xref: /openbmc/linux/fs/ubifs/tnc.c (revision ca55b2fe)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /*
38  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39  * @NAME_LESS: name corresponding to the first argument is less than second
40  * @NAME_MATCHES: names match
41  * @NAME_GREATER: name corresponding to the second argument is greater than
42  *                first
43  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44  *
45  * These constants were introduce to improve readability.
46  */
47 enum {
48 	NAME_LESS    = 0,
49 	NAME_MATCHES = 1,
50 	NAME_GREATER = 2,
51 	NOT_ON_MEDIA = 3,
52 };
53 
54 /**
55  * insert_old_idx - record an index node obsoleted since the last commit start.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number of obsoleted index node
58  * @offs: offset of obsoleted index node
59  *
60  * Returns %0 on success, and a negative error code on failure.
61  *
62  * For recovery, there must always be a complete intact version of the index on
63  * flash at all times. That is called the "old index". It is the index as at the
64  * time of the last successful commit. Many of the index nodes in the old index
65  * may be dirty, but they must not be erased until the next successful commit
66  * (at which point that index becomes the old index).
67  *
68  * That means that the garbage collection and the in-the-gaps method of
69  * committing must be able to determine if an index node is in the old index.
70  * Most of the old index nodes can be found by looking up the TNC using the
71  * 'lookup_znode()' function. However, some of the old index nodes may have
72  * been deleted from the current index or may have been changed so much that
73  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74  * That is what this function does. The RB-tree is ordered by LEB number and
75  * offset because they uniquely identify the old index node.
76  */
77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 	struct ubifs_old_idx *old_idx, *o;
80 	struct rb_node **p, *parent = NULL;
81 
82 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 	if (unlikely(!old_idx))
84 		return -ENOMEM;
85 	old_idx->lnum = lnum;
86 	old_idx->offs = offs;
87 
88 	p = &c->old_idx.rb_node;
89 	while (*p) {
90 		parent = *p;
91 		o = rb_entry(parent, struct ubifs_old_idx, rb);
92 		if (lnum < o->lnum)
93 			p = &(*p)->rb_left;
94 		else if (lnum > o->lnum)
95 			p = &(*p)->rb_right;
96 		else if (offs < o->offs)
97 			p = &(*p)->rb_left;
98 		else if (offs > o->offs)
99 			p = &(*p)->rb_right;
100 		else {
101 			ubifs_err(c, "old idx added twice!");
102 			kfree(old_idx);
103 			return 0;
104 		}
105 	}
106 	rb_link_node(&old_idx->rb, parent, p);
107 	rb_insert_color(&old_idx->rb, &c->old_idx);
108 	return 0;
109 }
110 
111 /**
112  * insert_old_idx_znode - record a znode obsoleted since last commit start.
113  * @c: UBIFS file-system description object
114  * @znode: znode of obsoleted index node
115  *
116  * Returns %0 on success, and a negative error code on failure.
117  */
118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 	if (znode->parent) {
121 		struct ubifs_zbranch *zbr;
122 
123 		zbr = &znode->parent->zbranch[znode->iip];
124 		if (zbr->len)
125 			return insert_old_idx(c, zbr->lnum, zbr->offs);
126 	} else
127 		if (c->zroot.len)
128 			return insert_old_idx(c, c->zroot.lnum,
129 					      c->zroot.offs);
130 	return 0;
131 }
132 
133 /**
134  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135  * @c: UBIFS file-system description object
136  * @znode: znode of obsoleted index node
137  *
138  * Returns %0 on success, and a negative error code on failure.
139  */
140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 				 struct ubifs_znode *znode)
142 {
143 	int err;
144 
145 	if (znode->parent) {
146 		struct ubifs_zbranch *zbr;
147 
148 		zbr = &znode->parent->zbranch[znode->iip];
149 		if (zbr->len) {
150 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 			if (err)
152 				return err;
153 			zbr->lnum = 0;
154 			zbr->offs = 0;
155 			zbr->len = 0;
156 		}
157 	} else
158 		if (c->zroot.len) {
159 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 			if (err)
161 				return err;
162 			c->zroot.lnum = 0;
163 			c->zroot.offs = 0;
164 			c->zroot.len = 0;
165 		}
166 	return 0;
167 }
168 
169 /**
170  * destroy_old_idx - destroy the old_idx RB-tree.
171  * @c: UBIFS file-system description object
172  *
173  * During start commit, the old_idx RB-tree is used to avoid overwriting index
174  * nodes that were in the index last commit but have since been deleted.  This
175  * is necessary for recovery i.e. the old index must be kept intact until the
176  * new index is successfully written.  The old-idx RB-tree is used for the
177  * in-the-gaps method of writing index nodes and is destroyed every commit.
178  */
179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 	struct ubifs_old_idx *old_idx, *n;
182 
183 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
184 		kfree(old_idx);
185 
186 	c->old_idx = RB_ROOT;
187 }
188 
189 /**
190  * copy_znode - copy a dirty znode.
191  * @c: UBIFS file-system description object
192  * @znode: znode to copy
193  *
194  * A dirty znode being committed may not be changed, so it is copied.
195  */
196 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197 				      struct ubifs_znode *znode)
198 {
199 	struct ubifs_znode *zn;
200 
201 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
202 	if (unlikely(!zn))
203 		return ERR_PTR(-ENOMEM);
204 
205 	memcpy(zn, znode, c->max_znode_sz);
206 	zn->cnext = NULL;
207 	__set_bit(DIRTY_ZNODE, &zn->flags);
208 	__clear_bit(COW_ZNODE, &zn->flags);
209 
210 	ubifs_assert(!ubifs_zn_obsolete(znode));
211 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
212 
213 	if (znode->level != 0) {
214 		int i;
215 		const int n = zn->child_cnt;
216 
217 		/* The children now have new parent */
218 		for (i = 0; i < n; i++) {
219 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
220 
221 			if (zbr->znode)
222 				zbr->znode->parent = zn;
223 		}
224 	}
225 
226 	atomic_long_inc(&c->dirty_zn_cnt);
227 	return zn;
228 }
229 
230 /**
231  * add_idx_dirt - add dirt due to a dirty znode.
232  * @c: UBIFS file-system description object
233  * @lnum: LEB number of index node
234  * @dirt: size of index node
235  *
236  * This function updates lprops dirty space and the new size of the index.
237  */
238 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
239 {
240 	c->calc_idx_sz -= ALIGN(dirt, 8);
241 	return ubifs_add_dirt(c, lnum, dirt);
242 }
243 
244 /**
245  * dirty_cow_znode - ensure a znode is not being committed.
246  * @c: UBIFS file-system description object
247  * @zbr: branch of znode to check
248  *
249  * Returns dirtied znode on success or negative error code on failure.
250  */
251 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
252 					   struct ubifs_zbranch *zbr)
253 {
254 	struct ubifs_znode *znode = zbr->znode;
255 	struct ubifs_znode *zn;
256 	int err;
257 
258 	if (!ubifs_zn_cow(znode)) {
259 		/* znode is not being committed */
260 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
261 			atomic_long_inc(&c->dirty_zn_cnt);
262 			atomic_long_dec(&c->clean_zn_cnt);
263 			atomic_long_dec(&ubifs_clean_zn_cnt);
264 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
265 			if (unlikely(err))
266 				return ERR_PTR(err);
267 		}
268 		return znode;
269 	}
270 
271 	zn = copy_znode(c, znode);
272 	if (IS_ERR(zn))
273 		return zn;
274 
275 	if (zbr->len) {
276 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
277 		if (unlikely(err))
278 			return ERR_PTR(err);
279 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 	} else
281 		err = 0;
282 
283 	zbr->znode = zn;
284 	zbr->lnum = 0;
285 	zbr->offs = 0;
286 	zbr->len = 0;
287 
288 	if (unlikely(err))
289 		return ERR_PTR(err);
290 	return zn;
291 }
292 
293 /**
294  * lnc_add - add a leaf node to the leaf node cache.
295  * @c: UBIFS file-system description object
296  * @zbr: zbranch of leaf node
297  * @node: leaf node
298  *
299  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
300  * purpose of the leaf node cache is to save re-reading the same leaf node over
301  * and over again. Most things are cached by VFS, however the file system must
302  * cache directory entries for readdir and for resolving hash collisions. The
303  * present implementation of the leaf node cache is extremely simple, and
304  * allows for error returns that are not used but that may be needed if a more
305  * complex implementation is created.
306  *
307  * Note, this function does not add the @node object to LNC directly, but
308  * allocates a copy of the object and adds the copy to LNC. The reason for this
309  * is that @node has been allocated outside of the TNC subsystem and will be
310  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
311  * may be changed at any time, e.g. freed by the shrinker.
312  */
313 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
314 		   const void *node)
315 {
316 	int err;
317 	void *lnc_node;
318 	const struct ubifs_dent_node *dent = node;
319 
320 	ubifs_assert(!zbr->leaf);
321 	ubifs_assert(zbr->len != 0);
322 	ubifs_assert(is_hash_key(c, &zbr->key));
323 
324 	err = ubifs_validate_entry(c, dent);
325 	if (err) {
326 		dump_stack();
327 		ubifs_dump_node(c, dent);
328 		return err;
329 	}
330 
331 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
332 	if (!lnc_node)
333 		/* We don't have to have the cache, so no error */
334 		return 0;
335 
336 	zbr->leaf = lnc_node;
337 	return 0;
338 }
339 
340  /**
341  * lnc_add_directly - add a leaf node to the leaf-node-cache.
342  * @c: UBIFS file-system description object
343  * @zbr: zbranch of leaf node
344  * @node: leaf node
345  *
346  * This function is similar to 'lnc_add()', but it does not create a copy of
347  * @node but inserts @node to TNC directly.
348  */
349 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
350 			    void *node)
351 {
352 	int err;
353 
354 	ubifs_assert(!zbr->leaf);
355 	ubifs_assert(zbr->len != 0);
356 
357 	err = ubifs_validate_entry(c, node);
358 	if (err) {
359 		dump_stack();
360 		ubifs_dump_node(c, node);
361 		return err;
362 	}
363 
364 	zbr->leaf = node;
365 	return 0;
366 }
367 
368 /**
369  * lnc_free - remove a leaf node from the leaf node cache.
370  * @zbr: zbranch of leaf node
371  * @node: leaf node
372  */
373 static void lnc_free(struct ubifs_zbranch *zbr)
374 {
375 	if (!zbr->leaf)
376 		return;
377 	kfree(zbr->leaf);
378 	zbr->leaf = NULL;
379 }
380 
381 /**
382  * tnc_read_node_nm - read a "hashed" leaf node.
383  * @c: UBIFS file-system description object
384  * @zbr: key and position of the node
385  * @node: node is returned here
386  *
387  * This function reads a "hashed" node defined by @zbr from the leaf node cache
388  * (in it is there) or from the hash media, in which case the node is also
389  * added to LNC. Returns zero in case of success or a negative negative error
390  * code in case of failure.
391  */
392 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
393 			    void *node)
394 {
395 	int err;
396 
397 	ubifs_assert(is_hash_key(c, &zbr->key));
398 
399 	if (zbr->leaf) {
400 		/* Read from the leaf node cache */
401 		ubifs_assert(zbr->len != 0);
402 		memcpy(node, zbr->leaf, zbr->len);
403 		return 0;
404 	}
405 
406 	err = ubifs_tnc_read_node(c, zbr, node);
407 	if (err)
408 		return err;
409 
410 	/* Add the node to the leaf node cache */
411 	err = lnc_add(c, zbr, node);
412 	return err;
413 }
414 
415 /**
416  * try_read_node - read a node if it is a node.
417  * @c: UBIFS file-system description object
418  * @buf: buffer to read to
419  * @type: node type
420  * @len: node length (not aligned)
421  * @lnum: LEB number of node to read
422  * @offs: offset of node to read
423  *
424  * This function tries to read a node of known type and length, checks it and
425  * stores it in @buf. This function returns %1 if a node is present and %0 if
426  * a node is not present. A negative error code is returned for I/O errors.
427  * This function performs that same function as ubifs_read_node except that
428  * it does not require that there is actually a node present and instead
429  * the return code indicates if a node was read.
430  *
431  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
432  * is true (it is controlled by corresponding mount option). However, if
433  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
434  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
435  * because during mounting or re-mounting from R/O mode to R/W mode we may read
436  * journal nodes (when replying the journal or doing the recovery) and the
437  * journal nodes may potentially be corrupted, so checking is required.
438  */
439 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
440 			 int len, int lnum, int offs)
441 {
442 	int err, node_len;
443 	struct ubifs_ch *ch = buf;
444 	uint32_t crc, node_crc;
445 
446 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
447 
448 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
449 	if (err) {
450 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
451 			  type, lnum, offs, err);
452 		return err;
453 	}
454 
455 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
456 		return 0;
457 
458 	if (ch->node_type != type)
459 		return 0;
460 
461 	node_len = le32_to_cpu(ch->len);
462 	if (node_len != len)
463 		return 0;
464 
465 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
466 	    !c->remounting_rw)
467 		return 1;
468 
469 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
470 	node_crc = le32_to_cpu(ch->crc);
471 	if (crc != node_crc)
472 		return 0;
473 
474 	return 1;
475 }
476 
477 /**
478  * fallible_read_node - try to read a leaf node.
479  * @c: UBIFS file-system description object
480  * @key:  key of node to read
481  * @zbr:  position of node
482  * @node: node returned
483  *
484  * This function tries to read a node and returns %1 if the node is read, %0
485  * if the node is not present, and a negative error code in the case of error.
486  */
487 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
488 			      struct ubifs_zbranch *zbr, void *node)
489 {
490 	int ret;
491 
492 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
493 
494 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
495 			    zbr->offs);
496 	if (ret == 1) {
497 		union ubifs_key node_key;
498 		struct ubifs_dent_node *dent = node;
499 
500 		/* All nodes have key in the same place */
501 		key_read(c, &dent->key, &node_key);
502 		if (keys_cmp(c, key, &node_key) != 0)
503 			ret = 0;
504 	}
505 	if (ret == 0 && c->replaying)
506 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
507 			zbr->lnum, zbr->offs, zbr->len);
508 	return ret;
509 }
510 
511 /**
512  * matches_name - determine if a direntry or xattr entry matches a given name.
513  * @c: UBIFS file-system description object
514  * @zbr: zbranch of dent
515  * @nm: name to match
516  *
517  * This function checks if xentry/direntry referred by zbranch @zbr matches name
518  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
519  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
520  * of failure, a negative error code is returned.
521  */
522 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
523 			const struct qstr *nm)
524 {
525 	struct ubifs_dent_node *dent;
526 	int nlen, err;
527 
528 	/* If possible, match against the dent in the leaf node cache */
529 	if (!zbr->leaf) {
530 		dent = kmalloc(zbr->len, GFP_NOFS);
531 		if (!dent)
532 			return -ENOMEM;
533 
534 		err = ubifs_tnc_read_node(c, zbr, dent);
535 		if (err)
536 			goto out_free;
537 
538 		/* Add the node to the leaf node cache */
539 		err = lnc_add_directly(c, zbr, dent);
540 		if (err)
541 			goto out_free;
542 	} else
543 		dent = zbr->leaf;
544 
545 	nlen = le16_to_cpu(dent->nlen);
546 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
547 	if (err == 0) {
548 		if (nlen == nm->len)
549 			return NAME_MATCHES;
550 		else if (nlen < nm->len)
551 			return NAME_LESS;
552 		else
553 			return NAME_GREATER;
554 	} else if (err < 0)
555 		return NAME_LESS;
556 	else
557 		return NAME_GREATER;
558 
559 out_free:
560 	kfree(dent);
561 	return err;
562 }
563 
564 /**
565  * get_znode - get a TNC znode that may not be loaded yet.
566  * @c: UBIFS file-system description object
567  * @znode: parent znode
568  * @n: znode branch slot number
569  *
570  * This function returns the znode or a negative error code.
571  */
572 static struct ubifs_znode *get_znode(struct ubifs_info *c,
573 				     struct ubifs_znode *znode, int n)
574 {
575 	struct ubifs_zbranch *zbr;
576 
577 	zbr = &znode->zbranch[n];
578 	if (zbr->znode)
579 		znode = zbr->znode;
580 	else
581 		znode = ubifs_load_znode(c, zbr, znode, n);
582 	return znode;
583 }
584 
585 /**
586  * tnc_next - find next TNC entry.
587  * @c: UBIFS file-system description object
588  * @zn: znode is passed and returned here
589  * @n: znode branch slot number is passed and returned here
590  *
591  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
592  * no next entry, or a negative error code otherwise.
593  */
594 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
595 {
596 	struct ubifs_znode *znode = *zn;
597 	int nn = *n;
598 
599 	nn += 1;
600 	if (nn < znode->child_cnt) {
601 		*n = nn;
602 		return 0;
603 	}
604 	while (1) {
605 		struct ubifs_znode *zp;
606 
607 		zp = znode->parent;
608 		if (!zp)
609 			return -ENOENT;
610 		nn = znode->iip + 1;
611 		znode = zp;
612 		if (nn < znode->child_cnt) {
613 			znode = get_znode(c, znode, nn);
614 			if (IS_ERR(znode))
615 				return PTR_ERR(znode);
616 			while (znode->level != 0) {
617 				znode = get_znode(c, znode, 0);
618 				if (IS_ERR(znode))
619 					return PTR_ERR(znode);
620 			}
621 			nn = 0;
622 			break;
623 		}
624 	}
625 	*zn = znode;
626 	*n = nn;
627 	return 0;
628 }
629 
630 /**
631  * tnc_prev - find previous TNC entry.
632  * @c: UBIFS file-system description object
633  * @zn: znode is returned here
634  * @n: znode branch slot number is passed and returned here
635  *
636  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
637  * there is no next entry, or a negative error code otherwise.
638  */
639 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
640 {
641 	struct ubifs_znode *znode = *zn;
642 	int nn = *n;
643 
644 	if (nn > 0) {
645 		*n = nn - 1;
646 		return 0;
647 	}
648 	while (1) {
649 		struct ubifs_znode *zp;
650 
651 		zp = znode->parent;
652 		if (!zp)
653 			return -ENOENT;
654 		nn = znode->iip - 1;
655 		znode = zp;
656 		if (nn >= 0) {
657 			znode = get_znode(c, znode, nn);
658 			if (IS_ERR(znode))
659 				return PTR_ERR(znode);
660 			while (znode->level != 0) {
661 				nn = znode->child_cnt - 1;
662 				znode = get_znode(c, znode, nn);
663 				if (IS_ERR(znode))
664 					return PTR_ERR(znode);
665 			}
666 			nn = znode->child_cnt - 1;
667 			break;
668 		}
669 	}
670 	*zn = znode;
671 	*n = nn;
672 	return 0;
673 }
674 
675 /**
676  * resolve_collision - resolve a collision.
677  * @c: UBIFS file-system description object
678  * @key: key of a directory or extended attribute entry
679  * @zn: znode is returned here
680  * @n: zbranch number is passed and returned here
681  * @nm: name of the entry
682  *
683  * This function is called for "hashed" keys to make sure that the found key
684  * really corresponds to the looked up node (directory or extended attribute
685  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
686  * %0 is returned if @nm is not found and @zn and @n are set to the previous
687  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
688  * This means that @n may be set to %-1 if the leftmost key in @zn is the
689  * previous one. A negative error code is returned on failures.
690  */
691 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
692 			     struct ubifs_znode **zn, int *n,
693 			     const struct qstr *nm)
694 {
695 	int err;
696 
697 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
698 	if (unlikely(err < 0))
699 		return err;
700 	if (err == NAME_MATCHES)
701 		return 1;
702 
703 	if (err == NAME_GREATER) {
704 		/* Look left */
705 		while (1) {
706 			err = tnc_prev(c, zn, n);
707 			if (err == -ENOENT) {
708 				ubifs_assert(*n == 0);
709 				*n = -1;
710 				return 0;
711 			}
712 			if (err < 0)
713 				return err;
714 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
715 				/*
716 				 * We have found the branch after which we would
717 				 * like to insert, but inserting in this znode
718 				 * may still be wrong. Consider the following 3
719 				 * znodes, in the case where we are resolving a
720 				 * collision with Key2.
721 				 *
722 				 *                  znode zp
723 				 *            ----------------------
724 				 * level 1     |  Key0  |  Key1  |
725 				 *            -----------------------
726 				 *                 |            |
727 				 *       znode za  |            |  znode zb
728 				 *          ------------      ------------
729 				 * level 0  |  Key0  |        |  Key2  |
730 				 *          ------------      ------------
731 				 *
732 				 * The lookup finds Key2 in znode zb. Lets say
733 				 * there is no match and the name is greater so
734 				 * we look left. When we find Key0, we end up
735 				 * here. If we return now, we will insert into
736 				 * znode za at slot n = 1.  But that is invalid
737 				 * according to the parent's keys.  Key2 must
738 				 * be inserted into znode zb.
739 				 *
740 				 * Note, this problem is not relevant for the
741 				 * case when we go right, because
742 				 * 'tnc_insert()' would correct the parent key.
743 				 */
744 				if (*n == (*zn)->child_cnt - 1) {
745 					err = tnc_next(c, zn, n);
746 					if (err) {
747 						/* Should be impossible */
748 						ubifs_assert(0);
749 						if (err == -ENOENT)
750 							err = -EINVAL;
751 						return err;
752 					}
753 					ubifs_assert(*n == 0);
754 					*n = -1;
755 				}
756 				return 0;
757 			}
758 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
759 			if (err < 0)
760 				return err;
761 			if (err == NAME_LESS)
762 				return 0;
763 			if (err == NAME_MATCHES)
764 				return 1;
765 			ubifs_assert(err == NAME_GREATER);
766 		}
767 	} else {
768 		int nn = *n;
769 		struct ubifs_znode *znode = *zn;
770 
771 		/* Look right */
772 		while (1) {
773 			err = tnc_next(c, &znode, &nn);
774 			if (err == -ENOENT)
775 				return 0;
776 			if (err < 0)
777 				return err;
778 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
779 				return 0;
780 			err = matches_name(c, &znode->zbranch[nn], nm);
781 			if (err < 0)
782 				return err;
783 			if (err == NAME_GREATER)
784 				return 0;
785 			*zn = znode;
786 			*n = nn;
787 			if (err == NAME_MATCHES)
788 				return 1;
789 			ubifs_assert(err == NAME_LESS);
790 		}
791 	}
792 }
793 
794 /**
795  * fallible_matches_name - determine if a dent matches a given name.
796  * @c: UBIFS file-system description object
797  * @zbr: zbranch of dent
798  * @nm: name to match
799  *
800  * This is a "fallible" version of 'matches_name()' function which does not
801  * panic if the direntry/xentry referred by @zbr does not exist on the media.
802  *
803  * This function checks if xentry/direntry referred by zbranch @zbr matches name
804  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
805  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
806  * if xentry/direntry referred by @zbr does not exist on the media. A negative
807  * error code is returned in case of failure.
808  */
809 static int fallible_matches_name(struct ubifs_info *c,
810 				 struct ubifs_zbranch *zbr,
811 				 const struct qstr *nm)
812 {
813 	struct ubifs_dent_node *dent;
814 	int nlen, err;
815 
816 	/* If possible, match against the dent in the leaf node cache */
817 	if (!zbr->leaf) {
818 		dent = kmalloc(zbr->len, GFP_NOFS);
819 		if (!dent)
820 			return -ENOMEM;
821 
822 		err = fallible_read_node(c, &zbr->key, zbr, dent);
823 		if (err < 0)
824 			goto out_free;
825 		if (err == 0) {
826 			/* The node was not present */
827 			err = NOT_ON_MEDIA;
828 			goto out_free;
829 		}
830 		ubifs_assert(err == 1);
831 
832 		err = lnc_add_directly(c, zbr, dent);
833 		if (err)
834 			goto out_free;
835 	} else
836 		dent = zbr->leaf;
837 
838 	nlen = le16_to_cpu(dent->nlen);
839 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
840 	if (err == 0) {
841 		if (nlen == nm->len)
842 			return NAME_MATCHES;
843 		else if (nlen < nm->len)
844 			return NAME_LESS;
845 		else
846 			return NAME_GREATER;
847 	} else if (err < 0)
848 		return NAME_LESS;
849 	else
850 		return NAME_GREATER;
851 
852 out_free:
853 	kfree(dent);
854 	return err;
855 }
856 
857 /**
858  * fallible_resolve_collision - resolve a collision even if nodes are missing.
859  * @c: UBIFS file-system description object
860  * @key: key
861  * @zn: znode is returned here
862  * @n: branch number is passed and returned here
863  * @nm: name of directory entry
864  * @adding: indicates caller is adding a key to the TNC
865  *
866  * This is a "fallible" version of the 'resolve_collision()' function which
867  * does not panic if one of the nodes referred to by TNC does not exist on the
868  * media. This may happen when replaying the journal if a deleted node was
869  * Garbage-collected and the commit was not done. A branch that refers to a node
870  * that is not present is called a dangling branch. The following are the return
871  * codes for this function:
872  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
873  *    branch;
874  *  o if we are @adding and @nm was not found, %0 is returned;
875  *  o if we are not @adding and @nm was not found, but a dangling branch was
876  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
877  *  o a negative error code is returned in case of failure.
878  */
879 static int fallible_resolve_collision(struct ubifs_info *c,
880 				      const union ubifs_key *key,
881 				      struct ubifs_znode **zn, int *n,
882 				      const struct qstr *nm, int adding)
883 {
884 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
885 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
886 
887 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
888 	if (unlikely(cmp < 0))
889 		return cmp;
890 	if (cmp == NAME_MATCHES)
891 		return 1;
892 	if (cmp == NOT_ON_MEDIA) {
893 		o_znode = znode;
894 		o_n = nn;
895 		/*
896 		 * We are unlucky and hit a dangling branch straight away.
897 		 * Now we do not really know where to go to find the needed
898 		 * branch - to the left or to the right. Well, let's try left.
899 		 */
900 		unsure = 1;
901 	} else if (!adding)
902 		unsure = 1; /* Remove a dangling branch wherever it is */
903 
904 	if (cmp == NAME_GREATER || unsure) {
905 		/* Look left */
906 		while (1) {
907 			err = tnc_prev(c, zn, n);
908 			if (err == -ENOENT) {
909 				ubifs_assert(*n == 0);
910 				*n = -1;
911 				break;
912 			}
913 			if (err < 0)
914 				return err;
915 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
916 				/* See comments in 'resolve_collision()' */
917 				if (*n == (*zn)->child_cnt - 1) {
918 					err = tnc_next(c, zn, n);
919 					if (err) {
920 						/* Should be impossible */
921 						ubifs_assert(0);
922 						if (err == -ENOENT)
923 							err = -EINVAL;
924 						return err;
925 					}
926 					ubifs_assert(*n == 0);
927 					*n = -1;
928 				}
929 				break;
930 			}
931 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
932 			if (err < 0)
933 				return err;
934 			if (err == NAME_MATCHES)
935 				return 1;
936 			if (err == NOT_ON_MEDIA) {
937 				o_znode = *zn;
938 				o_n = *n;
939 				continue;
940 			}
941 			if (!adding)
942 				continue;
943 			if (err == NAME_LESS)
944 				break;
945 			else
946 				unsure = 0;
947 		}
948 	}
949 
950 	if (cmp == NAME_LESS || unsure) {
951 		/* Look right */
952 		*zn = znode;
953 		*n = nn;
954 		while (1) {
955 			err = tnc_next(c, &znode, &nn);
956 			if (err == -ENOENT)
957 				break;
958 			if (err < 0)
959 				return err;
960 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
961 				break;
962 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
963 			if (err < 0)
964 				return err;
965 			if (err == NAME_GREATER)
966 				break;
967 			*zn = znode;
968 			*n = nn;
969 			if (err == NAME_MATCHES)
970 				return 1;
971 			if (err == NOT_ON_MEDIA) {
972 				o_znode = znode;
973 				o_n = nn;
974 			}
975 		}
976 	}
977 
978 	/* Never match a dangling branch when adding */
979 	if (adding || !o_znode)
980 		return 0;
981 
982 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
983 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
984 		o_znode->zbranch[o_n].len);
985 	*zn = o_znode;
986 	*n = o_n;
987 	return 1;
988 }
989 
990 /**
991  * matches_position - determine if a zbranch matches a given position.
992  * @zbr: zbranch of dent
993  * @lnum: LEB number of dent to match
994  * @offs: offset of dent to match
995  *
996  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
997  */
998 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
999 {
1000 	if (zbr->lnum == lnum && zbr->offs == offs)
1001 		return 1;
1002 	else
1003 		return 0;
1004 }
1005 
1006 /**
1007  * resolve_collision_directly - resolve a collision directly.
1008  * @c: UBIFS file-system description object
1009  * @key: key of directory entry
1010  * @zn: znode is passed and returned here
1011  * @n: zbranch number is passed and returned here
1012  * @lnum: LEB number of dent node to match
1013  * @offs: offset of dent node to match
1014  *
1015  * This function is used for "hashed" keys to make sure the found directory or
1016  * extended attribute entry node is what was looked for. It is used when the
1017  * flash address of the right node is known (@lnum:@offs) which makes it much
1018  * easier to resolve collisions (no need to read entries and match full
1019  * names). This function returns %1 and sets @zn and @n if the collision is
1020  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1021  * previous directory entry. Otherwise a negative error code is returned.
1022  */
1023 static int resolve_collision_directly(struct ubifs_info *c,
1024 				      const union ubifs_key *key,
1025 				      struct ubifs_znode **zn, int *n,
1026 				      int lnum, int offs)
1027 {
1028 	struct ubifs_znode *znode;
1029 	int nn, err;
1030 
1031 	znode = *zn;
1032 	nn = *n;
1033 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1034 		return 1;
1035 
1036 	/* Look left */
1037 	while (1) {
1038 		err = tnc_prev(c, &znode, &nn);
1039 		if (err == -ENOENT)
1040 			break;
1041 		if (err < 0)
1042 			return err;
1043 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1044 			break;
1045 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1046 			*zn = znode;
1047 			*n = nn;
1048 			return 1;
1049 		}
1050 	}
1051 
1052 	/* Look right */
1053 	znode = *zn;
1054 	nn = *n;
1055 	while (1) {
1056 		err = tnc_next(c, &znode, &nn);
1057 		if (err == -ENOENT)
1058 			return 0;
1059 		if (err < 0)
1060 			return err;
1061 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1062 			return 0;
1063 		*zn = znode;
1064 		*n = nn;
1065 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1066 			return 1;
1067 	}
1068 }
1069 
1070 /**
1071  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1072  * @c: UBIFS file-system description object
1073  * @znode: znode to dirty
1074  *
1075  * If we do not have a unique key that resides in a znode, then we cannot
1076  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1077  * This function records the path back to the last dirty ancestor, and then
1078  * dirties the znodes on that path.
1079  */
1080 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1081 					       struct ubifs_znode *znode)
1082 {
1083 	struct ubifs_znode *zp;
1084 	int *path = c->bottom_up_buf, p = 0;
1085 
1086 	ubifs_assert(c->zroot.znode);
1087 	ubifs_assert(znode);
1088 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1089 		kfree(c->bottom_up_buf);
1090 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1091 					   GFP_NOFS);
1092 		if (!c->bottom_up_buf)
1093 			return ERR_PTR(-ENOMEM);
1094 		path = c->bottom_up_buf;
1095 	}
1096 	if (c->zroot.znode->level) {
1097 		/* Go up until parent is dirty */
1098 		while (1) {
1099 			int n;
1100 
1101 			zp = znode->parent;
1102 			if (!zp)
1103 				break;
1104 			n = znode->iip;
1105 			ubifs_assert(p < c->zroot.znode->level);
1106 			path[p++] = n;
1107 			if (!zp->cnext && ubifs_zn_dirty(znode))
1108 				break;
1109 			znode = zp;
1110 		}
1111 	}
1112 
1113 	/* Come back down, dirtying as we go */
1114 	while (1) {
1115 		struct ubifs_zbranch *zbr;
1116 
1117 		zp = znode->parent;
1118 		if (zp) {
1119 			ubifs_assert(path[p - 1] >= 0);
1120 			ubifs_assert(path[p - 1] < zp->child_cnt);
1121 			zbr = &zp->zbranch[path[--p]];
1122 			znode = dirty_cow_znode(c, zbr);
1123 		} else {
1124 			ubifs_assert(znode == c->zroot.znode);
1125 			znode = dirty_cow_znode(c, &c->zroot);
1126 		}
1127 		if (IS_ERR(znode) || !p)
1128 			break;
1129 		ubifs_assert(path[p - 1] >= 0);
1130 		ubifs_assert(path[p - 1] < znode->child_cnt);
1131 		znode = znode->zbranch[path[p - 1]].znode;
1132 	}
1133 
1134 	return znode;
1135 }
1136 
1137 /**
1138  * ubifs_lookup_level0 - search for zero-level znode.
1139  * @c: UBIFS file-system description object
1140  * @key:  key to lookup
1141  * @zn: znode is returned here
1142  * @n: znode branch slot number is returned here
1143  *
1144  * This function looks up the TNC tree and search for zero-level znode which
1145  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1146  * cases:
1147  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1148  *     is returned and slot number of the matched branch is stored in @n;
1149  *   o not exact match, which means that zero-level znode does not contain
1150  *     @key, then %0 is returned and slot number of the closest branch is stored
1151  *     in @n;
1152  *   o @key is so small that it is even less than the lowest key of the
1153  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1154  *
1155  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1156  * function reads corresponding indexing nodes and inserts them to TNC. In
1157  * case of failure, a negative error code is returned.
1158  */
1159 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1160 			struct ubifs_znode **zn, int *n)
1161 {
1162 	int err, exact;
1163 	struct ubifs_znode *znode;
1164 	unsigned long time = get_seconds();
1165 
1166 	dbg_tnck(key, "search key ");
1167 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1168 
1169 	znode = c->zroot.znode;
1170 	if (unlikely(!znode)) {
1171 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1172 		if (IS_ERR(znode))
1173 			return PTR_ERR(znode);
1174 	}
1175 
1176 	znode->time = time;
1177 
1178 	while (1) {
1179 		struct ubifs_zbranch *zbr;
1180 
1181 		exact = ubifs_search_zbranch(c, znode, key, n);
1182 
1183 		if (znode->level == 0)
1184 			break;
1185 
1186 		if (*n < 0)
1187 			*n = 0;
1188 		zbr = &znode->zbranch[*n];
1189 
1190 		if (zbr->znode) {
1191 			znode->time = time;
1192 			znode = zbr->znode;
1193 			continue;
1194 		}
1195 
1196 		/* znode is not in TNC cache, load it from the media */
1197 		znode = ubifs_load_znode(c, zbr, znode, *n);
1198 		if (IS_ERR(znode))
1199 			return PTR_ERR(znode);
1200 	}
1201 
1202 	*zn = znode;
1203 	if (exact || !is_hash_key(c, key) || *n != -1) {
1204 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1205 		return exact;
1206 	}
1207 
1208 	/*
1209 	 * Here is a tricky place. We have not found the key and this is a
1210 	 * "hashed" key, which may collide. The rest of the code deals with
1211 	 * situations like this:
1212 	 *
1213 	 *                  | 3 | 5 |
1214 	 *                  /       \
1215 	 *          | 3 | 5 |      | 6 | 7 | (x)
1216 	 *
1217 	 * Or more a complex example:
1218 	 *
1219 	 *                | 1 | 5 |
1220 	 *                /       \
1221 	 *       | 1 | 3 |         | 5 | 8 |
1222 	 *              \           /
1223 	 *          | 5 | 5 |   | 6 | 7 | (x)
1224 	 *
1225 	 * In the examples, if we are looking for key "5", we may reach nodes
1226 	 * marked with "(x)". In this case what we have do is to look at the
1227 	 * left and see if there is "5" key there. If there is, we have to
1228 	 * return it.
1229 	 *
1230 	 * Note, this whole situation is possible because we allow to have
1231 	 * elements which are equivalent to the next key in the parent in the
1232 	 * children of current znode. For example, this happens if we split a
1233 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1234 	 * like this:
1235 	 *                      | 3 | 5 |
1236 	 *                       /     \
1237 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1238 	 *                              ^
1239 	 * And this becomes what is at the first "picture" after key "5" marked
1240 	 * with "^" is removed. What could be done is we could prohibit
1241 	 * splitting in the middle of the colliding sequence. Also, when
1242 	 * removing the leftmost key, we would have to correct the key of the
1243 	 * parent node, which would introduce additional complications. Namely,
1244 	 * if we changed the leftmost key of the parent znode, the garbage
1245 	 * collector would be unable to find it (GC is doing this when GC'ing
1246 	 * indexing LEBs). Although we already have an additional RB-tree where
1247 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1248 	 * after the commit. But anyway, this does not look easy to implement
1249 	 * so we did not try this.
1250 	 */
1251 	err = tnc_prev(c, &znode, n);
1252 	if (err == -ENOENT) {
1253 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1254 		*n = -1;
1255 		return 0;
1256 	}
1257 	if (unlikely(err < 0))
1258 		return err;
1259 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1260 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261 		*n = -1;
1262 		return 0;
1263 	}
1264 
1265 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1266 	*zn = znode;
1267 	return 1;
1268 }
1269 
1270 /**
1271  * lookup_level0_dirty - search for zero-level znode dirtying.
1272  * @c: UBIFS file-system description object
1273  * @key:  key to lookup
1274  * @zn: znode is returned here
1275  * @n: znode branch slot number is returned here
1276  *
1277  * This function looks up the TNC tree and search for zero-level znode which
1278  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1279  * cases:
1280  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1281  *     is returned and slot number of the matched branch is stored in @n;
1282  *   o not exact match, which means that zero-level znode does not contain @key
1283  *     then %0 is returned and slot number of the closed branch is stored in
1284  *     @n;
1285  *   o @key is so small that it is even less than the lowest key of the
1286  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1287  *
1288  * Additionally all znodes in the path from the root to the located zero-level
1289  * znode are marked as dirty.
1290  *
1291  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1292  * function reads corresponding indexing nodes and inserts them to TNC. In
1293  * case of failure, a negative error code is returned.
1294  */
1295 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1296 			       struct ubifs_znode **zn, int *n)
1297 {
1298 	int err, exact;
1299 	struct ubifs_znode *znode;
1300 	unsigned long time = get_seconds();
1301 
1302 	dbg_tnck(key, "search and dirty key ");
1303 
1304 	znode = c->zroot.znode;
1305 	if (unlikely(!znode)) {
1306 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1307 		if (IS_ERR(znode))
1308 			return PTR_ERR(znode);
1309 	}
1310 
1311 	znode = dirty_cow_znode(c, &c->zroot);
1312 	if (IS_ERR(znode))
1313 		return PTR_ERR(znode);
1314 
1315 	znode->time = time;
1316 
1317 	while (1) {
1318 		struct ubifs_zbranch *zbr;
1319 
1320 		exact = ubifs_search_zbranch(c, znode, key, n);
1321 
1322 		if (znode->level == 0)
1323 			break;
1324 
1325 		if (*n < 0)
1326 			*n = 0;
1327 		zbr = &znode->zbranch[*n];
1328 
1329 		if (zbr->znode) {
1330 			znode->time = time;
1331 			znode = dirty_cow_znode(c, zbr);
1332 			if (IS_ERR(znode))
1333 				return PTR_ERR(znode);
1334 			continue;
1335 		}
1336 
1337 		/* znode is not in TNC cache, load it from the media */
1338 		znode = ubifs_load_znode(c, zbr, znode, *n);
1339 		if (IS_ERR(znode))
1340 			return PTR_ERR(znode);
1341 		znode = dirty_cow_znode(c, zbr);
1342 		if (IS_ERR(znode))
1343 			return PTR_ERR(znode);
1344 	}
1345 
1346 	*zn = znode;
1347 	if (exact || !is_hash_key(c, key) || *n != -1) {
1348 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1349 		return exact;
1350 	}
1351 
1352 	/*
1353 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1354 	 * code.
1355 	 */
1356 	err = tnc_prev(c, &znode, n);
1357 	if (err == -ENOENT) {
1358 		*n = -1;
1359 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1360 		return 0;
1361 	}
1362 	if (unlikely(err < 0))
1363 		return err;
1364 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1365 		*n = -1;
1366 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367 		return 0;
1368 	}
1369 
1370 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1371 		znode = dirty_cow_bottom_up(c, znode);
1372 		if (IS_ERR(znode))
1373 			return PTR_ERR(znode);
1374 	}
1375 
1376 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1377 	*zn = znode;
1378 	return 1;
1379 }
1380 
1381 /**
1382  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1383  * @c: UBIFS file-system description object
1384  * @lnum: LEB number
1385  * @gc_seq1: garbage collection sequence number
1386  *
1387  * This function determines if @lnum may have been garbage collected since
1388  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1389  * %0 is returned.
1390  */
1391 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1392 {
1393 	int gc_seq2, gced_lnum;
1394 
1395 	gced_lnum = c->gced_lnum;
1396 	smp_rmb();
1397 	gc_seq2 = c->gc_seq;
1398 	/* Same seq means no GC */
1399 	if (gc_seq1 == gc_seq2)
1400 		return 0;
1401 	/* Different by more than 1 means we don't know */
1402 	if (gc_seq1 + 1 != gc_seq2)
1403 		return 1;
1404 	/*
1405 	 * We have seen the sequence number has increased by 1. Now we need to
1406 	 * be sure we read the right LEB number, so read it again.
1407 	 */
1408 	smp_rmb();
1409 	if (gced_lnum != c->gced_lnum)
1410 		return 1;
1411 	/* Finally we can check lnum */
1412 	if (gced_lnum == lnum)
1413 		return 1;
1414 	return 0;
1415 }
1416 
1417 /**
1418  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419  * @c: UBIFS file-system description object
1420  * @key: node key to lookup
1421  * @node: the node is returned here
1422  * @lnum: LEB number is returned here
1423  * @offs: offset is returned here
1424  *
1425  * This function looks up and reads node with key @key. The caller has to make
1426  * sure the @node buffer is large enough to fit the node. Returns zero in case
1427  * of success, %-ENOENT if the node was not found, and a negative error code in
1428  * case of failure. The node location can be returned in @lnum and @offs.
1429  */
1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431 		     void *node, int *lnum, int *offs)
1432 {
1433 	int found, n, err, safely = 0, gc_seq1;
1434 	struct ubifs_znode *znode;
1435 	struct ubifs_zbranch zbr, *zt;
1436 
1437 again:
1438 	mutex_lock(&c->tnc_mutex);
1439 	found = ubifs_lookup_level0(c, key, &znode, &n);
1440 	if (!found) {
1441 		err = -ENOENT;
1442 		goto out;
1443 	} else if (found < 0) {
1444 		err = found;
1445 		goto out;
1446 	}
1447 	zt = &znode->zbranch[n];
1448 	if (lnum) {
1449 		*lnum = zt->lnum;
1450 		*offs = zt->offs;
1451 	}
1452 	if (is_hash_key(c, key)) {
1453 		/*
1454 		 * In this case the leaf node cache gets used, so we pass the
1455 		 * address of the zbranch and keep the mutex locked
1456 		 */
1457 		err = tnc_read_node_nm(c, zt, node);
1458 		goto out;
1459 	}
1460 	if (safely) {
1461 		err = ubifs_tnc_read_node(c, zt, node);
1462 		goto out;
1463 	}
1464 	/* Drop the TNC mutex prematurely and race with garbage collection */
1465 	zbr = znode->zbranch[n];
1466 	gc_seq1 = c->gc_seq;
1467 	mutex_unlock(&c->tnc_mutex);
1468 
1469 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1470 		/* We do not GC journal heads */
1471 		err = ubifs_tnc_read_node(c, &zbr, node);
1472 		return err;
1473 	}
1474 
1475 	err = fallible_read_node(c, key, &zbr, node);
1476 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477 		/*
1478 		 * The node may have been GC'ed out from under us so try again
1479 		 * while keeping the TNC mutex locked.
1480 		 */
1481 		safely = 1;
1482 		goto again;
1483 	}
1484 	return 0;
1485 
1486 out:
1487 	mutex_unlock(&c->tnc_mutex);
1488 	return err;
1489 }
1490 
1491 /**
1492  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493  * @c: UBIFS file-system description object
1494  * @bu: bulk-read parameters and results
1495  *
1496  * Lookup consecutive data node keys for the same inode that reside
1497  * consecutively in the same LEB. This function returns zero in case of success
1498  * and a negative error code in case of failure.
1499  *
1500  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502  * maximum possible amount of nodes for bulk-read.
1503  */
1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505 {
1506 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1507 	int uninitialized_var(len);
1508 	unsigned int block = key_block(c, &bu->key);
1509 	struct ubifs_znode *znode;
1510 
1511 	bu->cnt = 0;
1512 	bu->blk_cnt = 0;
1513 	bu->eof = 0;
1514 
1515 	mutex_lock(&c->tnc_mutex);
1516 	/* Find first key */
1517 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518 	if (err < 0)
1519 		goto out;
1520 	if (err) {
1521 		/* Key found */
1522 		len = znode->zbranch[n].len;
1523 		/* The buffer must be big enough for at least 1 node */
1524 		if (len > bu->buf_len) {
1525 			err = -EINVAL;
1526 			goto out;
1527 		}
1528 		/* Add this key */
1529 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530 		bu->blk_cnt += 1;
1531 		lnum = znode->zbranch[n].lnum;
1532 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533 	}
1534 	while (1) {
1535 		struct ubifs_zbranch *zbr;
1536 		union ubifs_key *key;
1537 		unsigned int next_block;
1538 
1539 		/* Find next key */
1540 		err = tnc_next(c, &znode, &n);
1541 		if (err)
1542 			goto out;
1543 		zbr = &znode->zbranch[n];
1544 		key = &zbr->key;
1545 		/* See if there is another data key for this file */
1546 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547 		    key_type(c, key) != UBIFS_DATA_KEY) {
1548 			err = -ENOENT;
1549 			goto out;
1550 		}
1551 		if (lnum < 0) {
1552 			/* First key found */
1553 			lnum = zbr->lnum;
1554 			offs = ALIGN(zbr->offs + zbr->len, 8);
1555 			len = zbr->len;
1556 			if (len > bu->buf_len) {
1557 				err = -EINVAL;
1558 				goto out;
1559 			}
1560 		} else {
1561 			/*
1562 			 * The data nodes must be in consecutive positions in
1563 			 * the same LEB.
1564 			 */
1565 			if (zbr->lnum != lnum || zbr->offs != offs)
1566 				goto out;
1567 			offs += ALIGN(zbr->len, 8);
1568 			len = ALIGN(len, 8) + zbr->len;
1569 			/* Must not exceed buffer length */
1570 			if (len > bu->buf_len)
1571 				goto out;
1572 		}
1573 		/* Allow for holes */
1574 		next_block = key_block(c, key);
1575 		bu->blk_cnt += (next_block - block - 1);
1576 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577 			goto out;
1578 		block = next_block;
1579 		/* Add this key */
1580 		bu->zbranch[bu->cnt++] = *zbr;
1581 		bu->blk_cnt += 1;
1582 		/* See if we have room for more */
1583 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584 			goto out;
1585 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586 			goto out;
1587 	}
1588 out:
1589 	if (err == -ENOENT) {
1590 		bu->eof = 1;
1591 		err = 0;
1592 	}
1593 	bu->gc_seq = c->gc_seq;
1594 	mutex_unlock(&c->tnc_mutex);
1595 	if (err)
1596 		return err;
1597 	/*
1598 	 * An enormous hole could cause bulk-read to encompass too many
1599 	 * page cache pages, so limit the number here.
1600 	 */
1601 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603 	/*
1604 	 * Ensure that bulk-read covers a whole number of page cache
1605 	 * pages.
1606 	 */
1607 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609 		return 0;
1610 	if (bu->eof) {
1611 		/* At the end of file we can round up */
1612 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613 		return 0;
1614 	}
1615 	/* Exclude data nodes that do not make up a whole page cache page */
1616 	block = key_block(c, &bu->key) + bu->blk_cnt;
1617 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618 	while (bu->cnt) {
1619 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620 			break;
1621 		bu->cnt -= 1;
1622 	}
1623 	return 0;
1624 }
1625 
1626 /**
1627  * read_wbuf - bulk-read from a LEB with a wbuf.
1628  * @wbuf: wbuf that may overlap the read
1629  * @buf: buffer into which to read
1630  * @len: read length
1631  * @lnum: LEB number from which to read
1632  * @offs: offset from which to read
1633  *
1634  * This functions returns %0 on success or a negative error code on failure.
1635  */
1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637 		     int offs)
1638 {
1639 	const struct ubifs_info *c = wbuf->c;
1640 	int rlen, overlap;
1641 
1642 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645 	ubifs_assert(offs + len <= c->leb_size);
1646 
1647 	spin_lock(&wbuf->lock);
1648 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649 	if (!overlap) {
1650 		/* We may safely unlock the write-buffer and read the data */
1651 		spin_unlock(&wbuf->lock);
1652 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653 	}
1654 
1655 	/* Don't read under wbuf */
1656 	rlen = wbuf->offs - offs;
1657 	if (rlen < 0)
1658 		rlen = 0;
1659 
1660 	/* Copy the rest from the write-buffer */
1661 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662 	spin_unlock(&wbuf->lock);
1663 
1664 	if (rlen > 0)
1665 		/* Read everything that goes before write-buffer */
1666 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * validate_data_node - validate data nodes for bulk-read.
1673  * @c: UBIFS file-system description object
1674  * @buf: buffer containing data node to validate
1675  * @zbr: zbranch of data node to validate
1676  *
1677  * This functions returns %0 on success or a negative error code on failure.
1678  */
1679 static int validate_data_node(struct ubifs_info *c, void *buf,
1680 			      struct ubifs_zbranch *zbr)
1681 {
1682 	union ubifs_key key1;
1683 	struct ubifs_ch *ch = buf;
1684 	int err, len;
1685 
1686 	if (ch->node_type != UBIFS_DATA_NODE) {
1687 		ubifs_err(c, "bad node type (%d but expected %d)",
1688 			  ch->node_type, UBIFS_DATA_NODE);
1689 		goto out_err;
1690 	}
1691 
1692 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693 	if (err) {
1694 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1695 		goto out;
1696 	}
1697 
1698 	len = le32_to_cpu(ch->len);
1699 	if (len != zbr->len) {
1700 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1701 		goto out_err;
1702 	}
1703 
1704 	/* Make sure the key of the read node is correct */
1705 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706 	if (!keys_eq(c, &zbr->key, &key1)) {
1707 		ubifs_err(c, "bad key in node at LEB %d:%d",
1708 			  zbr->lnum, zbr->offs);
1709 		dbg_tnck(&zbr->key, "looked for key ");
1710 		dbg_tnck(&key1, "found node's key ");
1711 		goto out_err;
1712 	}
1713 
1714 	return 0;
1715 
1716 out_err:
1717 	err = -EINVAL;
1718 out:
1719 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720 	ubifs_dump_node(c, buf);
1721 	dump_stack();
1722 	return err;
1723 }
1724 
1725 /**
1726  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727  * @c: UBIFS file-system description object
1728  * @bu: bulk-read parameters and results
1729  *
1730  * This functions reads and validates the data nodes that were identified by the
1731  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732  * -EAGAIN to indicate a race with GC, or another negative error code on
1733  * failure.
1734  */
1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736 {
1737 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738 	struct ubifs_wbuf *wbuf;
1739 	void *buf;
1740 
1741 	len = bu->zbranch[bu->cnt - 1].offs;
1742 	len += bu->zbranch[bu->cnt - 1].len - offs;
1743 	if (len > bu->buf_len) {
1744 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1745 		return -EINVAL;
1746 	}
1747 
1748 	/* Do the read */
1749 	wbuf = ubifs_get_wbuf(c, lnum);
1750 	if (wbuf)
1751 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752 	else
1753 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754 
1755 	/* Check for a race with GC */
1756 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757 		return -EAGAIN;
1758 
1759 	if (err && err != -EBADMSG) {
1760 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1761 			  lnum, offs, err);
1762 		dump_stack();
1763 		dbg_tnck(&bu->key, "key ");
1764 		return err;
1765 	}
1766 
1767 	/* Validate the nodes read */
1768 	buf = bu->buf;
1769 	for (i = 0; i < bu->cnt; i++) {
1770 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1771 		if (err)
1772 			return err;
1773 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * do_lookup_nm- look up a "hashed" node.
1781  * @c: UBIFS file-system description object
1782  * @key: node key to lookup
1783  * @node: the node is returned here
1784  * @nm: node name
1785  *
1786  * This function look up and reads a node which contains name hash in the key.
1787  * Since the hash may have collisions, there may be many nodes with the same
1788  * key, so we have to sequentially look to all of them until the needed one is
1789  * found. This function returns zero in case of success, %-ENOENT if the node
1790  * was not found, and a negative error code in case of failure.
1791  */
1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793 			void *node, const struct qstr *nm)
1794 {
1795 	int found, n, err;
1796 	struct ubifs_znode *znode;
1797 
1798 	dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799 	mutex_lock(&c->tnc_mutex);
1800 	found = ubifs_lookup_level0(c, key, &znode, &n);
1801 	if (!found) {
1802 		err = -ENOENT;
1803 		goto out_unlock;
1804 	} else if (found < 0) {
1805 		err = found;
1806 		goto out_unlock;
1807 	}
1808 
1809 	ubifs_assert(n >= 0);
1810 
1811 	err = resolve_collision(c, key, &znode, &n, nm);
1812 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813 	if (unlikely(err < 0))
1814 		goto out_unlock;
1815 	if (err == 0) {
1816 		err = -ENOENT;
1817 		goto out_unlock;
1818 	}
1819 
1820 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1821 
1822 out_unlock:
1823 	mutex_unlock(&c->tnc_mutex);
1824 	return err;
1825 }
1826 
1827 /**
1828  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829  * @c: UBIFS file-system description object
1830  * @key: node key to lookup
1831  * @node: the node is returned here
1832  * @nm: node name
1833  *
1834  * This function look up and reads a node which contains name hash in the key.
1835  * Since the hash may have collisions, there may be many nodes with the same
1836  * key, so we have to sequentially look to all of them until the needed one is
1837  * found. This function returns zero in case of success, %-ENOENT if the node
1838  * was not found, and a negative error code in case of failure.
1839  */
1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841 			void *node, const struct qstr *nm)
1842 {
1843 	int err, len;
1844 	const struct ubifs_dent_node *dent = node;
1845 
1846 	/*
1847 	 * We assume that in most of the cases there are no name collisions and
1848 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849 	 */
1850 	err = ubifs_tnc_lookup(c, key, node);
1851 	if (err)
1852 		return err;
1853 
1854 	len = le16_to_cpu(dent->nlen);
1855 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1856 		return 0;
1857 
1858 	/*
1859 	 * Unluckily, there are hash collisions and we have to iterate over
1860 	 * them look at each direntry with colliding name hash sequentially.
1861 	 */
1862 	return do_lookup_nm(c, key, node, nm);
1863 }
1864 
1865 /**
1866  * correct_parent_keys - correct parent znodes' keys.
1867  * @c: UBIFS file-system description object
1868  * @znode: znode to correct parent znodes for
1869  *
1870  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1871  * zbranch changes, keys of parent znodes have to be corrected. This helper
1872  * function is called in such situations and corrects the keys if needed.
1873  */
1874 static void correct_parent_keys(const struct ubifs_info *c,
1875 				struct ubifs_znode *znode)
1876 {
1877 	union ubifs_key *key, *key1;
1878 
1879 	ubifs_assert(znode->parent);
1880 	ubifs_assert(znode->iip == 0);
1881 
1882 	key = &znode->zbranch[0].key;
1883 	key1 = &znode->parent->zbranch[0].key;
1884 
1885 	while (keys_cmp(c, key, key1) < 0) {
1886 		key_copy(c, key, key1);
1887 		znode = znode->parent;
1888 		znode->alt = 1;
1889 		if (!znode->parent || znode->iip)
1890 			break;
1891 		key1 = &znode->parent->zbranch[0].key;
1892 	}
1893 }
1894 
1895 /**
1896  * insert_zbranch - insert a zbranch into a znode.
1897  * @znode: znode into which to insert
1898  * @zbr: zbranch to insert
1899  * @n: slot number to insert to
1900  *
1901  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1902  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1903  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1904  * slot, zbranches starting from @n have to be moved right.
1905  */
1906 static void insert_zbranch(struct ubifs_znode *znode,
1907 			   const struct ubifs_zbranch *zbr, int n)
1908 {
1909 	int i;
1910 
1911 	ubifs_assert(ubifs_zn_dirty(znode));
1912 
1913 	if (znode->level) {
1914 		for (i = znode->child_cnt; i > n; i--) {
1915 			znode->zbranch[i] = znode->zbranch[i - 1];
1916 			if (znode->zbranch[i].znode)
1917 				znode->zbranch[i].znode->iip = i;
1918 		}
1919 		if (zbr->znode)
1920 			zbr->znode->iip = n;
1921 	} else
1922 		for (i = znode->child_cnt; i > n; i--)
1923 			znode->zbranch[i] = znode->zbranch[i - 1];
1924 
1925 	znode->zbranch[n] = *zbr;
1926 	znode->child_cnt += 1;
1927 
1928 	/*
1929 	 * After inserting at slot zero, the lower bound of the key range of
1930 	 * this znode may have changed. If this znode is subsequently split
1931 	 * then the upper bound of the key range may change, and furthermore
1932 	 * it could change to be lower than the original lower bound. If that
1933 	 * happens, then it will no longer be possible to find this znode in the
1934 	 * TNC using the key from the index node on flash. That is bad because
1935 	 * if it is not found, we will assume it is obsolete and may overwrite
1936 	 * it. Then if there is an unclean unmount, we will start using the
1937 	 * old index which will be broken.
1938 	 *
1939 	 * So we first mark znodes that have insertions at slot zero, and then
1940 	 * if they are split we add their lnum/offs to the old_idx tree.
1941 	 */
1942 	if (n == 0)
1943 		znode->alt = 1;
1944 }
1945 
1946 /**
1947  * tnc_insert - insert a node into TNC.
1948  * @c: UBIFS file-system description object
1949  * @znode: znode to insert into
1950  * @zbr: branch to insert
1951  * @n: slot number to insert new zbranch to
1952  *
1953  * This function inserts a new node described by @zbr into znode @znode. If
1954  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1955  * are splat as well if needed. Returns zero in case of success or a negative
1956  * error code in case of failure.
1957  */
1958 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1959 		      struct ubifs_zbranch *zbr, int n)
1960 {
1961 	struct ubifs_znode *zn, *zi, *zp;
1962 	int i, keep, move, appending = 0;
1963 	union ubifs_key *key = &zbr->key, *key1;
1964 
1965 	ubifs_assert(n >= 0 && n <= c->fanout);
1966 
1967 	/* Implement naive insert for now */
1968 again:
1969 	zp = znode->parent;
1970 	if (znode->child_cnt < c->fanout) {
1971 		ubifs_assert(n != c->fanout);
1972 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1973 
1974 		insert_zbranch(znode, zbr, n);
1975 
1976 		/* Ensure parent's key is correct */
1977 		if (n == 0 && zp && znode->iip == 0)
1978 			correct_parent_keys(c, znode);
1979 
1980 		return 0;
1981 	}
1982 
1983 	/*
1984 	 * Unfortunately, @znode does not have more empty slots and we have to
1985 	 * split it.
1986 	 */
1987 	dbg_tnck(key, "splitting level %d, key ", znode->level);
1988 
1989 	if (znode->alt)
1990 		/*
1991 		 * We can no longer be sure of finding this znode by key, so we
1992 		 * record it in the old_idx tree.
1993 		 */
1994 		ins_clr_old_idx_znode(c, znode);
1995 
1996 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1997 	if (!zn)
1998 		return -ENOMEM;
1999 	zn->parent = zp;
2000 	zn->level = znode->level;
2001 
2002 	/* Decide where to split */
2003 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2004 		/* Try not to split consecutive data keys */
2005 		if (n == c->fanout) {
2006 			key1 = &znode->zbranch[n - 1].key;
2007 			if (key_inum(c, key1) == key_inum(c, key) &&
2008 			    key_type(c, key1) == UBIFS_DATA_KEY)
2009 				appending = 1;
2010 		} else
2011 			goto check_split;
2012 	} else if (appending && n != c->fanout) {
2013 		/* Try not to split consecutive data keys */
2014 		appending = 0;
2015 check_split:
2016 		if (n >= (c->fanout + 1) / 2) {
2017 			key1 = &znode->zbranch[0].key;
2018 			if (key_inum(c, key1) == key_inum(c, key) &&
2019 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2020 				key1 = &znode->zbranch[n].key;
2021 				if (key_inum(c, key1) != key_inum(c, key) ||
2022 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2023 					keep = n;
2024 					move = c->fanout - keep;
2025 					zi = znode;
2026 					goto do_split;
2027 				}
2028 			}
2029 		}
2030 	}
2031 
2032 	if (appending) {
2033 		keep = c->fanout;
2034 		move = 0;
2035 	} else {
2036 		keep = (c->fanout + 1) / 2;
2037 		move = c->fanout - keep;
2038 	}
2039 
2040 	/*
2041 	 * Although we don't at present, we could look at the neighbors and see
2042 	 * if we can move some zbranches there.
2043 	 */
2044 
2045 	if (n < keep) {
2046 		/* Insert into existing znode */
2047 		zi = znode;
2048 		move += 1;
2049 		keep -= 1;
2050 	} else {
2051 		/* Insert into new znode */
2052 		zi = zn;
2053 		n -= keep;
2054 		/* Re-parent */
2055 		if (zn->level != 0)
2056 			zbr->znode->parent = zn;
2057 	}
2058 
2059 do_split:
2060 
2061 	__set_bit(DIRTY_ZNODE, &zn->flags);
2062 	atomic_long_inc(&c->dirty_zn_cnt);
2063 
2064 	zn->child_cnt = move;
2065 	znode->child_cnt = keep;
2066 
2067 	dbg_tnc("moving %d, keeping %d", move, keep);
2068 
2069 	/* Move zbranch */
2070 	for (i = 0; i < move; i++) {
2071 		zn->zbranch[i] = znode->zbranch[keep + i];
2072 		/* Re-parent */
2073 		if (zn->level != 0)
2074 			if (zn->zbranch[i].znode) {
2075 				zn->zbranch[i].znode->parent = zn;
2076 				zn->zbranch[i].znode->iip = i;
2077 			}
2078 	}
2079 
2080 	/* Insert new key and branch */
2081 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2082 
2083 	insert_zbranch(zi, zbr, n);
2084 
2085 	/* Insert new znode (produced by spitting) into the parent */
2086 	if (zp) {
2087 		if (n == 0 && zi == znode && znode->iip == 0)
2088 			correct_parent_keys(c, znode);
2089 
2090 		/* Locate insertion point */
2091 		n = znode->iip + 1;
2092 
2093 		/* Tail recursion */
2094 		zbr->key = zn->zbranch[0].key;
2095 		zbr->znode = zn;
2096 		zbr->lnum = 0;
2097 		zbr->offs = 0;
2098 		zbr->len = 0;
2099 		znode = zp;
2100 
2101 		goto again;
2102 	}
2103 
2104 	/* We have to split root znode */
2105 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2106 
2107 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2108 	if (!zi)
2109 		return -ENOMEM;
2110 
2111 	zi->child_cnt = 2;
2112 	zi->level = znode->level + 1;
2113 
2114 	__set_bit(DIRTY_ZNODE, &zi->flags);
2115 	atomic_long_inc(&c->dirty_zn_cnt);
2116 
2117 	zi->zbranch[0].key = znode->zbranch[0].key;
2118 	zi->zbranch[0].znode = znode;
2119 	zi->zbranch[0].lnum = c->zroot.lnum;
2120 	zi->zbranch[0].offs = c->zroot.offs;
2121 	zi->zbranch[0].len = c->zroot.len;
2122 	zi->zbranch[1].key = zn->zbranch[0].key;
2123 	zi->zbranch[1].znode = zn;
2124 
2125 	c->zroot.lnum = 0;
2126 	c->zroot.offs = 0;
2127 	c->zroot.len = 0;
2128 	c->zroot.znode = zi;
2129 
2130 	zn->parent = zi;
2131 	zn->iip = 1;
2132 	znode->parent = zi;
2133 	znode->iip = 0;
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * ubifs_tnc_add - add a node to TNC.
2140  * @c: UBIFS file-system description object
2141  * @key: key to add
2142  * @lnum: LEB number of node
2143  * @offs: node offset
2144  * @len: node length
2145  *
2146  * This function adds a node with key @key to TNC. The node may be new or it may
2147  * obsolete some existing one. Returns %0 on success or negative error code on
2148  * failure.
2149  */
2150 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2151 		  int offs, int len)
2152 {
2153 	int found, n, err = 0;
2154 	struct ubifs_znode *znode;
2155 
2156 	mutex_lock(&c->tnc_mutex);
2157 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2158 	found = lookup_level0_dirty(c, key, &znode, &n);
2159 	if (!found) {
2160 		struct ubifs_zbranch zbr;
2161 
2162 		zbr.znode = NULL;
2163 		zbr.lnum = lnum;
2164 		zbr.offs = offs;
2165 		zbr.len = len;
2166 		key_copy(c, key, &zbr.key);
2167 		err = tnc_insert(c, znode, &zbr, n + 1);
2168 	} else if (found == 1) {
2169 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2170 
2171 		lnc_free(zbr);
2172 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2173 		zbr->lnum = lnum;
2174 		zbr->offs = offs;
2175 		zbr->len = len;
2176 	} else
2177 		err = found;
2178 	if (!err)
2179 		err = dbg_check_tnc(c, 0);
2180 	mutex_unlock(&c->tnc_mutex);
2181 
2182 	return err;
2183 }
2184 
2185 /**
2186  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2187  * @c: UBIFS file-system description object
2188  * @key: key to add
2189  * @old_lnum: LEB number of old node
2190  * @old_offs: old node offset
2191  * @lnum: LEB number of node
2192  * @offs: node offset
2193  * @len: node length
2194  *
2195  * This function replaces a node with key @key in the TNC only if the old node
2196  * is found.  This function is called by garbage collection when node are moved.
2197  * Returns %0 on success or negative error code on failure.
2198  */
2199 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2200 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2201 {
2202 	int found, n, err = 0;
2203 	struct ubifs_znode *znode;
2204 
2205 	mutex_lock(&c->tnc_mutex);
2206 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2207 		 old_offs, lnum, offs, len);
2208 	found = lookup_level0_dirty(c, key, &znode, &n);
2209 	if (found < 0) {
2210 		err = found;
2211 		goto out_unlock;
2212 	}
2213 
2214 	if (found == 1) {
2215 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2216 
2217 		found = 0;
2218 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2219 			lnc_free(zbr);
2220 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2221 			if (err)
2222 				goto out_unlock;
2223 			zbr->lnum = lnum;
2224 			zbr->offs = offs;
2225 			zbr->len = len;
2226 			found = 1;
2227 		} else if (is_hash_key(c, key)) {
2228 			found = resolve_collision_directly(c, key, &znode, &n,
2229 							   old_lnum, old_offs);
2230 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2231 				found, znode, n, old_lnum, old_offs);
2232 			if (found < 0) {
2233 				err = found;
2234 				goto out_unlock;
2235 			}
2236 
2237 			if (found) {
2238 				/* Ensure the znode is dirtied */
2239 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2240 					znode = dirty_cow_bottom_up(c, znode);
2241 					if (IS_ERR(znode)) {
2242 						err = PTR_ERR(znode);
2243 						goto out_unlock;
2244 					}
2245 				}
2246 				zbr = &znode->zbranch[n];
2247 				lnc_free(zbr);
2248 				err = ubifs_add_dirt(c, zbr->lnum,
2249 						     zbr->len);
2250 				if (err)
2251 					goto out_unlock;
2252 				zbr->lnum = lnum;
2253 				zbr->offs = offs;
2254 				zbr->len = len;
2255 			}
2256 		}
2257 	}
2258 
2259 	if (!found)
2260 		err = ubifs_add_dirt(c, lnum, len);
2261 
2262 	if (!err)
2263 		err = dbg_check_tnc(c, 0);
2264 
2265 out_unlock:
2266 	mutex_unlock(&c->tnc_mutex);
2267 	return err;
2268 }
2269 
2270 /**
2271  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2272  * @c: UBIFS file-system description object
2273  * @key: key to add
2274  * @lnum: LEB number of node
2275  * @offs: node offset
2276  * @len: node length
2277  * @nm: node name
2278  *
2279  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2280  * may have collisions, like directory entry keys.
2281  */
2282 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2283 		     int lnum, int offs, int len, const struct qstr *nm)
2284 {
2285 	int found, n, err = 0;
2286 	struct ubifs_znode *znode;
2287 
2288 	mutex_lock(&c->tnc_mutex);
2289 	dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2290 		 lnum, offs, nm->len, nm->name);
2291 	found = lookup_level0_dirty(c, key, &znode, &n);
2292 	if (found < 0) {
2293 		err = found;
2294 		goto out_unlock;
2295 	}
2296 
2297 	if (found == 1) {
2298 		if (c->replaying)
2299 			found = fallible_resolve_collision(c, key, &znode, &n,
2300 							   nm, 1);
2301 		else
2302 			found = resolve_collision(c, key, &znode, &n, nm);
2303 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2304 		if (found < 0) {
2305 			err = found;
2306 			goto out_unlock;
2307 		}
2308 
2309 		/* Ensure the znode is dirtied */
2310 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2311 			znode = dirty_cow_bottom_up(c, znode);
2312 			if (IS_ERR(znode)) {
2313 				err = PTR_ERR(znode);
2314 				goto out_unlock;
2315 			}
2316 		}
2317 
2318 		if (found == 1) {
2319 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2320 
2321 			lnc_free(zbr);
2322 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2323 			zbr->lnum = lnum;
2324 			zbr->offs = offs;
2325 			zbr->len = len;
2326 			goto out_unlock;
2327 		}
2328 	}
2329 
2330 	if (!found) {
2331 		struct ubifs_zbranch zbr;
2332 
2333 		zbr.znode = NULL;
2334 		zbr.lnum = lnum;
2335 		zbr.offs = offs;
2336 		zbr.len = len;
2337 		key_copy(c, key, &zbr.key);
2338 		err = tnc_insert(c, znode, &zbr, n + 1);
2339 		if (err)
2340 			goto out_unlock;
2341 		if (c->replaying) {
2342 			/*
2343 			 * We did not find it in the index so there may be a
2344 			 * dangling branch still in the index. So we remove it
2345 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2346 			 * an unmatchable name.
2347 			 */
2348 			struct qstr noname = { .name = "" };
2349 
2350 			err = dbg_check_tnc(c, 0);
2351 			mutex_unlock(&c->tnc_mutex);
2352 			if (err)
2353 				return err;
2354 			return ubifs_tnc_remove_nm(c, key, &noname);
2355 		}
2356 	}
2357 
2358 out_unlock:
2359 	if (!err)
2360 		err = dbg_check_tnc(c, 0);
2361 	mutex_unlock(&c->tnc_mutex);
2362 	return err;
2363 }
2364 
2365 /**
2366  * tnc_delete - delete a znode form TNC.
2367  * @c: UBIFS file-system description object
2368  * @znode: znode to delete from
2369  * @n: zbranch slot number to delete
2370  *
2371  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2372  * case of success and a negative error code in case of failure.
2373  */
2374 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2375 {
2376 	struct ubifs_zbranch *zbr;
2377 	struct ubifs_znode *zp;
2378 	int i, err;
2379 
2380 	/* Delete without merge for now */
2381 	ubifs_assert(znode->level == 0);
2382 	ubifs_assert(n >= 0 && n < c->fanout);
2383 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2384 
2385 	zbr = &znode->zbranch[n];
2386 	lnc_free(zbr);
2387 
2388 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389 	if (err) {
2390 		ubifs_dump_znode(c, znode);
2391 		return err;
2392 	}
2393 
2394 	/* We do not "gap" zbranch slots */
2395 	for (i = n; i < znode->child_cnt - 1; i++)
2396 		znode->zbranch[i] = znode->zbranch[i + 1];
2397 	znode->child_cnt -= 1;
2398 
2399 	if (znode->child_cnt > 0)
2400 		return 0;
2401 
2402 	/*
2403 	 * This was the last zbranch, we have to delete this znode from the
2404 	 * parent.
2405 	 */
2406 
2407 	do {
2408 		ubifs_assert(!ubifs_zn_obsolete(znode));
2409 		ubifs_assert(ubifs_zn_dirty(znode));
2410 
2411 		zp = znode->parent;
2412 		n = znode->iip;
2413 
2414 		atomic_long_dec(&c->dirty_zn_cnt);
2415 
2416 		err = insert_old_idx_znode(c, znode);
2417 		if (err)
2418 			return err;
2419 
2420 		if (znode->cnext) {
2421 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2422 			atomic_long_inc(&c->clean_zn_cnt);
2423 			atomic_long_inc(&ubifs_clean_zn_cnt);
2424 		} else
2425 			kfree(znode);
2426 		znode = zp;
2427 	} while (znode->child_cnt == 1); /* while removing last child */
2428 
2429 	/* Remove from znode, entry n - 1 */
2430 	znode->child_cnt -= 1;
2431 	ubifs_assert(znode->level != 0);
2432 	for (i = n; i < znode->child_cnt; i++) {
2433 		znode->zbranch[i] = znode->zbranch[i + 1];
2434 		if (znode->zbranch[i].znode)
2435 			znode->zbranch[i].znode->iip = i;
2436 	}
2437 
2438 	/*
2439 	 * If this is the root and it has only 1 child then
2440 	 * collapse the tree.
2441 	 */
2442 	if (!znode->parent) {
2443 		while (znode->child_cnt == 1 && znode->level != 0) {
2444 			zp = znode;
2445 			zbr = &znode->zbranch[0];
2446 			znode = get_znode(c, znode, 0);
2447 			if (IS_ERR(znode))
2448 				return PTR_ERR(znode);
2449 			znode = dirty_cow_znode(c, zbr);
2450 			if (IS_ERR(znode))
2451 				return PTR_ERR(znode);
2452 			znode->parent = NULL;
2453 			znode->iip = 0;
2454 			if (c->zroot.len) {
2455 				err = insert_old_idx(c, c->zroot.lnum,
2456 						     c->zroot.offs);
2457 				if (err)
2458 					return err;
2459 			}
2460 			c->zroot.lnum = zbr->lnum;
2461 			c->zroot.offs = zbr->offs;
2462 			c->zroot.len = zbr->len;
2463 			c->zroot.znode = znode;
2464 			ubifs_assert(!ubifs_zn_obsolete(zp));
2465 			ubifs_assert(ubifs_zn_dirty(zp));
2466 			atomic_long_dec(&c->dirty_zn_cnt);
2467 
2468 			if (zp->cnext) {
2469 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2470 				atomic_long_inc(&c->clean_zn_cnt);
2471 				atomic_long_inc(&ubifs_clean_zn_cnt);
2472 			} else
2473 				kfree(zp);
2474 		}
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * ubifs_tnc_remove - remove an index entry of a node.
2482  * @c: UBIFS file-system description object
2483  * @key: key of node
2484  *
2485  * Returns %0 on success or negative error code on failure.
2486  */
2487 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2488 {
2489 	int found, n, err = 0;
2490 	struct ubifs_znode *znode;
2491 
2492 	mutex_lock(&c->tnc_mutex);
2493 	dbg_tnck(key, "key ");
2494 	found = lookup_level0_dirty(c, key, &znode, &n);
2495 	if (found < 0) {
2496 		err = found;
2497 		goto out_unlock;
2498 	}
2499 	if (found == 1)
2500 		err = tnc_delete(c, znode, n);
2501 	if (!err)
2502 		err = dbg_check_tnc(c, 0);
2503 
2504 out_unlock:
2505 	mutex_unlock(&c->tnc_mutex);
2506 	return err;
2507 }
2508 
2509 /**
2510  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2511  * @c: UBIFS file-system description object
2512  * @key: key of node
2513  * @nm: directory entry name
2514  *
2515  * Returns %0 on success or negative error code on failure.
2516  */
2517 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2518 			const struct qstr *nm)
2519 {
2520 	int n, err;
2521 	struct ubifs_znode *znode;
2522 
2523 	mutex_lock(&c->tnc_mutex);
2524 	dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2525 	err = lookup_level0_dirty(c, key, &znode, &n);
2526 	if (err < 0)
2527 		goto out_unlock;
2528 
2529 	if (err) {
2530 		if (c->replaying)
2531 			err = fallible_resolve_collision(c, key, &znode, &n,
2532 							 nm, 0);
2533 		else
2534 			err = resolve_collision(c, key, &znode, &n, nm);
2535 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2536 		if (err < 0)
2537 			goto out_unlock;
2538 		if (err) {
2539 			/* Ensure the znode is dirtied */
2540 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2541 				znode = dirty_cow_bottom_up(c, znode);
2542 				if (IS_ERR(znode)) {
2543 					err = PTR_ERR(znode);
2544 					goto out_unlock;
2545 				}
2546 			}
2547 			err = tnc_delete(c, znode, n);
2548 		}
2549 	}
2550 
2551 out_unlock:
2552 	if (!err)
2553 		err = dbg_check_tnc(c, 0);
2554 	mutex_unlock(&c->tnc_mutex);
2555 	return err;
2556 }
2557 
2558 /**
2559  * key_in_range - determine if a key falls within a range of keys.
2560  * @c: UBIFS file-system description object
2561  * @key: key to check
2562  * @from_key: lowest key in range
2563  * @to_key: highest key in range
2564  *
2565  * This function returns %1 if the key is in range and %0 otherwise.
2566  */
2567 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2568 			union ubifs_key *from_key, union ubifs_key *to_key)
2569 {
2570 	if (keys_cmp(c, key, from_key) < 0)
2571 		return 0;
2572 	if (keys_cmp(c, key, to_key) > 0)
2573 		return 0;
2574 	return 1;
2575 }
2576 
2577 /**
2578  * ubifs_tnc_remove_range - remove index entries in range.
2579  * @c: UBIFS file-system description object
2580  * @from_key: lowest key to remove
2581  * @to_key: highest key to remove
2582  *
2583  * This function removes index entries starting at @from_key and ending at
2584  * @to_key.  This function returns zero in case of success and a negative error
2585  * code in case of failure.
2586  */
2587 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2588 			   union ubifs_key *to_key)
2589 {
2590 	int i, n, k, err = 0;
2591 	struct ubifs_znode *znode;
2592 	union ubifs_key *key;
2593 
2594 	mutex_lock(&c->tnc_mutex);
2595 	while (1) {
2596 		/* Find first level 0 znode that contains keys to remove */
2597 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2598 		if (err < 0)
2599 			goto out_unlock;
2600 
2601 		if (err)
2602 			key = from_key;
2603 		else {
2604 			err = tnc_next(c, &znode, &n);
2605 			if (err == -ENOENT) {
2606 				err = 0;
2607 				goto out_unlock;
2608 			}
2609 			if (err < 0)
2610 				goto out_unlock;
2611 			key = &znode->zbranch[n].key;
2612 			if (!key_in_range(c, key, from_key, to_key)) {
2613 				err = 0;
2614 				goto out_unlock;
2615 			}
2616 		}
2617 
2618 		/* Ensure the znode is dirtied */
2619 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2620 			znode = dirty_cow_bottom_up(c, znode);
2621 			if (IS_ERR(znode)) {
2622 				err = PTR_ERR(znode);
2623 				goto out_unlock;
2624 			}
2625 		}
2626 
2627 		/* Remove all keys in range except the first */
2628 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2629 			key = &znode->zbranch[i].key;
2630 			if (!key_in_range(c, key, from_key, to_key))
2631 				break;
2632 			lnc_free(&znode->zbranch[i]);
2633 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2634 					     znode->zbranch[i].len);
2635 			if (err) {
2636 				ubifs_dump_znode(c, znode);
2637 				goto out_unlock;
2638 			}
2639 			dbg_tnck(key, "removing key ");
2640 		}
2641 		if (k) {
2642 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2643 				znode->zbranch[i - k] = znode->zbranch[i];
2644 			znode->child_cnt -= k;
2645 		}
2646 
2647 		/* Now delete the first */
2648 		err = tnc_delete(c, znode, n);
2649 		if (err)
2650 			goto out_unlock;
2651 	}
2652 
2653 out_unlock:
2654 	if (!err)
2655 		err = dbg_check_tnc(c, 0);
2656 	mutex_unlock(&c->tnc_mutex);
2657 	return err;
2658 }
2659 
2660 /**
2661  * ubifs_tnc_remove_ino - remove an inode from TNC.
2662  * @c: UBIFS file-system description object
2663  * @inum: inode number to remove
2664  *
2665  * This function remove inode @inum and all the extended attributes associated
2666  * with the anode from TNC and returns zero in case of success or a negative
2667  * error code in case of failure.
2668  */
2669 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2670 {
2671 	union ubifs_key key1, key2;
2672 	struct ubifs_dent_node *xent, *pxent = NULL;
2673 	struct qstr nm = { .name = NULL };
2674 
2675 	dbg_tnc("ino %lu", (unsigned long)inum);
2676 
2677 	/*
2678 	 * Walk all extended attribute entries and remove them together with
2679 	 * corresponding extended attribute inodes.
2680 	 */
2681 	lowest_xent_key(c, &key1, inum);
2682 	while (1) {
2683 		ino_t xattr_inum;
2684 		int err;
2685 
2686 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2687 		if (IS_ERR(xent)) {
2688 			err = PTR_ERR(xent);
2689 			if (err == -ENOENT)
2690 				break;
2691 			return err;
2692 		}
2693 
2694 		xattr_inum = le64_to_cpu(xent->inum);
2695 		dbg_tnc("xent '%s', ino %lu", xent->name,
2696 			(unsigned long)xattr_inum);
2697 
2698 		nm.name = xent->name;
2699 		nm.len = le16_to_cpu(xent->nlen);
2700 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2701 		if (err) {
2702 			kfree(xent);
2703 			return err;
2704 		}
2705 
2706 		lowest_ino_key(c, &key1, xattr_inum);
2707 		highest_ino_key(c, &key2, xattr_inum);
2708 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2709 		if (err) {
2710 			kfree(xent);
2711 			return err;
2712 		}
2713 
2714 		kfree(pxent);
2715 		pxent = xent;
2716 		key_read(c, &xent->key, &key1);
2717 	}
2718 
2719 	kfree(pxent);
2720 	lowest_ino_key(c, &key1, inum);
2721 	highest_ino_key(c, &key2, inum);
2722 
2723 	return ubifs_tnc_remove_range(c, &key1, &key2);
2724 }
2725 
2726 /**
2727  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2728  * @c: UBIFS file-system description object
2729  * @key: key of last entry
2730  * @nm: name of last entry found or %NULL
2731  *
2732  * This function finds and reads the next directory or extended attribute entry
2733  * after the given key (@key) if there is one. @nm is used to resolve
2734  * collisions.
2735  *
2736  * If the name of the current entry is not known and only the key is known,
2737  * @nm->name has to be %NULL. In this case the semantics of this function is a
2738  * little bit different and it returns the entry corresponding to this key, not
2739  * the next one. If the key was not found, the closest "right" entry is
2740  * returned.
2741  *
2742  * If the fist entry has to be found, @key has to contain the lowest possible
2743  * key value for this inode and @name has to be %NULL.
2744  *
2745  * This function returns the found directory or extended attribute entry node
2746  * in case of success, %-ENOENT is returned if no entry was found, and a
2747  * negative error code is returned in case of failure.
2748  */
2749 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2750 					   union ubifs_key *key,
2751 					   const struct qstr *nm)
2752 {
2753 	int n, err, type = key_type(c, key);
2754 	struct ubifs_znode *znode;
2755 	struct ubifs_dent_node *dent;
2756 	struct ubifs_zbranch *zbr;
2757 	union ubifs_key *dkey;
2758 
2759 	dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2760 	ubifs_assert(is_hash_key(c, key));
2761 
2762 	mutex_lock(&c->tnc_mutex);
2763 	err = ubifs_lookup_level0(c, key, &znode, &n);
2764 	if (unlikely(err < 0))
2765 		goto out_unlock;
2766 
2767 	if (nm->name) {
2768 		if (err) {
2769 			/* Handle collisions */
2770 			err = resolve_collision(c, key, &znode, &n, nm);
2771 			dbg_tnc("rc returned %d, znode %p, n %d",
2772 				err, znode, n);
2773 			if (unlikely(err < 0))
2774 				goto out_unlock;
2775 		}
2776 
2777 		/* Now find next entry */
2778 		err = tnc_next(c, &znode, &n);
2779 		if (unlikely(err))
2780 			goto out_unlock;
2781 	} else {
2782 		/*
2783 		 * The full name of the entry was not given, in which case the
2784 		 * behavior of this function is a little different and it
2785 		 * returns current entry, not the next one.
2786 		 */
2787 		if (!err) {
2788 			/*
2789 			 * However, the given key does not exist in the TNC
2790 			 * tree and @znode/@n variables contain the closest
2791 			 * "preceding" element. Switch to the next one.
2792 			 */
2793 			err = tnc_next(c, &znode, &n);
2794 			if (err)
2795 				goto out_unlock;
2796 		}
2797 	}
2798 
2799 	zbr = &znode->zbranch[n];
2800 	dent = kmalloc(zbr->len, GFP_NOFS);
2801 	if (unlikely(!dent)) {
2802 		err = -ENOMEM;
2803 		goto out_unlock;
2804 	}
2805 
2806 	/*
2807 	 * The above 'tnc_next()' call could lead us to the next inode, check
2808 	 * this.
2809 	 */
2810 	dkey = &zbr->key;
2811 	if (key_inum(c, dkey) != key_inum(c, key) ||
2812 	    key_type(c, dkey) != type) {
2813 		err = -ENOENT;
2814 		goto out_free;
2815 	}
2816 
2817 	err = tnc_read_node_nm(c, zbr, dent);
2818 	if (unlikely(err))
2819 		goto out_free;
2820 
2821 	mutex_unlock(&c->tnc_mutex);
2822 	return dent;
2823 
2824 out_free:
2825 	kfree(dent);
2826 out_unlock:
2827 	mutex_unlock(&c->tnc_mutex);
2828 	return ERR_PTR(err);
2829 }
2830 
2831 /**
2832  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2833  * @c: UBIFS file-system description object
2834  *
2835  * Destroy left-over obsolete znodes from a failed commit.
2836  */
2837 static void tnc_destroy_cnext(struct ubifs_info *c)
2838 {
2839 	struct ubifs_znode *cnext;
2840 
2841 	if (!c->cnext)
2842 		return;
2843 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2844 	cnext = c->cnext;
2845 	do {
2846 		struct ubifs_znode *znode = cnext;
2847 
2848 		cnext = cnext->cnext;
2849 		if (ubifs_zn_obsolete(znode))
2850 			kfree(znode);
2851 	} while (cnext && cnext != c->cnext);
2852 }
2853 
2854 /**
2855  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2856  * @c: UBIFS file-system description object
2857  */
2858 void ubifs_tnc_close(struct ubifs_info *c)
2859 {
2860 	tnc_destroy_cnext(c);
2861 	if (c->zroot.znode) {
2862 		long n, freed;
2863 
2864 		n = atomic_long_read(&c->clean_zn_cnt);
2865 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2866 		ubifs_assert(freed == n);
2867 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2868 	}
2869 	kfree(c->gap_lebs);
2870 	kfree(c->ilebs);
2871 	destroy_old_idx(c);
2872 }
2873 
2874 /**
2875  * left_znode - get the znode to the left.
2876  * @c: UBIFS file-system description object
2877  * @znode: znode
2878  *
2879  * This function returns a pointer to the znode to the left of @znode or NULL if
2880  * there is not one. A negative error code is returned on failure.
2881  */
2882 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2883 				      struct ubifs_znode *znode)
2884 {
2885 	int level = znode->level;
2886 
2887 	while (1) {
2888 		int n = znode->iip - 1;
2889 
2890 		/* Go up until we can go left */
2891 		znode = znode->parent;
2892 		if (!znode)
2893 			return NULL;
2894 		if (n >= 0) {
2895 			/* Now go down the rightmost branch to 'level' */
2896 			znode = get_znode(c, znode, n);
2897 			if (IS_ERR(znode))
2898 				return znode;
2899 			while (znode->level != level) {
2900 				n = znode->child_cnt - 1;
2901 				znode = get_znode(c, znode, n);
2902 				if (IS_ERR(znode))
2903 					return znode;
2904 			}
2905 			break;
2906 		}
2907 	}
2908 	return znode;
2909 }
2910 
2911 /**
2912  * right_znode - get the znode to the right.
2913  * @c: UBIFS file-system description object
2914  * @znode: znode
2915  *
2916  * This function returns a pointer to the znode to the right of @znode or NULL
2917  * if there is not one. A negative error code is returned on failure.
2918  */
2919 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2920 				       struct ubifs_znode *znode)
2921 {
2922 	int level = znode->level;
2923 
2924 	while (1) {
2925 		int n = znode->iip + 1;
2926 
2927 		/* Go up until we can go right */
2928 		znode = znode->parent;
2929 		if (!znode)
2930 			return NULL;
2931 		if (n < znode->child_cnt) {
2932 			/* Now go down the leftmost branch to 'level' */
2933 			znode = get_znode(c, znode, n);
2934 			if (IS_ERR(znode))
2935 				return znode;
2936 			while (znode->level != level) {
2937 				znode = get_znode(c, znode, 0);
2938 				if (IS_ERR(znode))
2939 					return znode;
2940 			}
2941 			break;
2942 		}
2943 	}
2944 	return znode;
2945 }
2946 
2947 /**
2948  * lookup_znode - find a particular indexing node from TNC.
2949  * @c: UBIFS file-system description object
2950  * @key: index node key to lookup
2951  * @level: index node level
2952  * @lnum: index node LEB number
2953  * @offs: index node offset
2954  *
2955  * This function searches an indexing node by its first key @key and its
2956  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2957  * nodes it traverses to TNC. This function is called for indexing nodes which
2958  * were found on the media by scanning, for example when garbage-collecting or
2959  * when doing in-the-gaps commit. This means that the indexing node which is
2960  * looked for does not have to have exactly the same leftmost key @key, because
2961  * the leftmost key may have been changed, in which case TNC will contain a
2962  * dirty znode which still refers the same @lnum:@offs. This function is clever
2963  * enough to recognize such indexing nodes.
2964  *
2965  * Note, if a znode was deleted or changed too much, then this function will
2966  * not find it. For situations like this UBIFS has the old index RB-tree
2967  * (indexed by @lnum:@offs).
2968  *
2969  * This function returns a pointer to the znode found or %NULL if it is not
2970  * found. A negative error code is returned on failure.
2971  */
2972 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2973 					union ubifs_key *key, int level,
2974 					int lnum, int offs)
2975 {
2976 	struct ubifs_znode *znode, *zn;
2977 	int n, nn;
2978 
2979 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2980 
2981 	/*
2982 	 * The arguments have probably been read off flash, so don't assume
2983 	 * they are valid.
2984 	 */
2985 	if (level < 0)
2986 		return ERR_PTR(-EINVAL);
2987 
2988 	/* Get the root znode */
2989 	znode = c->zroot.znode;
2990 	if (!znode) {
2991 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2992 		if (IS_ERR(znode))
2993 			return znode;
2994 	}
2995 	/* Check if it is the one we are looking for */
2996 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2997 		return znode;
2998 	/* Descend to the parent level i.e. (level + 1) */
2999 	if (level >= znode->level)
3000 		return NULL;
3001 	while (1) {
3002 		ubifs_search_zbranch(c, znode, key, &n);
3003 		if (n < 0) {
3004 			/*
3005 			 * We reached a znode where the leftmost key is greater
3006 			 * than the key we are searching for. This is the same
3007 			 * situation as the one described in a huge comment at
3008 			 * the end of the 'ubifs_lookup_level0()' function. And
3009 			 * for exactly the same reasons we have to try to look
3010 			 * left before giving up.
3011 			 */
3012 			znode = left_znode(c, znode);
3013 			if (!znode)
3014 				return NULL;
3015 			if (IS_ERR(znode))
3016 				return znode;
3017 			ubifs_search_zbranch(c, znode, key, &n);
3018 			ubifs_assert(n >= 0);
3019 		}
3020 		if (znode->level == level + 1)
3021 			break;
3022 		znode = get_znode(c, znode, n);
3023 		if (IS_ERR(znode))
3024 			return znode;
3025 	}
3026 	/* Check if the child is the one we are looking for */
3027 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3028 		return get_znode(c, znode, n);
3029 	/* If the key is unique, there is nowhere else to look */
3030 	if (!is_hash_key(c, key))
3031 		return NULL;
3032 	/*
3033 	 * The key is not unique and so may be also in the znodes to either
3034 	 * side.
3035 	 */
3036 	zn = znode;
3037 	nn = n;
3038 	/* Look left */
3039 	while (1) {
3040 		/* Move one branch to the left */
3041 		if (n)
3042 			n -= 1;
3043 		else {
3044 			znode = left_znode(c, znode);
3045 			if (!znode)
3046 				break;
3047 			if (IS_ERR(znode))
3048 				return znode;
3049 			n = znode->child_cnt - 1;
3050 		}
3051 		/* Check it */
3052 		if (znode->zbranch[n].lnum == lnum &&
3053 		    znode->zbranch[n].offs == offs)
3054 			return get_znode(c, znode, n);
3055 		/* Stop if the key is less than the one we are looking for */
3056 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3057 			break;
3058 	}
3059 	/* Back to the middle */
3060 	znode = zn;
3061 	n = nn;
3062 	/* Look right */
3063 	while (1) {
3064 		/* Move one branch to the right */
3065 		if (++n >= znode->child_cnt) {
3066 			znode = right_znode(c, znode);
3067 			if (!znode)
3068 				break;
3069 			if (IS_ERR(znode))
3070 				return znode;
3071 			n = 0;
3072 		}
3073 		/* Check it */
3074 		if (znode->zbranch[n].lnum == lnum &&
3075 		    znode->zbranch[n].offs == offs)
3076 			return get_znode(c, znode, n);
3077 		/* Stop if the key is greater than the one we are looking for */
3078 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3079 			break;
3080 	}
3081 	return NULL;
3082 }
3083 
3084 /**
3085  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3086  * @c: UBIFS file-system description object
3087  * @key: key of index node
3088  * @level: index node level
3089  * @lnum: LEB number of index node
3090  * @offs: offset of index node
3091  *
3092  * This function returns %0 if the index node is not referred to in the TNC, %1
3093  * if the index node is referred to in the TNC and the corresponding znode is
3094  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3095  * znode is clean, and a negative error code in case of failure.
3096  *
3097  * Note, the @key argument has to be the key of the first child. Also note,
3098  * this function relies on the fact that 0:0 is never a valid LEB number and
3099  * offset for a main-area node.
3100  */
3101 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3102 		       int lnum, int offs)
3103 {
3104 	struct ubifs_znode *znode;
3105 
3106 	znode = lookup_znode(c, key, level, lnum, offs);
3107 	if (!znode)
3108 		return 0;
3109 	if (IS_ERR(znode))
3110 		return PTR_ERR(znode);
3111 
3112 	return ubifs_zn_dirty(znode) ? 1 : 2;
3113 }
3114 
3115 /**
3116  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3117  * @c: UBIFS file-system description object
3118  * @key: node key
3119  * @lnum: node LEB number
3120  * @offs: node offset
3121  *
3122  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3123  * not, and a negative error code in case of failure.
3124  *
3125  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3126  * and offset for a main-area node.
3127  */
3128 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3129 			       int lnum, int offs)
3130 {
3131 	struct ubifs_zbranch *zbr;
3132 	struct ubifs_znode *znode, *zn;
3133 	int n, found, err, nn;
3134 	const int unique = !is_hash_key(c, key);
3135 
3136 	found = ubifs_lookup_level0(c, key, &znode, &n);
3137 	if (found < 0)
3138 		return found; /* Error code */
3139 	if (!found)
3140 		return 0;
3141 	zbr = &znode->zbranch[n];
3142 	if (lnum == zbr->lnum && offs == zbr->offs)
3143 		return 1; /* Found it */
3144 	if (unique)
3145 		return 0;
3146 	/*
3147 	 * Because the key is not unique, we have to look left
3148 	 * and right as well
3149 	 */
3150 	zn = znode;
3151 	nn = n;
3152 	/* Look left */
3153 	while (1) {
3154 		err = tnc_prev(c, &znode, &n);
3155 		if (err == -ENOENT)
3156 			break;
3157 		if (err)
3158 			return err;
3159 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3160 			break;
3161 		zbr = &znode->zbranch[n];
3162 		if (lnum == zbr->lnum && offs == zbr->offs)
3163 			return 1; /* Found it */
3164 	}
3165 	/* Look right */
3166 	znode = zn;
3167 	n = nn;
3168 	while (1) {
3169 		err = tnc_next(c, &znode, &n);
3170 		if (err) {
3171 			if (err == -ENOENT)
3172 				return 0;
3173 			return err;
3174 		}
3175 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3176 			break;
3177 		zbr = &znode->zbranch[n];
3178 		if (lnum == zbr->lnum && offs == zbr->offs)
3179 			return 1; /* Found it */
3180 	}
3181 	return 0;
3182 }
3183 
3184 /**
3185  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3186  * @c: UBIFS file-system description object
3187  * @key: node key
3188  * @level: index node level (if it is an index node)
3189  * @lnum: node LEB number
3190  * @offs: node offset
3191  * @is_idx: non-zero if the node is an index node
3192  *
3193  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3194  * negative error code in case of failure. For index nodes, @key has to be the
3195  * key of the first child. An index node is considered to be in the TNC only if
3196  * the corresponding znode is clean or has not been loaded.
3197  */
3198 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3199 		       int lnum, int offs, int is_idx)
3200 {
3201 	int err;
3202 
3203 	mutex_lock(&c->tnc_mutex);
3204 	if (is_idx) {
3205 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3206 		if (err < 0)
3207 			goto out_unlock;
3208 		if (err == 1)
3209 			/* The index node was found but it was dirty */
3210 			err = 0;
3211 		else if (err == 2)
3212 			/* The index node was found and it was clean */
3213 			err = 1;
3214 		else
3215 			BUG_ON(err != 0);
3216 	} else
3217 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3218 
3219 out_unlock:
3220 	mutex_unlock(&c->tnc_mutex);
3221 	return err;
3222 }
3223 
3224 /**
3225  * ubifs_dirty_idx_node - dirty an index node.
3226  * @c: UBIFS file-system description object
3227  * @key: index node key
3228  * @level: index node level
3229  * @lnum: index node LEB number
3230  * @offs: index node offset
3231  *
3232  * This function loads and dirties an index node so that it can be garbage
3233  * collected. The @key argument has to be the key of the first child. This
3234  * function relies on the fact that 0:0 is never a valid LEB number and offset
3235  * for a main-area node. Returns %0 on success and a negative error code on
3236  * failure.
3237  */
3238 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3239 			 int lnum, int offs)
3240 {
3241 	struct ubifs_znode *znode;
3242 	int err = 0;
3243 
3244 	mutex_lock(&c->tnc_mutex);
3245 	znode = lookup_znode(c, key, level, lnum, offs);
3246 	if (!znode)
3247 		goto out_unlock;
3248 	if (IS_ERR(znode)) {
3249 		err = PTR_ERR(znode);
3250 		goto out_unlock;
3251 	}
3252 	znode = dirty_cow_bottom_up(c, znode);
3253 	if (IS_ERR(znode)) {
3254 		err = PTR_ERR(znode);
3255 		goto out_unlock;
3256 	}
3257 
3258 out_unlock:
3259 	mutex_unlock(&c->tnc_mutex);
3260 	return err;
3261 }
3262 
3263 /**
3264  * dbg_check_inode_size - check if inode size is correct.
3265  * @c: UBIFS file-system description object
3266  * @inum: inode number
3267  * @size: inode size
3268  *
3269  * This function makes sure that the inode size (@size) is correct and it does
3270  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3271  * if it has a data page beyond @size, and other negative error code in case of
3272  * other errors.
3273  */
3274 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3275 			 loff_t size)
3276 {
3277 	int err, n;
3278 	union ubifs_key from_key, to_key, *key;
3279 	struct ubifs_znode *znode;
3280 	unsigned int block;
3281 
3282 	if (!S_ISREG(inode->i_mode))
3283 		return 0;
3284 	if (!dbg_is_chk_gen(c))
3285 		return 0;
3286 
3287 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3288 	data_key_init(c, &from_key, inode->i_ino, block);
3289 	highest_data_key(c, &to_key, inode->i_ino);
3290 
3291 	mutex_lock(&c->tnc_mutex);
3292 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3293 	if (err < 0)
3294 		goto out_unlock;
3295 
3296 	if (err) {
3297 		key = &from_key;
3298 		goto out_dump;
3299 	}
3300 
3301 	err = tnc_next(c, &znode, &n);
3302 	if (err == -ENOENT) {
3303 		err = 0;
3304 		goto out_unlock;
3305 	}
3306 	if (err < 0)
3307 		goto out_unlock;
3308 
3309 	ubifs_assert(err == 0);
3310 	key = &znode->zbranch[n].key;
3311 	if (!key_in_range(c, key, &from_key, &to_key))
3312 		goto out_unlock;
3313 
3314 out_dump:
3315 	block = key_block(c, key);
3316 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3317 		  (unsigned long)inode->i_ino, size,
3318 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3319 	mutex_unlock(&c->tnc_mutex);
3320 	ubifs_dump_inode(c, inode);
3321 	dump_stack();
3322 	return -EINVAL;
3323 
3324 out_unlock:
3325 	mutex_unlock(&c->tnc_mutex);
3326 	return err;
3327 }
3328