is a
1227 	 * "hashed" key, which may collide. The rest of the code deals with
1228 	 * situations like this:
1229 	 *
1230 	 *                  | 3 | 5 |
1231 	 *                  /       \
1232 	 *          | 3 | 5 |      | 6 | 7 | (x)
1233 	 *
1234 	 * Or more a complex example:
1235 	 *
1236 	 *                | 1 | 5 |
1237 	 *                /       \
1238 	 *       | 1 | 3 |         | 5 | 8 |
1239 	 *              \           /
1240 	 *          | 5 | 5 |   | 6 | 7 | (x)
1241 	 *
1242 	 * In the examples, if we are looking for key "5", we may reach nodes
1243 	 * marked with "(x)". In this case what we have do is to look at the
1244 	 * left and see if there is "5" key there. If there is, we have to
1245 	 * return it.
1246 	 *
1247 	 * Note, this whole situation is possible because we allow to have
1248 	 * elements which are equivalent to the next key in the parent in the
1249 	 * children of current znode. For example, this happens if we split a
1250 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 	 * like this:
1252 	 *                      | 3 | 5 |
1253 	 *                       /     \
1254 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255 	 *                              ^
1256 	 * And this becomes what is at the first "picture" after key "5" marked
1257 	 * with "^" is removed. What could be done is we could prohibit
1258 	 * splitting in the middle of the colliding sequence. Also, when
1259 	 * removing the leftmost key, we would have to correct the key of the
1260 	 * parent node, which would introduce additional complications. Namely,
1261 	 * if we changed the leftmost key of the parent znode, the garbage
1262 	 * collector would be unable to find it (GC is doing this when GC'ing
1263 	 * indexing LEBs). Although we already have an additional RB-tree where
1264 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 	 * after the commit. But anyway, this does not look easy to implement
1266 	 * so we did not try this.
1267 	 */
1268 	err = tnc_prev(c, &znode, n);
1269 	if (err == -ENOENT) {
1270 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 		*n = -1;
1272 		return 0;
1273 	}
1274 	if (unlikely(err < 0))
1275 		return err;
1276 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 		*n = -1;
1279 		return 0;
1280 	}
1281 
1282 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 	*zn = znode;
1284 	return 1;
1285 }
1286 
1287 /**
1288  * lookup_level0_dirty - search for zero-level znode dirtying.
1289  * @c: UBIFS file-system description object
1290  * @key:  key to lookup
1291  * @zn: znode is returned here
1292  * @n: znode branch slot number is returned here
1293  *
1294  * This function looks up the TNC tree and search for zero-level znode which
1295  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296  * cases:
1297  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298  *     is returned and slot number of the matched branch is stored in @n;
1299  *   o not exact match, which means that zero-level znode does not contain @key
1300  *     then %0 is returned and slot number of the closed branch is stored in
1301  *     @n;
1302  *   o @key is so small that it is even less than the lowest key of the
1303  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304  *
1305  * Additionally all znodes in the path from the root to the located zero-level
1306  * znode are marked as dirty.
1307  *
1308  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309  * function reads corresponding indexing nodes and inserts them to TNC. In
1310  * case of failure, a negative error code is returned.
1311  */
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 			       struct ubifs_znode **zn, int *n)
1314 {
1315 	int err, exact;
1316 	struct ubifs_znode *znode;
1317 	unsigned long time = get_seconds();
1318 
1319 	dbg_tnck(key, "search and dirty key ");
1320 
1321 	znode = c->zroot.znode;
1322 	if (unlikely(!znode)) {
1323 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 		if (IS_ERR(znode))
1325 			return PTR_ERR(znode);
1326 	}
1327 
1328 	znode = dirty_cow_znode(c, &c->zroot);
1329 	if (IS_ERR(znode))
1330 		return PTR_ERR(znode);
1331 
1332 	znode->time = time;
1333 
1334 	while (1) {
1335 		struct ubifs_zbranch *zbr;
1336 
1337 		exact = ubifs_search_zbranch(c, znode, key, n);
1338 
1339 		if (znode->level == 0)
1340 			break;
1341 
1342 		if (*n < 0)
1343 			*n = 0;
1344 		zbr = &znode->zbranch[*n];
1345 
1346 		if (zbr->znode) {
1347 			znode->time = time;
1348 			znode = dirty_cow_znode(c, zbr);
1349 			if (IS_ERR(znode))
1350 				return PTR_ERR(znode);
1351 			continue;
1352 		}
1353 
1354 		/* znode is not in TNC cache, load it from the media */
1355 		znode = ubifs_load_znode(c, zbr, znode, *n);
1356 		if (IS_ERR(znode))
1357 			return PTR_ERR(znode);
1358 		znode = dirty_cow_znode(c, zbr);
1359 		if (IS_ERR(znode))
1360 			return PTR_ERR(znode);
1361 	}
1362 
1363 	*zn = znode;
1364 	if (exact || !is_hash_key(c, key) || *n != -1) {
1365 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 		return exact;
1367 	}
1368 
1369 	/*
1370 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 	 * code.
1372 	 */
1373 	err = tnc_prev(c, &znode, n);
1374 	if (err == -ENOENT) {
1375 		*n = -1;
1376 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 		return 0;
1378 	}
1379 	if (unlikely(err < 0))
1380 		return err;
1381 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 		*n = -1;
1383 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 		return 0;
1385 	}
1386 
1387 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 		znode = dirty_cow_bottom_up(c, znode);
1389 		if (IS_ERR(znode))
1390 			return PTR_ERR(znode);
1391 	}
1392 
1393 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 	*zn = znode;
1395 	return 1;
1396 }
1397 
1398 /**
1399  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400  * @c: UBIFS file-system description object
1401  * @lnum: LEB number
1402  * @gc_seq1: garbage collection sequence number
1403  *
1404  * This function determines if @lnum may have been garbage collected since
1405  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406  * %0 is returned.
1407  */
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409 {
1410 	int gc_seq2, gced_lnum;
1411 
1412 	gced_lnum = c->gced_lnum;
1413 	smp_rmb();
1414 	gc_seq2 = c->gc_seq;
1415 	/* Same seq means no GC */
1416 	if (gc_seq1 == gc_seq2)
1417 		return 0;
1418 	/* Different by more than 1 means we don't know */
1419 	if (gc_seq1 + 1 != gc_seq2)
1420 		return 1;
1421 	/*
1422 	 * We have seen the sequence number has increased by 1. Now we need to
1423 	 * be sure we read the right LEB number, so read it again.
1424 	 */
1425 	smp_rmb();
1426 	if (gced_lnum != c->gced_lnum)
1427 		return 1;
1428 	/* Finally we can check lnum */
1429 	if (gced_lnum == lnum)
1430 		return 1;
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436  * @c: UBIFS file-system description object
1437  * @key: node key to lookup
1438  * @node: the node is returned here
1439  * @lnum: LEB number is returned here
1440  * @offs: offset is returned here
1441  *
1442  * This function looks up and reads node with key @key. The caller has to make
1443  * sure the @node buffer is large enough to fit the node. Returns zero in case
1444  * of success, %-ENOENT if the node was not found, and a negative error code in
1445  * case of failure. The node location can be returned in @lnum and @offs.
1446  */
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 		     void *node, int *lnum, int *offs)
1449 {
1450 	int found, n, err, safely = 0, gc_seq1;
1451 	struct ubifs_znode *znode;
1452 	struct ubifs_zbranch zbr, *zt;
1453 
1454 again:
1455 	mutex_lock(&c->tnc_mutex);
1456 	found = ubifs_lookup_level0(c, key, &znode, &n);
1457 	if (!found) {
1458 		err = -ENOENT;
1459 		goto out;
1460 	} else if (found < 0) {
1461 		err = found;
1462 		goto out;
1463 	}
1464 	zt = &znode->zbranch[n];
1465 	if (lnum) {
1466 		*lnum = zt->lnum;
1467 		*offs = zt->offs;
1468 	}
1469 	if (is_hash_key(c, key)) {
1470 		/*
1471 		 * In this case the leaf node cache gets used, so we pass the
1472 		 * address of the zbranch and keep the mutex locked
1473 		 */
1474 		err = tnc_read_hashed_node(c, zt, node);
1475 		goto out;
1476 	}
1477 	if (safely) {
1478 		err = ubifs_tnc_read_node(c, zt, node);
1479 		goto out;
1480 	}
1481 	/* Drop the TNC mutex prematurely and race with garbage collection */
1482 	zbr = znode->zbranch[n];
1483 	gc_seq1 = c->gc_seq;
1484 	mutex_unlock(&c->tnc_mutex);
1485 
1486 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 		/* We do not GC journal heads */
1488 		err = ubifs_tnc_read_node(c, &zbr, node);
1489 		return err;
1490 	}
1491 
1492 	err = fallible_read_node(c, key, &zbr, node);
1493 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494 		/*
1495 		 * The node may have been GC'ed out from under us so try again
1496 		 * while keeping the TNC mutex locked.
1497 		 */
1498 		safely = 1;
1499 		goto again;
1500 	}
1501 	return 0;
1502 
1503 out:
1504 	mutex_unlock(&c->tnc_mutex);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510  * @c: UBIFS file-system description object
1511  * @bu: bulk-read parameters and results
1512  *
1513  * Lookup consecutive data node keys for the same inode that reside
1514  * consecutively in the same LEB. This function returns zero in case of success
1515  * and a negative error code in case of failure.
1516  *
1517  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519  * maximum possible amount of nodes for bulk-read.
1520  */
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522 {
1523 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 	int uninitialized_var(len);
1525 	unsigned int block = key_block(c, &bu->key);
1526 	struct ubifs_znode *znode;
1527 
1528 	bu->cnt = 0;
1529 	bu->blk_cnt = 0;
1530 	bu->eof = 0;
1531 
1532 	mutex_lock(&c->tnc_mutex);
1533 	/* Find first key */
1534 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 	if (err < 0)
1536 		goto out;
1537 	if (err) {
1538 		/* Key found */
1539 		len = znode->zbranch[n].len;
1540 		/* The buffer must be big enough for at least 1 node */
1541 		if (len > bu->buf_len) {
1542 			err = -EINVAL;
1543 			goto out;
1544 		}
1545 		/* Add this key */
1546 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 		bu->blk_cnt += 1;
1548 		lnum = znode->zbranch[n].lnum;
1549 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 	}
1551 	while (1) {
1552 		struct ubifs_zbranch *zbr;
1553 		union ubifs_key *key;
1554 		unsigned int next_block;
1555 
1556 		/* Find next key */
1557 		err = tnc_next(c, &znode, &n);
1558 		if (err)
1559 			goto out;
1560 		zbr = &znode->zbranch[n];
1561 		key = &zbr->key;
1562 		/* See if there is another data key for this file */
1563 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 		    key_type(c, key) != UBIFS_DATA_KEY) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		if (lnum < 0) {
1569 			/* First key found */
1570 			lnum = zbr->lnum;
1571 			offs = ALIGN(zbr->offs + zbr->len, 8);
1572 			len = zbr->len;
1573 			if (len > bu->buf_len) {
1574 				err = -EINVAL;
1575 				goto out;
1576 			}
1577 		} else {
1578 			/*
1579 			 * The data nodes must be in consecutive positions in
1580 			 * the same LEB.
1581 			 */
1582 			if (zbr->lnum != lnum || zbr->offs != offs)
1583 				goto out;
1584 			offs += ALIGN(zbr->len, 8);
1585 			len = ALIGN(len, 8) + zbr->len;
1586 			/* Must not exceed buffer length */
1587 			if (len > bu->buf_len)
1588 				goto out;
1589 		}
1590 		/* Allow for holes */
1591 		next_block = key_block(c, key);
1592 		bu->blk_cnt += (next_block - block - 1);
1593 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 			goto out;
1595 		block = next_block;
1596 		/* Add this key */
1597 		bu->zbranch[bu->cnt++] = *zbr;
1598 		bu->blk_cnt += 1;
1599 		/* See if we have room for more */
1600 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 			goto out;
1602 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 			goto out;
1604 	}
1605 out:
1606 	if (err == -ENOENT) {
1607 		bu->eof = 1;
1608 		err = 0;
1609 	}
1610 	bu->gc_seq = c->gc_seq;
1611 	mutex_unlock(&c->tnc_mutex);
1612 	if (err)
1613 		return err;
1614 	/*
1615 	 * An enormous hole could cause bulk-read to encompass too many
1616 	 * page cache pages, so limit the number here.
1617 	 */
1618 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 	/*
1621 	 * Ensure that bulk-read covers a whole number of page cache
1622 	 * pages.
1623 	 */
1624 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 		return 0;
1627 	if (bu->eof) {
1628 		/* At the end of file we can round up */
1629 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 		return 0;
1631 	}
1632 	/* Exclude data nodes that do not make up a whole page cache page */
1633 	block = key_block(c, &bu->key) + bu->blk_cnt;
1634 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 	while (bu->cnt) {
1636 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 			break;
1638 		bu->cnt -= 1;
1639 	}
1640 	return 0;
1641 }
1642 
1643 /**
1644  * read_wbuf - bulk-read from a LEB with a wbuf.
1645  * @wbuf: wbuf that may overlap the read
1646  * @buf: buffer into which to read
1647  * @len: read length
1648  * @lnum: LEB number from which to read
1649  * @offs: offset from which to read
1650  *
1651  * This functions returns %0 on success or a negative error code on failure.
1652  */
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 		     int offs)
1655 {
1656 	const struct ubifs_info *c = wbuf->c;
1657 	int rlen, overlap;
1658 
1659 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 	ubifs_assert(offs + len <= c->leb_size);
1663 
1664 	spin_lock(&wbuf->lock);
1665 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 	if (!overlap) {
1667 		/* We may safely unlock the write-buffer and read the data */
1668 		spin_unlock(&wbuf->lock);
1669 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670 	}
1671 
1672 	/* Don't read under wbuf */
1673 	rlen = wbuf->offs - offs;
1674 	if (rlen < 0)
1675 		rlen = 0;
1676 
1677 	/* Copy the rest from the write-buffer */
1678 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 	spin_unlock(&wbuf->lock);
1680 
1681 	if (rlen > 0)
1682 		/* Read everything that goes before write-buffer */
1683 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * validate_data_node - validate data nodes for bulk-read.
1690  * @c: UBIFS file-system description object
1691  * @buf: buffer containing data node to validate
1692  * @zbr: zbranch of data node to validate
1693  *
1694  * This functions returns %0 on success or a negative error code on failure.
1695  */
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 			      struct ubifs_zbranch *zbr)
1698 {
1699 	union ubifs_key key1;
1700 	struct ubifs_ch *ch = buf;
1701 	int err, len;
1702 
1703 	if (ch->node_type != UBIFS_DATA_NODE) {
1704 		ubifs_err(c, "bad node type (%d but expected %d)",
1705 			  ch->node_type, UBIFS_DATA_NODE);
1706 		goto out_err;
1707 	}
1708 
1709 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710 	if (err) {
1711 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1712 		goto out;
1713 	}
1714 
1715 	len = le32_to_cpu(ch->len);
1716 	if (len != zbr->len) {
1717 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718 		goto out_err;
1719 	}
1720 
1721 	/* Make sure the key of the read node is correct */
1722 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 	if (!keys_eq(c, &zbr->key, &key1)) {
1724 		ubifs_err(c, "bad key in node at LEB %d:%d",
1725 			  zbr->lnum, zbr->offs);
1726 		dbg_tnck(&zbr->key, "looked for key ");
1727 		dbg_tnck(&key1, "found node's key ");
1728 		goto out_err;
1729 	}
1730 
1731 	return 0;
1732 
1733 out_err:
1734 	err = -EINVAL;
1735 out:
1736 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 	ubifs_dump_node(c, buf);
1738 	dump_stack();
1739 	return err;
1740 }
1741 
1742 /**
1743  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744  * @c: UBIFS file-system description object
1745  * @bu: bulk-read parameters and results
1746  *
1747  * This functions reads and validates the data nodes that were identified by the
1748  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749  * -EAGAIN to indicate a race with GC, or another negative error code on
1750  * failure.
1751  */
1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 {
1754 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 	struct ubifs_wbuf *wbuf;
1756 	void *buf;
1757 
1758 	len = bu->zbranch[bu->cnt - 1].offs;
1759 	len += bu->zbranch[bu->cnt - 1].len - offs;
1760 	if (len > bu->buf_len) {
1761 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Do the read */
1766 	wbuf = ubifs_get_wbuf(c, lnum);
1767 	if (wbuf)
1768 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 	else
1770 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771 
1772 	/* Check for a race with GC */
1773 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 		return -EAGAIN;
1775 
1776 	if (err && err != -EBADMSG) {
1777 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778 			  lnum, offs, err);
1779 		dump_stack();
1780 		dbg_tnck(&bu->key, "key ");
1781 		return err;
1782 	}
1783 
1784 	/* Validate the nodes read */
1785 	buf = bu->buf;
1786 	for (i = 0; i < bu->cnt; i++) {
1787 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 		if (err)
1789 			return err;
1790 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * do_lookup_nm- look up a "hashed" node.
1798  * @c: UBIFS file-system description object
1799  * @key: node key to lookup
1800  * @node: the node is returned here
1801  * @nm: node name
1802  *
1803  * This function looks up and reads a node which contains name hash in the key.
1804  * Since the hash may have collisions, there may be many nodes with the same
1805  * key, so we have to sequentially look to all of them until the needed one is
1806  * found. This function returns zero in case of success, %-ENOENT if the node
1807  * was not found, and a negative error code in case of failure.
1808  */
1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 			void *node, const struct fscrypt_name *nm)
1811 {
1812 	int found, n, err;
1813 	struct ubifs_znode *znode;
1814 
1815 	//dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1816 	mutex_lock(&c->tnc_mutex);
1817 	found = ubifs_lookup_level0(c, key, &znode, &n);
1818 	if (!found) {
1819 		err = -ENOENT;
1820 		goto out_unlock;
1821 	} else if (found < 0) {
1822 		err = found;
1823 		goto out_unlock;
1824 	}
1825 
1826 	ubifs_assert(n >= 0);
1827 
1828 	err = resolve_collision(c, key, &znode, &n, nm);
1829 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 	if (unlikely(err < 0))
1831 		goto out_unlock;
1832 	if (err == 0) {
1833 		err = -ENOENT;
1834 		goto out_unlock;
1835 	}
1836 
1837 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838 
1839 out_unlock:
1840 	mutex_unlock(&c->tnc_mutex);
1841 	return err;
1842 }
1843 
1844 /**
1845  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846  * @c: UBIFS file-system description object
1847  * @key: node key to lookup
1848  * @node: the node is returned here
1849  * @nm: node name
1850  *
1851  * This function looks up and reads a node which contains name hash in the key.
1852  * Since the hash may have collisions, there may be many nodes with the same
1853  * key, so we have to sequentially look to all of them until the needed one is
1854  * found. This function returns zero in case of success, %-ENOENT if the node
1855  * was not found, and a negative error code in case of failure.
1856  */
1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 			void *node, const struct fscrypt_name *nm)
1859 {
1860 	int err, len;
1861 	const struct ubifs_dent_node *dent = node;
1862 
1863 	/*
1864 	 * We assume that in most of the cases there are no name collisions and
1865 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 	 */
1867 	err = ubifs_tnc_lookup(c, key, node);
1868 	if (err)
1869 		return err;
1870 
1871 	len = le16_to_cpu(dent->nlen);
1872 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873 		return 0;
1874 
1875 	/*
1876 	 * Unluckily, there are hash collisions and we have to iterate over
1877 	 * them look at each direntry with colliding name hash sequentially.
1878 	 */
1879 
1880 	return do_lookup_nm(c, key, node, nm);
1881 }
1882 
1883 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1884 			struct ubifs_dent_node *dent, uint32_t cookie)
1885 {
1886 	int n, err, type = key_type(c, key);
1887 	struct ubifs_znode *znode;
1888 	struct ubifs_zbranch *zbr;
1889 	union ubifs_key *dkey, start_key;
1890 
1891 	ubifs_assert(is_hash_key(c, key));
1892 
1893 	lowest_dent_key(c, &start_key, key_inum(c, key));
1894 
1895 	mutex_lock(&c->tnc_mutex);
1896 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1897 	if (unlikely(err < 0))
1898 		goto out_unlock;
1899 
1900 	for (;;) {
1901 		if (!err) {
1902 			err = tnc_next(c, &znode, &n);
1903 			if (err)
1904 				goto out_unlock;
1905 		}
1906 
1907 		zbr = &znode->zbranch[n];
1908 		dkey = &zbr->key;
1909 
1910 		if (key_inum(c, dkey) != key_inum(c, key) ||
1911 		    key_type(c, dkey) != type) {
1912 			err = -ENOENT;
1913 			goto out_unlock;
1914 		}
1915 
1916 		err = tnc_read_hashed_node(c, zbr, dent);
1917 		if (err)
1918 			goto out_unlock;
1919 
1920 		if (key_hash(c, key) == key_hash(c, dkey) &&
1921 		    le32_to_cpu(dent->cookie) == cookie)
1922 			goto out_unlock;
1923 	}
1924 
1925 out_unlock:
1926 	mutex_unlock(&c->tnc_mutex);
1927 	return err;
1928 }
1929 
1930 /**
1931  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1932  * @c: UBIFS file-system description object
1933  * @key: node key to lookup
1934  * @node: the node is returned here
1935  * @cookie: node cookie for collision resolution
1936  *
1937  * This function looks up and reads a node which contains name hash in the key.
1938  * Since the hash may have collisions, there may be many nodes with the same
1939  * key, so we have to sequentially look to all of them until the needed one
1940  * with the same cookie value is found.
1941  * This function returns zero in case of success, %-ENOENT if the node
1942  * was not found, and a negative error code in case of failure.
1943  */
1944 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1945 			void *node, uint32_t cookie)
1946 {
1947 	int err;
1948 	const struct ubifs_dent_node *dent = node;
1949 
1950 	if (!c->double_hash)
1951 		return -EOPNOTSUPP;
1952 
1953 	/*
1954 	 * We assume that in most of the cases there are no name collisions and
1955 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1956 	 */
1957 	err = ubifs_tnc_lookup(c, key, node);
1958 	if (err)
1959 		return err;
1960 
1961 	if (le32_to_cpu(dent->cookie) == cookie)
1962 		return 0;
1963 
1964 	/*
1965 	 * Unluckily, there are hash collisions and we have to iterate over
1966 	 * them look at each direntry with colliding name hash sequentially.
1967 	 */
1968 	return do_lookup_dh(c, key, node, cookie);
1969 }
1970 
1971 /**
1972  * correct_parent_keys - correct parent znodes' keys.
1973  * @c: UBIFS file-system description object
1974  * @znode: znode to correct parent znodes for
1975  *
1976  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1977  * zbranch changes, keys of parent znodes have to be corrected. This helper
1978  * function is called in such situations and corrects the keys if needed.
1979  */
1980 static void correct_parent_keys(const struct ubifs_info *c,
1981 				struct ubifs_znode *znode)
1982 {
1983 	union ubifs_key *key, *key1;
1984 
1985 	ubifs_assert(znode->parent);
1986 	ubifs_assert(znode->iip == 0);
1987 
1988 	key = &znode->zbranch[0].key;
1989 	key1 = &znode->parent->zbranch[0].key;
1990 
1991 	while (keys_cmp(c, key, key1) < 0) {
1992 		key_copy(c, key, key1);
1993 		znode = znode->parent;
1994 		znode->alt = 1;
1995 		if (!znode->parent || znode->iip)
1996 			break;
1997 		key1 = &znode->parent->zbranch[0].key;
1998 	}
1999 }
2000 
2001 /**
2002  * insert_zbranch - insert a zbranch into a znode.
2003  * @znode: znode into which to insert
2004  * @zbr: zbranch to insert
2005  * @n: slot number to insert to
2006  *
2007  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2008  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2009  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2010  * slot, zbranches starting from @n have to be moved right.
2011  */
2012 static void insert_zbranch(struct ubifs_znode *znode,
2013 			   const struct ubifs_zbranch *zbr, int n)
2014 {
2015 	int i;
2016 
2017 	ubifs_assert(ubifs_zn_dirty(znode));
2018 
2019 	if (znode->level) {
2020 		for (i = znode->child_cnt; i > n; i--) {
2021 			znode->zbranch[i] = znode->zbranch[i - 1];
2022 			if (znode->zbranch[i].znode)
2023 				znode->zbranch[i].znode->iip = i;
2024 		}
2025 		if (zbr->znode)
2026 			zbr->znode->iip = n;
2027 	} else
2028 		for (i = znode->child_cnt; i > n; i--)
2029 			znode->zbranch[i] = znode->zbranch[i - 1];
2030 
2031 	znode->zbranch[n] = *zbr;
2032 	znode->child_cnt += 1;
2033 
2034 	/*
2035 	 * After inserting at slot zero, the lower bound of the key range of
2036 	 * this znode may have changed. If this znode is subsequently split
2037 	 * then the upper bound of the key range may change, and furthermore
2038 	 * it could change to be lower than the original lower bound. If that
2039 	 * happens, then it will no longer be possible to find this znode in the
2040 	 * TNC using the key from the index node on flash. That is bad because
2041 	 * if it is not found, we will assume it is obsolete and may overwrite
2042 	 * it. Then if there is an unclean unmount, we will start using the
2043 	 * old index which will be broken.
2044 	 *
2045 	 * So we first mark znodes that have insertions at slot zero, and then
2046 	 * if they are split we add their lnum/offs to the old_idx tree.
2047 	 */
2048 	if (n == 0)
2049 		znode->alt = 1;
2050 }
2051 
2052 /**
2053  * tnc_insert - insert a node into TNC.
2054  * @c: UBIFS file-system description object
2055  * @znode: znode to insert into
2056  * @zbr: branch to insert
2057  * @n: slot number to insert new zbranch to
2058  *
2059  * This function inserts a new node described by @zbr into znode @znode. If
2060  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2061  * are splat as well if needed. Returns zero in case of success or a negative
2062  * error code in case of failure.
2063  */
2064 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2065 		      struct ubifs_zbranch *zbr, int n)
2066 {
2067 	struct ubifs_znode *zn, *zi, *zp;
2068 	int i, keep, move, appending = 0;
2069 	union ubifs_key *key = &zbr->key, *key1;
2070 
2071 	ubifs_assert(n >= 0 && n <= c->fanout);
2072 
2073 	/* Implement naive insert for now */
2074 again:
2075 	zp = znode->parent;
2076 	if (znode->child_cnt < c->fanout) {
2077 		ubifs_assert(n != c->fanout);
2078 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2079 
2080 		insert_zbranch(znode, zbr, n);
2081 
2082 		/* Ensure parent's key is correct */
2083 		if (n == 0 && zp && znode->iip == 0)
2084 			correct_parent_keys(c, znode);
2085 
2086 		return 0;
2087 	}
2088 
2089 	/*
2090 	 * Unfortunately, @znode does not have more empty slots and we have to
2091 	 * split it.
2092 	 */
2093 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2094 
2095 	if (znode->alt)
2096 		/*
2097 		 * We can no longer be sure of finding this znode by key, so we
2098 		 * record it in the old_idx tree.
2099 		 */
2100 		ins_clr_old_idx_znode(c, znode);
2101 
2102 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2103 	if (!zn)
2104 		return -ENOMEM;
2105 	zn->parent = zp;
2106 	zn->level = znode->level;
2107 
2108 	/* Decide where to split */
2109 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2110 		/* Try not to split consecutive data keys */
2111 		if (n == c->fanout) {
2112 			key1 = &znode->zbranch[n - 1].key;
2113 			if (key_inum(c, key1) == key_inum(c, key) &&
2114 			    key_type(c, key1) == UBIFS_DATA_KEY)
2115 				appending = 1;
2116 		} else
2117 			goto check_split;
2118 	} else if (appending && n != c->fanout) {
2119 		/* Try not to split consecutive data keys */
2120 		appending = 0;
2121 check_split:
2122 		if (n >= (c->fanout + 1) / 2) {
2123 			key1 = &znode->zbranch[0].key;
2124 			if (key_inum(c, key1) == key_inum(c, key) &&
2125 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2126 				key1 = &znode->zbranch[n].key;
2127 				if (key_inum(c, key1) != key_inum(c, key) ||
2128 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2129 					keep = n;
2130 					move = c->fanout - keep;
2131 					zi = znode;
2132 					goto do_split;
2133 				}
2134 			}
2135 		}
2136 	}
2137 
2138 	if (appending) {
2139 		keep = c->fanout;
2140 		move = 0;
2141 	} else {
2142 		keep = (c->fanout + 1) / 2;
2143 		move = c->fanout - keep;
2144 	}
2145 
2146 	/*
2147 	 * Although we don't at present, we could look at the neighbors and see
2148 	 * if we can move some zbranches there.
2149 	 */
2150 
2151 	if (n < keep) {
2152 		/* Insert into existing znode */
2153 		zi = znode;
2154 		move += 1;
2155 		keep -= 1;
2156 	} else {
2157 		/* Insert into new znode */
2158 		zi = zn;
2159 		n -= keep;
2160 		/* Re-parent */
2161 		if (zn->level != 0)
2162 			zbr->znode->parent = zn;
2163 	}
2164 
2165 do_split:
2166 
2167 	__set_bit(DIRTY_ZNODE, &zn->flags);
2168 	atomic_long_inc(&c->dirty_zn_cnt);
2169 
2170 	zn->child_cnt = move;
2171 	znode->child_cnt = keep;
2172 
2173 	dbg_tnc("moving %d, keeping %d", move, keep);
2174 
2175 	/* Move zbranch */
2176 	for (i = 0; i < move; i++) {
2177 		zn->zbranch[i] = znode->zbranch[keep + i];
2178 		/* Re-parent */
2179 		if (zn->level != 0)
2180 			if (zn->zbranch[i].znode) {
2181 				zn->zbranch[i].znode->parent = zn;
2182 				zn->zbranch[i].znode->iip = i;
2183 			}
2184 	}
2185 
2186 	/* Insert new key and branch */
2187 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2188 
2189 	insert_zbranch(zi, zbr, n);
2190 
2191 	/* Insert new znode (produced by spitting) into the parent */
2192 	if (zp) {
2193 		if (n == 0 && zi == znode && znode->iip == 0)
2194 			correct_parent_keys(c, znode);
2195 
2196 		/* Locate insertion point */
2197 		n = znode->iip + 1;
2198 
2199 		/* Tail recursion */
2200 		zbr->key = zn->zbranch[0].key;
2201 		zbr->znode = zn;
2202 		zbr->lnum = 0;
2203 		zbr->offs = 0;
2204 		zbr->len = 0;
2205 		znode = zp;
2206 
2207 		goto again;
2208 	}
2209 
2210 	/* We have to split root znode */
2211 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2212 
2213 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2214 	if (!zi)
2215 		return -ENOMEM;
2216 
2217 	zi->child_cnt = 2;
2218 	zi->level = znode->level + 1;
2219 
2220 	__set_bit(DIRTY_ZNODE, &zi->flags);
2221 	atomic_long_inc(&c->dirty_zn_cnt);
2222 
2223 	zi->zbranch[0].key = znode->zbranch[0].key;
2224 	zi->zbranch[0].znode = znode;
2225 	zi->zbranch[0].lnum = c->zroot.lnum;
2226 	zi->zbranch[0].offs = c->zroot.offs;
2227 	zi->zbranch[0].len = c->zroot.len;
2228 	zi->zbranch[1].key = zn->zbranch[0].key;
2229 	zi->zbranch[1].znode = zn;
2230 
2231 	c->zroot.lnum = 0;
2232 	c->zroot.offs = 0;
2233 	c->zroot.len = 0;
2234 	c->zroot.znode = zi;
2235 
2236 	zn->parent = zi;
2237 	zn->iip = 1;
2238 	znode->parent = zi;
2239 	znode->iip = 0;
2240 
2241 	return 0;
2242 }
2243 
2244 /**
2245  * ubifs_tnc_add - add a node to TNC.
2246  * @c: UBIFS file-system description object
2247  * @key: key to add
2248  * @lnum: LEB number of node
2249  * @offs: node offset
2250  * @len: node length
2251  *
2252  * This function adds a node with key @key to TNC. The node may be new or it may
2253  * obsolete some existing one. Returns %0 on success or negative error code on
2254  * failure.
2255  */
2256 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2257 		  int offs, int len)
2258 {
2259 	int found, n, err = 0;
2260 	struct ubifs_znode *znode;
2261 
2262 	mutex_lock(&c->tnc_mutex);
2263 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2264 	found = lookup_level0_dirty(c, key, &znode, &n);
2265 	if (!found) {
2266 		struct ubifs_zbranch zbr;
2267 
2268 		zbr.znode = NULL;
2269 		zbr.lnum = lnum;
2270 		zbr.offs = offs;
2271 		zbr.len = len;
2272 		key_copy(c, key, &zbr.key);
2273 		err = tnc_insert(c, znode, &zbr, n + 1);
2274 	} else if (found == 1) {
2275 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2276 
2277 		lnc_free(zbr);
2278 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2279 		zbr->lnum = lnum;
2280 		zbr->offs = offs;
2281 		zbr->len = len;
2282 	} else
2283 		err = found;
2284 	if (!err)
2285 		err = dbg_check_tnc(c, 0);
2286 	mutex_unlock(&c->tnc_mutex);
2287 
2288 	return err;
2289 }
2290 
2291 /**
2292  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2293  * @c: UBIFS file-system description object
2294  * @key: key to add
2295  * @old_lnum: LEB number of old node
2296  * @old_offs: old node offset
2297  * @lnum: LEB number of node
2298  * @offs: node offset
2299  * @len: node length
2300  *
2301  * This function replaces a node with key @key in the TNC only if the old node
2302  * is found.  This function is called by garbage collection when node are moved.
2303  * Returns %0 on success or negative error code on failure.
2304  */
2305 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2306 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2307 {
2308 	int found, n, err = 0;
2309 	struct ubifs_znode *znode;
2310 
2311 	mutex_lock(&c->tnc_mutex);
2312 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2313 		 old_offs, lnum, offs, len);
2314 	found = lookup_level0_dirty(c, key, &znode, &n);
2315 	if (found < 0) {
2316 		err = found;
2317 		goto out_unlock;
2318 	}
2319 
2320 	if (found == 1) {
2321 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2322 
2323 		found = 0;
2324 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2325 			lnc_free(zbr);
2326 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2327 			if (err)
2328 				goto out_unlock;
2329 			zbr->lnum = lnum;
2330 			zbr->offs = offs;
2331 			zbr->len = len;
2332 			found = 1;
2333 		} else if (is_hash_key(c, key)) {
2334 			found = resolve_collision_directly(c, key, &znode, &n,
2335 							   old_lnum, old_offs);
2336 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2337 				found, znode, n, old_lnum, old_offs);
2338 			if (found < 0) {
2339 				err = found;
2340 				goto out_unlock;
2341 			}
2342 
2343 			if (found) {
2344 				/* Ensure the znode is dirtied */
2345 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2346 					znode = dirty_cow_bottom_up(c, znode);
2347 					if (IS_ERR(znode)) {
2348 						err = PTR_ERR(znode);
2349 						goto out_unlock;
2350 					}
2351 				}
2352 				zbr = &znode->zbranch[n];
2353 				lnc_free(zbr);
2354 				err = ubifs_add_dirt(c, zbr->lnum,
2355 						     zbr->len);
2356 				if (err)
2357 					goto out_unlock;
2358 				zbr->lnum = lnum;
2359 				zbr->offs = offs;
2360 				zbr->len = len;
2361 			}
2362 		}
2363 	}
2364 
2365 	if (!found)
2366 		err = ubifs_add_dirt(c, lnum, len);
2367 
2368 	if (!err)
2369 		err = dbg_check_tnc(c, 0);
2370 
2371 out_unlock:
2372 	mutex_unlock(&c->tnc_mutex);
2373 	return err;
2374 }
2375 
2376 /**
2377  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2378  * @c: UBIFS file-system description object
2379  * @key: key to add
2380  * @lnum: LEB number of node
2381  * @offs: node offset
2382  * @len: node length
2383  * @nm: node name
2384  *
2385  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2386  * may have collisions, like directory entry keys.
2387  */
2388 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2389 		     int lnum, int offs, int len,
2390 		     const struct fscrypt_name *nm)
2391 {
2392 	int found, n, err = 0;
2393 	struct ubifs_znode *znode;
2394 
2395 	mutex_lock(&c->tnc_mutex);
2396 	//dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2397 	//	 lnum, offs, nm->len, nm->name);
2398 	found = lookup_level0_dirty(c, key, &znode, &n);
2399 	if (found < 0) {
2400 		err = found;
2401 		goto out_unlock;
2402 	}
2403 
2404 	if (found == 1) {
2405 		if (c->replaying)
2406 			found = fallible_resolve_collision(c, key, &znode, &n,
2407 							   nm, 1);
2408 		else
2409 			found = resolve_collision(c, key, &znode, &n, nm);
2410 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2411 		if (found < 0) {
2412 			err = found;
2413 			goto out_unlock;
2414 		}
2415 
2416 		/* Ensure the znode is dirtied */
2417 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2418 			znode = dirty_cow_bottom_up(c, znode);
2419 			if (IS_ERR(znode)) {
2420 				err = PTR_ERR(znode);
2421 				goto out_unlock;
2422 			}
2423 		}
2424 
2425 		if (found == 1) {
2426 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2427 
2428 			lnc_free(zbr);
2429 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2430 			zbr->lnum = lnum;
2431 			zbr->offs = offs;
2432 			zbr->len = len;
2433 			goto out_unlock;
2434 		}
2435 	}
2436 
2437 	if (!found) {
2438 		struct ubifs_zbranch zbr;
2439 
2440 		zbr.znode = NULL;
2441 		zbr.lnum = lnum;
2442 		zbr.offs = offs;
2443 		zbr.len = len;
2444 		key_copy(c, key, &zbr.key);
2445 		err = tnc_insert(c, znode, &zbr, n + 1);
2446 		if (err)
2447 			goto out_unlock;
2448 		if (c->replaying) {
2449 			/*
2450 			 * We did not find it in the index so there may be a
2451 			 * dangling branch still in the index. So we remove it
2452 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2453 			 * an unmatchable name.
2454 			 */
2455 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2456 
2457 			err = dbg_check_tnc(c, 0);
2458 			mutex_unlock(&c->tnc_mutex);
2459 			if (err)
2460 				return err;
2461 			return ubifs_tnc_remove_nm(c, key, &noname);
2462 		}
2463 	}
2464 
2465 out_unlock:
2466 	if (!err)
2467 		err = dbg_check_tnc(c, 0);
2468 	mutex_unlock(&c->tnc_mutex);
2469 	return err;
2470 }
2471 
2472 /**
2473  * tnc_delete - delete a znode form TNC.
2474  * @c: UBIFS file-system description object
2475  * @znode: znode to delete from
2476  * @n: zbranch slot number to delete
2477  *
2478  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2479  * case of success and a negative error code in case of failure.
2480  */
2481 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2482 {
2483 	struct ubifs_zbranch *zbr;
2484 	struct ubifs_znode *zp;
2485 	int i, err;
2486 
2487 	/* Delete without merge for now */
2488 	ubifs_assert(znode->level == 0);
2489 	ubifs_assert(n >= 0 && n < c->fanout);
2490 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2491 
2492 	zbr = &znode->zbranch[n];
2493 	lnc_free(zbr);
2494 
2495 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2496 	if (err) {
2497 		ubifs_dump_znode(c, znode);
2498 		return err;
2499 	}
2500 
2501 	/* We do not "gap" zbranch slots */
2502 	for (i = n; i < znode->child_cnt - 1; i++)
2503 		znode->zbranch[i] = znode->zbranch[i + 1];
2504 	znode->child_cnt -= 1;
2505 
2506 	if (znode->child_cnt > 0)
2507 		return 0;
2508 
2509 	/*
2510 	 * This was the last zbranch, we have to delete this znode from the
2511 	 * parent.
2512 	 */
2513 
2514 	do {
2515 		ubifs_assert(!ubifs_zn_obsolete(znode));
2516 		ubifs_assert(ubifs_zn_dirty(znode));
2517 
2518 		zp = znode->parent;
2519 		n = znode->iip;
2520 
2521 		atomic_long_dec(&c->dirty_zn_cnt);
2522 
2523 		err = insert_old_idx_znode(c, znode);
2524 		if (err)
2525 			return err;
2526 
2527 		if (znode->cnext) {
2528 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2529 			atomic_long_inc(&c->clean_zn_cnt);
2530 			atomic_long_inc(&ubifs_clean_zn_cnt);
2531 		} else
2532 			kfree(znode);
2533 		znode = zp;
2534 	} while (znode->child_cnt == 1); /* while removing last child */
2535 
2536 	/* Remove from znode, entry n - 1 */
2537 	znode->child_cnt -= 1;
2538 	ubifs_assert(znode->level != 0);
2539 	for (i = n; i < znode->child_cnt; i++) {
2540 		znode->zbranch[i] = znode->zbranch[i + 1];
2541 		if (znode->zbranch[i].znode)
2542 			znode->zbranch[i].znode->iip = i;
2543 	}
2544 
2545 	/*
2546 	 * If this is the root and it has only 1 child then
2547 	 * collapse the tree.
2548 	 */
2549 	if (!znode->parent) {
2550 		while (znode->child_cnt == 1 && znode->level != 0) {
2551 			zp = znode;
2552 			zbr = &znode->zbranch[0];
2553 			znode = get_znode(c, znode, 0);
2554 			if (IS_ERR(znode))
2555 				return PTR_ERR(znode);
2556 			znode = dirty_cow_znode(c, zbr);
2557 			if (IS_ERR(znode))
2558 				return PTR_ERR(znode);
2559 			znode->parent = NULL;
2560 			znode->iip = 0;
2561 			if (c->zroot.len) {
2562 				err = insert_old_idx(c, c->zroot.lnum,
2563 						     c->zroot.offs);
2564 				if (err)
2565 					return err;
2566 			}
2567 			c->zroot.lnum = zbr->lnum;
2568 			c->zroot.offs = zbr->offs;
2569 			c->zroot.len = zbr->len;
2570 			c->zroot.znode = znode;
2571 			ubifs_assert(!ubifs_zn_obsolete(zp));
2572 			ubifs_assert(ubifs_zn_dirty(zp));
2573 			atomic_long_dec(&c->dirty_zn_cnt);
2574 
2575 			if (zp->cnext) {
2576 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2577 				atomic_long_inc(&c->clean_zn_cnt);
2578 				atomic_long_inc(&ubifs_clean_zn_cnt);
2579 			} else
2580 				kfree(zp);
2581 		}
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 /**
2588  * ubifs_tnc_remove - remove an index entry of a node.
2589  * @c: UBIFS file-system description object
2590  * @key: key of node
2591  *
2592  * Returns %0 on success or negative error code on failure.
2593  */
2594 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2595 {
2596 	int found, n, err = 0;
2597 	struct ubifs_znode *znode;
2598 
2599 	mutex_lock(&c->tnc_mutex);
2600 	dbg_tnck(key, "key ");
2601 	found = lookup_level0_dirty(c, key, &znode, &n);
2602 	if (found < 0) {
2603 		err = found;
2604 		goto out_unlock;
2605 	}
2606 	if (found == 1)
2607 		err = tnc_delete(c, znode, n);
2608 	if (!err)
2609 		err = dbg_check_tnc(c, 0);
2610 
2611 out_unlock:
2612 	mutex_unlock(&c->tnc_mutex);
2613 	return err;
2614 }
2615 
2616 /**
2617  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2618  * @c: UBIFS file-system description object
2619  * @key: key of node
2620  * @nm: directory entry name
2621  *
2622  * Returns %0 on success or negative error code on failure.
2623  */
2624 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2625 			const struct fscrypt_name *nm)
2626 {
2627 	int n, err;
2628 	struct ubifs_znode *znode;
2629 
2630 	mutex_lock(&c->tnc_mutex);
2631 	//dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2632 	err = lookup_level0_dirty(c, key, &znode, &n);
2633 	if (err < 0)
2634 		goto out_unlock;
2635 
2636 	if (err) {
2637 		if (c->replaying)
2638 			err = fallible_resolve_collision(c, key, &znode, &n,
2639 							 nm, 0);
2640 		else
2641 			err = resolve_collision(c, key, &znode, &n, nm);
2642 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2643 		if (err < 0)
2644 			goto out_unlock;
2645 		if (err) {
2646 			/* Ensure the znode is dirtied */
2647 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2648 				znode = dirty_cow_bottom_up(c, znode);
2649 				if (IS_ERR(znode)) {
2650 					err = PTR_ERR(znode);
2651 					goto out_unlock;
2652 				}
2653 			}
2654 			err = tnc_delete(c, znode, n);
2655 		}
2656 	}
2657 
2658 out_unlock:
2659 	if (!err)
2660 		err = dbg_check_tnc(c, 0);
2661 	mutex_unlock(&c->tnc_mutex);
2662 	return err;
2663 }
2664 
2665 /**
2666  * key_in_range - determine if a key falls within a range of keys.
2667  * @c: UBIFS file-system description object
2668  * @key: key to check
2669  * @from_key: lowest key in range
2670  * @to_key: highest key in range
2671  *
2672  * This function returns %1 if the key is in range and %0 otherwise.
2673  */
2674 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2675 			union ubifs_key *from_key, union ubifs_key *to_key)
2676 {
2677 	if (keys_cmp(c, key, from_key) < 0)
2678 		return 0;
2679 	if (keys_cmp(c, key, to_key) > 0)
2680 		return 0;
2681 	return 1;
2682 }
2683 
2684 /**
2685  * ubifs_tnc_remove_range - remove index entries in range.
2686  * @c: UBIFS file-system description object
2687  * @from_key: lowest key to remove
2688  * @to_key: highest key to remove
2689  *
2690  * This function removes index entries starting at @from_key and ending at
2691  * @to_key.  This function returns zero in case of success and a negative error
2692  * code in case of failure.
2693  */
2694 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2695 			   union ubifs_key *to_key)
2696 {
2697 	int i, n, k, err = 0;
2698 	struct ubifs_znode *znode;
2699 	union ubifs_key *key;
2700 
2701 	mutex_lock(&c->tnc_mutex);
2702 	while (1) {
2703 		/* Find first level 0 znode that contains keys to remove */
2704 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2705 		if (err < 0)
2706 			goto out_unlock;
2707 
2708 		if (err)
2709 			key = from_key;
2710 		else {
2711 			err = tnc_next(c, &znode, &n);
2712 			if (err == -ENOENT) {
2713 				err = 0;
2714 				goto out_unlock;
2715 			}
2716 			if (err < 0)
2717 				goto out_unlock;
2718 			key = &znode->zbranch[n].key;
2719 			if (!key_in_range(c, key, from_key, to_key)) {
2720 				err = 0;
2721 				goto out_unlock;
2722 			}
2723 		}
2724 
2725 		/* Ensure the znode is dirtied */
2726 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2727 			znode = dirty_cow_bottom_up(c, znode);
2728 			if (IS_ERR(znode)) {
2729 				err = PTR_ERR(znode);
2730 				goto out_unlock;
2731 			}
2732 		}
2733 
2734 		/* Remove all keys in range except the first */
2735 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2736 			key = &znode->zbranch[i].key;
2737 			if (!key_in_range(c, key, from_key, to_key))
2738 				break;
2739 			lnc_free(&znode->zbranch[i]);
2740 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2741 					     znode->zbranch[i].len);
2742 			if (err) {
2743 				ubifs_dump_znode(c, znode);
2744 				goto out_unlock;
2745 			}
2746 			dbg_tnck(key, "removing key ");
2747 		}
2748 		if (k) {
2749 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2750 				znode->zbranch[i - k] = znode->zbranch[i];
2751 			znode->child_cnt -= k;
2752 		}
2753 
2754 		/* Now delete the first */
2755 		err = tnc_delete(c, znode, n);
2756 		if (err)
2757 			goto out_unlock;
2758 	}
2759 
2760 out_unlock:
2761 	if (!err)
2762 		err = dbg_check_tnc(c, 0);
2763 	mutex_unlock(&c->tnc_mutex);
2764 	return err;
2765 }
2766 
2767 /**
2768  * ubifs_tnc_remove_ino - remove an inode from TNC.
2769  * @c: UBIFS file-system description object
2770  * @inum: inode number to remove
2771  *
2772  * This function remove inode @inum and all the extended attributes associated
2773  * with the anode from TNC and returns zero in case of success or a negative
2774  * error code in case of failure.
2775  */
2776 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2777 {
2778 	union ubifs_key key1, key2;
2779 	struct ubifs_dent_node *xent, *pxent = NULL;
2780 	struct fscrypt_name nm = {0};
2781 
2782 	dbg_tnc("ino %lu", (unsigned long)inum);
2783 
2784 	/*
2785 	 * Walk all extended attribute entries and remove them together with
2786 	 * corresponding extended attribute inodes.
2787 	 */
2788 	lowest_xent_key(c, &key1, inum);
2789 	while (1) {
2790 		ino_t xattr_inum;
2791 		int err;
2792 
2793 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2794 		if (IS_ERR(xent)) {
2795 			err = PTR_ERR(xent);
2796 			if (err == -ENOENT)
2797 				break;
2798 			return err;
2799 		}
2800 
2801 		xattr_inum = le64_to_cpu(xent->inum);
2802 		dbg_tnc("xent '%s', ino %lu", xent->name,
2803 			(unsigned long)xattr_inum);
2804 
2805 		fname_name(&nm) = xent->name;
2806 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2807 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2808 		if (err) {
2809 			kfree(xent);
2810 			return err;
2811 		}
2812 
2813 		lowest_ino_key(c, &key1, xattr_inum);
2814 		highest_ino_key(c, &key2, xattr_inum);
2815 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2816 		if (err) {
2817 			kfree(xent);
2818 			return err;
2819 		}
2820 
2821 		kfree(pxent);
2822 		pxent = xent;
2823 		key_read(c, &xent->key, &key1);
2824 	}
2825 
2826 	kfree(pxent);
2827 	lowest_ino_key(c, &key1, inum);
2828 	highest_ino_key(c, &key2, inum);
2829 
2830 	return ubifs_tnc_remove_range(c, &key1, &key2);
2831 }
2832 
2833 /**
2834  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2835  * @c: UBIFS file-system description object
2836  * @key: key of last entry
2837  * @nm: name of last entry found or %NULL
2838  *
2839  * This function finds and reads the next directory or extended attribute entry
2840  * after the given key (@key) if there is one. @nm is used to resolve
2841  * collisions.
2842  *
2843  * If the name of the current entry is not known and only the key is known,
2844  * @nm->name has to be %NULL. In this case the semantics of this function is a
2845  * little bit different and it returns the entry corresponding to this key, not
2846  * the next one. If the key was not found, the closest "right" entry is
2847  * returned.
2848  *
2849  * If the fist entry has to be found, @key has to contain the lowest possible
2850  * key value for this inode and @name has to be %NULL.
2851  *
2852  * This function returns the found directory or extended attribute entry node
2853  * in case of success, %-ENOENT is returned if no entry was found, and a
2854  * negative error code is returned in case of failure.
2855  */
2856 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2857 					   union ubifs_key *key,
2858 					   const struct fscrypt_name *nm)
2859 {
2860 	int n, err, type = key_type(c, key);
2861 	struct ubifs_znode *znode;
2862 	struct ubifs_dent_node *dent;
2863 	struct ubifs_zbranch *zbr;
2864 	union ubifs_key *dkey;
2865 
2866 	//dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2867 	ubifs_assert(is_hash_key(c, key));
2868 
2869 	mutex_lock(&c->tnc_mutex);
2870 	err = ubifs_lookup_level0(c, key, &znode, &n);
2871 	if (unlikely(err < 0))
2872 		goto out_unlock;
2873 
2874 	if (fname_len(nm) > 0) {
2875 		if (err) {
2876 			/* Handle collisions */
2877 			if (c->replaying)
2878 				err = fallible_resolve_collision(c, key, &znode, &n,
2879 							 nm, 0);
2880 			else
2881 				err = resolve_collision(c, key, &znode, &n, nm);
2882 			dbg_tnc("rc returned %d, znode %p, n %d",
2883 				err, znode, n);
2884 			if (unlikely(err < 0))
2885 				goto out_unlock;
2886 		}
2887 
2888 		/* Now find next entry */
2889 		err = tnc_next(c, &znode, &n);
2890 		if (unlikely(err))
2891 			goto out_unlock;
2892 	} else {
2893 		/*
2894 		 * The full name of the entry was not given, in which case the
2895 		 * behavior of this function is a little different and it
2896 		 * returns current entry, not the next one.
2897 		 */
2898 		if (!err) {
2899 			/*
2900 			 * However, the given key does not exist in the TNC
2901 			 * tree and @znode/@n variables contain the closest
2902 			 * "preceding" element. Switch to the next one.
2903 			 */
2904 			err = tnc_next(c, &znode, &n);
2905 			if (err)
2906 				goto out_unlock;
2907 		}
2908 	}
2909 
2910 	zbr = &znode->zbranch[n];
2911 	dent = kmalloc(zbr->len, GFP_NOFS);
2912 	if (unlikely(!dent)) {
2913 		err = -ENOMEM;
2914 		goto out_unlock;
2915 	}
2916 
2917 	/*
2918 	 * The above 'tnc_next()' call could lead us to the next inode, check
2919 	 * this.
2920 	 */
2921 	dkey = &zbr->key;
2922 	if (key_inum(c, dkey) != key_inum(c, key) ||
2923 	    key_type(c, dkey) != type) {
2924 		err = -ENOENT;
2925 		goto out_free;
2926 	}
2927 
2928 	err = tnc_read_hashed_node(c, zbr, dent);
2929 	if (unlikely(err))
2930 		goto out_free;
2931 
2932 	mutex_unlock(&c->tnc_mutex);
2933 	return dent;
2934 
2935 out_free:
2936 	kfree(dent);
2937 out_unlock:
2938 	mutex_unlock(&c->tnc_mutex);
2939 	return ERR_PTR(err);
2940 }
2941 
2942 /**
2943  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2944  * @c: UBIFS file-system description object
2945  *
2946  * Destroy left-over obsolete znodes from a failed commit.
2947  */
2948 static void tnc_destroy_cnext(struct ubifs_info *c)
2949 {
2950 	struct ubifs_znode *cnext;
2951 
2952 	if (!c->cnext)
2953 		return;
2954 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2955 	cnext = c->cnext;
2956 	do {
2957 		struct ubifs_znode *znode = cnext;
2958 
2959 		cnext = cnext->cnext;
2960 		if (ubifs_zn_obsolete(znode))
2961 			kfree(znode);
2962 	} while (cnext && cnext != c->cnext);
2963 }
2964 
2965 /**
2966  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2967  * @c: UBIFS file-system description object
2968  */
2969 void ubifs_tnc_close(struct ubifs_info *c)
2970 {
2971 	tnc_destroy_cnext(c);
2972 	if (c->zroot.znode) {
2973 		long n, freed;
2974 
2975 		n = atomic_long_read(&c->clean_zn_cnt);
2976 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2977 		ubifs_assert(freed == n);
2978 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2979 	}
2980 	kfree(c->gap_lebs);
2981 	kfree(c->ilebs);
2982 	destroy_old_idx(c);
2983 }
2984 
2985 /**
2986  * left_znode - get the znode to the left.
2987  * @c: UBIFS file-system description object
2988  * @znode: znode
2989  *
2990  * This function returns a pointer to the znode to the left of @znode or NULL if
2991  * there is not one. A negative error code is returned on failure.
2992  */
2993 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2994 				      struct ubifs_znode *znode)
2995 {
2996 	int level = znode->level;
2997 
2998 	while (1) {
2999 		int n = znode->iip - 1;
3000 
3001 		/* Go up until we can go left */
3002 		znode = znode->parent;
3003 		if (!znode)
3004 			return NULL;
3005 		if (n >= 0) {
3006 			/* Now go down the rightmost branch to 'level' */
3007 			znode = get_znode(c, znode, n);
3008 			if (IS_ERR(znode))
3009 				return znode;
3010 			while (znode->level != level) {
3011 				n = znode->child_cnt - 1;
3012 				znode = get_znode(c, znode, n);
3013 				if (IS_ERR(znode))
3014 					return znode;
3015 			}
3016 			break;
3017 		}
3018 	}
3019 	return znode;
3020 }
3021 
3022 /**
3023  * right_znode - get the znode to the right.
3024  * @c: UBIFS file-system description object
3025  * @znode: znode
3026  *
3027  * This function returns a pointer to the znode to the right of @znode or NULL
3028  * if there is not one. A negative error code is returned on failure.
3029  */
3030 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3031 				       struct ubifs_znode *znode)
3032 {
3033 	int level = znode->level;
3034 
3035 	while (1) {
3036 		int n = znode->iip + 1;
3037 
3038 		/* Go up until we can go right */
3039 		znode = znode->parent;
3040 		if (!znode)
3041 			return NULL;
3042 		if (n < znode->child_cnt) {
3043 			/* Now go down the leftmost branch to 'level' */
3044 			znode = get_znode(c, znode, n);
3045 			if (IS_ERR(znode))
3046 				return znode;
3047 			while (znode->level != level) {
3048 				znode = get_znode(c, znode, 0);
3049 				if (IS_ERR(znode))
3050 					return znode;
3051 			}
3052 			break;
3053 		}
3054 	}
3055 	return znode;
3056 }
3057 
3058 /**
3059  * lookup_znode - find a particular indexing node from TNC.
3060  * @c: UBIFS file-system description object
3061  * @key: index node key to lookup
3062  * @level: index node level
3063  * @lnum: index node LEB number
3064  * @offs: index node offset
3065  *
3066  * This function searches an indexing node by its first key @key and its
3067  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3068  * nodes it traverses to TNC. This function is called for indexing nodes which
3069  * were found on the media by scanning, for example when garbage-collecting or
3070  * when doing in-the-gaps commit. This means that the indexing node which is
3071  * looked for does not have to have exactly the same leftmost key @key, because
3072  * the leftmost key may have been changed, in which case TNC will contain a
3073  * dirty znode which still refers the same @lnum:@offs. This function is clever
3074  * enough to recognize such indexing nodes.
3075  *
3076  * Note, if a znode was deleted or changed too much, then this function will
3077  * not find it. For situations like this UBIFS has the old index RB-tree
3078  * (indexed by @lnum:@offs).
3079  *
3080  * This function returns a pointer to the znode found or %NULL if it is not
3081  * found. A negative error code is returned on failure.
3082  */
3083 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3084 					union ubifs_key *key, int level,
3085 					int lnum, int offs)
3086 {
3087 	struct ubifs_znode *znode, *zn;
3088 	int n, nn;
3089 
3090 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3091 
3092 	/*
3093 	 * The arguments have probably been read off flash, so don't assume
3094 	 * they are valid.
3095 	 */
3096 	if (level < 0)
3097 		return ERR_PTR(-EINVAL);
3098 
3099 	/* Get the root znode */
3100 	znode = c->zroot.znode;
3101 	if (!znode) {
3102 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3103 		if (IS_ERR(znode))
3104 			return znode;
3105 	}
3106 	/* Check if it is the one we are looking for */
3107 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3108 		return znode;
3109 	/* Descend to the parent level i.e. (level + 1) */
3110 	if (level >= znode->level)
3111 		return NULL;
3112 	while (1) {
3113 		ubifs_search_zbranch(c, znode, key, &n);
3114 		if (n < 0) {
3115 			/*
3116 			 * We reached a znode where the leftmost key is greater
3117 			 * than the key we are searching for. This is the same
3118 			 * situation as the one described in a huge comment at
3119 			 * the end of the 'ubifs_lookup_level0()' function. And
3120 			 * for exactly the same reasons we have to try to look
3121 			 * left before giving up.
3122 			 */
3123 			znode = left_znode(c, znode);
3124 			if (!znode)
3125 				return NULL;
3126 			if (IS_ERR(znode))
3127 				return znode;
3128 			ubifs_search_zbranch(c, znode, key, &n);
3129 			ubifs_assert(n >= 0);
3130 		}
3131 		if (znode->level == level + 1)
3132 			break;
3133 		znode = get_znode(c, znode, n);
3134 		if (IS_ERR(znode))
3135 			return znode;
3136 	}
3137 	/* Check if the child is the one we are looking for */
3138 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3139 		return get_znode(c, znode, n);
3140 	/* If the key is unique, there is nowhere else to look */
3141 	if (!is_hash_key(c, key))
3142 		return NULL;
3143 	/*
3144 	 * The key is not unique and so may be also in the znodes to either
3145 	 * side.
3146 	 */
3147 	zn = znode;
3148 	nn = n;
3149 	/* Look left */
3150 	while (1) {
3151 		/* Move one branch to the left */
3152 		if (n)
3153 			n -= 1;
3154 		else {
3155 			znode = left_znode(c, znode);
3156 			if (!znode)
3157 				break;
3158 			if (IS_ERR(znode))
3159 				return znode;
3160 			n = znode->child_cnt - 1;
3161 		}
3162 		/* Check it */
3163 		if (znode->zbranch[n].lnum == lnum &&
3164 		    znode->zbranch[n].offs == offs)
3165 			return get_znode(c, znode, n);
3166 		/* Stop if the key is less than the one we are looking for */
3167 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3168 			break;
3169 	}
3170 	/* Back to the middle */
3171 	znode = zn;
3172 	n = nn;
3173 	/* Look right */
3174 	while (1) {
3175 		/* Move one branch to the right */
3176 		if (++n >= znode->child_cnt) {
3177 			znode = right_znode(c, znode);
3178 			if (!znode)
3179 				break;
3180 			if (IS_ERR(znode))
3181 				return znode;
3182 			n = 0;
3183 		}
3184 		/* Check it */
3185 		if (znode->zbranch[n].lnum == lnum &&
3186 		    znode->zbranch[n].offs == offs)
3187 			return get_znode(c, znode, n);
3188 		/* Stop if the key is greater than the one we are looking for */
3189 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3190 			break;
3191 	}
3192 	return NULL;
3193 }
3194 
3195 /**
3196  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3197  * @c: UBIFS file-system description object
3198  * @key: key of index node
3199  * @level: index node level
3200  * @lnum: LEB number of index node
3201  * @offs: offset of index node
3202  *
3203  * This function returns %0 if the index node is not referred to in the TNC, %1
3204  * if the index node is referred to in the TNC and the corresponding znode is
3205  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3206  * znode is clean, and a negative error code in case of failure.
3207  *
3208  * Note, the @key argument has to be the key of the first child. Also note,
3209  * this function relies on the fact that 0:0 is never a valid LEB number and
3210  * offset for a main-area node.
3211  */
3212 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3213 		       int lnum, int offs)
3214 {
3215 	struct ubifs_znode *znode;
3216 
3217 	znode = lookup_znode(c, key, level, lnum, offs);
3218 	if (!znode)
3219 		return 0;
3220 	if (IS_ERR(znode))
3221 		return PTR_ERR(znode);
3222 
3223 	return ubifs_zn_dirty(znode) ? 1 : 2;
3224 }
3225 
3226 /**
3227  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3228  * @c: UBIFS file-system description object
3229  * @key: node key
3230  * @lnum: node LEB number
3231  * @offs: node offset
3232  *
3233  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3234  * not, and a negative error code in case of failure.
3235  *
3236  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3237  * and offset for a main-area node.
3238  */
3239 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3240 			       int lnum, int offs)
3241 {
3242 	struct ubifs_zbranch *zbr;
3243 	struct ubifs_znode *znode, *zn;
3244 	int n, found, err, nn;
3245 	const int unique = !is_hash_key(c, key);
3246 
3247 	found = ubifs_lookup_level0(c, key, &znode, &n);
3248 	if (found < 0)
3249 		return found; /* Error code */
3250 	if (!found)
3251 		return 0;
3252 	zbr = &znode->zbranch[n];
3253 	if (lnum == zbr->lnum && offs == zbr->offs)
3254 		return 1; /* Found it */
3255 	if (unique)
3256 		return 0;
3257 	/*
3258 	 * Because the key is not unique, we have to look left
3259 	 * and right as well
3260 	 */
3261 	zn = znode;
3262 	nn = n;
3263 	/* Look left */
3264 	while (1) {
3265 		err = tnc_prev(c, &znode, &n);
3266 		if (err == -ENOENT)
3267 			break;
3268 		if (err)
3269 			return err;
3270 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3271 			break;
3272 		zbr = &znode->zbranch[n];
3273 		if (lnum == zbr->lnum && offs == zbr->offs)
3274 			return 1; /* Found it */
3275 	}
3276 	/* Look right */
3277 	znode = zn;
3278 	n = nn;
3279 	while (1) {
3280 		err = tnc_next(c, &znode, &n);
3281 		if (err) {
3282 			if (err == -ENOENT)
3283 				return 0;
3284 			return err;
3285 		}
3286 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3287 			break;
3288 		zbr = &znode->zbranch[n];
3289 		if (lnum == zbr->lnum && offs == zbr->offs)
3290 			return 1; /* Found it */
3291 	}
3292 	return 0;
3293 }
3294 
3295 /**
3296  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3297  * @c: UBIFS file-system description object
3298  * @key: node key
3299  * @level: index node level (if it is an index node)
3300  * @lnum: node LEB number
3301  * @offs: node offset
3302  * @is_idx: non-zero if the node is an index node
3303  *
3304  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3305  * negative error code in case of failure. For index nodes, @key has to be the
3306  * key of the first child. An index node is considered to be in the TNC only if
3307  * the corresponding znode is clean or has not been loaded.
3308  */
3309 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3310 		       int lnum, int offs, int is_idx)
3311 {
3312 	int err;
3313 
3314 	mutex_lock(&c->tnc_mutex);
3315 	if (is_idx) {
3316 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3317 		if (err < 0)
3318 			goto out_unlock;
3319 		if (err == 1)
3320 			/* The index node was found but it was dirty */
3321 			err = 0;
3322 		else if (err == 2)
3323 			/* The index node was found and it was clean */
3324 			err = 1;
3325 		else
3326 			BUG_ON(err != 0);
3327 	} else
3328 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3329 
3330 out_unlock:
3331 	mutex_unlock(&c->tnc_mutex);
3332 	return err;
3333 }
3334 
3335 /**
3336  * ubifs_dirty_idx_node - dirty an index node.
3337  * @c: UBIFS file-system description object
3338  * @key: index node key
3339  * @level: index node level
3340  * @lnum: index node LEB number
3341  * @offs: index node offset
3342  *
3343  * This function loads and dirties an index node so that it can be garbage
3344  * collected. The @key argument has to be the key of the first child. This
3345  * function relies on the fact that 0:0 is never a valid LEB number and offset
3346  * for a main-area node. Returns %0 on success and a negative error code on
3347  * failure.
3348  */
3349 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3350 			 int lnum, int offs)
3351 {
3352 	struct ubifs_znode *znode;
3353 	int err = 0;
3354 
3355 	mutex_lock(&c->tnc_mutex);
3356 	znode = lookup_znode(c, key, level, lnum, offs);
3357 	if (!znode)
3358 		goto out_unlock;
3359 	if (IS_ERR(znode)) {
3360 		err = PTR_ERR(znode);
3361 		goto out_unlock;
3362 	}
3363 	znode = dirty_cow_bottom_up(c, znode);
3364 	if (IS_ERR(znode)) {
3365 		err = PTR_ERR(znode);
3366 		goto out_unlock;
3367 	}
3368 
3369 out_unlock:
3370 	mutex_unlock(&c->tnc_mutex);
3371 	return err;
3372 }
3373 
3374 /**
3375  * dbg_check_inode_size - check if inode size is correct.
3376  * @c: UBIFS file-system description object
3377  * @inum: inode number
3378  * @size: inode size
3379  *
3380  * This function makes sure that the inode size (@size) is correct and it does
3381  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3382  * if it has a data page beyond @size, and other negative error code in case of
3383  * other errors.
3384  */
3385 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3386 			 loff_t size)
3387 {
3388 	int err, n;
3389 	union ubifs_key from_key, to_key, *key;
3390 	struct ubifs_znode *znode;
3391 	unsigned int block;
3392 
3393 	if (!S_ISREG(inode->i_mode))
3394 		return 0;
3395 	if (!dbg_is_chk_gen(c))
3396 		return 0;
3397 
3398 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3399 	data_key_init(c, &from_key, inode->i_ino, block);
3400 	highest_data_key(c, &to_key, inode->i_ino);
3401 
3402 	mutex_lock(&c->tnc_mutex);
3403 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3404 	if (err < 0)
3405 		goto out_unlock;
3406 
3407 	if (err) {
3408 		key = &from_key;
3409 		goto out_dump;
3410 	}
3411 
3412 	err = tnc_next(c, &znode, &n);
3413 	if (err == -ENOENT) {
3414 		err = 0;
3415 		goto out_unlock;
3416 	}
3417 	if (err < 0)
3418 		goto out_unlock;
3419 
3420 	ubifs_assert(err == 0);
3421 	key = &znode->zbranch[n].key;
3422 	if (!key_in_range(c, key, &from_key, &to_key))
3423 		goto out_unlock;
3424 
3425 out_dump:
3426 	block = key_block(c, key);
3427 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3428 		  (unsigned long)inode->i_ino, size,
3429 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3430 	mutex_unlock(&c->tnc_mutex);
3431 	ubifs_dump_inode(c, inode);
3432 	dump_stack();
3433 	return -EINVAL;
3434 
3435 out_unlock:
3436 	mutex_unlock(&c->tnc_mutex);
3437 	return err;
3438 }
3439