xref: /openbmc/linux/fs/ubifs/tnc.c (revision cc8bbe1a)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /*
38  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39  * @NAME_LESS: name corresponding to the first argument is less than second
40  * @NAME_MATCHES: names match
41  * @NAME_GREATER: name corresponding to the second argument is greater than
42  *                first
43  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44  *
45  * These constants were introduce to improve readability.
46  */
47 enum {
48 	NAME_LESS    = 0,
49 	NAME_MATCHES = 1,
50 	NAME_GREATER = 2,
51 	NOT_ON_MEDIA = 3,
52 };
53 
54 /**
55  * insert_old_idx - record an index node obsoleted since the last commit start.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number of obsoleted index node
58  * @offs: offset of obsoleted index node
59  *
60  * Returns %0 on success, and a negative error code on failure.
61  *
62  * For recovery, there must always be a complete intact version of the index on
63  * flash at all times. That is called the "old index". It is the index as at the
64  * time of the last successful commit. Many of the index nodes in the old index
65  * may be dirty, but they must not be erased until the next successful commit
66  * (at which point that index becomes the old index).
67  *
68  * That means that the garbage collection and the in-the-gaps method of
69  * committing must be able to determine if an index node is in the old index.
70  * Most of the old index nodes can be found by looking up the TNC using the
71  * 'lookup_znode()' function. However, some of the old index nodes may have
72  * been deleted from the current index or may have been changed so much that
73  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74  * That is what this function does. The RB-tree is ordered by LEB number and
75  * offset because they uniquely identify the old index node.
76  */
77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 	struct ubifs_old_idx *old_idx, *o;
80 	struct rb_node **p, *parent = NULL;
81 
82 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 	if (unlikely(!old_idx))
84 		return -ENOMEM;
85 	old_idx->lnum = lnum;
86 	old_idx->offs = offs;
87 
88 	p = &c->old_idx.rb_node;
89 	while (*p) {
90 		parent = *p;
91 		o = rb_entry(parent, struct ubifs_old_idx, rb);
92 		if (lnum < o->lnum)
93 			p = &(*p)->rb_left;
94 		else if (lnum > o->lnum)
95 			p = &(*p)->rb_right;
96 		else if (offs < o->offs)
97 			p = &(*p)->rb_left;
98 		else if (offs > o->offs)
99 			p = &(*p)->rb_right;
100 		else {
101 			ubifs_err(c, "old idx added twice!");
102 			kfree(old_idx);
103 			return 0;
104 		}
105 	}
106 	rb_link_node(&old_idx->rb, parent, p);
107 	rb_insert_color(&old_idx->rb, &c->old_idx);
108 	return 0;
109 }
110 
111 /**
112  * insert_old_idx_znode - record a znode obsoleted since last commit start.
113  * @c: UBIFS file-system description object
114  * @znode: znode of obsoleted index node
115  *
116  * Returns %0 on success, and a negative error code on failure.
117  */
118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 	if (znode->parent) {
121 		struct ubifs_zbranch *zbr;
122 
123 		zbr = &znode->parent->zbranch[znode->iip];
124 		if (zbr->len)
125 			return insert_old_idx(c, zbr->lnum, zbr->offs);
126 	} else
127 		if (c->zroot.len)
128 			return insert_old_idx(c, c->zroot.lnum,
129 					      c->zroot.offs);
130 	return 0;
131 }
132 
133 /**
134  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135  * @c: UBIFS file-system description object
136  * @znode: znode of obsoleted index node
137  *
138  * Returns %0 on success, and a negative error code on failure.
139  */
140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 				 struct ubifs_znode *znode)
142 {
143 	int err;
144 
145 	if (znode->parent) {
146 		struct ubifs_zbranch *zbr;
147 
148 		zbr = &znode->parent->zbranch[znode->iip];
149 		if (zbr->len) {
150 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 			if (err)
152 				return err;
153 			zbr->lnum = 0;
154 			zbr->offs = 0;
155 			zbr->len = 0;
156 		}
157 	} else
158 		if (c->zroot.len) {
159 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 			if (err)
161 				return err;
162 			c->zroot.lnum = 0;
163 			c->zroot.offs = 0;
164 			c->zroot.len = 0;
165 		}
166 	return 0;
167 }
168 
169 /**
170  * destroy_old_idx - destroy the old_idx RB-tree.
171  * @c: UBIFS file-system description object
172  *
173  * During start commit, the old_idx RB-tree is used to avoid overwriting index
174  * nodes that were in the index last commit but have since been deleted.  This
175  * is necessary for recovery i.e. the old index must be kept intact until the
176  * new index is successfully written.  The old-idx RB-tree is used for the
177  * in-the-gaps method of writing index nodes and is destroyed every commit.
178  */
179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 	struct ubifs_old_idx *old_idx, *n;
182 
183 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
184 		kfree(old_idx);
185 
186 	c->old_idx = RB_ROOT;
187 }
188 
189 /**
190  * copy_znode - copy a dirty znode.
191  * @c: UBIFS file-system description object
192  * @znode: znode to copy
193  *
194  * A dirty znode being committed may not be changed, so it is copied.
195  */
196 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197 				      struct ubifs_znode *znode)
198 {
199 	struct ubifs_znode *zn;
200 
201 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
202 	if (unlikely(!zn))
203 		return ERR_PTR(-ENOMEM);
204 
205 	zn->cnext = NULL;
206 	__set_bit(DIRTY_ZNODE, &zn->flags);
207 	__clear_bit(COW_ZNODE, &zn->flags);
208 
209 	ubifs_assert(!ubifs_zn_obsolete(znode));
210 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
211 
212 	if (znode->level != 0) {
213 		int i;
214 		const int n = zn->child_cnt;
215 
216 		/* The children now have new parent */
217 		for (i = 0; i < n; i++) {
218 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
219 
220 			if (zbr->znode)
221 				zbr->znode->parent = zn;
222 		}
223 	}
224 
225 	atomic_long_inc(&c->dirty_zn_cnt);
226 	return zn;
227 }
228 
229 /**
230  * add_idx_dirt - add dirt due to a dirty znode.
231  * @c: UBIFS file-system description object
232  * @lnum: LEB number of index node
233  * @dirt: size of index node
234  *
235  * This function updates lprops dirty space and the new size of the index.
236  */
237 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
238 {
239 	c->calc_idx_sz -= ALIGN(dirt, 8);
240 	return ubifs_add_dirt(c, lnum, dirt);
241 }
242 
243 /**
244  * dirty_cow_znode - ensure a znode is not being committed.
245  * @c: UBIFS file-system description object
246  * @zbr: branch of znode to check
247  *
248  * Returns dirtied znode on success or negative error code on failure.
249  */
250 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
251 					   struct ubifs_zbranch *zbr)
252 {
253 	struct ubifs_znode *znode = zbr->znode;
254 	struct ubifs_znode *zn;
255 	int err;
256 
257 	if (!ubifs_zn_cow(znode)) {
258 		/* znode is not being committed */
259 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
260 			atomic_long_inc(&c->dirty_zn_cnt);
261 			atomic_long_dec(&c->clean_zn_cnt);
262 			atomic_long_dec(&ubifs_clean_zn_cnt);
263 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
264 			if (unlikely(err))
265 				return ERR_PTR(err);
266 		}
267 		return znode;
268 	}
269 
270 	zn = copy_znode(c, znode);
271 	if (IS_ERR(zn))
272 		return zn;
273 
274 	if (zbr->len) {
275 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
276 		if (unlikely(err))
277 			return ERR_PTR(err);
278 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
279 	} else
280 		err = 0;
281 
282 	zbr->znode = zn;
283 	zbr->lnum = 0;
284 	zbr->offs = 0;
285 	zbr->len = 0;
286 
287 	if (unlikely(err))
288 		return ERR_PTR(err);
289 	return zn;
290 }
291 
292 /**
293  * lnc_add - add a leaf node to the leaf node cache.
294  * @c: UBIFS file-system description object
295  * @zbr: zbranch of leaf node
296  * @node: leaf node
297  *
298  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299  * purpose of the leaf node cache is to save re-reading the same leaf node over
300  * and over again. Most things are cached by VFS, however the file system must
301  * cache directory entries for readdir and for resolving hash collisions. The
302  * present implementation of the leaf node cache is extremely simple, and
303  * allows for error returns that are not used but that may be needed if a more
304  * complex implementation is created.
305  *
306  * Note, this function does not add the @node object to LNC directly, but
307  * allocates a copy of the object and adds the copy to LNC. The reason for this
308  * is that @node has been allocated outside of the TNC subsystem and will be
309  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310  * may be changed at any time, e.g. freed by the shrinker.
311  */
312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 		   const void *node)
314 {
315 	int err;
316 	void *lnc_node;
317 	const struct ubifs_dent_node *dent = node;
318 
319 	ubifs_assert(!zbr->leaf);
320 	ubifs_assert(zbr->len != 0);
321 	ubifs_assert(is_hash_key(c, &zbr->key));
322 
323 	err = ubifs_validate_entry(c, dent);
324 	if (err) {
325 		dump_stack();
326 		ubifs_dump_node(c, dent);
327 		return err;
328 	}
329 
330 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
331 	if (!lnc_node)
332 		/* We don't have to have the cache, so no error */
333 		return 0;
334 
335 	zbr->leaf = lnc_node;
336 	return 0;
337 }
338 
339  /**
340  * lnc_add_directly - add a leaf node to the leaf-node-cache.
341  * @c: UBIFS file-system description object
342  * @zbr: zbranch of leaf node
343  * @node: leaf node
344  *
345  * This function is similar to 'lnc_add()', but it does not create a copy of
346  * @node but inserts @node to TNC directly.
347  */
348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 			    void *node)
350 {
351 	int err;
352 
353 	ubifs_assert(!zbr->leaf);
354 	ubifs_assert(zbr->len != 0);
355 
356 	err = ubifs_validate_entry(c, node);
357 	if (err) {
358 		dump_stack();
359 		ubifs_dump_node(c, node);
360 		return err;
361 	}
362 
363 	zbr->leaf = node;
364 	return 0;
365 }
366 
367 /**
368  * lnc_free - remove a leaf node from the leaf node cache.
369  * @zbr: zbranch of leaf node
370  * @node: leaf node
371  */
372 static void lnc_free(struct ubifs_zbranch *zbr)
373 {
374 	if (!zbr->leaf)
375 		return;
376 	kfree(zbr->leaf);
377 	zbr->leaf = NULL;
378 }
379 
380 /**
381  * tnc_read_node_nm - read a "hashed" leaf node.
382  * @c: UBIFS file-system description object
383  * @zbr: key and position of the node
384  * @node: node is returned here
385  *
386  * This function reads a "hashed" node defined by @zbr from the leaf node cache
387  * (in it is there) or from the hash media, in which case the node is also
388  * added to LNC. Returns zero in case of success or a negative negative error
389  * code in case of failure.
390  */
391 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
392 			    void *node)
393 {
394 	int err;
395 
396 	ubifs_assert(is_hash_key(c, &zbr->key));
397 
398 	if (zbr->leaf) {
399 		/* Read from the leaf node cache */
400 		ubifs_assert(zbr->len != 0);
401 		memcpy(node, zbr->leaf, zbr->len);
402 		return 0;
403 	}
404 
405 	err = ubifs_tnc_read_node(c, zbr, node);
406 	if (err)
407 		return err;
408 
409 	/* Add the node to the leaf node cache */
410 	err = lnc_add(c, zbr, node);
411 	return err;
412 }
413 
414 /**
415  * try_read_node - read a node if it is a node.
416  * @c: UBIFS file-system description object
417  * @buf: buffer to read to
418  * @type: node type
419  * @len: node length (not aligned)
420  * @lnum: LEB number of node to read
421  * @offs: offset of node to read
422  *
423  * This function tries to read a node of known type and length, checks it and
424  * stores it in @buf. This function returns %1 if a node is present and %0 if
425  * a node is not present. A negative error code is returned for I/O errors.
426  * This function performs that same function as ubifs_read_node except that
427  * it does not require that there is actually a node present and instead
428  * the return code indicates if a node was read.
429  *
430  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
431  * is true (it is controlled by corresponding mount option). However, if
432  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
433  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
434  * because during mounting or re-mounting from R/O mode to R/W mode we may read
435  * journal nodes (when replying the journal or doing the recovery) and the
436  * journal nodes may potentially be corrupted, so checking is required.
437  */
438 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
439 			 int len, int lnum, int offs)
440 {
441 	int err, node_len;
442 	struct ubifs_ch *ch = buf;
443 	uint32_t crc, node_crc;
444 
445 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
446 
447 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
448 	if (err) {
449 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
450 			  type, lnum, offs, err);
451 		return err;
452 	}
453 
454 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
455 		return 0;
456 
457 	if (ch->node_type != type)
458 		return 0;
459 
460 	node_len = le32_to_cpu(ch->len);
461 	if (node_len != len)
462 		return 0;
463 
464 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
465 	    !c->remounting_rw)
466 		return 1;
467 
468 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
469 	node_crc = le32_to_cpu(ch->crc);
470 	if (crc != node_crc)
471 		return 0;
472 
473 	return 1;
474 }
475 
476 /**
477  * fallible_read_node - try to read a leaf node.
478  * @c: UBIFS file-system description object
479  * @key:  key of node to read
480  * @zbr:  position of node
481  * @node: node returned
482  *
483  * This function tries to read a node and returns %1 if the node is read, %0
484  * if the node is not present, and a negative error code in the case of error.
485  */
486 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
487 			      struct ubifs_zbranch *zbr, void *node)
488 {
489 	int ret;
490 
491 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
492 
493 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
494 			    zbr->offs);
495 	if (ret == 1) {
496 		union ubifs_key node_key;
497 		struct ubifs_dent_node *dent = node;
498 
499 		/* All nodes have key in the same place */
500 		key_read(c, &dent->key, &node_key);
501 		if (keys_cmp(c, key, &node_key) != 0)
502 			ret = 0;
503 	}
504 	if (ret == 0 && c->replaying)
505 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
506 			zbr->lnum, zbr->offs, zbr->len);
507 	return ret;
508 }
509 
510 /**
511  * matches_name - determine if a direntry or xattr entry matches a given name.
512  * @c: UBIFS file-system description object
513  * @zbr: zbranch of dent
514  * @nm: name to match
515  *
516  * This function checks if xentry/direntry referred by zbranch @zbr matches name
517  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
518  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
519  * of failure, a negative error code is returned.
520  */
521 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
522 			const struct qstr *nm)
523 {
524 	struct ubifs_dent_node *dent;
525 	int nlen, err;
526 
527 	/* If possible, match against the dent in the leaf node cache */
528 	if (!zbr->leaf) {
529 		dent = kmalloc(zbr->len, GFP_NOFS);
530 		if (!dent)
531 			return -ENOMEM;
532 
533 		err = ubifs_tnc_read_node(c, zbr, dent);
534 		if (err)
535 			goto out_free;
536 
537 		/* Add the node to the leaf node cache */
538 		err = lnc_add_directly(c, zbr, dent);
539 		if (err)
540 			goto out_free;
541 	} else
542 		dent = zbr->leaf;
543 
544 	nlen = le16_to_cpu(dent->nlen);
545 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
546 	if (err == 0) {
547 		if (nlen == nm->len)
548 			return NAME_MATCHES;
549 		else if (nlen < nm->len)
550 			return NAME_LESS;
551 		else
552 			return NAME_GREATER;
553 	} else if (err < 0)
554 		return NAME_LESS;
555 	else
556 		return NAME_GREATER;
557 
558 out_free:
559 	kfree(dent);
560 	return err;
561 }
562 
563 /**
564  * get_znode - get a TNC znode that may not be loaded yet.
565  * @c: UBIFS file-system description object
566  * @znode: parent znode
567  * @n: znode branch slot number
568  *
569  * This function returns the znode or a negative error code.
570  */
571 static struct ubifs_znode *get_znode(struct ubifs_info *c,
572 				     struct ubifs_znode *znode, int n)
573 {
574 	struct ubifs_zbranch *zbr;
575 
576 	zbr = &znode->zbranch[n];
577 	if (zbr->znode)
578 		znode = zbr->znode;
579 	else
580 		znode = ubifs_load_znode(c, zbr, znode, n);
581 	return znode;
582 }
583 
584 /**
585  * tnc_next - find next TNC entry.
586  * @c: UBIFS file-system description object
587  * @zn: znode is passed and returned here
588  * @n: znode branch slot number is passed and returned here
589  *
590  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
591  * no next entry, or a negative error code otherwise.
592  */
593 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
594 {
595 	struct ubifs_znode *znode = *zn;
596 	int nn = *n;
597 
598 	nn += 1;
599 	if (nn < znode->child_cnt) {
600 		*n = nn;
601 		return 0;
602 	}
603 	while (1) {
604 		struct ubifs_znode *zp;
605 
606 		zp = znode->parent;
607 		if (!zp)
608 			return -ENOENT;
609 		nn = znode->iip + 1;
610 		znode = zp;
611 		if (nn < znode->child_cnt) {
612 			znode = get_znode(c, znode, nn);
613 			if (IS_ERR(znode))
614 				return PTR_ERR(znode);
615 			while (znode->level != 0) {
616 				znode = get_znode(c, znode, 0);
617 				if (IS_ERR(znode))
618 					return PTR_ERR(znode);
619 			}
620 			nn = 0;
621 			break;
622 		}
623 	}
624 	*zn = znode;
625 	*n = nn;
626 	return 0;
627 }
628 
629 /**
630  * tnc_prev - find previous TNC entry.
631  * @c: UBIFS file-system description object
632  * @zn: znode is returned here
633  * @n: znode branch slot number is passed and returned here
634  *
635  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
636  * there is no next entry, or a negative error code otherwise.
637  */
638 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
639 {
640 	struct ubifs_znode *znode = *zn;
641 	int nn = *n;
642 
643 	if (nn > 0) {
644 		*n = nn - 1;
645 		return 0;
646 	}
647 	while (1) {
648 		struct ubifs_znode *zp;
649 
650 		zp = znode->parent;
651 		if (!zp)
652 			return -ENOENT;
653 		nn = znode->iip - 1;
654 		znode = zp;
655 		if (nn >= 0) {
656 			znode = get_znode(c, znode, nn);
657 			if (IS_ERR(znode))
658 				return PTR_ERR(znode);
659 			while (znode->level != 0) {
660 				nn = znode->child_cnt - 1;
661 				znode = get_znode(c, znode, nn);
662 				if (IS_ERR(znode))
663 					return PTR_ERR(znode);
664 			}
665 			nn = znode->child_cnt - 1;
666 			break;
667 		}
668 	}
669 	*zn = znode;
670 	*n = nn;
671 	return 0;
672 }
673 
674 /**
675  * resolve_collision - resolve a collision.
676  * @c: UBIFS file-system description object
677  * @key: key of a directory or extended attribute entry
678  * @zn: znode is returned here
679  * @n: zbranch number is passed and returned here
680  * @nm: name of the entry
681  *
682  * This function is called for "hashed" keys to make sure that the found key
683  * really corresponds to the looked up node (directory or extended attribute
684  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
685  * %0 is returned if @nm is not found and @zn and @n are set to the previous
686  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
687  * This means that @n may be set to %-1 if the leftmost key in @zn is the
688  * previous one. A negative error code is returned on failures.
689  */
690 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
691 			     struct ubifs_znode **zn, int *n,
692 			     const struct qstr *nm)
693 {
694 	int err;
695 
696 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
697 	if (unlikely(err < 0))
698 		return err;
699 	if (err == NAME_MATCHES)
700 		return 1;
701 
702 	if (err == NAME_GREATER) {
703 		/* Look left */
704 		while (1) {
705 			err = tnc_prev(c, zn, n);
706 			if (err == -ENOENT) {
707 				ubifs_assert(*n == 0);
708 				*n = -1;
709 				return 0;
710 			}
711 			if (err < 0)
712 				return err;
713 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
714 				/*
715 				 * We have found the branch after which we would
716 				 * like to insert, but inserting in this znode
717 				 * may still be wrong. Consider the following 3
718 				 * znodes, in the case where we are resolving a
719 				 * collision with Key2.
720 				 *
721 				 *                  znode zp
722 				 *            ----------------------
723 				 * level 1     |  Key0  |  Key1  |
724 				 *            -----------------------
725 				 *                 |            |
726 				 *       znode za  |            |  znode zb
727 				 *          ------------      ------------
728 				 * level 0  |  Key0  |        |  Key2  |
729 				 *          ------------      ------------
730 				 *
731 				 * The lookup finds Key2 in znode zb. Lets say
732 				 * there is no match and the name is greater so
733 				 * we look left. When we find Key0, we end up
734 				 * here. If we return now, we will insert into
735 				 * znode za at slot n = 1.  But that is invalid
736 				 * according to the parent's keys.  Key2 must
737 				 * be inserted into znode zb.
738 				 *
739 				 * Note, this problem is not relevant for the
740 				 * case when we go right, because
741 				 * 'tnc_insert()' would correct the parent key.
742 				 */
743 				if (*n == (*zn)->child_cnt - 1) {
744 					err = tnc_next(c, zn, n);
745 					if (err) {
746 						/* Should be impossible */
747 						ubifs_assert(0);
748 						if (err == -ENOENT)
749 							err = -EINVAL;
750 						return err;
751 					}
752 					ubifs_assert(*n == 0);
753 					*n = -1;
754 				}
755 				return 0;
756 			}
757 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
758 			if (err < 0)
759 				return err;
760 			if (err == NAME_LESS)
761 				return 0;
762 			if (err == NAME_MATCHES)
763 				return 1;
764 			ubifs_assert(err == NAME_GREATER);
765 		}
766 	} else {
767 		int nn = *n;
768 		struct ubifs_znode *znode = *zn;
769 
770 		/* Look right */
771 		while (1) {
772 			err = tnc_next(c, &znode, &nn);
773 			if (err == -ENOENT)
774 				return 0;
775 			if (err < 0)
776 				return err;
777 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
778 				return 0;
779 			err = matches_name(c, &znode->zbranch[nn], nm);
780 			if (err < 0)
781 				return err;
782 			if (err == NAME_GREATER)
783 				return 0;
784 			*zn = znode;
785 			*n = nn;
786 			if (err == NAME_MATCHES)
787 				return 1;
788 			ubifs_assert(err == NAME_LESS);
789 		}
790 	}
791 }
792 
793 /**
794  * fallible_matches_name - determine if a dent matches a given name.
795  * @c: UBIFS file-system description object
796  * @zbr: zbranch of dent
797  * @nm: name to match
798  *
799  * This is a "fallible" version of 'matches_name()' function which does not
800  * panic if the direntry/xentry referred by @zbr does not exist on the media.
801  *
802  * This function checks if xentry/direntry referred by zbranch @zbr matches name
803  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
804  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
805  * if xentry/direntry referred by @zbr does not exist on the media. A negative
806  * error code is returned in case of failure.
807  */
808 static int fallible_matches_name(struct ubifs_info *c,
809 				 struct ubifs_zbranch *zbr,
810 				 const struct qstr *nm)
811 {
812 	struct ubifs_dent_node *dent;
813 	int nlen, err;
814 
815 	/* If possible, match against the dent in the leaf node cache */
816 	if (!zbr->leaf) {
817 		dent = kmalloc(zbr->len, GFP_NOFS);
818 		if (!dent)
819 			return -ENOMEM;
820 
821 		err = fallible_read_node(c, &zbr->key, zbr, dent);
822 		if (err < 0)
823 			goto out_free;
824 		if (err == 0) {
825 			/* The node was not present */
826 			err = NOT_ON_MEDIA;
827 			goto out_free;
828 		}
829 		ubifs_assert(err == 1);
830 
831 		err = lnc_add_directly(c, zbr, dent);
832 		if (err)
833 			goto out_free;
834 	} else
835 		dent = zbr->leaf;
836 
837 	nlen = le16_to_cpu(dent->nlen);
838 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
839 	if (err == 0) {
840 		if (nlen == nm->len)
841 			return NAME_MATCHES;
842 		else if (nlen < nm->len)
843 			return NAME_LESS;
844 		else
845 			return NAME_GREATER;
846 	} else if (err < 0)
847 		return NAME_LESS;
848 	else
849 		return NAME_GREATER;
850 
851 out_free:
852 	kfree(dent);
853 	return err;
854 }
855 
856 /**
857  * fallible_resolve_collision - resolve a collision even if nodes are missing.
858  * @c: UBIFS file-system description object
859  * @key: key
860  * @zn: znode is returned here
861  * @n: branch number is passed and returned here
862  * @nm: name of directory entry
863  * @adding: indicates caller is adding a key to the TNC
864  *
865  * This is a "fallible" version of the 'resolve_collision()' function which
866  * does not panic if one of the nodes referred to by TNC does not exist on the
867  * media. This may happen when replaying the journal if a deleted node was
868  * Garbage-collected and the commit was not done. A branch that refers to a node
869  * that is not present is called a dangling branch. The following are the return
870  * codes for this function:
871  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
872  *    branch;
873  *  o if we are @adding and @nm was not found, %0 is returned;
874  *  o if we are not @adding and @nm was not found, but a dangling branch was
875  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
876  *  o a negative error code is returned in case of failure.
877  */
878 static int fallible_resolve_collision(struct ubifs_info *c,
879 				      const union ubifs_key *key,
880 				      struct ubifs_znode **zn, int *n,
881 				      const struct qstr *nm, int adding)
882 {
883 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
884 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
885 
886 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
887 	if (unlikely(cmp < 0))
888 		return cmp;
889 	if (cmp == NAME_MATCHES)
890 		return 1;
891 	if (cmp == NOT_ON_MEDIA) {
892 		o_znode = znode;
893 		o_n = nn;
894 		/*
895 		 * We are unlucky and hit a dangling branch straight away.
896 		 * Now we do not really know where to go to find the needed
897 		 * branch - to the left or to the right. Well, let's try left.
898 		 */
899 		unsure = 1;
900 	} else if (!adding)
901 		unsure = 1; /* Remove a dangling branch wherever it is */
902 
903 	if (cmp == NAME_GREATER || unsure) {
904 		/* Look left */
905 		while (1) {
906 			err = tnc_prev(c, zn, n);
907 			if (err == -ENOENT) {
908 				ubifs_assert(*n == 0);
909 				*n = -1;
910 				break;
911 			}
912 			if (err < 0)
913 				return err;
914 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
915 				/* See comments in 'resolve_collision()' */
916 				if (*n == (*zn)->child_cnt - 1) {
917 					err = tnc_next(c, zn, n);
918 					if (err) {
919 						/* Should be impossible */
920 						ubifs_assert(0);
921 						if (err == -ENOENT)
922 							err = -EINVAL;
923 						return err;
924 					}
925 					ubifs_assert(*n == 0);
926 					*n = -1;
927 				}
928 				break;
929 			}
930 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
931 			if (err < 0)
932 				return err;
933 			if (err == NAME_MATCHES)
934 				return 1;
935 			if (err == NOT_ON_MEDIA) {
936 				o_znode = *zn;
937 				o_n = *n;
938 				continue;
939 			}
940 			if (!adding)
941 				continue;
942 			if (err == NAME_LESS)
943 				break;
944 			else
945 				unsure = 0;
946 		}
947 	}
948 
949 	if (cmp == NAME_LESS || unsure) {
950 		/* Look right */
951 		*zn = znode;
952 		*n = nn;
953 		while (1) {
954 			err = tnc_next(c, &znode, &nn);
955 			if (err == -ENOENT)
956 				break;
957 			if (err < 0)
958 				return err;
959 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
960 				break;
961 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
962 			if (err < 0)
963 				return err;
964 			if (err == NAME_GREATER)
965 				break;
966 			*zn = znode;
967 			*n = nn;
968 			if (err == NAME_MATCHES)
969 				return 1;
970 			if (err == NOT_ON_MEDIA) {
971 				o_znode = znode;
972 				o_n = nn;
973 			}
974 		}
975 	}
976 
977 	/* Never match a dangling branch when adding */
978 	if (adding || !o_znode)
979 		return 0;
980 
981 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
982 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
983 		o_znode->zbranch[o_n].len);
984 	*zn = o_znode;
985 	*n = o_n;
986 	return 1;
987 }
988 
989 /**
990  * matches_position - determine if a zbranch matches a given position.
991  * @zbr: zbranch of dent
992  * @lnum: LEB number of dent to match
993  * @offs: offset of dent to match
994  *
995  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
996  */
997 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
998 {
999 	if (zbr->lnum == lnum && zbr->offs == offs)
1000 		return 1;
1001 	else
1002 		return 0;
1003 }
1004 
1005 /**
1006  * resolve_collision_directly - resolve a collision directly.
1007  * @c: UBIFS file-system description object
1008  * @key: key of directory entry
1009  * @zn: znode is passed and returned here
1010  * @n: zbranch number is passed and returned here
1011  * @lnum: LEB number of dent node to match
1012  * @offs: offset of dent node to match
1013  *
1014  * This function is used for "hashed" keys to make sure the found directory or
1015  * extended attribute entry node is what was looked for. It is used when the
1016  * flash address of the right node is known (@lnum:@offs) which makes it much
1017  * easier to resolve collisions (no need to read entries and match full
1018  * names). This function returns %1 and sets @zn and @n if the collision is
1019  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1020  * previous directory entry. Otherwise a negative error code is returned.
1021  */
1022 static int resolve_collision_directly(struct ubifs_info *c,
1023 				      const union ubifs_key *key,
1024 				      struct ubifs_znode **zn, int *n,
1025 				      int lnum, int offs)
1026 {
1027 	struct ubifs_znode *znode;
1028 	int nn, err;
1029 
1030 	znode = *zn;
1031 	nn = *n;
1032 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1033 		return 1;
1034 
1035 	/* Look left */
1036 	while (1) {
1037 		err = tnc_prev(c, &znode, &nn);
1038 		if (err == -ENOENT)
1039 			break;
1040 		if (err < 0)
1041 			return err;
1042 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1043 			break;
1044 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1045 			*zn = znode;
1046 			*n = nn;
1047 			return 1;
1048 		}
1049 	}
1050 
1051 	/* Look right */
1052 	znode = *zn;
1053 	nn = *n;
1054 	while (1) {
1055 		err = tnc_next(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			return 0;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			return 0;
1062 		*zn = znode;
1063 		*n = nn;
1064 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1065 			return 1;
1066 	}
1067 }
1068 
1069 /**
1070  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1071  * @c: UBIFS file-system description object
1072  * @znode: znode to dirty
1073  *
1074  * If we do not have a unique key that resides in a znode, then we cannot
1075  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1076  * This function records the path back to the last dirty ancestor, and then
1077  * dirties the znodes on that path.
1078  */
1079 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1080 					       struct ubifs_znode *znode)
1081 {
1082 	struct ubifs_znode *zp;
1083 	int *path = c->bottom_up_buf, p = 0;
1084 
1085 	ubifs_assert(c->zroot.znode);
1086 	ubifs_assert(znode);
1087 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1088 		kfree(c->bottom_up_buf);
1089 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1090 					   GFP_NOFS);
1091 		if (!c->bottom_up_buf)
1092 			return ERR_PTR(-ENOMEM);
1093 		path = c->bottom_up_buf;
1094 	}
1095 	if (c->zroot.znode->level) {
1096 		/* Go up until parent is dirty */
1097 		while (1) {
1098 			int n;
1099 
1100 			zp = znode->parent;
1101 			if (!zp)
1102 				break;
1103 			n = znode->iip;
1104 			ubifs_assert(p < c->zroot.znode->level);
1105 			path[p++] = n;
1106 			if (!zp->cnext && ubifs_zn_dirty(znode))
1107 				break;
1108 			znode = zp;
1109 		}
1110 	}
1111 
1112 	/* Come back down, dirtying as we go */
1113 	while (1) {
1114 		struct ubifs_zbranch *zbr;
1115 
1116 		zp = znode->parent;
1117 		if (zp) {
1118 			ubifs_assert(path[p - 1] >= 0);
1119 			ubifs_assert(path[p - 1] < zp->child_cnt);
1120 			zbr = &zp->zbranch[path[--p]];
1121 			znode = dirty_cow_znode(c, zbr);
1122 		} else {
1123 			ubifs_assert(znode == c->zroot.znode);
1124 			znode = dirty_cow_znode(c, &c->zroot);
1125 		}
1126 		if (IS_ERR(znode) || !p)
1127 			break;
1128 		ubifs_assert(path[p - 1] >= 0);
1129 		ubifs_assert(path[p - 1] < znode->child_cnt);
1130 		znode = znode->zbranch[path[p - 1]].znode;
1131 	}
1132 
1133 	return znode;
1134 }
1135 
1136 /**
1137  * ubifs_lookup_level0 - search for zero-level znode.
1138  * @c: UBIFS file-system description object
1139  * @key:  key to lookup
1140  * @zn: znode is returned here
1141  * @n: znode branch slot number is returned here
1142  *
1143  * This function looks up the TNC tree and search for zero-level znode which
1144  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1145  * cases:
1146  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1147  *     is returned and slot number of the matched branch is stored in @n;
1148  *   o not exact match, which means that zero-level znode does not contain
1149  *     @key, then %0 is returned and slot number of the closest branch is stored
1150  *     in @n;
1151  *   o @key is so small that it is even less than the lowest key of the
1152  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1153  *
1154  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1155  * function reads corresponding indexing nodes and inserts them to TNC. In
1156  * case of failure, a negative error code is returned.
1157  */
1158 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1159 			struct ubifs_znode **zn, int *n)
1160 {
1161 	int err, exact;
1162 	struct ubifs_znode *znode;
1163 	unsigned long time = get_seconds();
1164 
1165 	dbg_tnck(key, "search key ");
1166 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1167 
1168 	znode = c->zroot.znode;
1169 	if (unlikely(!znode)) {
1170 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1171 		if (IS_ERR(znode))
1172 			return PTR_ERR(znode);
1173 	}
1174 
1175 	znode->time = time;
1176 
1177 	while (1) {
1178 		struct ubifs_zbranch *zbr;
1179 
1180 		exact = ubifs_search_zbranch(c, znode, key, n);
1181 
1182 		if (znode->level == 0)
1183 			break;
1184 
1185 		if (*n < 0)
1186 			*n = 0;
1187 		zbr = &znode->zbranch[*n];
1188 
1189 		if (zbr->znode) {
1190 			znode->time = time;
1191 			znode = zbr->znode;
1192 			continue;
1193 		}
1194 
1195 		/* znode is not in TNC cache, load it from the media */
1196 		znode = ubifs_load_znode(c, zbr, znode, *n);
1197 		if (IS_ERR(znode))
1198 			return PTR_ERR(znode);
1199 	}
1200 
1201 	*zn = znode;
1202 	if (exact || !is_hash_key(c, key) || *n != -1) {
1203 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1204 		return exact;
1205 	}
1206 
1207 	/*
1208 	 * Here is a tricky place. We have not found the key and this is a
1209 	 * "hashed" key, which may collide. The rest of the code deals with
1210 	 * situations like this:
1211 	 *
1212 	 *                  | 3 | 5 |
1213 	 *                  /       \
1214 	 *          | 3 | 5 |      | 6 | 7 | (x)
1215 	 *
1216 	 * Or more a complex example:
1217 	 *
1218 	 *                | 1 | 5 |
1219 	 *                /       \
1220 	 *       | 1 | 3 |         | 5 | 8 |
1221 	 *              \           /
1222 	 *          | 5 | 5 |   | 6 | 7 | (x)
1223 	 *
1224 	 * In the examples, if we are looking for key "5", we may reach nodes
1225 	 * marked with "(x)". In this case what we have do is to look at the
1226 	 * left and see if there is "5" key there. If there is, we have to
1227 	 * return it.
1228 	 *
1229 	 * Note, this whole situation is possible because we allow to have
1230 	 * elements which are equivalent to the next key in the parent in the
1231 	 * children of current znode. For example, this happens if we split a
1232 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1233 	 * like this:
1234 	 *                      | 3 | 5 |
1235 	 *                       /     \
1236 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1237 	 *                              ^
1238 	 * And this becomes what is at the first "picture" after key "5" marked
1239 	 * with "^" is removed. What could be done is we could prohibit
1240 	 * splitting in the middle of the colliding sequence. Also, when
1241 	 * removing the leftmost key, we would have to correct the key of the
1242 	 * parent node, which would introduce additional complications. Namely,
1243 	 * if we changed the leftmost key of the parent znode, the garbage
1244 	 * collector would be unable to find it (GC is doing this when GC'ing
1245 	 * indexing LEBs). Although we already have an additional RB-tree where
1246 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1247 	 * after the commit. But anyway, this does not look easy to implement
1248 	 * so we did not try this.
1249 	 */
1250 	err = tnc_prev(c, &znode, n);
1251 	if (err == -ENOENT) {
1252 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1253 		*n = -1;
1254 		return 0;
1255 	}
1256 	if (unlikely(err < 0))
1257 		return err;
1258 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1259 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1260 		*n = -1;
1261 		return 0;
1262 	}
1263 
1264 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1265 	*zn = znode;
1266 	return 1;
1267 }
1268 
1269 /**
1270  * lookup_level0_dirty - search for zero-level znode dirtying.
1271  * @c: UBIFS file-system description object
1272  * @key:  key to lookup
1273  * @zn: znode is returned here
1274  * @n: znode branch slot number is returned here
1275  *
1276  * This function looks up the TNC tree and search for zero-level znode which
1277  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1278  * cases:
1279  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1280  *     is returned and slot number of the matched branch is stored in @n;
1281  *   o not exact match, which means that zero-level znode does not contain @key
1282  *     then %0 is returned and slot number of the closed branch is stored in
1283  *     @n;
1284  *   o @key is so small that it is even less than the lowest key of the
1285  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1286  *
1287  * Additionally all znodes in the path from the root to the located zero-level
1288  * znode are marked as dirty.
1289  *
1290  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1291  * function reads corresponding indexing nodes and inserts them to TNC. In
1292  * case of failure, a negative error code is returned.
1293  */
1294 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1295 			       struct ubifs_znode **zn, int *n)
1296 {
1297 	int err, exact;
1298 	struct ubifs_znode *znode;
1299 	unsigned long time = get_seconds();
1300 
1301 	dbg_tnck(key, "search and dirty key ");
1302 
1303 	znode = c->zroot.znode;
1304 	if (unlikely(!znode)) {
1305 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1306 		if (IS_ERR(znode))
1307 			return PTR_ERR(znode);
1308 	}
1309 
1310 	znode = dirty_cow_znode(c, &c->zroot);
1311 	if (IS_ERR(znode))
1312 		return PTR_ERR(znode);
1313 
1314 	znode->time = time;
1315 
1316 	while (1) {
1317 		struct ubifs_zbranch *zbr;
1318 
1319 		exact = ubifs_search_zbranch(c, znode, key, n);
1320 
1321 		if (znode->level == 0)
1322 			break;
1323 
1324 		if (*n < 0)
1325 			*n = 0;
1326 		zbr = &znode->zbranch[*n];
1327 
1328 		if (zbr->znode) {
1329 			znode->time = time;
1330 			znode = dirty_cow_znode(c, zbr);
1331 			if (IS_ERR(znode))
1332 				return PTR_ERR(znode);
1333 			continue;
1334 		}
1335 
1336 		/* znode is not in TNC cache, load it from the media */
1337 		znode = ubifs_load_znode(c, zbr, znode, *n);
1338 		if (IS_ERR(znode))
1339 			return PTR_ERR(znode);
1340 		znode = dirty_cow_znode(c, zbr);
1341 		if (IS_ERR(znode))
1342 			return PTR_ERR(znode);
1343 	}
1344 
1345 	*zn = znode;
1346 	if (exact || !is_hash_key(c, key) || *n != -1) {
1347 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1348 		return exact;
1349 	}
1350 
1351 	/*
1352 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1353 	 * code.
1354 	 */
1355 	err = tnc_prev(c, &znode, n);
1356 	if (err == -ENOENT) {
1357 		*n = -1;
1358 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1359 		return 0;
1360 	}
1361 	if (unlikely(err < 0))
1362 		return err;
1363 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1364 		*n = -1;
1365 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1366 		return 0;
1367 	}
1368 
1369 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1370 		znode = dirty_cow_bottom_up(c, znode);
1371 		if (IS_ERR(znode))
1372 			return PTR_ERR(znode);
1373 	}
1374 
1375 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1376 	*zn = znode;
1377 	return 1;
1378 }
1379 
1380 /**
1381  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1382  * @c: UBIFS file-system description object
1383  * @lnum: LEB number
1384  * @gc_seq1: garbage collection sequence number
1385  *
1386  * This function determines if @lnum may have been garbage collected since
1387  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1388  * %0 is returned.
1389  */
1390 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1391 {
1392 	int gc_seq2, gced_lnum;
1393 
1394 	gced_lnum = c->gced_lnum;
1395 	smp_rmb();
1396 	gc_seq2 = c->gc_seq;
1397 	/* Same seq means no GC */
1398 	if (gc_seq1 == gc_seq2)
1399 		return 0;
1400 	/* Different by more than 1 means we don't know */
1401 	if (gc_seq1 + 1 != gc_seq2)
1402 		return 1;
1403 	/*
1404 	 * We have seen the sequence number has increased by 1. Now we need to
1405 	 * be sure we read the right LEB number, so read it again.
1406 	 */
1407 	smp_rmb();
1408 	if (gced_lnum != c->gced_lnum)
1409 		return 1;
1410 	/* Finally we can check lnum */
1411 	if (gced_lnum == lnum)
1412 		return 1;
1413 	return 0;
1414 }
1415 
1416 /**
1417  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1418  * @c: UBIFS file-system description object
1419  * @key: node key to lookup
1420  * @node: the node is returned here
1421  * @lnum: LEB number is returned here
1422  * @offs: offset is returned here
1423  *
1424  * This function looks up and reads node with key @key. The caller has to make
1425  * sure the @node buffer is large enough to fit the node. Returns zero in case
1426  * of success, %-ENOENT if the node was not found, and a negative error code in
1427  * case of failure. The node location can be returned in @lnum and @offs.
1428  */
1429 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1430 		     void *node, int *lnum, int *offs)
1431 {
1432 	int found, n, err, safely = 0, gc_seq1;
1433 	struct ubifs_znode *znode;
1434 	struct ubifs_zbranch zbr, *zt;
1435 
1436 again:
1437 	mutex_lock(&c->tnc_mutex);
1438 	found = ubifs_lookup_level0(c, key, &znode, &n);
1439 	if (!found) {
1440 		err = -ENOENT;
1441 		goto out;
1442 	} else if (found < 0) {
1443 		err = found;
1444 		goto out;
1445 	}
1446 	zt = &znode->zbranch[n];
1447 	if (lnum) {
1448 		*lnum = zt->lnum;
1449 		*offs = zt->offs;
1450 	}
1451 	if (is_hash_key(c, key)) {
1452 		/*
1453 		 * In this case the leaf node cache gets used, so we pass the
1454 		 * address of the zbranch and keep the mutex locked
1455 		 */
1456 		err = tnc_read_node_nm(c, zt, node);
1457 		goto out;
1458 	}
1459 	if (safely) {
1460 		err = ubifs_tnc_read_node(c, zt, node);
1461 		goto out;
1462 	}
1463 	/* Drop the TNC mutex prematurely and race with garbage collection */
1464 	zbr = znode->zbranch[n];
1465 	gc_seq1 = c->gc_seq;
1466 	mutex_unlock(&c->tnc_mutex);
1467 
1468 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1469 		/* We do not GC journal heads */
1470 		err = ubifs_tnc_read_node(c, &zbr, node);
1471 		return err;
1472 	}
1473 
1474 	err = fallible_read_node(c, key, &zbr, node);
1475 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1476 		/*
1477 		 * The node may have been GC'ed out from under us so try again
1478 		 * while keeping the TNC mutex locked.
1479 		 */
1480 		safely = 1;
1481 		goto again;
1482 	}
1483 	return 0;
1484 
1485 out:
1486 	mutex_unlock(&c->tnc_mutex);
1487 	return err;
1488 }
1489 
1490 /**
1491  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1492  * @c: UBIFS file-system description object
1493  * @bu: bulk-read parameters and results
1494  *
1495  * Lookup consecutive data node keys for the same inode that reside
1496  * consecutively in the same LEB. This function returns zero in case of success
1497  * and a negative error code in case of failure.
1498  *
1499  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1500  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1501  * maximum possible amount of nodes for bulk-read.
1502  */
1503 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1504 {
1505 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1506 	int uninitialized_var(len);
1507 	unsigned int block = key_block(c, &bu->key);
1508 	struct ubifs_znode *znode;
1509 
1510 	bu->cnt = 0;
1511 	bu->blk_cnt = 0;
1512 	bu->eof = 0;
1513 
1514 	mutex_lock(&c->tnc_mutex);
1515 	/* Find first key */
1516 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1517 	if (err < 0)
1518 		goto out;
1519 	if (err) {
1520 		/* Key found */
1521 		len = znode->zbranch[n].len;
1522 		/* The buffer must be big enough for at least 1 node */
1523 		if (len > bu->buf_len) {
1524 			err = -EINVAL;
1525 			goto out;
1526 		}
1527 		/* Add this key */
1528 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1529 		bu->blk_cnt += 1;
1530 		lnum = znode->zbranch[n].lnum;
1531 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1532 	}
1533 	while (1) {
1534 		struct ubifs_zbranch *zbr;
1535 		union ubifs_key *key;
1536 		unsigned int next_block;
1537 
1538 		/* Find next key */
1539 		err = tnc_next(c, &znode, &n);
1540 		if (err)
1541 			goto out;
1542 		zbr = &znode->zbranch[n];
1543 		key = &zbr->key;
1544 		/* See if there is another data key for this file */
1545 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1546 		    key_type(c, key) != UBIFS_DATA_KEY) {
1547 			err = -ENOENT;
1548 			goto out;
1549 		}
1550 		if (lnum < 0) {
1551 			/* First key found */
1552 			lnum = zbr->lnum;
1553 			offs = ALIGN(zbr->offs + zbr->len, 8);
1554 			len = zbr->len;
1555 			if (len > bu->buf_len) {
1556 				err = -EINVAL;
1557 				goto out;
1558 			}
1559 		} else {
1560 			/*
1561 			 * The data nodes must be in consecutive positions in
1562 			 * the same LEB.
1563 			 */
1564 			if (zbr->lnum != lnum || zbr->offs != offs)
1565 				goto out;
1566 			offs += ALIGN(zbr->len, 8);
1567 			len = ALIGN(len, 8) + zbr->len;
1568 			/* Must not exceed buffer length */
1569 			if (len > bu->buf_len)
1570 				goto out;
1571 		}
1572 		/* Allow for holes */
1573 		next_block = key_block(c, key);
1574 		bu->blk_cnt += (next_block - block - 1);
1575 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1576 			goto out;
1577 		block = next_block;
1578 		/* Add this key */
1579 		bu->zbranch[bu->cnt++] = *zbr;
1580 		bu->blk_cnt += 1;
1581 		/* See if we have room for more */
1582 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1583 			goto out;
1584 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1585 			goto out;
1586 	}
1587 out:
1588 	if (err == -ENOENT) {
1589 		bu->eof = 1;
1590 		err = 0;
1591 	}
1592 	bu->gc_seq = c->gc_seq;
1593 	mutex_unlock(&c->tnc_mutex);
1594 	if (err)
1595 		return err;
1596 	/*
1597 	 * An enormous hole could cause bulk-read to encompass too many
1598 	 * page cache pages, so limit the number here.
1599 	 */
1600 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1601 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1602 	/*
1603 	 * Ensure that bulk-read covers a whole number of page cache
1604 	 * pages.
1605 	 */
1606 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1607 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1608 		return 0;
1609 	if (bu->eof) {
1610 		/* At the end of file we can round up */
1611 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1612 		return 0;
1613 	}
1614 	/* Exclude data nodes that do not make up a whole page cache page */
1615 	block = key_block(c, &bu->key) + bu->blk_cnt;
1616 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1617 	while (bu->cnt) {
1618 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1619 			break;
1620 		bu->cnt -= 1;
1621 	}
1622 	return 0;
1623 }
1624 
1625 /**
1626  * read_wbuf - bulk-read from a LEB with a wbuf.
1627  * @wbuf: wbuf that may overlap the read
1628  * @buf: buffer into which to read
1629  * @len: read length
1630  * @lnum: LEB number from which to read
1631  * @offs: offset from which to read
1632  *
1633  * This functions returns %0 on success or a negative error code on failure.
1634  */
1635 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1636 		     int offs)
1637 {
1638 	const struct ubifs_info *c = wbuf->c;
1639 	int rlen, overlap;
1640 
1641 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1642 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1643 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1644 	ubifs_assert(offs + len <= c->leb_size);
1645 
1646 	spin_lock(&wbuf->lock);
1647 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1648 	if (!overlap) {
1649 		/* We may safely unlock the write-buffer and read the data */
1650 		spin_unlock(&wbuf->lock);
1651 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1652 	}
1653 
1654 	/* Don't read under wbuf */
1655 	rlen = wbuf->offs - offs;
1656 	if (rlen < 0)
1657 		rlen = 0;
1658 
1659 	/* Copy the rest from the write-buffer */
1660 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1661 	spin_unlock(&wbuf->lock);
1662 
1663 	if (rlen > 0)
1664 		/* Read everything that goes before write-buffer */
1665 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * validate_data_node - validate data nodes for bulk-read.
1672  * @c: UBIFS file-system description object
1673  * @buf: buffer containing data node to validate
1674  * @zbr: zbranch of data node to validate
1675  *
1676  * This functions returns %0 on success or a negative error code on failure.
1677  */
1678 static int validate_data_node(struct ubifs_info *c, void *buf,
1679 			      struct ubifs_zbranch *zbr)
1680 {
1681 	union ubifs_key key1;
1682 	struct ubifs_ch *ch = buf;
1683 	int err, len;
1684 
1685 	if (ch->node_type != UBIFS_DATA_NODE) {
1686 		ubifs_err(c, "bad node type (%d but expected %d)",
1687 			  ch->node_type, UBIFS_DATA_NODE);
1688 		goto out_err;
1689 	}
1690 
1691 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1692 	if (err) {
1693 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1694 		goto out;
1695 	}
1696 
1697 	len = le32_to_cpu(ch->len);
1698 	if (len != zbr->len) {
1699 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1700 		goto out_err;
1701 	}
1702 
1703 	/* Make sure the key of the read node is correct */
1704 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1705 	if (!keys_eq(c, &zbr->key, &key1)) {
1706 		ubifs_err(c, "bad key in node at LEB %d:%d",
1707 			  zbr->lnum, zbr->offs);
1708 		dbg_tnck(&zbr->key, "looked for key ");
1709 		dbg_tnck(&key1, "found node's key ");
1710 		goto out_err;
1711 	}
1712 
1713 	return 0;
1714 
1715 out_err:
1716 	err = -EINVAL;
1717 out:
1718 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1719 	ubifs_dump_node(c, buf);
1720 	dump_stack();
1721 	return err;
1722 }
1723 
1724 /**
1725  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1726  * @c: UBIFS file-system description object
1727  * @bu: bulk-read parameters and results
1728  *
1729  * This functions reads and validates the data nodes that were identified by the
1730  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1731  * -EAGAIN to indicate a race with GC, or another negative error code on
1732  * failure.
1733  */
1734 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1735 {
1736 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1737 	struct ubifs_wbuf *wbuf;
1738 	void *buf;
1739 
1740 	len = bu->zbranch[bu->cnt - 1].offs;
1741 	len += bu->zbranch[bu->cnt - 1].len - offs;
1742 	if (len > bu->buf_len) {
1743 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1744 		return -EINVAL;
1745 	}
1746 
1747 	/* Do the read */
1748 	wbuf = ubifs_get_wbuf(c, lnum);
1749 	if (wbuf)
1750 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1751 	else
1752 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1753 
1754 	/* Check for a race with GC */
1755 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1756 		return -EAGAIN;
1757 
1758 	if (err && err != -EBADMSG) {
1759 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1760 			  lnum, offs, err);
1761 		dump_stack();
1762 		dbg_tnck(&bu->key, "key ");
1763 		return err;
1764 	}
1765 
1766 	/* Validate the nodes read */
1767 	buf = bu->buf;
1768 	for (i = 0; i < bu->cnt; i++) {
1769 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1770 		if (err)
1771 			return err;
1772 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 /**
1779  * do_lookup_nm- look up a "hashed" node.
1780  * @c: UBIFS file-system description object
1781  * @key: node key to lookup
1782  * @node: the node is returned here
1783  * @nm: node name
1784  *
1785  * This function look up and reads a node which contains name hash in the key.
1786  * Since the hash may have collisions, there may be many nodes with the same
1787  * key, so we have to sequentially look to all of them until the needed one is
1788  * found. This function returns zero in case of success, %-ENOENT if the node
1789  * was not found, and a negative error code in case of failure.
1790  */
1791 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1792 			void *node, const struct qstr *nm)
1793 {
1794 	int found, n, err;
1795 	struct ubifs_znode *znode;
1796 
1797 	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1798 	mutex_lock(&c->tnc_mutex);
1799 	found = ubifs_lookup_level0(c, key, &znode, &n);
1800 	if (!found) {
1801 		err = -ENOENT;
1802 		goto out_unlock;
1803 	} else if (found < 0) {
1804 		err = found;
1805 		goto out_unlock;
1806 	}
1807 
1808 	ubifs_assert(n >= 0);
1809 
1810 	err = resolve_collision(c, key, &znode, &n, nm);
1811 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1812 	if (unlikely(err < 0))
1813 		goto out_unlock;
1814 	if (err == 0) {
1815 		err = -ENOENT;
1816 		goto out_unlock;
1817 	}
1818 
1819 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1820 
1821 out_unlock:
1822 	mutex_unlock(&c->tnc_mutex);
1823 	return err;
1824 }
1825 
1826 /**
1827  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1828  * @c: UBIFS file-system description object
1829  * @key: node key to lookup
1830  * @node: the node is returned here
1831  * @nm: node name
1832  *
1833  * This function look up and reads a node which contains name hash in the key.
1834  * Since the hash may have collisions, there may be many nodes with the same
1835  * key, so we have to sequentially look to all of them until the needed one is
1836  * found. This function returns zero in case of success, %-ENOENT if the node
1837  * was not found, and a negative error code in case of failure.
1838  */
1839 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1840 			void *node, const struct qstr *nm)
1841 {
1842 	int err, len;
1843 	const struct ubifs_dent_node *dent = node;
1844 
1845 	/*
1846 	 * We assume that in most of the cases there are no name collisions and
1847 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1848 	 */
1849 	err = ubifs_tnc_lookup(c, key, node);
1850 	if (err)
1851 		return err;
1852 
1853 	len = le16_to_cpu(dent->nlen);
1854 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1855 		return 0;
1856 
1857 	/*
1858 	 * Unluckily, there are hash collisions and we have to iterate over
1859 	 * them look at each direntry with colliding name hash sequentially.
1860 	 */
1861 	return do_lookup_nm(c, key, node, nm);
1862 }
1863 
1864 /**
1865  * correct_parent_keys - correct parent znodes' keys.
1866  * @c: UBIFS file-system description object
1867  * @znode: znode to correct parent znodes for
1868  *
1869  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1870  * zbranch changes, keys of parent znodes have to be corrected. This helper
1871  * function is called in such situations and corrects the keys if needed.
1872  */
1873 static void correct_parent_keys(const struct ubifs_info *c,
1874 				struct ubifs_znode *znode)
1875 {
1876 	union ubifs_key *key, *key1;
1877 
1878 	ubifs_assert(znode->parent);
1879 	ubifs_assert(znode->iip == 0);
1880 
1881 	key = &znode->zbranch[0].key;
1882 	key1 = &znode->parent->zbranch[0].key;
1883 
1884 	while (keys_cmp(c, key, key1) < 0) {
1885 		key_copy(c, key, key1);
1886 		znode = znode->parent;
1887 		znode->alt = 1;
1888 		if (!znode->parent || znode->iip)
1889 			break;
1890 		key1 = &znode->parent->zbranch[0].key;
1891 	}
1892 }
1893 
1894 /**
1895  * insert_zbranch - insert a zbranch into a znode.
1896  * @znode: znode into which to insert
1897  * @zbr: zbranch to insert
1898  * @n: slot number to insert to
1899  *
1900  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1901  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1902  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1903  * slot, zbranches starting from @n have to be moved right.
1904  */
1905 static void insert_zbranch(struct ubifs_znode *znode,
1906 			   const struct ubifs_zbranch *zbr, int n)
1907 {
1908 	int i;
1909 
1910 	ubifs_assert(ubifs_zn_dirty(znode));
1911 
1912 	if (znode->level) {
1913 		for (i = znode->child_cnt; i > n; i--) {
1914 			znode->zbranch[i] = znode->zbranch[i - 1];
1915 			if (znode->zbranch[i].znode)
1916 				znode->zbranch[i].znode->iip = i;
1917 		}
1918 		if (zbr->znode)
1919 			zbr->znode->iip = n;
1920 	} else
1921 		for (i = znode->child_cnt; i > n; i--)
1922 			znode->zbranch[i] = znode->zbranch[i - 1];
1923 
1924 	znode->zbranch[n] = *zbr;
1925 	znode->child_cnt += 1;
1926 
1927 	/*
1928 	 * After inserting at slot zero, the lower bound of the key range of
1929 	 * this znode may have changed. If this znode is subsequently split
1930 	 * then the upper bound of the key range may change, and furthermore
1931 	 * it could change to be lower than the original lower bound. If that
1932 	 * happens, then it will no longer be possible to find this znode in the
1933 	 * TNC using the key from the index node on flash. That is bad because
1934 	 * if it is not found, we will assume it is obsolete and may overwrite
1935 	 * it. Then if there is an unclean unmount, we will start using the
1936 	 * old index which will be broken.
1937 	 *
1938 	 * So we first mark znodes that have insertions at slot zero, and then
1939 	 * if they are split we add their lnum/offs to the old_idx tree.
1940 	 */
1941 	if (n == 0)
1942 		znode->alt = 1;
1943 }
1944 
1945 /**
1946  * tnc_insert - insert a node into TNC.
1947  * @c: UBIFS file-system description object
1948  * @znode: znode to insert into
1949  * @zbr: branch to insert
1950  * @n: slot number to insert new zbranch to
1951  *
1952  * This function inserts a new node described by @zbr into znode @znode. If
1953  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1954  * are splat as well if needed. Returns zero in case of success or a negative
1955  * error code in case of failure.
1956  */
1957 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1958 		      struct ubifs_zbranch *zbr, int n)
1959 {
1960 	struct ubifs_znode *zn, *zi, *zp;
1961 	int i, keep, move, appending = 0;
1962 	union ubifs_key *key = &zbr->key, *key1;
1963 
1964 	ubifs_assert(n >= 0 && n <= c->fanout);
1965 
1966 	/* Implement naive insert for now */
1967 again:
1968 	zp = znode->parent;
1969 	if (znode->child_cnt < c->fanout) {
1970 		ubifs_assert(n != c->fanout);
1971 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1972 
1973 		insert_zbranch(znode, zbr, n);
1974 
1975 		/* Ensure parent's key is correct */
1976 		if (n == 0 && zp && znode->iip == 0)
1977 			correct_parent_keys(c, znode);
1978 
1979 		return 0;
1980 	}
1981 
1982 	/*
1983 	 * Unfortunately, @znode does not have more empty slots and we have to
1984 	 * split it.
1985 	 */
1986 	dbg_tnck(key, "splitting level %d, key ", znode->level);
1987 
1988 	if (znode->alt)
1989 		/*
1990 		 * We can no longer be sure of finding this znode by key, so we
1991 		 * record it in the old_idx tree.
1992 		 */
1993 		ins_clr_old_idx_znode(c, znode);
1994 
1995 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1996 	if (!zn)
1997 		return -ENOMEM;
1998 	zn->parent = zp;
1999 	zn->level = znode->level;
2000 
2001 	/* Decide where to split */
2002 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2003 		/* Try not to split consecutive data keys */
2004 		if (n == c->fanout) {
2005 			key1 = &znode->zbranch[n - 1].key;
2006 			if (key_inum(c, key1) == key_inum(c, key) &&
2007 			    key_type(c, key1) == UBIFS_DATA_KEY)
2008 				appending = 1;
2009 		} else
2010 			goto check_split;
2011 	} else if (appending && n != c->fanout) {
2012 		/* Try not to split consecutive data keys */
2013 		appending = 0;
2014 check_split:
2015 		if (n >= (c->fanout + 1) / 2) {
2016 			key1 = &znode->zbranch[0].key;
2017 			if (key_inum(c, key1) == key_inum(c, key) &&
2018 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2019 				key1 = &znode->zbranch[n].key;
2020 				if (key_inum(c, key1) != key_inum(c, key) ||
2021 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2022 					keep = n;
2023 					move = c->fanout - keep;
2024 					zi = znode;
2025 					goto do_split;
2026 				}
2027 			}
2028 		}
2029 	}
2030 
2031 	if (appending) {
2032 		keep = c->fanout;
2033 		move = 0;
2034 	} else {
2035 		keep = (c->fanout + 1) / 2;
2036 		move = c->fanout - keep;
2037 	}
2038 
2039 	/*
2040 	 * Although we don't at present, we could look at the neighbors and see
2041 	 * if we can move some zbranches there.
2042 	 */
2043 
2044 	if (n < keep) {
2045 		/* Insert into existing znode */
2046 		zi = znode;
2047 		move += 1;
2048 		keep -= 1;
2049 	} else {
2050 		/* Insert into new znode */
2051 		zi = zn;
2052 		n -= keep;
2053 		/* Re-parent */
2054 		if (zn->level != 0)
2055 			zbr->znode->parent = zn;
2056 	}
2057 
2058 do_split:
2059 
2060 	__set_bit(DIRTY_ZNODE, &zn->flags);
2061 	atomic_long_inc(&c->dirty_zn_cnt);
2062 
2063 	zn->child_cnt = move;
2064 	znode->child_cnt = keep;
2065 
2066 	dbg_tnc("moving %d, keeping %d", move, keep);
2067 
2068 	/* Move zbranch */
2069 	for (i = 0; i < move; i++) {
2070 		zn->zbranch[i] = znode->zbranch[keep + i];
2071 		/* Re-parent */
2072 		if (zn->level != 0)
2073 			if (zn->zbranch[i].znode) {
2074 				zn->zbranch[i].znode->parent = zn;
2075 				zn->zbranch[i].znode->iip = i;
2076 			}
2077 	}
2078 
2079 	/* Insert new key and branch */
2080 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2081 
2082 	insert_zbranch(zi, zbr, n);
2083 
2084 	/* Insert new znode (produced by spitting) into the parent */
2085 	if (zp) {
2086 		if (n == 0 && zi == znode && znode->iip == 0)
2087 			correct_parent_keys(c, znode);
2088 
2089 		/* Locate insertion point */
2090 		n = znode->iip + 1;
2091 
2092 		/* Tail recursion */
2093 		zbr->key = zn->zbranch[0].key;
2094 		zbr->znode = zn;
2095 		zbr->lnum = 0;
2096 		zbr->offs = 0;
2097 		zbr->len = 0;
2098 		znode = zp;
2099 
2100 		goto again;
2101 	}
2102 
2103 	/* We have to split root znode */
2104 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2105 
2106 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2107 	if (!zi)
2108 		return -ENOMEM;
2109 
2110 	zi->child_cnt = 2;
2111 	zi->level = znode->level + 1;
2112 
2113 	__set_bit(DIRTY_ZNODE, &zi->flags);
2114 	atomic_long_inc(&c->dirty_zn_cnt);
2115 
2116 	zi->zbranch[0].key = znode->zbranch[0].key;
2117 	zi->zbranch[0].znode = znode;
2118 	zi->zbranch[0].lnum = c->zroot.lnum;
2119 	zi->zbranch[0].offs = c->zroot.offs;
2120 	zi->zbranch[0].len = c->zroot.len;
2121 	zi->zbranch[1].key = zn->zbranch[0].key;
2122 	zi->zbranch[1].znode = zn;
2123 
2124 	c->zroot.lnum = 0;
2125 	c->zroot.offs = 0;
2126 	c->zroot.len = 0;
2127 	c->zroot.znode = zi;
2128 
2129 	zn->parent = zi;
2130 	zn->iip = 1;
2131 	znode->parent = zi;
2132 	znode->iip = 0;
2133 
2134 	return 0;
2135 }
2136 
2137 /**
2138  * ubifs_tnc_add - add a node to TNC.
2139  * @c: UBIFS file-system description object
2140  * @key: key to add
2141  * @lnum: LEB number of node
2142  * @offs: node offset
2143  * @len: node length
2144  *
2145  * This function adds a node with key @key to TNC. The node may be new or it may
2146  * obsolete some existing one. Returns %0 on success or negative error code on
2147  * failure.
2148  */
2149 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2150 		  int offs, int len)
2151 {
2152 	int found, n, err = 0;
2153 	struct ubifs_znode *znode;
2154 
2155 	mutex_lock(&c->tnc_mutex);
2156 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2157 	found = lookup_level0_dirty(c, key, &znode, &n);
2158 	if (!found) {
2159 		struct ubifs_zbranch zbr;
2160 
2161 		zbr.znode = NULL;
2162 		zbr.lnum = lnum;
2163 		zbr.offs = offs;
2164 		zbr.len = len;
2165 		key_copy(c, key, &zbr.key);
2166 		err = tnc_insert(c, znode, &zbr, n + 1);
2167 	} else if (found == 1) {
2168 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2169 
2170 		lnc_free(zbr);
2171 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2172 		zbr->lnum = lnum;
2173 		zbr->offs = offs;
2174 		zbr->len = len;
2175 	} else
2176 		err = found;
2177 	if (!err)
2178 		err = dbg_check_tnc(c, 0);
2179 	mutex_unlock(&c->tnc_mutex);
2180 
2181 	return err;
2182 }
2183 
2184 /**
2185  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2186  * @c: UBIFS file-system description object
2187  * @key: key to add
2188  * @old_lnum: LEB number of old node
2189  * @old_offs: old node offset
2190  * @lnum: LEB number of node
2191  * @offs: node offset
2192  * @len: node length
2193  *
2194  * This function replaces a node with key @key in the TNC only if the old node
2195  * is found.  This function is called by garbage collection when node are moved.
2196  * Returns %0 on success or negative error code on failure.
2197  */
2198 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2199 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2200 {
2201 	int found, n, err = 0;
2202 	struct ubifs_znode *znode;
2203 
2204 	mutex_lock(&c->tnc_mutex);
2205 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2206 		 old_offs, lnum, offs, len);
2207 	found = lookup_level0_dirty(c, key, &znode, &n);
2208 	if (found < 0) {
2209 		err = found;
2210 		goto out_unlock;
2211 	}
2212 
2213 	if (found == 1) {
2214 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2215 
2216 		found = 0;
2217 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2218 			lnc_free(zbr);
2219 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2220 			if (err)
2221 				goto out_unlock;
2222 			zbr->lnum = lnum;
2223 			zbr->offs = offs;
2224 			zbr->len = len;
2225 			found = 1;
2226 		} else if (is_hash_key(c, key)) {
2227 			found = resolve_collision_directly(c, key, &znode, &n,
2228 							   old_lnum, old_offs);
2229 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2230 				found, znode, n, old_lnum, old_offs);
2231 			if (found < 0) {
2232 				err = found;
2233 				goto out_unlock;
2234 			}
2235 
2236 			if (found) {
2237 				/* Ensure the znode is dirtied */
2238 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2239 					znode = dirty_cow_bottom_up(c, znode);
2240 					if (IS_ERR(znode)) {
2241 						err = PTR_ERR(znode);
2242 						goto out_unlock;
2243 					}
2244 				}
2245 				zbr = &znode->zbranch[n];
2246 				lnc_free(zbr);
2247 				err = ubifs_add_dirt(c, zbr->lnum,
2248 						     zbr->len);
2249 				if (err)
2250 					goto out_unlock;
2251 				zbr->lnum = lnum;
2252 				zbr->offs = offs;
2253 				zbr->len = len;
2254 			}
2255 		}
2256 	}
2257 
2258 	if (!found)
2259 		err = ubifs_add_dirt(c, lnum, len);
2260 
2261 	if (!err)
2262 		err = dbg_check_tnc(c, 0);
2263 
2264 out_unlock:
2265 	mutex_unlock(&c->tnc_mutex);
2266 	return err;
2267 }
2268 
2269 /**
2270  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2271  * @c: UBIFS file-system description object
2272  * @key: key to add
2273  * @lnum: LEB number of node
2274  * @offs: node offset
2275  * @len: node length
2276  * @nm: node name
2277  *
2278  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2279  * may have collisions, like directory entry keys.
2280  */
2281 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2282 		     int lnum, int offs, int len, const struct qstr *nm)
2283 {
2284 	int found, n, err = 0;
2285 	struct ubifs_znode *znode;
2286 
2287 	mutex_lock(&c->tnc_mutex);
2288 	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2289 		 lnum, offs, nm->len, nm->name);
2290 	found = lookup_level0_dirty(c, key, &znode, &n);
2291 	if (found < 0) {
2292 		err = found;
2293 		goto out_unlock;
2294 	}
2295 
2296 	if (found == 1) {
2297 		if (c->replaying)
2298 			found = fallible_resolve_collision(c, key, &znode, &n,
2299 							   nm, 1);
2300 		else
2301 			found = resolve_collision(c, key, &znode, &n, nm);
2302 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2303 		if (found < 0) {
2304 			err = found;
2305 			goto out_unlock;
2306 		}
2307 
2308 		/* Ensure the znode is dirtied */
2309 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2310 			znode = dirty_cow_bottom_up(c, znode);
2311 			if (IS_ERR(znode)) {
2312 				err = PTR_ERR(znode);
2313 				goto out_unlock;
2314 			}
2315 		}
2316 
2317 		if (found == 1) {
2318 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2319 
2320 			lnc_free(zbr);
2321 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2322 			zbr->lnum = lnum;
2323 			zbr->offs = offs;
2324 			zbr->len = len;
2325 			goto out_unlock;
2326 		}
2327 	}
2328 
2329 	if (!found) {
2330 		struct ubifs_zbranch zbr;
2331 
2332 		zbr.znode = NULL;
2333 		zbr.lnum = lnum;
2334 		zbr.offs = offs;
2335 		zbr.len = len;
2336 		key_copy(c, key, &zbr.key);
2337 		err = tnc_insert(c, znode, &zbr, n + 1);
2338 		if (err)
2339 			goto out_unlock;
2340 		if (c->replaying) {
2341 			/*
2342 			 * We did not find it in the index so there may be a
2343 			 * dangling branch still in the index. So we remove it
2344 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2345 			 * an unmatchable name.
2346 			 */
2347 			struct qstr noname = { .name = "" };
2348 
2349 			err = dbg_check_tnc(c, 0);
2350 			mutex_unlock(&c->tnc_mutex);
2351 			if (err)
2352 				return err;
2353 			return ubifs_tnc_remove_nm(c, key, &noname);
2354 		}
2355 	}
2356 
2357 out_unlock:
2358 	if (!err)
2359 		err = dbg_check_tnc(c, 0);
2360 	mutex_unlock(&c->tnc_mutex);
2361 	return err;
2362 }
2363 
2364 /**
2365  * tnc_delete - delete a znode form TNC.
2366  * @c: UBIFS file-system description object
2367  * @znode: znode to delete from
2368  * @n: zbranch slot number to delete
2369  *
2370  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2371  * case of success and a negative error code in case of failure.
2372  */
2373 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2374 {
2375 	struct ubifs_zbranch *zbr;
2376 	struct ubifs_znode *zp;
2377 	int i, err;
2378 
2379 	/* Delete without merge for now */
2380 	ubifs_assert(znode->level == 0);
2381 	ubifs_assert(n >= 0 && n < c->fanout);
2382 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2383 
2384 	zbr = &znode->zbranch[n];
2385 	lnc_free(zbr);
2386 
2387 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2388 	if (err) {
2389 		ubifs_dump_znode(c, znode);
2390 		return err;
2391 	}
2392 
2393 	/* We do not "gap" zbranch slots */
2394 	for (i = n; i < znode->child_cnt - 1; i++)
2395 		znode->zbranch[i] = znode->zbranch[i + 1];
2396 	znode->child_cnt -= 1;
2397 
2398 	if (znode->child_cnt > 0)
2399 		return 0;
2400 
2401 	/*
2402 	 * This was the last zbranch, we have to delete this znode from the
2403 	 * parent.
2404 	 */
2405 
2406 	do {
2407 		ubifs_assert(!ubifs_zn_obsolete(znode));
2408 		ubifs_assert(ubifs_zn_dirty(znode));
2409 
2410 		zp = znode->parent;
2411 		n = znode->iip;
2412 
2413 		atomic_long_dec(&c->dirty_zn_cnt);
2414 
2415 		err = insert_old_idx_znode(c, znode);
2416 		if (err)
2417 			return err;
2418 
2419 		if (znode->cnext) {
2420 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2421 			atomic_long_inc(&c->clean_zn_cnt);
2422 			atomic_long_inc(&ubifs_clean_zn_cnt);
2423 		} else
2424 			kfree(znode);
2425 		znode = zp;
2426 	} while (znode->child_cnt == 1); /* while removing last child */
2427 
2428 	/* Remove from znode, entry n - 1 */
2429 	znode->child_cnt -= 1;
2430 	ubifs_assert(znode->level != 0);
2431 	for (i = n; i < znode->child_cnt; i++) {
2432 		znode->zbranch[i] = znode->zbranch[i + 1];
2433 		if (znode->zbranch[i].znode)
2434 			znode->zbranch[i].znode->iip = i;
2435 	}
2436 
2437 	/*
2438 	 * If this is the root and it has only 1 child then
2439 	 * collapse the tree.
2440 	 */
2441 	if (!znode->parent) {
2442 		while (znode->child_cnt == 1 && znode->level != 0) {
2443 			zp = znode;
2444 			zbr = &znode->zbranch[0];
2445 			znode = get_znode(c, znode, 0);
2446 			if (IS_ERR(znode))
2447 				return PTR_ERR(znode);
2448 			znode = dirty_cow_znode(c, zbr);
2449 			if (IS_ERR(znode))
2450 				return PTR_ERR(znode);
2451 			znode->parent = NULL;
2452 			znode->iip = 0;
2453 			if (c->zroot.len) {
2454 				err = insert_old_idx(c, c->zroot.lnum,
2455 						     c->zroot.offs);
2456 				if (err)
2457 					return err;
2458 			}
2459 			c->zroot.lnum = zbr->lnum;
2460 			c->zroot.offs = zbr->offs;
2461 			c->zroot.len = zbr->len;
2462 			c->zroot.znode = znode;
2463 			ubifs_assert(!ubifs_zn_obsolete(zp));
2464 			ubifs_assert(ubifs_zn_dirty(zp));
2465 			atomic_long_dec(&c->dirty_zn_cnt);
2466 
2467 			if (zp->cnext) {
2468 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2469 				atomic_long_inc(&c->clean_zn_cnt);
2470 				atomic_long_inc(&ubifs_clean_zn_cnt);
2471 			} else
2472 				kfree(zp);
2473 		}
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 /**
2480  * ubifs_tnc_remove - remove an index entry of a node.
2481  * @c: UBIFS file-system description object
2482  * @key: key of node
2483  *
2484  * Returns %0 on success or negative error code on failure.
2485  */
2486 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2487 {
2488 	int found, n, err = 0;
2489 	struct ubifs_znode *znode;
2490 
2491 	mutex_lock(&c->tnc_mutex);
2492 	dbg_tnck(key, "key ");
2493 	found = lookup_level0_dirty(c, key, &znode, &n);
2494 	if (found < 0) {
2495 		err = found;
2496 		goto out_unlock;
2497 	}
2498 	if (found == 1)
2499 		err = tnc_delete(c, znode, n);
2500 	if (!err)
2501 		err = dbg_check_tnc(c, 0);
2502 
2503 out_unlock:
2504 	mutex_unlock(&c->tnc_mutex);
2505 	return err;
2506 }
2507 
2508 /**
2509  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2510  * @c: UBIFS file-system description object
2511  * @key: key of node
2512  * @nm: directory entry name
2513  *
2514  * Returns %0 on success or negative error code on failure.
2515  */
2516 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2517 			const struct qstr *nm)
2518 {
2519 	int n, err;
2520 	struct ubifs_znode *znode;
2521 
2522 	mutex_lock(&c->tnc_mutex);
2523 	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2524 	err = lookup_level0_dirty(c, key, &znode, &n);
2525 	if (err < 0)
2526 		goto out_unlock;
2527 
2528 	if (err) {
2529 		if (c->replaying)
2530 			err = fallible_resolve_collision(c, key, &znode, &n,
2531 							 nm, 0);
2532 		else
2533 			err = resolve_collision(c, key, &znode, &n, nm);
2534 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2535 		if (err < 0)
2536 			goto out_unlock;
2537 		if (err) {
2538 			/* Ensure the znode is dirtied */
2539 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2540 				znode = dirty_cow_bottom_up(c, znode);
2541 				if (IS_ERR(znode)) {
2542 					err = PTR_ERR(znode);
2543 					goto out_unlock;
2544 				}
2545 			}
2546 			err = tnc_delete(c, znode, n);
2547 		}
2548 	}
2549 
2550 out_unlock:
2551 	if (!err)
2552 		err = dbg_check_tnc(c, 0);
2553 	mutex_unlock(&c->tnc_mutex);
2554 	return err;
2555 }
2556 
2557 /**
2558  * key_in_range - determine if a key falls within a range of keys.
2559  * @c: UBIFS file-system description object
2560  * @key: key to check
2561  * @from_key: lowest key in range
2562  * @to_key: highest key in range
2563  *
2564  * This function returns %1 if the key is in range and %0 otherwise.
2565  */
2566 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2567 			union ubifs_key *from_key, union ubifs_key *to_key)
2568 {
2569 	if (keys_cmp(c, key, from_key) < 0)
2570 		return 0;
2571 	if (keys_cmp(c, key, to_key) > 0)
2572 		return 0;
2573 	return 1;
2574 }
2575 
2576 /**
2577  * ubifs_tnc_remove_range - remove index entries in range.
2578  * @c: UBIFS file-system description object
2579  * @from_key: lowest key to remove
2580  * @to_key: highest key to remove
2581  *
2582  * This function removes index entries starting at @from_key and ending at
2583  * @to_key.  This function returns zero in case of success and a negative error
2584  * code in case of failure.
2585  */
2586 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2587 			   union ubifs_key *to_key)
2588 {
2589 	int i, n, k, err = 0;
2590 	struct ubifs_znode *znode;
2591 	union ubifs_key *key;
2592 
2593 	mutex_lock(&c->tnc_mutex);
2594 	while (1) {
2595 		/* Find first level 0 znode that contains keys to remove */
2596 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2597 		if (err < 0)
2598 			goto out_unlock;
2599 
2600 		if (err)
2601 			key = from_key;
2602 		else {
2603 			err = tnc_next(c, &znode, &n);
2604 			if (err == -ENOENT) {
2605 				err = 0;
2606 				goto out_unlock;
2607 			}
2608 			if (err < 0)
2609 				goto out_unlock;
2610 			key = &znode->zbranch[n].key;
2611 			if (!key_in_range(c, key, from_key, to_key)) {
2612 				err = 0;
2613 				goto out_unlock;
2614 			}
2615 		}
2616 
2617 		/* Ensure the znode is dirtied */
2618 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2619 			znode = dirty_cow_bottom_up(c, znode);
2620 			if (IS_ERR(znode)) {
2621 				err = PTR_ERR(znode);
2622 				goto out_unlock;
2623 			}
2624 		}
2625 
2626 		/* Remove all keys in range except the first */
2627 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2628 			key = &znode->zbranch[i].key;
2629 			if (!key_in_range(c, key, from_key, to_key))
2630 				break;
2631 			lnc_free(&znode->zbranch[i]);
2632 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2633 					     znode->zbranch[i].len);
2634 			if (err) {
2635 				ubifs_dump_znode(c, znode);
2636 				goto out_unlock;
2637 			}
2638 			dbg_tnck(key, "removing key ");
2639 		}
2640 		if (k) {
2641 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2642 				znode->zbranch[i - k] = znode->zbranch[i];
2643 			znode->child_cnt -= k;
2644 		}
2645 
2646 		/* Now delete the first */
2647 		err = tnc_delete(c, znode, n);
2648 		if (err)
2649 			goto out_unlock;
2650 	}
2651 
2652 out_unlock:
2653 	if (!err)
2654 		err = dbg_check_tnc(c, 0);
2655 	mutex_unlock(&c->tnc_mutex);
2656 	return err;
2657 }
2658 
2659 /**
2660  * ubifs_tnc_remove_ino - remove an inode from TNC.
2661  * @c: UBIFS file-system description object
2662  * @inum: inode number to remove
2663  *
2664  * This function remove inode @inum and all the extended attributes associated
2665  * with the anode from TNC and returns zero in case of success or a negative
2666  * error code in case of failure.
2667  */
2668 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2669 {
2670 	union ubifs_key key1, key2;
2671 	struct ubifs_dent_node *xent, *pxent = NULL;
2672 	struct qstr nm = { .name = NULL };
2673 
2674 	dbg_tnc("ino %lu", (unsigned long)inum);
2675 
2676 	/*
2677 	 * Walk all extended attribute entries and remove them together with
2678 	 * corresponding extended attribute inodes.
2679 	 */
2680 	lowest_xent_key(c, &key1, inum);
2681 	while (1) {
2682 		ino_t xattr_inum;
2683 		int err;
2684 
2685 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2686 		if (IS_ERR(xent)) {
2687 			err = PTR_ERR(xent);
2688 			if (err == -ENOENT)
2689 				break;
2690 			return err;
2691 		}
2692 
2693 		xattr_inum = le64_to_cpu(xent->inum);
2694 		dbg_tnc("xent '%s', ino %lu", xent->name,
2695 			(unsigned long)xattr_inum);
2696 
2697 		nm.name = xent->name;
2698 		nm.len = le16_to_cpu(xent->nlen);
2699 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2700 		if (err) {
2701 			kfree(xent);
2702 			return err;
2703 		}
2704 
2705 		lowest_ino_key(c, &key1, xattr_inum);
2706 		highest_ino_key(c, &key2, xattr_inum);
2707 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2708 		if (err) {
2709 			kfree(xent);
2710 			return err;
2711 		}
2712 
2713 		kfree(pxent);
2714 		pxent = xent;
2715 		key_read(c, &xent->key, &key1);
2716 	}
2717 
2718 	kfree(pxent);
2719 	lowest_ino_key(c, &key1, inum);
2720 	highest_ino_key(c, &key2, inum);
2721 
2722 	return ubifs_tnc_remove_range(c, &key1, &key2);
2723 }
2724 
2725 /**
2726  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2727  * @c: UBIFS file-system description object
2728  * @key: key of last entry
2729  * @nm: name of last entry found or %NULL
2730  *
2731  * This function finds and reads the next directory or extended attribute entry
2732  * after the given key (@key) if there is one. @nm is used to resolve
2733  * collisions.
2734  *
2735  * If the name of the current entry is not known and only the key is known,
2736  * @nm->name has to be %NULL. In this case the semantics of this function is a
2737  * little bit different and it returns the entry corresponding to this key, not
2738  * the next one. If the key was not found, the closest "right" entry is
2739  * returned.
2740  *
2741  * If the fist entry has to be found, @key has to contain the lowest possible
2742  * key value for this inode and @name has to be %NULL.
2743  *
2744  * This function returns the found directory or extended attribute entry node
2745  * in case of success, %-ENOENT is returned if no entry was found, and a
2746  * negative error code is returned in case of failure.
2747  */
2748 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2749 					   union ubifs_key *key,
2750 					   const struct qstr *nm)
2751 {
2752 	int n, err, type = key_type(c, key);
2753 	struct ubifs_znode *znode;
2754 	struct ubifs_dent_node *dent;
2755 	struct ubifs_zbranch *zbr;
2756 	union ubifs_key *dkey;
2757 
2758 	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2759 	ubifs_assert(is_hash_key(c, key));
2760 
2761 	mutex_lock(&c->tnc_mutex);
2762 	err = ubifs_lookup_level0(c, key, &znode, &n);
2763 	if (unlikely(err < 0))
2764 		goto out_unlock;
2765 
2766 	if (nm->name) {
2767 		if (err) {
2768 			/* Handle collisions */
2769 			err = resolve_collision(c, key, &znode, &n, nm);
2770 			dbg_tnc("rc returned %d, znode %p, n %d",
2771 				err, znode, n);
2772 			if (unlikely(err < 0))
2773 				goto out_unlock;
2774 		}
2775 
2776 		/* Now find next entry */
2777 		err = tnc_next(c, &znode, &n);
2778 		if (unlikely(err))
2779 			goto out_unlock;
2780 	} else {
2781 		/*
2782 		 * The full name of the entry was not given, in which case the
2783 		 * behavior of this function is a little different and it
2784 		 * returns current entry, not the next one.
2785 		 */
2786 		if (!err) {
2787 			/*
2788 			 * However, the given key does not exist in the TNC
2789 			 * tree and @znode/@n variables contain the closest
2790 			 * "preceding" element. Switch to the next one.
2791 			 */
2792 			err = tnc_next(c, &znode, &n);
2793 			if (err)
2794 				goto out_unlock;
2795 		}
2796 	}
2797 
2798 	zbr = &znode->zbranch[n];
2799 	dent = kmalloc(zbr->len, GFP_NOFS);
2800 	if (unlikely(!dent)) {
2801 		err = -ENOMEM;
2802 		goto out_unlock;
2803 	}
2804 
2805 	/*
2806 	 * The above 'tnc_next()' call could lead us to the next inode, check
2807 	 * this.
2808 	 */
2809 	dkey = &zbr->key;
2810 	if (key_inum(c, dkey) != key_inum(c, key) ||
2811 	    key_type(c, dkey) != type) {
2812 		err = -ENOENT;
2813 		goto out_free;
2814 	}
2815 
2816 	err = tnc_read_node_nm(c, zbr, dent);
2817 	if (unlikely(err))
2818 		goto out_free;
2819 
2820 	mutex_unlock(&c->tnc_mutex);
2821 	return dent;
2822 
2823 out_free:
2824 	kfree(dent);
2825 out_unlock:
2826 	mutex_unlock(&c->tnc_mutex);
2827 	return ERR_PTR(err);
2828 }
2829 
2830 /**
2831  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2832  * @c: UBIFS file-system description object
2833  *
2834  * Destroy left-over obsolete znodes from a failed commit.
2835  */
2836 static void tnc_destroy_cnext(struct ubifs_info *c)
2837 {
2838 	struct ubifs_znode *cnext;
2839 
2840 	if (!c->cnext)
2841 		return;
2842 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2843 	cnext = c->cnext;
2844 	do {
2845 		struct ubifs_znode *znode = cnext;
2846 
2847 		cnext = cnext->cnext;
2848 		if (ubifs_zn_obsolete(znode))
2849 			kfree(znode);
2850 	} while (cnext && cnext != c->cnext);
2851 }
2852 
2853 /**
2854  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2855  * @c: UBIFS file-system description object
2856  */
2857 void ubifs_tnc_close(struct ubifs_info *c)
2858 {
2859 	tnc_destroy_cnext(c);
2860 	if (c->zroot.znode) {
2861 		long n, freed;
2862 
2863 		n = atomic_long_read(&c->clean_zn_cnt);
2864 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2865 		ubifs_assert(freed == n);
2866 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2867 	}
2868 	kfree(c->gap_lebs);
2869 	kfree(c->ilebs);
2870 	destroy_old_idx(c);
2871 }
2872 
2873 /**
2874  * left_znode - get the znode to the left.
2875  * @c: UBIFS file-system description object
2876  * @znode: znode
2877  *
2878  * This function returns a pointer to the znode to the left of @znode or NULL if
2879  * there is not one. A negative error code is returned on failure.
2880  */
2881 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2882 				      struct ubifs_znode *znode)
2883 {
2884 	int level = znode->level;
2885 
2886 	while (1) {
2887 		int n = znode->iip - 1;
2888 
2889 		/* Go up until we can go left */
2890 		znode = znode->parent;
2891 		if (!znode)
2892 			return NULL;
2893 		if (n >= 0) {
2894 			/* Now go down the rightmost branch to 'level' */
2895 			znode = get_znode(c, znode, n);
2896 			if (IS_ERR(znode))
2897 				return znode;
2898 			while (znode->level != level) {
2899 				n = znode->child_cnt - 1;
2900 				znode = get_znode(c, znode, n);
2901 				if (IS_ERR(znode))
2902 					return znode;
2903 			}
2904 			break;
2905 		}
2906 	}
2907 	return znode;
2908 }
2909 
2910 /**
2911  * right_znode - get the znode to the right.
2912  * @c: UBIFS file-system description object
2913  * @znode: znode
2914  *
2915  * This function returns a pointer to the znode to the right of @znode or NULL
2916  * if there is not one. A negative error code is returned on failure.
2917  */
2918 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2919 				       struct ubifs_znode *znode)
2920 {
2921 	int level = znode->level;
2922 
2923 	while (1) {
2924 		int n = znode->iip + 1;
2925 
2926 		/* Go up until we can go right */
2927 		znode = znode->parent;
2928 		if (!znode)
2929 			return NULL;
2930 		if (n < znode->child_cnt) {
2931 			/* Now go down the leftmost branch to 'level' */
2932 			znode = get_znode(c, znode, n);
2933 			if (IS_ERR(znode))
2934 				return znode;
2935 			while (znode->level != level) {
2936 				znode = get_znode(c, znode, 0);
2937 				if (IS_ERR(znode))
2938 					return znode;
2939 			}
2940 			break;
2941 		}
2942 	}
2943 	return znode;
2944 }
2945 
2946 /**
2947  * lookup_znode - find a particular indexing node from TNC.
2948  * @c: UBIFS file-system description object
2949  * @key: index node key to lookup
2950  * @level: index node level
2951  * @lnum: index node LEB number
2952  * @offs: index node offset
2953  *
2954  * This function searches an indexing node by its first key @key and its
2955  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2956  * nodes it traverses to TNC. This function is called for indexing nodes which
2957  * were found on the media by scanning, for example when garbage-collecting or
2958  * when doing in-the-gaps commit. This means that the indexing node which is
2959  * looked for does not have to have exactly the same leftmost key @key, because
2960  * the leftmost key may have been changed, in which case TNC will contain a
2961  * dirty znode which still refers the same @lnum:@offs. This function is clever
2962  * enough to recognize such indexing nodes.
2963  *
2964  * Note, if a znode was deleted or changed too much, then this function will
2965  * not find it. For situations like this UBIFS has the old index RB-tree
2966  * (indexed by @lnum:@offs).
2967  *
2968  * This function returns a pointer to the znode found or %NULL if it is not
2969  * found. A negative error code is returned on failure.
2970  */
2971 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2972 					union ubifs_key *key, int level,
2973 					int lnum, int offs)
2974 {
2975 	struct ubifs_znode *znode, *zn;
2976 	int n, nn;
2977 
2978 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2979 
2980 	/*
2981 	 * The arguments have probably been read off flash, so don't assume
2982 	 * they are valid.
2983 	 */
2984 	if (level < 0)
2985 		return ERR_PTR(-EINVAL);
2986 
2987 	/* Get the root znode */
2988 	znode = c->zroot.znode;
2989 	if (!znode) {
2990 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2991 		if (IS_ERR(znode))
2992 			return znode;
2993 	}
2994 	/* Check if it is the one we are looking for */
2995 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2996 		return znode;
2997 	/* Descend to the parent level i.e. (level + 1) */
2998 	if (level >= znode->level)
2999 		return NULL;
3000 	while (1) {
3001 		ubifs_search_zbranch(c, znode, key, &n);
3002 		if (n < 0) {
3003 			/*
3004 			 * We reached a znode where the leftmost key is greater
3005 			 * than the key we are searching for. This is the same
3006 			 * situation as the one described in a huge comment at
3007 			 * the end of the 'ubifs_lookup_level0()' function. And
3008 			 * for exactly the same reasons we have to try to look
3009 			 * left before giving up.
3010 			 */
3011 			znode = left_znode(c, znode);
3012 			if (!znode)
3013 				return NULL;
3014 			if (IS_ERR(znode))
3015 				return znode;
3016 			ubifs_search_zbranch(c, znode, key, &n);
3017 			ubifs_assert(n >= 0);
3018 		}
3019 		if (znode->level == level + 1)
3020 			break;
3021 		znode = get_znode(c, znode, n);
3022 		if (IS_ERR(znode))
3023 			return znode;
3024 	}
3025 	/* Check if the child is the one we are looking for */
3026 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3027 		return get_znode(c, znode, n);
3028 	/* If the key is unique, there is nowhere else to look */
3029 	if (!is_hash_key(c, key))
3030 		return NULL;
3031 	/*
3032 	 * The key is not unique and so may be also in the znodes to either
3033 	 * side.
3034 	 */
3035 	zn = znode;
3036 	nn = n;
3037 	/* Look left */
3038 	while (1) {
3039 		/* Move one branch to the left */
3040 		if (n)
3041 			n -= 1;
3042 		else {
3043 			znode = left_znode(c, znode);
3044 			if (!znode)
3045 				break;
3046 			if (IS_ERR(znode))
3047 				return znode;
3048 			n = znode->child_cnt - 1;
3049 		}
3050 		/* Check it */
3051 		if (znode->zbranch[n].lnum == lnum &&
3052 		    znode->zbranch[n].offs == offs)
3053 			return get_znode(c, znode, n);
3054 		/* Stop if the key is less than the one we are looking for */
3055 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3056 			break;
3057 	}
3058 	/* Back to the middle */
3059 	znode = zn;
3060 	n = nn;
3061 	/* Look right */
3062 	while (1) {
3063 		/* Move one branch to the right */
3064 		if (++n >= znode->child_cnt) {
3065 			znode = right_znode(c, znode);
3066 			if (!znode)
3067 				break;
3068 			if (IS_ERR(znode))
3069 				return znode;
3070 			n = 0;
3071 		}
3072 		/* Check it */
3073 		if (znode->zbranch[n].lnum == lnum &&
3074 		    znode->zbranch[n].offs == offs)
3075 			return get_znode(c, znode, n);
3076 		/* Stop if the key is greater than the one we are looking for */
3077 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3078 			break;
3079 	}
3080 	return NULL;
3081 }
3082 
3083 /**
3084  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3085  * @c: UBIFS file-system description object
3086  * @key: key of index node
3087  * @level: index node level
3088  * @lnum: LEB number of index node
3089  * @offs: offset of index node
3090  *
3091  * This function returns %0 if the index node is not referred to in the TNC, %1
3092  * if the index node is referred to in the TNC and the corresponding znode is
3093  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3094  * znode is clean, and a negative error code in case of failure.
3095  *
3096  * Note, the @key argument has to be the key of the first child. Also note,
3097  * this function relies on the fact that 0:0 is never a valid LEB number and
3098  * offset for a main-area node.
3099  */
3100 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3101 		       int lnum, int offs)
3102 {
3103 	struct ubifs_znode *znode;
3104 
3105 	znode = lookup_znode(c, key, level, lnum, offs);
3106 	if (!znode)
3107 		return 0;
3108 	if (IS_ERR(znode))
3109 		return PTR_ERR(znode);
3110 
3111 	return ubifs_zn_dirty(znode) ? 1 : 2;
3112 }
3113 
3114 /**
3115  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3116  * @c: UBIFS file-system description object
3117  * @key: node key
3118  * @lnum: node LEB number
3119  * @offs: node offset
3120  *
3121  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3122  * not, and a negative error code in case of failure.
3123  *
3124  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3125  * and offset for a main-area node.
3126  */
3127 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3128 			       int lnum, int offs)
3129 {
3130 	struct ubifs_zbranch *zbr;
3131 	struct ubifs_znode *znode, *zn;
3132 	int n, found, err, nn;
3133 	const int unique = !is_hash_key(c, key);
3134 
3135 	found = ubifs_lookup_level0(c, key, &znode, &n);
3136 	if (found < 0)
3137 		return found; /* Error code */
3138 	if (!found)
3139 		return 0;
3140 	zbr = &znode->zbranch[n];
3141 	if (lnum == zbr->lnum && offs == zbr->offs)
3142 		return 1; /* Found it */
3143 	if (unique)
3144 		return 0;
3145 	/*
3146 	 * Because the key is not unique, we have to look left
3147 	 * and right as well
3148 	 */
3149 	zn = znode;
3150 	nn = n;
3151 	/* Look left */
3152 	while (1) {
3153 		err = tnc_prev(c, &znode, &n);
3154 		if (err == -ENOENT)
3155 			break;
3156 		if (err)
3157 			return err;
3158 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3159 			break;
3160 		zbr = &znode->zbranch[n];
3161 		if (lnum == zbr->lnum && offs == zbr->offs)
3162 			return 1; /* Found it */
3163 	}
3164 	/* Look right */
3165 	znode = zn;
3166 	n = nn;
3167 	while (1) {
3168 		err = tnc_next(c, &znode, &n);
3169 		if (err) {
3170 			if (err == -ENOENT)
3171 				return 0;
3172 			return err;
3173 		}
3174 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3175 			break;
3176 		zbr = &znode->zbranch[n];
3177 		if (lnum == zbr->lnum && offs == zbr->offs)
3178 			return 1; /* Found it */
3179 	}
3180 	return 0;
3181 }
3182 
3183 /**
3184  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3185  * @c: UBIFS file-system description object
3186  * @key: node key
3187  * @level: index node level (if it is an index node)
3188  * @lnum: node LEB number
3189  * @offs: node offset
3190  * @is_idx: non-zero if the node is an index node
3191  *
3192  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3193  * negative error code in case of failure. For index nodes, @key has to be the
3194  * key of the first child. An index node is considered to be in the TNC only if
3195  * the corresponding znode is clean or has not been loaded.
3196  */
3197 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3198 		       int lnum, int offs, int is_idx)
3199 {
3200 	int err;
3201 
3202 	mutex_lock(&c->tnc_mutex);
3203 	if (is_idx) {
3204 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3205 		if (err < 0)
3206 			goto out_unlock;
3207 		if (err == 1)
3208 			/* The index node was found but it was dirty */
3209 			err = 0;
3210 		else if (err == 2)
3211 			/* The index node was found and it was clean */
3212 			err = 1;
3213 		else
3214 			BUG_ON(err != 0);
3215 	} else
3216 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3217 
3218 out_unlock:
3219 	mutex_unlock(&c->tnc_mutex);
3220 	return err;
3221 }
3222 
3223 /**
3224  * ubifs_dirty_idx_node - dirty an index node.
3225  * @c: UBIFS file-system description object
3226  * @key: index node key
3227  * @level: index node level
3228  * @lnum: index node LEB number
3229  * @offs: index node offset
3230  *
3231  * This function loads and dirties an index node so that it can be garbage
3232  * collected. The @key argument has to be the key of the first child. This
3233  * function relies on the fact that 0:0 is never a valid LEB number and offset
3234  * for a main-area node. Returns %0 on success and a negative error code on
3235  * failure.
3236  */
3237 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3238 			 int lnum, int offs)
3239 {
3240 	struct ubifs_znode *znode;
3241 	int err = 0;
3242 
3243 	mutex_lock(&c->tnc_mutex);
3244 	znode = lookup_znode(c, key, level, lnum, offs);
3245 	if (!znode)
3246 		goto out_unlock;
3247 	if (IS_ERR(znode)) {
3248 		err = PTR_ERR(znode);
3249 		goto out_unlock;
3250 	}
3251 	znode = dirty_cow_bottom_up(c, znode);
3252 	if (IS_ERR(znode)) {
3253 		err = PTR_ERR(znode);
3254 		goto out_unlock;
3255 	}
3256 
3257 out_unlock:
3258 	mutex_unlock(&c->tnc_mutex);
3259 	return err;
3260 }
3261 
3262 /**
3263  * dbg_check_inode_size - check if inode size is correct.
3264  * @c: UBIFS file-system description object
3265  * @inum: inode number
3266  * @size: inode size
3267  *
3268  * This function makes sure that the inode size (@size) is correct and it does
3269  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3270  * if it has a data page beyond @size, and other negative error code in case of
3271  * other errors.
3272  */
3273 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3274 			 loff_t size)
3275 {
3276 	int err, n;
3277 	union ubifs_key from_key, to_key, *key;
3278 	struct ubifs_znode *znode;
3279 	unsigned int block;
3280 
3281 	if (!S_ISREG(inode->i_mode))
3282 		return 0;
3283 	if (!dbg_is_chk_gen(c))
3284 		return 0;
3285 
3286 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3287 	data_key_init(c, &from_key, inode->i_ino, block);
3288 	highest_data_key(c, &to_key, inode->i_ino);
3289 
3290 	mutex_lock(&c->tnc_mutex);
3291 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3292 	if (err < 0)
3293 		goto out_unlock;
3294 
3295 	if (err) {
3296 		key = &from_key;
3297 		goto out_dump;
3298 	}
3299 
3300 	err = tnc_next(c, &znode, &n);
3301 	if (err == -ENOENT) {
3302 		err = 0;
3303 		goto out_unlock;
3304 	}
3305 	if (err < 0)
3306 		goto out_unlock;
3307 
3308 	ubifs_assert(err == 0);
3309 	key = &znode->zbranch[n].key;
3310 	if (!key_in_range(c, key, &from_key, &to_key))
3311 		goto out_unlock;
3312 
3313 out_dump:
3314 	block = key_block(c, key);
3315 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3316 		  (unsigned long)inode->i_ino, size,
3317 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3318 	mutex_unlock(&c->tnc_mutex);
3319 	ubifs_dump_inode(c, inode);
3320 	dump_stack();
3321 	return -EINVAL;
3322 
3323 out_unlock:
3324 	mutex_unlock(&c->tnc_mutex);
3325 	return err;
3326 }
3327