1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 38 struct ubifs_zbranch *zbr); 39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 40 struct ubifs_zbranch *zbr, void *node); 41 42 /* 43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 44 * @NAME_LESS: name corresponding to the first argument is less than second 45 * @NAME_MATCHES: names match 46 * @NAME_GREATER: name corresponding to the second argument is greater than 47 * first 48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 49 * 50 * These constants were introduce to improve readability. 51 */ 52 enum { 53 NAME_LESS = 0, 54 NAME_MATCHES = 1, 55 NAME_GREATER = 2, 56 NOT_ON_MEDIA = 3, 57 }; 58 59 /** 60 * insert_old_idx - record an index node obsoleted since the last commit start. 61 * @c: UBIFS file-system description object 62 * @lnum: LEB number of obsoleted index node 63 * @offs: offset of obsoleted index node 64 * 65 * Returns %0 on success, and a negative error code on failure. 66 * 67 * For recovery, there must always be a complete intact version of the index on 68 * flash at all times. That is called the "old index". It is the index as at the 69 * time of the last successful commit. Many of the index nodes in the old index 70 * may be dirty, but they must not be erased until the next successful commit 71 * (at which point that index becomes the old index). 72 * 73 * That means that the garbage collection and the in-the-gaps method of 74 * committing must be able to determine if an index node is in the old index. 75 * Most of the old index nodes can be found by looking up the TNC using the 76 * 'lookup_znode()' function. However, some of the old index nodes may have 77 * been deleted from the current index or may have been changed so much that 78 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 79 * That is what this function does. The RB-tree is ordered by LEB number and 80 * offset because they uniquely identify the old index node. 81 */ 82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 83 { 84 struct ubifs_old_idx *old_idx, *o; 85 struct rb_node **p, *parent = NULL; 86 87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 88 if (unlikely(!old_idx)) 89 return -ENOMEM; 90 old_idx->lnum = lnum; 91 old_idx->offs = offs; 92 93 p = &c->old_idx.rb_node; 94 while (*p) { 95 parent = *p; 96 o = rb_entry(parent, struct ubifs_old_idx, rb); 97 if (lnum < o->lnum) 98 p = &(*p)->rb_left; 99 else if (lnum > o->lnum) 100 p = &(*p)->rb_right; 101 else if (offs < o->offs) 102 p = &(*p)->rb_left; 103 else if (offs > o->offs) 104 p = &(*p)->rb_right; 105 else { 106 ubifs_err(c, "old idx added twice!"); 107 kfree(old_idx); 108 return 0; 109 } 110 } 111 rb_link_node(&old_idx->rb, parent, p); 112 rb_insert_color(&old_idx->rb, &c->old_idx); 113 return 0; 114 } 115 116 /** 117 * insert_old_idx_znode - record a znode obsoleted since last commit start. 118 * @c: UBIFS file-system description object 119 * @znode: znode of obsoleted index node 120 * 121 * Returns %0 on success, and a negative error code on failure. 122 */ 123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 124 { 125 if (znode->parent) { 126 struct ubifs_zbranch *zbr; 127 128 zbr = &znode->parent->zbranch[znode->iip]; 129 if (zbr->len) 130 return insert_old_idx(c, zbr->lnum, zbr->offs); 131 } else 132 if (c->zroot.len) 133 return insert_old_idx(c, c->zroot.lnum, 134 c->zroot.offs); 135 return 0; 136 } 137 138 /** 139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 140 * @c: UBIFS file-system description object 141 * @znode: znode of obsoleted index node 142 * 143 * Returns %0 on success, and a negative error code on failure. 144 */ 145 static int ins_clr_old_idx_znode(struct ubifs_info *c, 146 struct ubifs_znode *znode) 147 { 148 int err; 149 150 if (znode->parent) { 151 struct ubifs_zbranch *zbr; 152 153 zbr = &znode->parent->zbranch[znode->iip]; 154 if (zbr->len) { 155 err = insert_old_idx(c, zbr->lnum, zbr->offs); 156 if (err) 157 return err; 158 zbr->lnum = 0; 159 zbr->offs = 0; 160 zbr->len = 0; 161 } 162 } else 163 if (c->zroot.len) { 164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 165 if (err) 166 return err; 167 c->zroot.lnum = 0; 168 c->zroot.offs = 0; 169 c->zroot.len = 0; 170 } 171 return 0; 172 } 173 174 /** 175 * destroy_old_idx - destroy the old_idx RB-tree. 176 * @c: UBIFS file-system description object 177 * 178 * During start commit, the old_idx RB-tree is used to avoid overwriting index 179 * nodes that were in the index last commit but have since been deleted. This 180 * is necessary for recovery i.e. the old index must be kept intact until the 181 * new index is successfully written. The old-idx RB-tree is used for the 182 * in-the-gaps method of writing index nodes and is destroyed every commit. 183 */ 184 void destroy_old_idx(struct ubifs_info *c) 185 { 186 struct ubifs_old_idx *old_idx, *n; 187 188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 189 kfree(old_idx); 190 191 c->old_idx = RB_ROOT; 192 } 193 194 /** 195 * copy_znode - copy a dirty znode. 196 * @c: UBIFS file-system description object 197 * @znode: znode to copy 198 * 199 * A dirty znode being committed may not be changed, so it is copied. 200 */ 201 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 202 struct ubifs_znode *znode) 203 { 204 struct ubifs_znode *zn; 205 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 207 if (unlikely(!zn)) 208 return ERR_PTR(-ENOMEM); 209 210 zn->cnext = NULL; 211 __set_bit(DIRTY_ZNODE, &zn->flags); 212 __clear_bit(COW_ZNODE, &zn->flags); 213 214 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 215 __set_bit(OBSOLETE_ZNODE, &znode->flags); 216 217 if (znode->level != 0) { 218 int i; 219 const int n = zn->child_cnt; 220 221 /* The children now have new parent */ 222 for (i = 0; i < n; i++) { 223 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 224 225 if (zbr->znode) 226 zbr->znode->parent = zn; 227 } 228 } 229 230 atomic_long_inc(&c->dirty_zn_cnt); 231 return zn; 232 } 233 234 /** 235 * add_idx_dirt - add dirt due to a dirty znode. 236 * @c: UBIFS file-system description object 237 * @lnum: LEB number of index node 238 * @dirt: size of index node 239 * 240 * This function updates lprops dirty space and the new size of the index. 241 */ 242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 243 { 244 c->calc_idx_sz -= ALIGN(dirt, 8); 245 return ubifs_add_dirt(c, lnum, dirt); 246 } 247 248 /** 249 * dirty_cow_znode - ensure a znode is not being committed. 250 * @c: UBIFS file-system description object 251 * @zbr: branch of znode to check 252 * 253 * Returns dirtied znode on success or negative error code on failure. 254 */ 255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 256 struct ubifs_zbranch *zbr) 257 { 258 struct ubifs_znode *znode = zbr->znode; 259 struct ubifs_znode *zn; 260 int err; 261 262 if (!ubifs_zn_cow(znode)) { 263 /* znode is not being committed */ 264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 265 atomic_long_inc(&c->dirty_zn_cnt); 266 atomic_long_dec(&c->clean_zn_cnt); 267 atomic_long_dec(&ubifs_clean_zn_cnt); 268 err = add_idx_dirt(c, zbr->lnum, zbr->len); 269 if (unlikely(err)) 270 return ERR_PTR(err); 271 } 272 return znode; 273 } 274 275 zn = copy_znode(c, znode); 276 if (IS_ERR(zn)) 277 return zn; 278 279 if (zbr->len) { 280 err = insert_old_idx(c, zbr->lnum, zbr->offs); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 err = add_idx_dirt(c, zbr->lnum, zbr->len); 284 } else 285 err = 0; 286 287 zbr->znode = zn; 288 zbr->lnum = 0; 289 zbr->offs = 0; 290 zbr->len = 0; 291 292 if (unlikely(err)) 293 return ERR_PTR(err); 294 return zn; 295 } 296 297 /** 298 * lnc_add - add a leaf node to the leaf node cache. 299 * @c: UBIFS file-system description object 300 * @zbr: zbranch of leaf node 301 * @node: leaf node 302 * 303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 304 * purpose of the leaf node cache is to save re-reading the same leaf node over 305 * and over again. Most things are cached by VFS, however the file system must 306 * cache directory entries for readdir and for resolving hash collisions. The 307 * present implementation of the leaf node cache is extremely simple, and 308 * allows for error returns that are not used but that may be needed if a more 309 * complex implementation is created. 310 * 311 * Note, this function does not add the @node object to LNC directly, but 312 * allocates a copy of the object and adds the copy to LNC. The reason for this 313 * is that @node has been allocated outside of the TNC subsystem and will be 314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 315 * may be changed at any time, e.g. freed by the shrinker. 316 */ 317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 318 const void *node) 319 { 320 int err; 321 void *lnc_node; 322 const struct ubifs_dent_node *dent = node; 323 324 ubifs_assert(c, !zbr->leaf); 325 ubifs_assert(c, zbr->len != 0); 326 ubifs_assert(c, is_hash_key(c, &zbr->key)); 327 328 err = ubifs_validate_entry(c, dent); 329 if (err) { 330 dump_stack(); 331 ubifs_dump_node(c, dent); 332 return err; 333 } 334 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 336 if (!lnc_node) 337 /* We don't have to have the cache, so no error */ 338 return 0; 339 340 zbr->leaf = lnc_node; 341 return 0; 342 } 343 344 /** 345 * lnc_add_directly - add a leaf node to the leaf-node-cache. 346 * @c: UBIFS file-system description object 347 * @zbr: zbranch of leaf node 348 * @node: leaf node 349 * 350 * This function is similar to 'lnc_add()', but it does not create a copy of 351 * @node but inserts @node to TNC directly. 352 */ 353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 354 void *node) 355 { 356 int err; 357 358 ubifs_assert(c, !zbr->leaf); 359 ubifs_assert(c, zbr->len != 0); 360 361 err = ubifs_validate_entry(c, node); 362 if (err) { 363 dump_stack(); 364 ubifs_dump_node(c, node); 365 return err; 366 } 367 368 zbr->leaf = node; 369 return 0; 370 } 371 372 /** 373 * lnc_free - remove a leaf node from the leaf node cache. 374 * @zbr: zbranch of leaf node 375 * @node: leaf node 376 */ 377 static void lnc_free(struct ubifs_zbranch *zbr) 378 { 379 if (!zbr->leaf) 380 return; 381 kfree(zbr->leaf); 382 zbr->leaf = NULL; 383 } 384 385 /** 386 * tnc_read_hashed_node - read a "hashed" leaf node. 387 * @c: UBIFS file-system description object 388 * @zbr: key and position of the node 389 * @node: node is returned here 390 * 391 * This function reads a "hashed" node defined by @zbr from the leaf node cache 392 * (in it is there) or from the hash media, in which case the node is also 393 * added to LNC. Returns zero in case of success or a negative negative error 394 * code in case of failure. 395 */ 396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 397 void *node) 398 { 399 int err; 400 401 ubifs_assert(c, is_hash_key(c, &zbr->key)); 402 403 if (zbr->leaf) { 404 /* Read from the leaf node cache */ 405 ubifs_assert(c, zbr->len != 0); 406 memcpy(node, zbr->leaf, zbr->len); 407 return 0; 408 } 409 410 if (c->replaying) { 411 err = fallible_read_node(c, &zbr->key, zbr, node); 412 /* 413 * When the node was not found, return -ENOENT, 0 otherwise. 414 * Negative return codes stay as-is. 415 */ 416 if (err == 0) 417 err = -ENOENT; 418 else if (err == 1) 419 err = 0; 420 } else { 421 err = ubifs_tnc_read_node(c, zbr, node); 422 } 423 if (err) 424 return err; 425 426 /* Add the node to the leaf node cache */ 427 err = lnc_add(c, zbr, node); 428 return err; 429 } 430 431 /** 432 * try_read_node - read a node if it is a node. 433 * @c: UBIFS file-system description object 434 * @buf: buffer to read to 435 * @type: node type 436 * @zbr: the zbranch describing the node to read 437 * 438 * This function tries to read a node of known type and length, checks it and 439 * stores it in @buf. This function returns %1 if a node is present and %0 if 440 * a node is not present. A negative error code is returned for I/O errors. 441 * This function performs that same function as ubifs_read_node except that 442 * it does not require that there is actually a node present and instead 443 * the return code indicates if a node was read. 444 * 445 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 446 * is true (it is controlled by corresponding mount option). However, if 447 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 448 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 449 * because during mounting or re-mounting from R/O mode to R/W mode we may read 450 * journal nodes (when replying the journal or doing the recovery) and the 451 * journal nodes may potentially be corrupted, so checking is required. 452 */ 453 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 454 struct ubifs_zbranch *zbr) 455 { 456 int len = zbr->len; 457 int lnum = zbr->lnum; 458 int offs = zbr->offs; 459 int err, node_len; 460 struct ubifs_ch *ch = buf; 461 uint32_t crc, node_crc; 462 463 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 464 465 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 466 if (err) { 467 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 468 type, lnum, offs, err); 469 return err; 470 } 471 472 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 473 return 0; 474 475 if (ch->node_type != type) 476 return 0; 477 478 node_len = le32_to_cpu(ch->len); 479 if (node_len != len) 480 return 0; 481 482 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting || 483 c->remounting_rw) { 484 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 485 node_crc = le32_to_cpu(ch->crc); 486 if (crc != node_crc) 487 return 0; 488 } 489 490 err = ubifs_node_check_hash(c, buf, zbr->hash); 491 if (err) { 492 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); 493 return 0; 494 } 495 496 return 1; 497 } 498 499 /** 500 * fallible_read_node - try to read a leaf node. 501 * @c: UBIFS file-system description object 502 * @key: key of node to read 503 * @zbr: position of node 504 * @node: node returned 505 * 506 * This function tries to read a node and returns %1 if the node is read, %0 507 * if the node is not present, and a negative error code in the case of error. 508 */ 509 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 510 struct ubifs_zbranch *zbr, void *node) 511 { 512 int ret; 513 514 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 515 516 ret = try_read_node(c, node, key_type(c, key), zbr); 517 if (ret == 1) { 518 union ubifs_key node_key; 519 struct ubifs_dent_node *dent = node; 520 521 /* All nodes have key in the same place */ 522 key_read(c, &dent->key, &node_key); 523 if (keys_cmp(c, key, &node_key) != 0) 524 ret = 0; 525 } 526 if (ret == 0 && c->replaying) 527 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 528 zbr->lnum, zbr->offs, zbr->len); 529 return ret; 530 } 531 532 /** 533 * matches_name - determine if a direntry or xattr entry matches a given name. 534 * @c: UBIFS file-system description object 535 * @zbr: zbranch of dent 536 * @nm: name to match 537 * 538 * This function checks if xentry/direntry referred by zbranch @zbr matches name 539 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 540 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 541 * of failure, a negative error code is returned. 542 */ 543 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 544 const struct fscrypt_name *nm) 545 { 546 struct ubifs_dent_node *dent; 547 int nlen, err; 548 549 /* If possible, match against the dent in the leaf node cache */ 550 if (!zbr->leaf) { 551 dent = kmalloc(zbr->len, GFP_NOFS); 552 if (!dent) 553 return -ENOMEM; 554 555 err = ubifs_tnc_read_node(c, zbr, dent); 556 if (err) 557 goto out_free; 558 559 /* Add the node to the leaf node cache */ 560 err = lnc_add_directly(c, zbr, dent); 561 if (err) 562 goto out_free; 563 } else 564 dent = zbr->leaf; 565 566 nlen = le16_to_cpu(dent->nlen); 567 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 568 if (err == 0) { 569 if (nlen == fname_len(nm)) 570 return NAME_MATCHES; 571 else if (nlen < fname_len(nm)) 572 return NAME_LESS; 573 else 574 return NAME_GREATER; 575 } else if (err < 0) 576 return NAME_LESS; 577 else 578 return NAME_GREATER; 579 580 out_free: 581 kfree(dent); 582 return err; 583 } 584 585 /** 586 * get_znode - get a TNC znode that may not be loaded yet. 587 * @c: UBIFS file-system description object 588 * @znode: parent znode 589 * @n: znode branch slot number 590 * 591 * This function returns the znode or a negative error code. 592 */ 593 static struct ubifs_znode *get_znode(struct ubifs_info *c, 594 struct ubifs_znode *znode, int n) 595 { 596 struct ubifs_zbranch *zbr; 597 598 zbr = &znode->zbranch[n]; 599 if (zbr->znode) 600 znode = zbr->znode; 601 else 602 znode = ubifs_load_znode(c, zbr, znode, n); 603 return znode; 604 } 605 606 /** 607 * tnc_next - find next TNC entry. 608 * @c: UBIFS file-system description object 609 * @zn: znode is passed and returned here 610 * @n: znode branch slot number is passed and returned here 611 * 612 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 613 * no next entry, or a negative error code otherwise. 614 */ 615 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 616 { 617 struct ubifs_znode *znode = *zn; 618 int nn = *n; 619 620 nn += 1; 621 if (nn < znode->child_cnt) { 622 *n = nn; 623 return 0; 624 } 625 while (1) { 626 struct ubifs_znode *zp; 627 628 zp = znode->parent; 629 if (!zp) 630 return -ENOENT; 631 nn = znode->iip + 1; 632 znode = zp; 633 if (nn < znode->child_cnt) { 634 znode = get_znode(c, znode, nn); 635 if (IS_ERR(znode)) 636 return PTR_ERR(znode); 637 while (znode->level != 0) { 638 znode = get_znode(c, znode, 0); 639 if (IS_ERR(znode)) 640 return PTR_ERR(znode); 641 } 642 nn = 0; 643 break; 644 } 645 } 646 *zn = znode; 647 *n = nn; 648 return 0; 649 } 650 651 /** 652 * tnc_prev - find previous TNC entry. 653 * @c: UBIFS file-system description object 654 * @zn: znode is returned here 655 * @n: znode branch slot number is passed and returned here 656 * 657 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 658 * there is no next entry, or a negative error code otherwise. 659 */ 660 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 661 { 662 struct ubifs_znode *znode = *zn; 663 int nn = *n; 664 665 if (nn > 0) { 666 *n = nn - 1; 667 return 0; 668 } 669 while (1) { 670 struct ubifs_znode *zp; 671 672 zp = znode->parent; 673 if (!zp) 674 return -ENOENT; 675 nn = znode->iip - 1; 676 znode = zp; 677 if (nn >= 0) { 678 znode = get_znode(c, znode, nn); 679 if (IS_ERR(znode)) 680 return PTR_ERR(znode); 681 while (znode->level != 0) { 682 nn = znode->child_cnt - 1; 683 znode = get_znode(c, znode, nn); 684 if (IS_ERR(znode)) 685 return PTR_ERR(znode); 686 } 687 nn = znode->child_cnt - 1; 688 break; 689 } 690 } 691 *zn = znode; 692 *n = nn; 693 return 0; 694 } 695 696 /** 697 * resolve_collision - resolve a collision. 698 * @c: UBIFS file-system description object 699 * @key: key of a directory or extended attribute entry 700 * @zn: znode is returned here 701 * @n: zbranch number is passed and returned here 702 * @nm: name of the entry 703 * 704 * This function is called for "hashed" keys to make sure that the found key 705 * really corresponds to the looked up node (directory or extended attribute 706 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 707 * %0 is returned if @nm is not found and @zn and @n are set to the previous 708 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 709 * This means that @n may be set to %-1 if the leftmost key in @zn is the 710 * previous one. A negative error code is returned on failures. 711 */ 712 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 713 struct ubifs_znode **zn, int *n, 714 const struct fscrypt_name *nm) 715 { 716 int err; 717 718 err = matches_name(c, &(*zn)->zbranch[*n], nm); 719 if (unlikely(err < 0)) 720 return err; 721 if (err == NAME_MATCHES) 722 return 1; 723 724 if (err == NAME_GREATER) { 725 /* Look left */ 726 while (1) { 727 err = tnc_prev(c, zn, n); 728 if (err == -ENOENT) { 729 ubifs_assert(c, *n == 0); 730 *n = -1; 731 return 0; 732 } 733 if (err < 0) 734 return err; 735 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 736 /* 737 * We have found the branch after which we would 738 * like to insert, but inserting in this znode 739 * may still be wrong. Consider the following 3 740 * znodes, in the case where we are resolving a 741 * collision with Key2. 742 * 743 * znode zp 744 * ---------------------- 745 * level 1 | Key0 | Key1 | 746 * ----------------------- 747 * | | 748 * znode za | | znode zb 749 * ------------ ------------ 750 * level 0 | Key0 | | Key2 | 751 * ------------ ------------ 752 * 753 * The lookup finds Key2 in znode zb. Lets say 754 * there is no match and the name is greater so 755 * we look left. When we find Key0, we end up 756 * here. If we return now, we will insert into 757 * znode za at slot n = 1. But that is invalid 758 * according to the parent's keys. Key2 must 759 * be inserted into znode zb. 760 * 761 * Note, this problem is not relevant for the 762 * case when we go right, because 763 * 'tnc_insert()' would correct the parent key. 764 */ 765 if (*n == (*zn)->child_cnt - 1) { 766 err = tnc_next(c, zn, n); 767 if (err) { 768 /* Should be impossible */ 769 ubifs_assert(c, 0); 770 if (err == -ENOENT) 771 err = -EINVAL; 772 return err; 773 } 774 ubifs_assert(c, *n == 0); 775 *n = -1; 776 } 777 return 0; 778 } 779 err = matches_name(c, &(*zn)->zbranch[*n], nm); 780 if (err < 0) 781 return err; 782 if (err == NAME_LESS) 783 return 0; 784 if (err == NAME_MATCHES) 785 return 1; 786 ubifs_assert(c, err == NAME_GREATER); 787 } 788 } else { 789 int nn = *n; 790 struct ubifs_znode *znode = *zn; 791 792 /* Look right */ 793 while (1) { 794 err = tnc_next(c, &znode, &nn); 795 if (err == -ENOENT) 796 return 0; 797 if (err < 0) 798 return err; 799 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 800 return 0; 801 err = matches_name(c, &znode->zbranch[nn], nm); 802 if (err < 0) 803 return err; 804 if (err == NAME_GREATER) 805 return 0; 806 *zn = znode; 807 *n = nn; 808 if (err == NAME_MATCHES) 809 return 1; 810 ubifs_assert(c, err == NAME_LESS); 811 } 812 } 813 } 814 815 /** 816 * fallible_matches_name - determine if a dent matches a given name. 817 * @c: UBIFS file-system description object 818 * @zbr: zbranch of dent 819 * @nm: name to match 820 * 821 * This is a "fallible" version of 'matches_name()' function which does not 822 * panic if the direntry/xentry referred by @zbr does not exist on the media. 823 * 824 * This function checks if xentry/direntry referred by zbranch @zbr matches name 825 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 826 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 827 * if xentry/direntry referred by @zbr does not exist on the media. A negative 828 * error code is returned in case of failure. 829 */ 830 static int fallible_matches_name(struct ubifs_info *c, 831 struct ubifs_zbranch *zbr, 832 const struct fscrypt_name *nm) 833 { 834 struct ubifs_dent_node *dent; 835 int nlen, err; 836 837 /* If possible, match against the dent in the leaf node cache */ 838 if (!zbr->leaf) { 839 dent = kmalloc(zbr->len, GFP_NOFS); 840 if (!dent) 841 return -ENOMEM; 842 843 err = fallible_read_node(c, &zbr->key, zbr, dent); 844 if (err < 0) 845 goto out_free; 846 if (err == 0) { 847 /* The node was not present */ 848 err = NOT_ON_MEDIA; 849 goto out_free; 850 } 851 ubifs_assert(c, err == 1); 852 853 err = lnc_add_directly(c, zbr, dent); 854 if (err) 855 goto out_free; 856 } else 857 dent = zbr->leaf; 858 859 nlen = le16_to_cpu(dent->nlen); 860 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 861 if (err == 0) { 862 if (nlen == fname_len(nm)) 863 return NAME_MATCHES; 864 else if (nlen < fname_len(nm)) 865 return NAME_LESS; 866 else 867 return NAME_GREATER; 868 } else if (err < 0) 869 return NAME_LESS; 870 else 871 return NAME_GREATER; 872 873 out_free: 874 kfree(dent); 875 return err; 876 } 877 878 /** 879 * fallible_resolve_collision - resolve a collision even if nodes are missing. 880 * @c: UBIFS file-system description object 881 * @key: key 882 * @zn: znode is returned here 883 * @n: branch number is passed and returned here 884 * @nm: name of directory entry 885 * @adding: indicates caller is adding a key to the TNC 886 * 887 * This is a "fallible" version of the 'resolve_collision()' function which 888 * does not panic if one of the nodes referred to by TNC does not exist on the 889 * media. This may happen when replaying the journal if a deleted node was 890 * Garbage-collected and the commit was not done. A branch that refers to a node 891 * that is not present is called a dangling branch. The following are the return 892 * codes for this function: 893 * o if @nm was found, %1 is returned and @zn and @n are set to the found 894 * branch; 895 * o if we are @adding and @nm was not found, %0 is returned; 896 * o if we are not @adding and @nm was not found, but a dangling branch was 897 * found, then %1 is returned and @zn and @n are set to the dangling branch; 898 * o a negative error code is returned in case of failure. 899 */ 900 static int fallible_resolve_collision(struct ubifs_info *c, 901 const union ubifs_key *key, 902 struct ubifs_znode **zn, int *n, 903 const struct fscrypt_name *nm, 904 int adding) 905 { 906 struct ubifs_znode *o_znode = NULL, *znode = *zn; 907 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 908 909 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 910 if (unlikely(cmp < 0)) 911 return cmp; 912 if (cmp == NAME_MATCHES) 913 return 1; 914 if (cmp == NOT_ON_MEDIA) { 915 o_znode = znode; 916 o_n = nn; 917 /* 918 * We are unlucky and hit a dangling branch straight away. 919 * Now we do not really know where to go to find the needed 920 * branch - to the left or to the right. Well, let's try left. 921 */ 922 unsure = 1; 923 } else if (!adding) 924 unsure = 1; /* Remove a dangling branch wherever it is */ 925 926 if (cmp == NAME_GREATER || unsure) { 927 /* Look left */ 928 while (1) { 929 err = tnc_prev(c, zn, n); 930 if (err == -ENOENT) { 931 ubifs_assert(c, *n == 0); 932 *n = -1; 933 break; 934 } 935 if (err < 0) 936 return err; 937 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 938 /* See comments in 'resolve_collision()' */ 939 if (*n == (*zn)->child_cnt - 1) { 940 err = tnc_next(c, zn, n); 941 if (err) { 942 /* Should be impossible */ 943 ubifs_assert(c, 0); 944 if (err == -ENOENT) 945 err = -EINVAL; 946 return err; 947 } 948 ubifs_assert(c, *n == 0); 949 *n = -1; 950 } 951 break; 952 } 953 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 954 if (err < 0) 955 return err; 956 if (err == NAME_MATCHES) 957 return 1; 958 if (err == NOT_ON_MEDIA) { 959 o_znode = *zn; 960 o_n = *n; 961 continue; 962 } 963 if (!adding) 964 continue; 965 if (err == NAME_LESS) 966 break; 967 else 968 unsure = 0; 969 } 970 } 971 972 if (cmp == NAME_LESS || unsure) { 973 /* Look right */ 974 *zn = znode; 975 *n = nn; 976 while (1) { 977 err = tnc_next(c, &znode, &nn); 978 if (err == -ENOENT) 979 break; 980 if (err < 0) 981 return err; 982 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 983 break; 984 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 985 if (err < 0) 986 return err; 987 if (err == NAME_GREATER) 988 break; 989 *zn = znode; 990 *n = nn; 991 if (err == NAME_MATCHES) 992 return 1; 993 if (err == NOT_ON_MEDIA) { 994 o_znode = znode; 995 o_n = nn; 996 } 997 } 998 } 999 1000 /* Never match a dangling branch when adding */ 1001 if (adding || !o_znode) 1002 return 0; 1003 1004 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 1005 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1006 o_znode->zbranch[o_n].len); 1007 *zn = o_znode; 1008 *n = o_n; 1009 return 1; 1010 } 1011 1012 /** 1013 * matches_position - determine if a zbranch matches a given position. 1014 * @zbr: zbranch of dent 1015 * @lnum: LEB number of dent to match 1016 * @offs: offset of dent to match 1017 * 1018 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1019 */ 1020 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1021 { 1022 if (zbr->lnum == lnum && zbr->offs == offs) 1023 return 1; 1024 else 1025 return 0; 1026 } 1027 1028 /** 1029 * resolve_collision_directly - resolve a collision directly. 1030 * @c: UBIFS file-system description object 1031 * @key: key of directory entry 1032 * @zn: znode is passed and returned here 1033 * @n: zbranch number is passed and returned here 1034 * @lnum: LEB number of dent node to match 1035 * @offs: offset of dent node to match 1036 * 1037 * This function is used for "hashed" keys to make sure the found directory or 1038 * extended attribute entry node is what was looked for. It is used when the 1039 * flash address of the right node is known (@lnum:@offs) which makes it much 1040 * easier to resolve collisions (no need to read entries and match full 1041 * names). This function returns %1 and sets @zn and @n if the collision is 1042 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1043 * previous directory entry. Otherwise a negative error code is returned. 1044 */ 1045 static int resolve_collision_directly(struct ubifs_info *c, 1046 const union ubifs_key *key, 1047 struct ubifs_znode **zn, int *n, 1048 int lnum, int offs) 1049 { 1050 struct ubifs_znode *znode; 1051 int nn, err; 1052 1053 znode = *zn; 1054 nn = *n; 1055 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1056 return 1; 1057 1058 /* Look left */ 1059 while (1) { 1060 err = tnc_prev(c, &znode, &nn); 1061 if (err == -ENOENT) 1062 break; 1063 if (err < 0) 1064 return err; 1065 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1066 break; 1067 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1068 *zn = znode; 1069 *n = nn; 1070 return 1; 1071 } 1072 } 1073 1074 /* Look right */ 1075 znode = *zn; 1076 nn = *n; 1077 while (1) { 1078 err = tnc_next(c, &znode, &nn); 1079 if (err == -ENOENT) 1080 return 0; 1081 if (err < 0) 1082 return err; 1083 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1084 return 0; 1085 *zn = znode; 1086 *n = nn; 1087 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1088 return 1; 1089 } 1090 } 1091 1092 /** 1093 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1094 * @c: UBIFS file-system description object 1095 * @znode: znode to dirty 1096 * 1097 * If we do not have a unique key that resides in a znode, then we cannot 1098 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1099 * This function records the path back to the last dirty ancestor, and then 1100 * dirties the znodes on that path. 1101 */ 1102 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1103 struct ubifs_znode *znode) 1104 { 1105 struct ubifs_znode *zp; 1106 int *path = c->bottom_up_buf, p = 0; 1107 1108 ubifs_assert(c, c->zroot.znode); 1109 ubifs_assert(c, znode); 1110 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1111 kfree(c->bottom_up_buf); 1112 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1113 sizeof(int), 1114 GFP_NOFS); 1115 if (!c->bottom_up_buf) 1116 return ERR_PTR(-ENOMEM); 1117 path = c->bottom_up_buf; 1118 } 1119 if (c->zroot.znode->level) { 1120 /* Go up until parent is dirty */ 1121 while (1) { 1122 int n; 1123 1124 zp = znode->parent; 1125 if (!zp) 1126 break; 1127 n = znode->iip; 1128 ubifs_assert(c, p < c->zroot.znode->level); 1129 path[p++] = n; 1130 if (!zp->cnext && ubifs_zn_dirty(znode)) 1131 break; 1132 znode = zp; 1133 } 1134 } 1135 1136 /* Come back down, dirtying as we go */ 1137 while (1) { 1138 struct ubifs_zbranch *zbr; 1139 1140 zp = znode->parent; 1141 if (zp) { 1142 ubifs_assert(c, path[p - 1] >= 0); 1143 ubifs_assert(c, path[p - 1] < zp->child_cnt); 1144 zbr = &zp->zbranch[path[--p]]; 1145 znode = dirty_cow_znode(c, zbr); 1146 } else { 1147 ubifs_assert(c, znode == c->zroot.znode); 1148 znode = dirty_cow_znode(c, &c->zroot); 1149 } 1150 if (IS_ERR(znode) || !p) 1151 break; 1152 ubifs_assert(c, path[p - 1] >= 0); 1153 ubifs_assert(c, path[p - 1] < znode->child_cnt); 1154 znode = znode->zbranch[path[p - 1]].znode; 1155 } 1156 1157 return znode; 1158 } 1159 1160 /** 1161 * ubifs_lookup_level0 - search for zero-level znode. 1162 * @c: UBIFS file-system description object 1163 * @key: key to lookup 1164 * @zn: znode is returned here 1165 * @n: znode branch slot number is returned here 1166 * 1167 * This function looks up the TNC tree and search for zero-level znode which 1168 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1169 * cases: 1170 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1171 * is returned and slot number of the matched branch is stored in @n; 1172 * o not exact match, which means that zero-level znode does not contain 1173 * @key, then %0 is returned and slot number of the closest branch is stored 1174 * in @n; 1175 * o @key is so small that it is even less than the lowest key of the 1176 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1177 * 1178 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1179 * function reads corresponding indexing nodes and inserts them to TNC. In 1180 * case of failure, a negative error code is returned. 1181 */ 1182 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1183 struct ubifs_znode **zn, int *n) 1184 { 1185 int err, exact; 1186 struct ubifs_znode *znode; 1187 time64_t time = ktime_get_seconds(); 1188 1189 dbg_tnck(key, "search key "); 1190 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 1191 1192 znode = c->zroot.znode; 1193 if (unlikely(!znode)) { 1194 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1195 if (IS_ERR(znode)) 1196 return PTR_ERR(znode); 1197 } 1198 1199 znode->time = time; 1200 1201 while (1) { 1202 struct ubifs_zbranch *zbr; 1203 1204 exact = ubifs_search_zbranch(c, znode, key, n); 1205 1206 if (znode->level == 0) 1207 break; 1208 1209 if (*n < 0) 1210 *n = 0; 1211 zbr = &znode->zbranch[*n]; 1212 1213 if (zbr->znode) { 1214 znode->time = time; 1215 znode = zbr->znode; 1216 continue; 1217 } 1218 1219 /* znode is not in TNC cache, load it from the media */ 1220 znode = ubifs_load_znode(c, zbr, znode, *n); 1221 if (IS_ERR(znode)) 1222 return PTR_ERR(znode); 1223 } 1224 1225 *zn = znode; 1226 if (exact || !is_hash_key(c, key) || *n != -1) { 1227 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1228 return exact; 1229 } 1230 1231 /* 1232 * Here is a tricky place. We have not found the key and this is a 1233 * "hashed" key, which may collide. The rest of the code deals with 1234 * situations like this: 1235 * 1236 * | 3 | 5 | 1237 * / \ 1238 * | 3 | 5 | | 6 | 7 | (x) 1239 * 1240 * Or more a complex example: 1241 * 1242 * | 1 | 5 | 1243 * / \ 1244 * | 1 | 3 | | 5 | 8 | 1245 * \ / 1246 * | 5 | 5 | | 6 | 7 | (x) 1247 * 1248 * In the examples, if we are looking for key "5", we may reach nodes 1249 * marked with "(x)". In this case what we have do is to look at the 1250 * left and see if there is "5" key there. If there is, we have to 1251 * return it. 1252 * 1253 * Note, this whole situation is possible because we allow to have 1254 * elements which are equivalent to the next key in the parent in the 1255 * children of current znode. For example, this happens if we split a 1256 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1257 * like this: 1258 * | 3 | 5 | 1259 * / \ 1260 * | 3 | 5 | | 5 | 6 | 7 | 1261 * ^ 1262 * And this becomes what is at the first "picture" after key "5" marked 1263 * with "^" is removed. What could be done is we could prohibit 1264 * splitting in the middle of the colliding sequence. Also, when 1265 * removing the leftmost key, we would have to correct the key of the 1266 * parent node, which would introduce additional complications. Namely, 1267 * if we changed the leftmost key of the parent znode, the garbage 1268 * collector would be unable to find it (GC is doing this when GC'ing 1269 * indexing LEBs). Although we already have an additional RB-tree where 1270 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1271 * after the commit. But anyway, this does not look easy to implement 1272 * so we did not try this. 1273 */ 1274 err = tnc_prev(c, &znode, n); 1275 if (err == -ENOENT) { 1276 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1277 *n = -1; 1278 return 0; 1279 } 1280 if (unlikely(err < 0)) 1281 return err; 1282 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1283 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1284 *n = -1; 1285 return 0; 1286 } 1287 1288 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1289 *zn = znode; 1290 return 1; 1291 } 1292 1293 /** 1294 * lookup_level0_dirty - search for zero-level znode dirtying. 1295 * @c: UBIFS file-system description object 1296 * @key: key to lookup 1297 * @zn: znode is returned here 1298 * @n: znode branch slot number is returned here 1299 * 1300 * This function looks up the TNC tree and search for zero-level znode which 1301 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1302 * cases: 1303 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1304 * is returned and slot number of the matched branch is stored in @n; 1305 * o not exact match, which means that zero-level znode does not contain @key 1306 * then %0 is returned and slot number of the closed branch is stored in 1307 * @n; 1308 * o @key is so small that it is even less than the lowest key of the 1309 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1310 * 1311 * Additionally all znodes in the path from the root to the located zero-level 1312 * znode are marked as dirty. 1313 * 1314 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1315 * function reads corresponding indexing nodes and inserts them to TNC. In 1316 * case of failure, a negative error code is returned. 1317 */ 1318 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1319 struct ubifs_znode **zn, int *n) 1320 { 1321 int err, exact; 1322 struct ubifs_znode *znode; 1323 time64_t time = ktime_get_seconds(); 1324 1325 dbg_tnck(key, "search and dirty key "); 1326 1327 znode = c->zroot.znode; 1328 if (unlikely(!znode)) { 1329 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1330 if (IS_ERR(znode)) 1331 return PTR_ERR(znode); 1332 } 1333 1334 znode = dirty_cow_znode(c, &c->zroot); 1335 if (IS_ERR(znode)) 1336 return PTR_ERR(znode); 1337 1338 znode->time = time; 1339 1340 while (1) { 1341 struct ubifs_zbranch *zbr; 1342 1343 exact = ubifs_search_zbranch(c, znode, key, n); 1344 1345 if (znode->level == 0) 1346 break; 1347 1348 if (*n < 0) 1349 *n = 0; 1350 zbr = &znode->zbranch[*n]; 1351 1352 if (zbr->znode) { 1353 znode->time = time; 1354 znode = dirty_cow_znode(c, zbr); 1355 if (IS_ERR(znode)) 1356 return PTR_ERR(znode); 1357 continue; 1358 } 1359 1360 /* znode is not in TNC cache, load it from the media */ 1361 znode = ubifs_load_znode(c, zbr, znode, *n); 1362 if (IS_ERR(znode)) 1363 return PTR_ERR(znode); 1364 znode = dirty_cow_znode(c, zbr); 1365 if (IS_ERR(znode)) 1366 return PTR_ERR(znode); 1367 } 1368 1369 *zn = znode; 1370 if (exact || !is_hash_key(c, key) || *n != -1) { 1371 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1372 return exact; 1373 } 1374 1375 /* 1376 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1377 * code. 1378 */ 1379 err = tnc_prev(c, &znode, n); 1380 if (err == -ENOENT) { 1381 *n = -1; 1382 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1383 return 0; 1384 } 1385 if (unlikely(err < 0)) 1386 return err; 1387 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1388 *n = -1; 1389 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1390 return 0; 1391 } 1392 1393 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1394 znode = dirty_cow_bottom_up(c, znode); 1395 if (IS_ERR(znode)) 1396 return PTR_ERR(znode); 1397 } 1398 1399 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1400 *zn = znode; 1401 return 1; 1402 } 1403 1404 /** 1405 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1406 * @c: UBIFS file-system description object 1407 * @lnum: LEB number 1408 * @gc_seq1: garbage collection sequence number 1409 * 1410 * This function determines if @lnum may have been garbage collected since 1411 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1412 * %0 is returned. 1413 */ 1414 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1415 { 1416 int gc_seq2, gced_lnum; 1417 1418 gced_lnum = c->gced_lnum; 1419 smp_rmb(); 1420 gc_seq2 = c->gc_seq; 1421 /* Same seq means no GC */ 1422 if (gc_seq1 == gc_seq2) 1423 return 0; 1424 /* Different by more than 1 means we don't know */ 1425 if (gc_seq1 + 1 != gc_seq2) 1426 return 1; 1427 /* 1428 * We have seen the sequence number has increased by 1. Now we need to 1429 * be sure we read the right LEB number, so read it again. 1430 */ 1431 smp_rmb(); 1432 if (gced_lnum != c->gced_lnum) 1433 return 1; 1434 /* Finally we can check lnum */ 1435 if (gced_lnum == lnum) 1436 return 1; 1437 return 0; 1438 } 1439 1440 /** 1441 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1442 * @c: UBIFS file-system description object 1443 * @key: node key to lookup 1444 * @node: the node is returned here 1445 * @lnum: LEB number is returned here 1446 * @offs: offset is returned here 1447 * 1448 * This function looks up and reads node with key @key. The caller has to make 1449 * sure the @node buffer is large enough to fit the node. Returns zero in case 1450 * of success, %-ENOENT if the node was not found, and a negative error code in 1451 * case of failure. The node location can be returned in @lnum and @offs. 1452 */ 1453 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1454 void *node, int *lnum, int *offs) 1455 { 1456 int found, n, err, safely = 0, gc_seq1; 1457 struct ubifs_znode *znode; 1458 struct ubifs_zbranch zbr, *zt; 1459 1460 again: 1461 mutex_lock(&c->tnc_mutex); 1462 found = ubifs_lookup_level0(c, key, &znode, &n); 1463 if (!found) { 1464 err = -ENOENT; 1465 goto out; 1466 } else if (found < 0) { 1467 err = found; 1468 goto out; 1469 } 1470 zt = &znode->zbranch[n]; 1471 if (lnum) { 1472 *lnum = zt->lnum; 1473 *offs = zt->offs; 1474 } 1475 if (is_hash_key(c, key)) { 1476 /* 1477 * In this case the leaf node cache gets used, so we pass the 1478 * address of the zbranch and keep the mutex locked 1479 */ 1480 err = tnc_read_hashed_node(c, zt, node); 1481 goto out; 1482 } 1483 if (safely) { 1484 err = ubifs_tnc_read_node(c, zt, node); 1485 goto out; 1486 } 1487 /* Drop the TNC mutex prematurely and race with garbage collection */ 1488 zbr = znode->zbranch[n]; 1489 gc_seq1 = c->gc_seq; 1490 mutex_unlock(&c->tnc_mutex); 1491 1492 if (ubifs_get_wbuf(c, zbr.lnum)) { 1493 /* We do not GC journal heads */ 1494 err = ubifs_tnc_read_node(c, &zbr, node); 1495 return err; 1496 } 1497 1498 err = fallible_read_node(c, key, &zbr, node); 1499 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1500 /* 1501 * The node may have been GC'ed out from under us so try again 1502 * while keeping the TNC mutex locked. 1503 */ 1504 safely = 1; 1505 goto again; 1506 } 1507 return 0; 1508 1509 out: 1510 mutex_unlock(&c->tnc_mutex); 1511 return err; 1512 } 1513 1514 /** 1515 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1516 * @c: UBIFS file-system description object 1517 * @bu: bulk-read parameters and results 1518 * 1519 * Lookup consecutive data node keys for the same inode that reside 1520 * consecutively in the same LEB. This function returns zero in case of success 1521 * and a negative error code in case of failure. 1522 * 1523 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1524 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1525 * maximum possible amount of nodes for bulk-read. 1526 */ 1527 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1528 { 1529 int n, err = 0, lnum = -1, uninitialized_var(offs); 1530 int uninitialized_var(len); 1531 unsigned int block = key_block(c, &bu->key); 1532 struct ubifs_znode *znode; 1533 1534 bu->cnt = 0; 1535 bu->blk_cnt = 0; 1536 bu->eof = 0; 1537 1538 mutex_lock(&c->tnc_mutex); 1539 /* Find first key */ 1540 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1541 if (err < 0) 1542 goto out; 1543 if (err) { 1544 /* Key found */ 1545 len = znode->zbranch[n].len; 1546 /* The buffer must be big enough for at least 1 node */ 1547 if (len > bu->buf_len) { 1548 err = -EINVAL; 1549 goto out; 1550 } 1551 /* Add this key */ 1552 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1553 bu->blk_cnt += 1; 1554 lnum = znode->zbranch[n].lnum; 1555 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1556 } 1557 while (1) { 1558 struct ubifs_zbranch *zbr; 1559 union ubifs_key *key; 1560 unsigned int next_block; 1561 1562 /* Find next key */ 1563 err = tnc_next(c, &znode, &n); 1564 if (err) 1565 goto out; 1566 zbr = &znode->zbranch[n]; 1567 key = &zbr->key; 1568 /* See if there is another data key for this file */ 1569 if (key_inum(c, key) != key_inum(c, &bu->key) || 1570 key_type(c, key) != UBIFS_DATA_KEY) { 1571 err = -ENOENT; 1572 goto out; 1573 } 1574 if (lnum < 0) { 1575 /* First key found */ 1576 lnum = zbr->lnum; 1577 offs = ALIGN(zbr->offs + zbr->len, 8); 1578 len = zbr->len; 1579 if (len > bu->buf_len) { 1580 err = -EINVAL; 1581 goto out; 1582 } 1583 } else { 1584 /* 1585 * The data nodes must be in consecutive positions in 1586 * the same LEB. 1587 */ 1588 if (zbr->lnum != lnum || zbr->offs != offs) 1589 goto out; 1590 offs += ALIGN(zbr->len, 8); 1591 len = ALIGN(len, 8) + zbr->len; 1592 /* Must not exceed buffer length */ 1593 if (len > bu->buf_len) 1594 goto out; 1595 } 1596 /* Allow for holes */ 1597 next_block = key_block(c, key); 1598 bu->blk_cnt += (next_block - block - 1); 1599 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1600 goto out; 1601 block = next_block; 1602 /* Add this key */ 1603 bu->zbranch[bu->cnt++] = *zbr; 1604 bu->blk_cnt += 1; 1605 /* See if we have room for more */ 1606 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1607 goto out; 1608 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1609 goto out; 1610 } 1611 out: 1612 if (err == -ENOENT) { 1613 bu->eof = 1; 1614 err = 0; 1615 } 1616 bu->gc_seq = c->gc_seq; 1617 mutex_unlock(&c->tnc_mutex); 1618 if (err) 1619 return err; 1620 /* 1621 * An enormous hole could cause bulk-read to encompass too many 1622 * page cache pages, so limit the number here. 1623 */ 1624 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1625 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1626 /* 1627 * Ensure that bulk-read covers a whole number of page cache 1628 * pages. 1629 */ 1630 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1631 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1632 return 0; 1633 if (bu->eof) { 1634 /* At the end of file we can round up */ 1635 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1636 return 0; 1637 } 1638 /* Exclude data nodes that do not make up a whole page cache page */ 1639 block = key_block(c, &bu->key) + bu->blk_cnt; 1640 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1641 while (bu->cnt) { 1642 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1643 break; 1644 bu->cnt -= 1; 1645 } 1646 return 0; 1647 } 1648 1649 /** 1650 * read_wbuf - bulk-read from a LEB with a wbuf. 1651 * @wbuf: wbuf that may overlap the read 1652 * @buf: buffer into which to read 1653 * @len: read length 1654 * @lnum: LEB number from which to read 1655 * @offs: offset from which to read 1656 * 1657 * This functions returns %0 on success or a negative error code on failure. 1658 */ 1659 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1660 int offs) 1661 { 1662 const struct ubifs_info *c = wbuf->c; 1663 int rlen, overlap; 1664 1665 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1666 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1667 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1668 ubifs_assert(c, offs + len <= c->leb_size); 1669 1670 spin_lock(&wbuf->lock); 1671 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1672 if (!overlap) { 1673 /* We may safely unlock the write-buffer and read the data */ 1674 spin_unlock(&wbuf->lock); 1675 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1676 } 1677 1678 /* Don't read under wbuf */ 1679 rlen = wbuf->offs - offs; 1680 if (rlen < 0) 1681 rlen = 0; 1682 1683 /* Copy the rest from the write-buffer */ 1684 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1685 spin_unlock(&wbuf->lock); 1686 1687 if (rlen > 0) 1688 /* Read everything that goes before write-buffer */ 1689 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * validate_data_node - validate data nodes for bulk-read. 1696 * @c: UBIFS file-system description object 1697 * @buf: buffer containing data node to validate 1698 * @zbr: zbranch of data node to validate 1699 * 1700 * This functions returns %0 on success or a negative error code on failure. 1701 */ 1702 static int validate_data_node(struct ubifs_info *c, void *buf, 1703 struct ubifs_zbranch *zbr) 1704 { 1705 union ubifs_key key1; 1706 struct ubifs_ch *ch = buf; 1707 int err, len; 1708 1709 if (ch->node_type != UBIFS_DATA_NODE) { 1710 ubifs_err(c, "bad node type (%d but expected %d)", 1711 ch->node_type, UBIFS_DATA_NODE); 1712 goto out_err; 1713 } 1714 1715 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1716 if (err) { 1717 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1718 goto out; 1719 } 1720 1721 err = ubifs_node_check_hash(c, buf, zbr->hash); 1722 if (err) { 1723 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); 1724 return err; 1725 } 1726 1727 len = le32_to_cpu(ch->len); 1728 if (len != zbr->len) { 1729 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1730 goto out_err; 1731 } 1732 1733 /* Make sure the key of the read node is correct */ 1734 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1735 if (!keys_eq(c, &zbr->key, &key1)) { 1736 ubifs_err(c, "bad key in node at LEB %d:%d", 1737 zbr->lnum, zbr->offs); 1738 dbg_tnck(&zbr->key, "looked for key "); 1739 dbg_tnck(&key1, "found node's key "); 1740 goto out_err; 1741 } 1742 1743 return 0; 1744 1745 out_err: 1746 err = -EINVAL; 1747 out: 1748 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1749 ubifs_dump_node(c, buf); 1750 dump_stack(); 1751 return err; 1752 } 1753 1754 /** 1755 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1756 * @c: UBIFS file-system description object 1757 * @bu: bulk-read parameters and results 1758 * 1759 * This functions reads and validates the data nodes that were identified by the 1760 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1761 * -EAGAIN to indicate a race with GC, or another negative error code on 1762 * failure. 1763 */ 1764 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1765 { 1766 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1767 struct ubifs_wbuf *wbuf; 1768 void *buf; 1769 1770 len = bu->zbranch[bu->cnt - 1].offs; 1771 len += bu->zbranch[bu->cnt - 1].len - offs; 1772 if (len > bu->buf_len) { 1773 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1774 return -EINVAL; 1775 } 1776 1777 /* Do the read */ 1778 wbuf = ubifs_get_wbuf(c, lnum); 1779 if (wbuf) 1780 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1781 else 1782 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1783 1784 /* Check for a race with GC */ 1785 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1786 return -EAGAIN; 1787 1788 if (err && err != -EBADMSG) { 1789 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1790 lnum, offs, err); 1791 dump_stack(); 1792 dbg_tnck(&bu->key, "key "); 1793 return err; 1794 } 1795 1796 /* Validate the nodes read */ 1797 buf = bu->buf; 1798 for (i = 0; i < bu->cnt; i++) { 1799 err = validate_data_node(c, buf, &bu->zbranch[i]); 1800 if (err) 1801 return err; 1802 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1803 } 1804 1805 return 0; 1806 } 1807 1808 /** 1809 * do_lookup_nm- look up a "hashed" node. 1810 * @c: UBIFS file-system description object 1811 * @key: node key to lookup 1812 * @node: the node is returned here 1813 * @nm: node name 1814 * 1815 * This function looks up and reads a node which contains name hash in the key. 1816 * Since the hash may have collisions, there may be many nodes with the same 1817 * key, so we have to sequentially look to all of them until the needed one is 1818 * found. This function returns zero in case of success, %-ENOENT if the node 1819 * was not found, and a negative error code in case of failure. 1820 */ 1821 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1822 void *node, const struct fscrypt_name *nm) 1823 { 1824 int found, n, err; 1825 struct ubifs_znode *znode; 1826 1827 dbg_tnck(key, "key "); 1828 mutex_lock(&c->tnc_mutex); 1829 found = ubifs_lookup_level0(c, key, &znode, &n); 1830 if (!found) { 1831 err = -ENOENT; 1832 goto out_unlock; 1833 } else if (found < 0) { 1834 err = found; 1835 goto out_unlock; 1836 } 1837 1838 ubifs_assert(c, n >= 0); 1839 1840 err = resolve_collision(c, key, &znode, &n, nm); 1841 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1842 if (unlikely(err < 0)) 1843 goto out_unlock; 1844 if (err == 0) { 1845 err = -ENOENT; 1846 goto out_unlock; 1847 } 1848 1849 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1850 1851 out_unlock: 1852 mutex_unlock(&c->tnc_mutex); 1853 return err; 1854 } 1855 1856 /** 1857 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1858 * @c: UBIFS file-system description object 1859 * @key: node key to lookup 1860 * @node: the node is returned here 1861 * @nm: node name 1862 * 1863 * This function looks up and reads a node which contains name hash in the key. 1864 * Since the hash may have collisions, there may be many nodes with the same 1865 * key, so we have to sequentially look to all of them until the needed one is 1866 * found. This function returns zero in case of success, %-ENOENT if the node 1867 * was not found, and a negative error code in case of failure. 1868 */ 1869 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1870 void *node, const struct fscrypt_name *nm) 1871 { 1872 int err, len; 1873 const struct ubifs_dent_node *dent = node; 1874 1875 /* 1876 * We assume that in most of the cases there are no name collisions and 1877 * 'ubifs_tnc_lookup()' returns us the right direntry. 1878 */ 1879 err = ubifs_tnc_lookup(c, key, node); 1880 if (err) 1881 return err; 1882 1883 len = le16_to_cpu(dent->nlen); 1884 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1885 return 0; 1886 1887 /* 1888 * Unluckily, there are hash collisions and we have to iterate over 1889 * them look at each direntry with colliding name hash sequentially. 1890 */ 1891 1892 return do_lookup_nm(c, key, node, nm); 1893 } 1894 1895 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1896 struct ubifs_dent_node *dent, uint32_t cookie, 1897 struct ubifs_znode **zn, int *n) 1898 { 1899 int err; 1900 struct ubifs_znode *znode = *zn; 1901 struct ubifs_zbranch *zbr; 1902 union ubifs_key *dkey; 1903 1904 for (;;) { 1905 zbr = &znode->zbranch[*n]; 1906 dkey = &zbr->key; 1907 1908 if (key_inum(c, dkey) != key_inum(c, key) || 1909 key_type(c, dkey) != key_type(c, key)) { 1910 return -ENOENT; 1911 } 1912 1913 err = tnc_read_hashed_node(c, zbr, dent); 1914 if (err) 1915 return err; 1916 1917 if (key_hash(c, key) == key_hash(c, dkey) && 1918 le32_to_cpu(dent->cookie) == cookie) { 1919 *zn = znode; 1920 return 0; 1921 } 1922 1923 err = tnc_next(c, &znode, n); 1924 if (err) 1925 return err; 1926 } 1927 } 1928 1929 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1930 struct ubifs_dent_node *dent, uint32_t cookie) 1931 { 1932 int n, err; 1933 struct ubifs_znode *znode; 1934 union ubifs_key start_key; 1935 1936 ubifs_assert(c, is_hash_key(c, key)); 1937 1938 lowest_dent_key(c, &start_key, key_inum(c, key)); 1939 1940 mutex_lock(&c->tnc_mutex); 1941 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1942 if (unlikely(err < 0)) 1943 goto out_unlock; 1944 1945 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 1946 1947 out_unlock: 1948 mutex_unlock(&c->tnc_mutex); 1949 return err; 1950 } 1951 1952 /** 1953 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1954 * @c: UBIFS file-system description object 1955 * @key: node key to lookup 1956 * @node: the node is returned here 1957 * @cookie: node cookie for collision resolution 1958 * 1959 * This function looks up and reads a node which contains name hash in the key. 1960 * Since the hash may have collisions, there may be many nodes with the same 1961 * key, so we have to sequentially look to all of them until the needed one 1962 * with the same cookie value is found. 1963 * This function returns zero in case of success, %-ENOENT if the node 1964 * was not found, and a negative error code in case of failure. 1965 */ 1966 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1967 void *node, uint32_t cookie) 1968 { 1969 int err; 1970 const struct ubifs_dent_node *dent = node; 1971 1972 if (!c->double_hash) 1973 return -EOPNOTSUPP; 1974 1975 /* 1976 * We assume that in most of the cases there are no name collisions and 1977 * 'ubifs_tnc_lookup()' returns us the right direntry. 1978 */ 1979 err = ubifs_tnc_lookup(c, key, node); 1980 if (err) 1981 return err; 1982 1983 if (le32_to_cpu(dent->cookie) == cookie) 1984 return 0; 1985 1986 /* 1987 * Unluckily, there are hash collisions and we have to iterate over 1988 * them look at each direntry with colliding name hash sequentially. 1989 */ 1990 return do_lookup_dh(c, key, node, cookie); 1991 } 1992 1993 /** 1994 * correct_parent_keys - correct parent znodes' keys. 1995 * @c: UBIFS file-system description object 1996 * @znode: znode to correct parent znodes for 1997 * 1998 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1999 * zbranch changes, keys of parent znodes have to be corrected. This helper 2000 * function is called in such situations and corrects the keys if needed. 2001 */ 2002 static void correct_parent_keys(const struct ubifs_info *c, 2003 struct ubifs_znode *znode) 2004 { 2005 union ubifs_key *key, *key1; 2006 2007 ubifs_assert(c, znode->parent); 2008 ubifs_assert(c, znode->iip == 0); 2009 2010 key = &znode->zbranch[0].key; 2011 key1 = &znode->parent->zbranch[0].key; 2012 2013 while (keys_cmp(c, key, key1) < 0) { 2014 key_copy(c, key, key1); 2015 znode = znode->parent; 2016 znode->alt = 1; 2017 if (!znode->parent || znode->iip) 2018 break; 2019 key1 = &znode->parent->zbranch[0].key; 2020 } 2021 } 2022 2023 /** 2024 * insert_zbranch - insert a zbranch into a znode. 2025 * @c: UBIFS file-system description object 2026 * @znode: znode into which to insert 2027 * @zbr: zbranch to insert 2028 * @n: slot number to insert to 2029 * 2030 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2031 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2032 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2033 * slot, zbranches starting from @n have to be moved right. 2034 */ 2035 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, 2036 const struct ubifs_zbranch *zbr, int n) 2037 { 2038 int i; 2039 2040 ubifs_assert(c, ubifs_zn_dirty(znode)); 2041 2042 if (znode->level) { 2043 for (i = znode->child_cnt; i > n; i--) { 2044 znode->zbranch[i] = znode->zbranch[i - 1]; 2045 if (znode->zbranch[i].znode) 2046 znode->zbranch[i].znode->iip = i; 2047 } 2048 if (zbr->znode) 2049 zbr->znode->iip = n; 2050 } else 2051 for (i = znode->child_cnt; i > n; i--) 2052 znode->zbranch[i] = znode->zbranch[i - 1]; 2053 2054 znode->zbranch[n] = *zbr; 2055 znode->child_cnt += 1; 2056 2057 /* 2058 * After inserting at slot zero, the lower bound of the key range of 2059 * this znode may have changed. If this znode is subsequently split 2060 * then the upper bound of the key range may change, and furthermore 2061 * it could change to be lower than the original lower bound. If that 2062 * happens, then it will no longer be possible to find this znode in the 2063 * TNC using the key from the index node on flash. That is bad because 2064 * if it is not found, we will assume it is obsolete and may overwrite 2065 * it. Then if there is an unclean unmount, we will start using the 2066 * old index which will be broken. 2067 * 2068 * So we first mark znodes that have insertions at slot zero, and then 2069 * if they are split we add their lnum/offs to the old_idx tree. 2070 */ 2071 if (n == 0) 2072 znode->alt = 1; 2073 } 2074 2075 /** 2076 * tnc_insert - insert a node into TNC. 2077 * @c: UBIFS file-system description object 2078 * @znode: znode to insert into 2079 * @zbr: branch to insert 2080 * @n: slot number to insert new zbranch to 2081 * 2082 * This function inserts a new node described by @zbr into znode @znode. If 2083 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2084 * are splat as well if needed. Returns zero in case of success or a negative 2085 * error code in case of failure. 2086 */ 2087 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2088 struct ubifs_zbranch *zbr, int n) 2089 { 2090 struct ubifs_znode *zn, *zi, *zp; 2091 int i, keep, move, appending = 0; 2092 union ubifs_key *key = &zbr->key, *key1; 2093 2094 ubifs_assert(c, n >= 0 && n <= c->fanout); 2095 2096 /* Implement naive insert for now */ 2097 again: 2098 zp = znode->parent; 2099 if (znode->child_cnt < c->fanout) { 2100 ubifs_assert(c, n != c->fanout); 2101 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2102 2103 insert_zbranch(c, znode, zbr, n); 2104 2105 /* Ensure parent's key is correct */ 2106 if (n == 0 && zp && znode->iip == 0) 2107 correct_parent_keys(c, znode); 2108 2109 return 0; 2110 } 2111 2112 /* 2113 * Unfortunately, @znode does not have more empty slots and we have to 2114 * split it. 2115 */ 2116 dbg_tnck(key, "splitting level %d, key ", znode->level); 2117 2118 if (znode->alt) 2119 /* 2120 * We can no longer be sure of finding this znode by key, so we 2121 * record it in the old_idx tree. 2122 */ 2123 ins_clr_old_idx_znode(c, znode); 2124 2125 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2126 if (!zn) 2127 return -ENOMEM; 2128 zn->parent = zp; 2129 zn->level = znode->level; 2130 2131 /* Decide where to split */ 2132 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2133 /* Try not to split consecutive data keys */ 2134 if (n == c->fanout) { 2135 key1 = &znode->zbranch[n - 1].key; 2136 if (key_inum(c, key1) == key_inum(c, key) && 2137 key_type(c, key1) == UBIFS_DATA_KEY) 2138 appending = 1; 2139 } else 2140 goto check_split; 2141 } else if (appending && n != c->fanout) { 2142 /* Try not to split consecutive data keys */ 2143 appending = 0; 2144 check_split: 2145 if (n >= (c->fanout + 1) / 2) { 2146 key1 = &znode->zbranch[0].key; 2147 if (key_inum(c, key1) == key_inum(c, key) && 2148 key_type(c, key1) == UBIFS_DATA_KEY) { 2149 key1 = &znode->zbranch[n].key; 2150 if (key_inum(c, key1) != key_inum(c, key) || 2151 key_type(c, key1) != UBIFS_DATA_KEY) { 2152 keep = n; 2153 move = c->fanout - keep; 2154 zi = znode; 2155 goto do_split; 2156 } 2157 } 2158 } 2159 } 2160 2161 if (appending) { 2162 keep = c->fanout; 2163 move = 0; 2164 } else { 2165 keep = (c->fanout + 1) / 2; 2166 move = c->fanout - keep; 2167 } 2168 2169 /* 2170 * Although we don't at present, we could look at the neighbors and see 2171 * if we can move some zbranches there. 2172 */ 2173 2174 if (n < keep) { 2175 /* Insert into existing znode */ 2176 zi = znode; 2177 move += 1; 2178 keep -= 1; 2179 } else { 2180 /* Insert into new znode */ 2181 zi = zn; 2182 n -= keep; 2183 /* Re-parent */ 2184 if (zn->level != 0) 2185 zbr->znode->parent = zn; 2186 } 2187 2188 do_split: 2189 2190 __set_bit(DIRTY_ZNODE, &zn->flags); 2191 atomic_long_inc(&c->dirty_zn_cnt); 2192 2193 zn->child_cnt = move; 2194 znode->child_cnt = keep; 2195 2196 dbg_tnc("moving %d, keeping %d", move, keep); 2197 2198 /* Move zbranch */ 2199 for (i = 0; i < move; i++) { 2200 zn->zbranch[i] = znode->zbranch[keep + i]; 2201 /* Re-parent */ 2202 if (zn->level != 0) 2203 if (zn->zbranch[i].znode) { 2204 zn->zbranch[i].znode->parent = zn; 2205 zn->zbranch[i].znode->iip = i; 2206 } 2207 } 2208 2209 /* Insert new key and branch */ 2210 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2211 2212 insert_zbranch(c, zi, zbr, n); 2213 2214 /* Insert new znode (produced by spitting) into the parent */ 2215 if (zp) { 2216 if (n == 0 && zi == znode && znode->iip == 0) 2217 correct_parent_keys(c, znode); 2218 2219 /* Locate insertion point */ 2220 n = znode->iip + 1; 2221 2222 /* Tail recursion */ 2223 zbr->key = zn->zbranch[0].key; 2224 zbr->znode = zn; 2225 zbr->lnum = 0; 2226 zbr->offs = 0; 2227 zbr->len = 0; 2228 znode = zp; 2229 2230 goto again; 2231 } 2232 2233 /* We have to split root znode */ 2234 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2235 2236 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2237 if (!zi) 2238 return -ENOMEM; 2239 2240 zi->child_cnt = 2; 2241 zi->level = znode->level + 1; 2242 2243 __set_bit(DIRTY_ZNODE, &zi->flags); 2244 atomic_long_inc(&c->dirty_zn_cnt); 2245 2246 zi->zbranch[0].key = znode->zbranch[0].key; 2247 zi->zbranch[0].znode = znode; 2248 zi->zbranch[0].lnum = c->zroot.lnum; 2249 zi->zbranch[0].offs = c->zroot.offs; 2250 zi->zbranch[0].len = c->zroot.len; 2251 zi->zbranch[1].key = zn->zbranch[0].key; 2252 zi->zbranch[1].znode = zn; 2253 2254 c->zroot.lnum = 0; 2255 c->zroot.offs = 0; 2256 c->zroot.len = 0; 2257 c->zroot.znode = zi; 2258 2259 zn->parent = zi; 2260 zn->iip = 1; 2261 znode->parent = zi; 2262 znode->iip = 0; 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * ubifs_tnc_add - add a node to TNC. 2269 * @c: UBIFS file-system description object 2270 * @key: key to add 2271 * @lnum: LEB number of node 2272 * @offs: node offset 2273 * @len: node length 2274 * @hash: The hash over the node 2275 * 2276 * This function adds a node with key @key to TNC. The node may be new or it may 2277 * obsolete some existing one. Returns %0 on success or negative error code on 2278 * failure. 2279 */ 2280 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2281 int offs, int len, const u8 *hash) 2282 { 2283 int found, n, err = 0; 2284 struct ubifs_znode *znode; 2285 2286 mutex_lock(&c->tnc_mutex); 2287 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2288 found = lookup_level0_dirty(c, key, &znode, &n); 2289 if (!found) { 2290 struct ubifs_zbranch zbr; 2291 2292 zbr.znode = NULL; 2293 zbr.lnum = lnum; 2294 zbr.offs = offs; 2295 zbr.len = len; 2296 ubifs_copy_hash(c, hash, zbr.hash); 2297 key_copy(c, key, &zbr.key); 2298 err = tnc_insert(c, znode, &zbr, n + 1); 2299 } else if (found == 1) { 2300 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2301 2302 lnc_free(zbr); 2303 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2304 zbr->lnum = lnum; 2305 zbr->offs = offs; 2306 zbr->len = len; 2307 ubifs_copy_hash(c, hash, zbr->hash); 2308 } else 2309 err = found; 2310 if (!err) 2311 err = dbg_check_tnc(c, 0); 2312 mutex_unlock(&c->tnc_mutex); 2313 2314 return err; 2315 } 2316 2317 /** 2318 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2319 * @c: UBIFS file-system description object 2320 * @key: key to add 2321 * @old_lnum: LEB number of old node 2322 * @old_offs: old node offset 2323 * @lnum: LEB number of node 2324 * @offs: node offset 2325 * @len: node length 2326 * 2327 * This function replaces a node with key @key in the TNC only if the old node 2328 * is found. This function is called by garbage collection when node are moved. 2329 * Returns %0 on success or negative error code on failure. 2330 */ 2331 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2332 int old_lnum, int old_offs, int lnum, int offs, int len) 2333 { 2334 int found, n, err = 0; 2335 struct ubifs_znode *znode; 2336 2337 mutex_lock(&c->tnc_mutex); 2338 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2339 old_offs, lnum, offs, len); 2340 found = lookup_level0_dirty(c, key, &znode, &n); 2341 if (found < 0) { 2342 err = found; 2343 goto out_unlock; 2344 } 2345 2346 if (found == 1) { 2347 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2348 2349 found = 0; 2350 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2351 lnc_free(zbr); 2352 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2353 if (err) 2354 goto out_unlock; 2355 zbr->lnum = lnum; 2356 zbr->offs = offs; 2357 zbr->len = len; 2358 found = 1; 2359 } else if (is_hash_key(c, key)) { 2360 found = resolve_collision_directly(c, key, &znode, &n, 2361 old_lnum, old_offs); 2362 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2363 found, znode, n, old_lnum, old_offs); 2364 if (found < 0) { 2365 err = found; 2366 goto out_unlock; 2367 } 2368 2369 if (found) { 2370 /* Ensure the znode is dirtied */ 2371 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2372 znode = dirty_cow_bottom_up(c, znode); 2373 if (IS_ERR(znode)) { 2374 err = PTR_ERR(znode); 2375 goto out_unlock; 2376 } 2377 } 2378 zbr = &znode->zbranch[n]; 2379 lnc_free(zbr); 2380 err = ubifs_add_dirt(c, zbr->lnum, 2381 zbr->len); 2382 if (err) 2383 goto out_unlock; 2384 zbr->lnum = lnum; 2385 zbr->offs = offs; 2386 zbr->len = len; 2387 } 2388 } 2389 } 2390 2391 if (!found) 2392 err = ubifs_add_dirt(c, lnum, len); 2393 2394 if (!err) 2395 err = dbg_check_tnc(c, 0); 2396 2397 out_unlock: 2398 mutex_unlock(&c->tnc_mutex); 2399 return err; 2400 } 2401 2402 /** 2403 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2404 * @c: UBIFS file-system description object 2405 * @key: key to add 2406 * @lnum: LEB number of node 2407 * @offs: node offset 2408 * @len: node length 2409 * @hash: The hash over the node 2410 * @nm: node name 2411 * 2412 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2413 * may have collisions, like directory entry keys. 2414 */ 2415 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2416 int lnum, int offs, int len, const u8 *hash, 2417 const struct fscrypt_name *nm) 2418 { 2419 int found, n, err = 0; 2420 struct ubifs_znode *znode; 2421 2422 mutex_lock(&c->tnc_mutex); 2423 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2424 found = lookup_level0_dirty(c, key, &znode, &n); 2425 if (found < 0) { 2426 err = found; 2427 goto out_unlock; 2428 } 2429 2430 if (found == 1) { 2431 if (c->replaying) 2432 found = fallible_resolve_collision(c, key, &znode, &n, 2433 nm, 1); 2434 else 2435 found = resolve_collision(c, key, &znode, &n, nm); 2436 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2437 if (found < 0) { 2438 err = found; 2439 goto out_unlock; 2440 } 2441 2442 /* Ensure the znode is dirtied */ 2443 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2444 znode = dirty_cow_bottom_up(c, znode); 2445 if (IS_ERR(znode)) { 2446 err = PTR_ERR(znode); 2447 goto out_unlock; 2448 } 2449 } 2450 2451 if (found == 1) { 2452 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2453 2454 lnc_free(zbr); 2455 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2456 zbr->lnum = lnum; 2457 zbr->offs = offs; 2458 zbr->len = len; 2459 ubifs_copy_hash(c, hash, zbr->hash); 2460 goto out_unlock; 2461 } 2462 } 2463 2464 if (!found) { 2465 struct ubifs_zbranch zbr; 2466 2467 zbr.znode = NULL; 2468 zbr.lnum = lnum; 2469 zbr.offs = offs; 2470 zbr.len = len; 2471 ubifs_copy_hash(c, hash, zbr.hash); 2472 key_copy(c, key, &zbr.key); 2473 err = tnc_insert(c, znode, &zbr, n + 1); 2474 if (err) 2475 goto out_unlock; 2476 if (c->replaying) { 2477 /* 2478 * We did not find it in the index so there may be a 2479 * dangling branch still in the index. So we remove it 2480 * by passing 'ubifs_tnc_remove_nm()' the same key but 2481 * an unmatchable name. 2482 */ 2483 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2484 2485 err = dbg_check_tnc(c, 0); 2486 mutex_unlock(&c->tnc_mutex); 2487 if (err) 2488 return err; 2489 return ubifs_tnc_remove_nm(c, key, &noname); 2490 } 2491 } 2492 2493 out_unlock: 2494 if (!err) 2495 err = dbg_check_tnc(c, 0); 2496 mutex_unlock(&c->tnc_mutex); 2497 return err; 2498 } 2499 2500 /** 2501 * tnc_delete - delete a znode form TNC. 2502 * @c: UBIFS file-system description object 2503 * @znode: znode to delete from 2504 * @n: zbranch slot number to delete 2505 * 2506 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2507 * case of success and a negative error code in case of failure. 2508 */ 2509 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2510 { 2511 struct ubifs_zbranch *zbr; 2512 struct ubifs_znode *zp; 2513 int i, err; 2514 2515 /* Delete without merge for now */ 2516 ubifs_assert(c, znode->level == 0); 2517 ubifs_assert(c, n >= 0 && n < c->fanout); 2518 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2519 2520 zbr = &znode->zbranch[n]; 2521 lnc_free(zbr); 2522 2523 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2524 if (err) { 2525 ubifs_dump_znode(c, znode); 2526 return err; 2527 } 2528 2529 /* We do not "gap" zbranch slots */ 2530 for (i = n; i < znode->child_cnt - 1; i++) 2531 znode->zbranch[i] = znode->zbranch[i + 1]; 2532 znode->child_cnt -= 1; 2533 2534 if (znode->child_cnt > 0) 2535 return 0; 2536 2537 /* 2538 * This was the last zbranch, we have to delete this znode from the 2539 * parent. 2540 */ 2541 2542 do { 2543 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 2544 ubifs_assert(c, ubifs_zn_dirty(znode)); 2545 2546 zp = znode->parent; 2547 n = znode->iip; 2548 2549 atomic_long_dec(&c->dirty_zn_cnt); 2550 2551 err = insert_old_idx_znode(c, znode); 2552 if (err) 2553 return err; 2554 2555 if (znode->cnext) { 2556 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2557 atomic_long_inc(&c->clean_zn_cnt); 2558 atomic_long_inc(&ubifs_clean_zn_cnt); 2559 } else 2560 kfree(znode); 2561 znode = zp; 2562 } while (znode->child_cnt == 1); /* while removing last child */ 2563 2564 /* Remove from znode, entry n - 1 */ 2565 znode->child_cnt -= 1; 2566 ubifs_assert(c, znode->level != 0); 2567 for (i = n; i < znode->child_cnt; i++) { 2568 znode->zbranch[i] = znode->zbranch[i + 1]; 2569 if (znode->zbranch[i].znode) 2570 znode->zbranch[i].znode->iip = i; 2571 } 2572 2573 /* 2574 * If this is the root and it has only 1 child then 2575 * collapse the tree. 2576 */ 2577 if (!znode->parent) { 2578 while (znode->child_cnt == 1 && znode->level != 0) { 2579 zp = znode; 2580 zbr = &znode->zbranch[0]; 2581 znode = get_znode(c, znode, 0); 2582 if (IS_ERR(znode)) 2583 return PTR_ERR(znode); 2584 znode = dirty_cow_znode(c, zbr); 2585 if (IS_ERR(znode)) 2586 return PTR_ERR(znode); 2587 znode->parent = NULL; 2588 znode->iip = 0; 2589 if (c->zroot.len) { 2590 err = insert_old_idx(c, c->zroot.lnum, 2591 c->zroot.offs); 2592 if (err) 2593 return err; 2594 } 2595 c->zroot.lnum = zbr->lnum; 2596 c->zroot.offs = zbr->offs; 2597 c->zroot.len = zbr->len; 2598 c->zroot.znode = znode; 2599 ubifs_assert(c, !ubifs_zn_obsolete(zp)); 2600 ubifs_assert(c, ubifs_zn_dirty(zp)); 2601 atomic_long_dec(&c->dirty_zn_cnt); 2602 2603 if (zp->cnext) { 2604 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2605 atomic_long_inc(&c->clean_zn_cnt); 2606 atomic_long_inc(&ubifs_clean_zn_cnt); 2607 } else 2608 kfree(zp); 2609 } 2610 } 2611 2612 return 0; 2613 } 2614 2615 /** 2616 * ubifs_tnc_remove - remove an index entry of a node. 2617 * @c: UBIFS file-system description object 2618 * @key: key of node 2619 * 2620 * Returns %0 on success or negative error code on failure. 2621 */ 2622 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2623 { 2624 int found, n, err = 0; 2625 struct ubifs_znode *znode; 2626 2627 mutex_lock(&c->tnc_mutex); 2628 dbg_tnck(key, "key "); 2629 found = lookup_level0_dirty(c, key, &znode, &n); 2630 if (found < 0) { 2631 err = found; 2632 goto out_unlock; 2633 } 2634 if (found == 1) 2635 err = tnc_delete(c, znode, n); 2636 if (!err) 2637 err = dbg_check_tnc(c, 0); 2638 2639 out_unlock: 2640 mutex_unlock(&c->tnc_mutex); 2641 return err; 2642 } 2643 2644 /** 2645 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2646 * @c: UBIFS file-system description object 2647 * @key: key of node 2648 * @nm: directory entry name 2649 * 2650 * Returns %0 on success or negative error code on failure. 2651 */ 2652 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2653 const struct fscrypt_name *nm) 2654 { 2655 int n, err; 2656 struct ubifs_znode *znode; 2657 2658 mutex_lock(&c->tnc_mutex); 2659 dbg_tnck(key, "key "); 2660 err = lookup_level0_dirty(c, key, &znode, &n); 2661 if (err < 0) 2662 goto out_unlock; 2663 2664 if (err) { 2665 if (c->replaying) 2666 err = fallible_resolve_collision(c, key, &znode, &n, 2667 nm, 0); 2668 else 2669 err = resolve_collision(c, key, &znode, &n, nm); 2670 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2671 if (err < 0) 2672 goto out_unlock; 2673 if (err) { 2674 /* Ensure the znode is dirtied */ 2675 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2676 znode = dirty_cow_bottom_up(c, znode); 2677 if (IS_ERR(znode)) { 2678 err = PTR_ERR(znode); 2679 goto out_unlock; 2680 } 2681 } 2682 err = tnc_delete(c, znode, n); 2683 } 2684 } 2685 2686 out_unlock: 2687 if (!err) 2688 err = dbg_check_tnc(c, 0); 2689 mutex_unlock(&c->tnc_mutex); 2690 return err; 2691 } 2692 2693 /** 2694 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2695 * @c: UBIFS file-system description object 2696 * @key: key of node 2697 * @cookie: node cookie for collision resolution 2698 * 2699 * Returns %0 on success or negative error code on failure. 2700 */ 2701 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2702 uint32_t cookie) 2703 { 2704 int n, err; 2705 struct ubifs_znode *znode; 2706 struct ubifs_dent_node *dent; 2707 struct ubifs_zbranch *zbr; 2708 2709 if (!c->double_hash) 2710 return -EOPNOTSUPP; 2711 2712 mutex_lock(&c->tnc_mutex); 2713 err = lookup_level0_dirty(c, key, &znode, &n); 2714 if (err <= 0) 2715 goto out_unlock; 2716 2717 zbr = &znode->zbranch[n]; 2718 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2719 if (!dent) { 2720 err = -ENOMEM; 2721 goto out_unlock; 2722 } 2723 2724 err = tnc_read_hashed_node(c, zbr, dent); 2725 if (err) 2726 goto out_free; 2727 2728 /* If the cookie does not match, we're facing a hash collision. */ 2729 if (le32_to_cpu(dent->cookie) != cookie) { 2730 union ubifs_key start_key; 2731 2732 lowest_dent_key(c, &start_key, key_inum(c, key)); 2733 2734 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2735 if (unlikely(err < 0)) 2736 goto out_free; 2737 2738 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 2739 if (err) 2740 goto out_free; 2741 } 2742 2743 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2744 znode = dirty_cow_bottom_up(c, znode); 2745 if (IS_ERR(znode)) { 2746 err = PTR_ERR(znode); 2747 goto out_free; 2748 } 2749 } 2750 err = tnc_delete(c, znode, n); 2751 2752 out_free: 2753 kfree(dent); 2754 out_unlock: 2755 if (!err) 2756 err = dbg_check_tnc(c, 0); 2757 mutex_unlock(&c->tnc_mutex); 2758 return err; 2759 } 2760 2761 /** 2762 * key_in_range - determine if a key falls within a range of keys. 2763 * @c: UBIFS file-system description object 2764 * @key: key to check 2765 * @from_key: lowest key in range 2766 * @to_key: highest key in range 2767 * 2768 * This function returns %1 if the key is in range and %0 otherwise. 2769 */ 2770 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2771 union ubifs_key *from_key, union ubifs_key *to_key) 2772 { 2773 if (keys_cmp(c, key, from_key) < 0) 2774 return 0; 2775 if (keys_cmp(c, key, to_key) > 0) 2776 return 0; 2777 return 1; 2778 } 2779 2780 /** 2781 * ubifs_tnc_remove_range - remove index entries in range. 2782 * @c: UBIFS file-system description object 2783 * @from_key: lowest key to remove 2784 * @to_key: highest key to remove 2785 * 2786 * This function removes index entries starting at @from_key and ending at 2787 * @to_key. This function returns zero in case of success and a negative error 2788 * code in case of failure. 2789 */ 2790 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2791 union ubifs_key *to_key) 2792 { 2793 int i, n, k, err = 0; 2794 struct ubifs_znode *znode; 2795 union ubifs_key *key; 2796 2797 mutex_lock(&c->tnc_mutex); 2798 while (1) { 2799 /* Find first level 0 znode that contains keys to remove */ 2800 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2801 if (err < 0) 2802 goto out_unlock; 2803 2804 if (err) 2805 key = from_key; 2806 else { 2807 err = tnc_next(c, &znode, &n); 2808 if (err == -ENOENT) { 2809 err = 0; 2810 goto out_unlock; 2811 } 2812 if (err < 0) 2813 goto out_unlock; 2814 key = &znode->zbranch[n].key; 2815 if (!key_in_range(c, key, from_key, to_key)) { 2816 err = 0; 2817 goto out_unlock; 2818 } 2819 } 2820 2821 /* Ensure the znode is dirtied */ 2822 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2823 znode = dirty_cow_bottom_up(c, znode); 2824 if (IS_ERR(znode)) { 2825 err = PTR_ERR(znode); 2826 goto out_unlock; 2827 } 2828 } 2829 2830 /* Remove all keys in range except the first */ 2831 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2832 key = &znode->zbranch[i].key; 2833 if (!key_in_range(c, key, from_key, to_key)) 2834 break; 2835 lnc_free(&znode->zbranch[i]); 2836 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2837 znode->zbranch[i].len); 2838 if (err) { 2839 ubifs_dump_znode(c, znode); 2840 goto out_unlock; 2841 } 2842 dbg_tnck(key, "removing key "); 2843 } 2844 if (k) { 2845 for (i = n + 1 + k; i < znode->child_cnt; i++) 2846 znode->zbranch[i - k] = znode->zbranch[i]; 2847 znode->child_cnt -= k; 2848 } 2849 2850 /* Now delete the first */ 2851 err = tnc_delete(c, znode, n); 2852 if (err) 2853 goto out_unlock; 2854 } 2855 2856 out_unlock: 2857 if (!err) 2858 err = dbg_check_tnc(c, 0); 2859 mutex_unlock(&c->tnc_mutex); 2860 return err; 2861 } 2862 2863 /** 2864 * ubifs_tnc_remove_ino - remove an inode from TNC. 2865 * @c: UBIFS file-system description object 2866 * @inum: inode number to remove 2867 * 2868 * This function remove inode @inum and all the extended attributes associated 2869 * with the anode from TNC and returns zero in case of success or a negative 2870 * error code in case of failure. 2871 */ 2872 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2873 { 2874 union ubifs_key key1, key2; 2875 struct ubifs_dent_node *xent, *pxent = NULL; 2876 struct fscrypt_name nm = {0}; 2877 2878 dbg_tnc("ino %lu", (unsigned long)inum); 2879 2880 /* 2881 * Walk all extended attribute entries and remove them together with 2882 * corresponding extended attribute inodes. 2883 */ 2884 lowest_xent_key(c, &key1, inum); 2885 while (1) { 2886 ino_t xattr_inum; 2887 int err; 2888 2889 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2890 if (IS_ERR(xent)) { 2891 err = PTR_ERR(xent); 2892 if (err == -ENOENT) 2893 break; 2894 return err; 2895 } 2896 2897 xattr_inum = le64_to_cpu(xent->inum); 2898 dbg_tnc("xent '%s', ino %lu", xent->name, 2899 (unsigned long)xattr_inum); 2900 2901 ubifs_evict_xattr_inode(c, xattr_inum); 2902 2903 fname_name(&nm) = xent->name; 2904 fname_len(&nm) = le16_to_cpu(xent->nlen); 2905 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2906 if (err) { 2907 kfree(xent); 2908 return err; 2909 } 2910 2911 lowest_ino_key(c, &key1, xattr_inum); 2912 highest_ino_key(c, &key2, xattr_inum); 2913 err = ubifs_tnc_remove_range(c, &key1, &key2); 2914 if (err) { 2915 kfree(xent); 2916 return err; 2917 } 2918 2919 kfree(pxent); 2920 pxent = xent; 2921 key_read(c, &xent->key, &key1); 2922 } 2923 2924 kfree(pxent); 2925 lowest_ino_key(c, &key1, inum); 2926 highest_ino_key(c, &key2, inum); 2927 2928 return ubifs_tnc_remove_range(c, &key1, &key2); 2929 } 2930 2931 /** 2932 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2933 * @c: UBIFS file-system description object 2934 * @key: key of last entry 2935 * @nm: name of last entry found or %NULL 2936 * 2937 * This function finds and reads the next directory or extended attribute entry 2938 * after the given key (@key) if there is one. @nm is used to resolve 2939 * collisions. 2940 * 2941 * If the name of the current entry is not known and only the key is known, 2942 * @nm->name has to be %NULL. In this case the semantics of this function is a 2943 * little bit different and it returns the entry corresponding to this key, not 2944 * the next one. If the key was not found, the closest "right" entry is 2945 * returned. 2946 * 2947 * If the fist entry has to be found, @key has to contain the lowest possible 2948 * key value for this inode and @name has to be %NULL. 2949 * 2950 * This function returns the found directory or extended attribute entry node 2951 * in case of success, %-ENOENT is returned if no entry was found, and a 2952 * negative error code is returned in case of failure. 2953 */ 2954 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2955 union ubifs_key *key, 2956 const struct fscrypt_name *nm) 2957 { 2958 int n, err, type = key_type(c, key); 2959 struct ubifs_znode *znode; 2960 struct ubifs_dent_node *dent; 2961 struct ubifs_zbranch *zbr; 2962 union ubifs_key *dkey; 2963 2964 dbg_tnck(key, "key "); 2965 ubifs_assert(c, is_hash_key(c, key)); 2966 2967 mutex_lock(&c->tnc_mutex); 2968 err = ubifs_lookup_level0(c, key, &znode, &n); 2969 if (unlikely(err < 0)) 2970 goto out_unlock; 2971 2972 if (fname_len(nm) > 0) { 2973 if (err) { 2974 /* Handle collisions */ 2975 if (c->replaying) 2976 err = fallible_resolve_collision(c, key, &znode, &n, 2977 nm, 0); 2978 else 2979 err = resolve_collision(c, key, &znode, &n, nm); 2980 dbg_tnc("rc returned %d, znode %p, n %d", 2981 err, znode, n); 2982 if (unlikely(err < 0)) 2983 goto out_unlock; 2984 } 2985 2986 /* Now find next entry */ 2987 err = tnc_next(c, &znode, &n); 2988 if (unlikely(err)) 2989 goto out_unlock; 2990 } else { 2991 /* 2992 * The full name of the entry was not given, in which case the 2993 * behavior of this function is a little different and it 2994 * returns current entry, not the next one. 2995 */ 2996 if (!err) { 2997 /* 2998 * However, the given key does not exist in the TNC 2999 * tree and @znode/@n variables contain the closest 3000 * "preceding" element. Switch to the next one. 3001 */ 3002 err = tnc_next(c, &znode, &n); 3003 if (err) 3004 goto out_unlock; 3005 } 3006 } 3007 3008 zbr = &znode->zbranch[n]; 3009 dent = kmalloc(zbr->len, GFP_NOFS); 3010 if (unlikely(!dent)) { 3011 err = -ENOMEM; 3012 goto out_unlock; 3013 } 3014 3015 /* 3016 * The above 'tnc_next()' call could lead us to the next inode, check 3017 * this. 3018 */ 3019 dkey = &zbr->key; 3020 if (key_inum(c, dkey) != key_inum(c, key) || 3021 key_type(c, dkey) != type) { 3022 err = -ENOENT; 3023 goto out_free; 3024 } 3025 3026 err = tnc_read_hashed_node(c, zbr, dent); 3027 if (unlikely(err)) 3028 goto out_free; 3029 3030 mutex_unlock(&c->tnc_mutex); 3031 return dent; 3032 3033 out_free: 3034 kfree(dent); 3035 out_unlock: 3036 mutex_unlock(&c->tnc_mutex); 3037 return ERR_PTR(err); 3038 } 3039 3040 /** 3041 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3042 * @c: UBIFS file-system description object 3043 * 3044 * Destroy left-over obsolete znodes from a failed commit. 3045 */ 3046 static void tnc_destroy_cnext(struct ubifs_info *c) 3047 { 3048 struct ubifs_znode *cnext; 3049 3050 if (!c->cnext) 3051 return; 3052 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); 3053 cnext = c->cnext; 3054 do { 3055 struct ubifs_znode *znode = cnext; 3056 3057 cnext = cnext->cnext; 3058 if (ubifs_zn_obsolete(znode)) 3059 kfree(znode); 3060 } while (cnext && cnext != c->cnext); 3061 } 3062 3063 /** 3064 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3065 * @c: UBIFS file-system description object 3066 */ 3067 void ubifs_tnc_close(struct ubifs_info *c) 3068 { 3069 tnc_destroy_cnext(c); 3070 if (c->zroot.znode) { 3071 long n, freed; 3072 3073 n = atomic_long_read(&c->clean_zn_cnt); 3074 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 3075 ubifs_assert(c, freed == n); 3076 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3077 } 3078 kfree(c->gap_lebs); 3079 kfree(c->ilebs); 3080 destroy_old_idx(c); 3081 } 3082 3083 /** 3084 * left_znode - get the znode to the left. 3085 * @c: UBIFS file-system description object 3086 * @znode: znode 3087 * 3088 * This function returns a pointer to the znode to the left of @znode or NULL if 3089 * there is not one. A negative error code is returned on failure. 3090 */ 3091 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3092 struct ubifs_znode *znode) 3093 { 3094 int level = znode->level; 3095 3096 while (1) { 3097 int n = znode->iip - 1; 3098 3099 /* Go up until we can go left */ 3100 znode = znode->parent; 3101 if (!znode) 3102 return NULL; 3103 if (n >= 0) { 3104 /* Now go down the rightmost branch to 'level' */ 3105 znode = get_znode(c, znode, n); 3106 if (IS_ERR(znode)) 3107 return znode; 3108 while (znode->level != level) { 3109 n = znode->child_cnt - 1; 3110 znode = get_znode(c, znode, n); 3111 if (IS_ERR(znode)) 3112 return znode; 3113 } 3114 break; 3115 } 3116 } 3117 return znode; 3118 } 3119 3120 /** 3121 * right_znode - get the znode to the right. 3122 * @c: UBIFS file-system description object 3123 * @znode: znode 3124 * 3125 * This function returns a pointer to the znode to the right of @znode or NULL 3126 * if there is not one. A negative error code is returned on failure. 3127 */ 3128 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3129 struct ubifs_znode *znode) 3130 { 3131 int level = znode->level; 3132 3133 while (1) { 3134 int n = znode->iip + 1; 3135 3136 /* Go up until we can go right */ 3137 znode = znode->parent; 3138 if (!znode) 3139 return NULL; 3140 if (n < znode->child_cnt) { 3141 /* Now go down the leftmost branch to 'level' */ 3142 znode = get_znode(c, znode, n); 3143 if (IS_ERR(znode)) 3144 return znode; 3145 while (znode->level != level) { 3146 znode = get_znode(c, znode, 0); 3147 if (IS_ERR(znode)) 3148 return znode; 3149 } 3150 break; 3151 } 3152 } 3153 return znode; 3154 } 3155 3156 /** 3157 * lookup_znode - find a particular indexing node from TNC. 3158 * @c: UBIFS file-system description object 3159 * @key: index node key to lookup 3160 * @level: index node level 3161 * @lnum: index node LEB number 3162 * @offs: index node offset 3163 * 3164 * This function searches an indexing node by its first key @key and its 3165 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3166 * nodes it traverses to TNC. This function is called for indexing nodes which 3167 * were found on the media by scanning, for example when garbage-collecting or 3168 * when doing in-the-gaps commit. This means that the indexing node which is 3169 * looked for does not have to have exactly the same leftmost key @key, because 3170 * the leftmost key may have been changed, in which case TNC will contain a 3171 * dirty znode which still refers the same @lnum:@offs. This function is clever 3172 * enough to recognize such indexing nodes. 3173 * 3174 * Note, if a znode was deleted or changed too much, then this function will 3175 * not find it. For situations like this UBIFS has the old index RB-tree 3176 * (indexed by @lnum:@offs). 3177 * 3178 * This function returns a pointer to the znode found or %NULL if it is not 3179 * found. A negative error code is returned on failure. 3180 */ 3181 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3182 union ubifs_key *key, int level, 3183 int lnum, int offs) 3184 { 3185 struct ubifs_znode *znode, *zn; 3186 int n, nn; 3187 3188 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 3189 3190 /* 3191 * The arguments have probably been read off flash, so don't assume 3192 * they are valid. 3193 */ 3194 if (level < 0) 3195 return ERR_PTR(-EINVAL); 3196 3197 /* Get the root znode */ 3198 znode = c->zroot.znode; 3199 if (!znode) { 3200 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3201 if (IS_ERR(znode)) 3202 return znode; 3203 } 3204 /* Check if it is the one we are looking for */ 3205 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3206 return znode; 3207 /* Descend to the parent level i.e. (level + 1) */ 3208 if (level >= znode->level) 3209 return NULL; 3210 while (1) { 3211 ubifs_search_zbranch(c, znode, key, &n); 3212 if (n < 0) { 3213 /* 3214 * We reached a znode where the leftmost key is greater 3215 * than the key we are searching for. This is the same 3216 * situation as the one described in a huge comment at 3217 * the end of the 'ubifs_lookup_level0()' function. And 3218 * for exactly the same reasons we have to try to look 3219 * left before giving up. 3220 */ 3221 znode = left_znode(c, znode); 3222 if (!znode) 3223 return NULL; 3224 if (IS_ERR(znode)) 3225 return znode; 3226 ubifs_search_zbranch(c, znode, key, &n); 3227 ubifs_assert(c, n >= 0); 3228 } 3229 if (znode->level == level + 1) 3230 break; 3231 znode = get_znode(c, znode, n); 3232 if (IS_ERR(znode)) 3233 return znode; 3234 } 3235 /* Check if the child is the one we are looking for */ 3236 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3237 return get_znode(c, znode, n); 3238 /* If the key is unique, there is nowhere else to look */ 3239 if (!is_hash_key(c, key)) 3240 return NULL; 3241 /* 3242 * The key is not unique and so may be also in the znodes to either 3243 * side. 3244 */ 3245 zn = znode; 3246 nn = n; 3247 /* Look left */ 3248 while (1) { 3249 /* Move one branch to the left */ 3250 if (n) 3251 n -= 1; 3252 else { 3253 znode = left_znode(c, znode); 3254 if (!znode) 3255 break; 3256 if (IS_ERR(znode)) 3257 return znode; 3258 n = znode->child_cnt - 1; 3259 } 3260 /* Check it */ 3261 if (znode->zbranch[n].lnum == lnum && 3262 znode->zbranch[n].offs == offs) 3263 return get_znode(c, znode, n); 3264 /* Stop if the key is less than the one we are looking for */ 3265 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3266 break; 3267 } 3268 /* Back to the middle */ 3269 znode = zn; 3270 n = nn; 3271 /* Look right */ 3272 while (1) { 3273 /* Move one branch to the right */ 3274 if (++n >= znode->child_cnt) { 3275 znode = right_znode(c, znode); 3276 if (!znode) 3277 break; 3278 if (IS_ERR(znode)) 3279 return znode; 3280 n = 0; 3281 } 3282 /* Check it */ 3283 if (znode->zbranch[n].lnum == lnum && 3284 znode->zbranch[n].offs == offs) 3285 return get_znode(c, znode, n); 3286 /* Stop if the key is greater than the one we are looking for */ 3287 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3288 break; 3289 } 3290 return NULL; 3291 } 3292 3293 /** 3294 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3295 * @c: UBIFS file-system description object 3296 * @key: key of index node 3297 * @level: index node level 3298 * @lnum: LEB number of index node 3299 * @offs: offset of index node 3300 * 3301 * This function returns %0 if the index node is not referred to in the TNC, %1 3302 * if the index node is referred to in the TNC and the corresponding znode is 3303 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3304 * znode is clean, and a negative error code in case of failure. 3305 * 3306 * Note, the @key argument has to be the key of the first child. Also note, 3307 * this function relies on the fact that 0:0 is never a valid LEB number and 3308 * offset for a main-area node. 3309 */ 3310 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3311 int lnum, int offs) 3312 { 3313 struct ubifs_znode *znode; 3314 3315 znode = lookup_znode(c, key, level, lnum, offs); 3316 if (!znode) 3317 return 0; 3318 if (IS_ERR(znode)) 3319 return PTR_ERR(znode); 3320 3321 return ubifs_zn_dirty(znode) ? 1 : 2; 3322 } 3323 3324 /** 3325 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3326 * @c: UBIFS file-system description object 3327 * @key: node key 3328 * @lnum: node LEB number 3329 * @offs: node offset 3330 * 3331 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3332 * not, and a negative error code in case of failure. 3333 * 3334 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3335 * and offset for a main-area node. 3336 */ 3337 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3338 int lnum, int offs) 3339 { 3340 struct ubifs_zbranch *zbr; 3341 struct ubifs_znode *znode, *zn; 3342 int n, found, err, nn; 3343 const int unique = !is_hash_key(c, key); 3344 3345 found = ubifs_lookup_level0(c, key, &znode, &n); 3346 if (found < 0) 3347 return found; /* Error code */ 3348 if (!found) 3349 return 0; 3350 zbr = &znode->zbranch[n]; 3351 if (lnum == zbr->lnum && offs == zbr->offs) 3352 return 1; /* Found it */ 3353 if (unique) 3354 return 0; 3355 /* 3356 * Because the key is not unique, we have to look left 3357 * and right as well 3358 */ 3359 zn = znode; 3360 nn = n; 3361 /* Look left */ 3362 while (1) { 3363 err = tnc_prev(c, &znode, &n); 3364 if (err == -ENOENT) 3365 break; 3366 if (err) 3367 return err; 3368 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3369 break; 3370 zbr = &znode->zbranch[n]; 3371 if (lnum == zbr->lnum && offs == zbr->offs) 3372 return 1; /* Found it */ 3373 } 3374 /* Look right */ 3375 znode = zn; 3376 n = nn; 3377 while (1) { 3378 err = tnc_next(c, &znode, &n); 3379 if (err) { 3380 if (err == -ENOENT) 3381 return 0; 3382 return err; 3383 } 3384 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3385 break; 3386 zbr = &znode->zbranch[n]; 3387 if (lnum == zbr->lnum && offs == zbr->offs) 3388 return 1; /* Found it */ 3389 } 3390 return 0; 3391 } 3392 3393 /** 3394 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3395 * @c: UBIFS file-system description object 3396 * @key: node key 3397 * @level: index node level (if it is an index node) 3398 * @lnum: node LEB number 3399 * @offs: node offset 3400 * @is_idx: non-zero if the node is an index node 3401 * 3402 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3403 * negative error code in case of failure. For index nodes, @key has to be the 3404 * key of the first child. An index node is considered to be in the TNC only if 3405 * the corresponding znode is clean or has not been loaded. 3406 */ 3407 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3408 int lnum, int offs, int is_idx) 3409 { 3410 int err; 3411 3412 mutex_lock(&c->tnc_mutex); 3413 if (is_idx) { 3414 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3415 if (err < 0) 3416 goto out_unlock; 3417 if (err == 1) 3418 /* The index node was found but it was dirty */ 3419 err = 0; 3420 else if (err == 2) 3421 /* The index node was found and it was clean */ 3422 err = 1; 3423 else 3424 BUG_ON(err != 0); 3425 } else 3426 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3427 3428 out_unlock: 3429 mutex_unlock(&c->tnc_mutex); 3430 return err; 3431 } 3432 3433 /** 3434 * ubifs_dirty_idx_node - dirty an index node. 3435 * @c: UBIFS file-system description object 3436 * @key: index node key 3437 * @level: index node level 3438 * @lnum: index node LEB number 3439 * @offs: index node offset 3440 * 3441 * This function loads and dirties an index node so that it can be garbage 3442 * collected. The @key argument has to be the key of the first child. This 3443 * function relies on the fact that 0:0 is never a valid LEB number and offset 3444 * for a main-area node. Returns %0 on success and a negative error code on 3445 * failure. 3446 */ 3447 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3448 int lnum, int offs) 3449 { 3450 struct ubifs_znode *znode; 3451 int err = 0; 3452 3453 mutex_lock(&c->tnc_mutex); 3454 znode = lookup_znode(c, key, level, lnum, offs); 3455 if (!znode) 3456 goto out_unlock; 3457 if (IS_ERR(znode)) { 3458 err = PTR_ERR(znode); 3459 goto out_unlock; 3460 } 3461 znode = dirty_cow_bottom_up(c, znode); 3462 if (IS_ERR(znode)) { 3463 err = PTR_ERR(znode); 3464 goto out_unlock; 3465 } 3466 3467 out_unlock: 3468 mutex_unlock(&c->tnc_mutex); 3469 return err; 3470 } 3471 3472 /** 3473 * dbg_check_inode_size - check if inode size is correct. 3474 * @c: UBIFS file-system description object 3475 * @inum: inode number 3476 * @size: inode size 3477 * 3478 * This function makes sure that the inode size (@size) is correct and it does 3479 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3480 * if it has a data page beyond @size, and other negative error code in case of 3481 * other errors. 3482 */ 3483 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3484 loff_t size) 3485 { 3486 int err, n; 3487 union ubifs_key from_key, to_key, *key; 3488 struct ubifs_znode *znode; 3489 unsigned int block; 3490 3491 if (!S_ISREG(inode->i_mode)) 3492 return 0; 3493 if (!dbg_is_chk_gen(c)) 3494 return 0; 3495 3496 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3497 data_key_init(c, &from_key, inode->i_ino, block); 3498 highest_data_key(c, &to_key, inode->i_ino); 3499 3500 mutex_lock(&c->tnc_mutex); 3501 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3502 if (err < 0) 3503 goto out_unlock; 3504 3505 if (err) { 3506 key = &from_key; 3507 goto out_dump; 3508 } 3509 3510 err = tnc_next(c, &znode, &n); 3511 if (err == -ENOENT) { 3512 err = 0; 3513 goto out_unlock; 3514 } 3515 if (err < 0) 3516 goto out_unlock; 3517 3518 ubifs_assert(c, err == 0); 3519 key = &znode->zbranch[n].key; 3520 if (!key_in_range(c, key, &from_key, &to_key)) 3521 goto out_unlock; 3522 3523 out_dump: 3524 block = key_block(c, key); 3525 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3526 (unsigned long)inode->i_ino, size, 3527 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3528 mutex_unlock(&c->tnc_mutex); 3529 ubifs_dump_inode(c, inode); 3530 dump_stack(); 3531 return -EINVAL; 3532 3533 out_unlock: 3534 mutex_unlock(&c->tnc_mutex); 3535 return err; 3536 } 3537