1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 13 * the UBIFS B-tree. 14 * 15 * At the moment the locking rules of the TNC tree are quite simple and 16 * straightforward. We just have a mutex and lock it when we traverse the 17 * tree. If a znode is not in memory, we read it from flash while still having 18 * the mutex locked. 19 */ 20 21 #include <linux/crc32.h> 22 #include <linux/slab.h> 23 #include "ubifs.h" 24 25 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 26 struct ubifs_zbranch *zbr); 27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 28 struct ubifs_zbranch *zbr, void *node); 29 30 /* 31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 32 * @NAME_LESS: name corresponding to the first argument is less than second 33 * @NAME_MATCHES: names match 34 * @NAME_GREATER: name corresponding to the second argument is greater than 35 * first 36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 37 * 38 * These constants were introduce to improve readability. 39 */ 40 enum { 41 NAME_LESS = 0, 42 NAME_MATCHES = 1, 43 NAME_GREATER = 2, 44 NOT_ON_MEDIA = 3, 45 }; 46 47 static void do_insert_old_idx(struct ubifs_info *c, 48 struct ubifs_old_idx *old_idx) 49 { 50 struct ubifs_old_idx *o; 51 struct rb_node **p, *parent = NULL; 52 53 p = &c->old_idx.rb_node; 54 while (*p) { 55 parent = *p; 56 o = rb_entry(parent, struct ubifs_old_idx, rb); 57 if (old_idx->lnum < o->lnum) 58 p = &(*p)->rb_left; 59 else if (old_idx->lnum > o->lnum) 60 p = &(*p)->rb_right; 61 else if (old_idx->offs < o->offs) 62 p = &(*p)->rb_left; 63 else if (old_idx->offs > o->offs) 64 p = &(*p)->rb_right; 65 else { 66 ubifs_err(c, "old idx added twice!"); 67 kfree(old_idx); 68 return; 69 } 70 } 71 rb_link_node(&old_idx->rb, parent, p); 72 rb_insert_color(&old_idx->rb, &c->old_idx); 73 } 74 75 /** 76 * insert_old_idx - record an index node obsoleted since the last commit start. 77 * @c: UBIFS file-system description object 78 * @lnum: LEB number of obsoleted index node 79 * @offs: offset of obsoleted index node 80 * 81 * Returns %0 on success, and a negative error code on failure. 82 * 83 * For recovery, there must always be a complete intact version of the index on 84 * flash at all times. That is called the "old index". It is the index as at the 85 * time of the last successful commit. Many of the index nodes in the old index 86 * may be dirty, but they must not be erased until the next successful commit 87 * (at which point that index becomes the old index). 88 * 89 * That means that the garbage collection and the in-the-gaps method of 90 * committing must be able to determine if an index node is in the old index. 91 * Most of the old index nodes can be found by looking up the TNC using the 92 * 'lookup_znode()' function. However, some of the old index nodes may have 93 * been deleted from the current index or may have been changed so much that 94 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 95 * That is what this function does. The RB-tree is ordered by LEB number and 96 * offset because they uniquely identify the old index node. 97 */ 98 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 99 { 100 struct ubifs_old_idx *old_idx; 101 102 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 103 if (unlikely(!old_idx)) 104 return -ENOMEM; 105 old_idx->lnum = lnum; 106 old_idx->offs = offs; 107 do_insert_old_idx(c, old_idx); 108 109 return 0; 110 } 111 112 /** 113 * insert_old_idx_znode - record a znode obsoleted since last commit start. 114 * @c: UBIFS file-system description object 115 * @znode: znode of obsoleted index node 116 * 117 * Returns %0 on success, and a negative error code on failure. 118 */ 119 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 120 { 121 if (znode->parent) { 122 struct ubifs_zbranch *zbr; 123 124 zbr = &znode->parent->zbranch[znode->iip]; 125 if (zbr->len) 126 return insert_old_idx(c, zbr->lnum, zbr->offs); 127 } else 128 if (c->zroot.len) 129 return insert_old_idx(c, c->zroot.lnum, 130 c->zroot.offs); 131 return 0; 132 } 133 134 /** 135 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 136 * @c: UBIFS file-system description object 137 * @znode: znode of obsoleted index node 138 * 139 * Returns %0 on success, and a negative error code on failure. 140 */ 141 static int ins_clr_old_idx_znode(struct ubifs_info *c, 142 struct ubifs_znode *znode) 143 { 144 int err; 145 146 if (znode->parent) { 147 struct ubifs_zbranch *zbr; 148 149 zbr = &znode->parent->zbranch[znode->iip]; 150 if (zbr->len) { 151 err = insert_old_idx(c, zbr->lnum, zbr->offs); 152 if (err) 153 return err; 154 zbr->lnum = 0; 155 zbr->offs = 0; 156 zbr->len = 0; 157 } 158 } else 159 if (c->zroot.len) { 160 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 161 if (err) 162 return err; 163 c->zroot.lnum = 0; 164 c->zroot.offs = 0; 165 c->zroot.len = 0; 166 } 167 return 0; 168 } 169 170 /** 171 * destroy_old_idx - destroy the old_idx RB-tree. 172 * @c: UBIFS file-system description object 173 * 174 * During start commit, the old_idx RB-tree is used to avoid overwriting index 175 * nodes that were in the index last commit but have since been deleted. This 176 * is necessary for recovery i.e. the old index must be kept intact until the 177 * new index is successfully written. The old-idx RB-tree is used for the 178 * in-the-gaps method of writing index nodes and is destroyed every commit. 179 */ 180 void destroy_old_idx(struct ubifs_info *c) 181 { 182 struct ubifs_old_idx *old_idx, *n; 183 184 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 185 kfree(old_idx); 186 187 c->old_idx = RB_ROOT; 188 } 189 190 /** 191 * copy_znode - copy a dirty znode. 192 * @c: UBIFS file-system description object 193 * @znode: znode to copy 194 * 195 * A dirty znode being committed may not be changed, so it is copied. 196 */ 197 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 198 struct ubifs_znode *znode) 199 { 200 struct ubifs_znode *zn; 201 202 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 203 if (unlikely(!zn)) 204 return ERR_PTR(-ENOMEM); 205 206 zn->cnext = NULL; 207 __set_bit(DIRTY_ZNODE, &zn->flags); 208 __clear_bit(COW_ZNODE, &zn->flags); 209 210 return zn; 211 } 212 213 /** 214 * add_idx_dirt - add dirt due to a dirty znode. 215 * @c: UBIFS file-system description object 216 * @lnum: LEB number of index node 217 * @dirt: size of index node 218 * 219 * This function updates lprops dirty space and the new size of the index. 220 */ 221 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 222 { 223 c->calc_idx_sz -= ALIGN(dirt, 8); 224 return ubifs_add_dirt(c, lnum, dirt); 225 } 226 227 /** 228 * replace_znode - replace old znode with new znode. 229 * @c: UBIFS file-system description object 230 * @new_zn: new znode 231 * @old_zn: old znode 232 * @zbr: the branch of parent znode 233 * 234 * Replace old znode with new znode in TNC. 235 */ 236 static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn, 237 struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr) 238 { 239 ubifs_assert(c, !ubifs_zn_obsolete(old_zn)); 240 __set_bit(OBSOLETE_ZNODE, &old_zn->flags); 241 242 if (old_zn->level != 0) { 243 int i; 244 const int n = new_zn->child_cnt; 245 246 /* The children now have new parent */ 247 for (i = 0; i < n; i++) { 248 struct ubifs_zbranch *child = &new_zn->zbranch[i]; 249 250 if (child->znode) 251 child->znode->parent = new_zn; 252 } 253 } 254 255 zbr->znode = new_zn; 256 zbr->lnum = 0; 257 zbr->offs = 0; 258 zbr->len = 0; 259 260 atomic_long_inc(&c->dirty_zn_cnt); 261 } 262 263 /** 264 * dirty_cow_znode - ensure a znode is not being committed. 265 * @c: UBIFS file-system description object 266 * @zbr: branch of znode to check 267 * 268 * Returns dirtied znode on success or negative error code on failure. 269 */ 270 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 271 struct ubifs_zbranch *zbr) 272 { 273 struct ubifs_znode *znode = zbr->znode; 274 struct ubifs_znode *zn; 275 int err; 276 277 if (!ubifs_zn_cow(znode)) { 278 /* znode is not being committed */ 279 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 280 atomic_long_inc(&c->dirty_zn_cnt); 281 atomic_long_dec(&c->clean_zn_cnt); 282 atomic_long_dec(&ubifs_clean_zn_cnt); 283 err = add_idx_dirt(c, zbr->lnum, zbr->len); 284 if (unlikely(err)) 285 return ERR_PTR(err); 286 } 287 return znode; 288 } 289 290 zn = copy_znode(c, znode); 291 if (IS_ERR(zn)) 292 return zn; 293 294 if (zbr->len) { 295 struct ubifs_old_idx *old_idx; 296 297 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 298 if (unlikely(!old_idx)) { 299 err = -ENOMEM; 300 goto out; 301 } 302 old_idx->lnum = zbr->lnum; 303 old_idx->offs = zbr->offs; 304 305 err = add_idx_dirt(c, zbr->lnum, zbr->len); 306 if (err) { 307 kfree(old_idx); 308 goto out; 309 } 310 311 do_insert_old_idx(c, old_idx); 312 } 313 314 replace_znode(c, zn, znode, zbr); 315 316 return zn; 317 318 out: 319 kfree(zn); 320 return ERR_PTR(err); 321 } 322 323 /** 324 * lnc_add - add a leaf node to the leaf node cache. 325 * @c: UBIFS file-system description object 326 * @zbr: zbranch of leaf node 327 * @node: leaf node 328 * 329 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 330 * purpose of the leaf node cache is to save re-reading the same leaf node over 331 * and over again. Most things are cached by VFS, however the file system must 332 * cache directory entries for readdir and for resolving hash collisions. The 333 * present implementation of the leaf node cache is extremely simple, and 334 * allows for error returns that are not used but that may be needed if a more 335 * complex implementation is created. 336 * 337 * Note, this function does not add the @node object to LNC directly, but 338 * allocates a copy of the object and adds the copy to LNC. The reason for this 339 * is that @node has been allocated outside of the TNC subsystem and will be 340 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 341 * may be changed at any time, e.g. freed by the shrinker. 342 */ 343 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 344 const void *node) 345 { 346 int err; 347 void *lnc_node; 348 const struct ubifs_dent_node *dent = node; 349 350 ubifs_assert(c, !zbr->leaf); 351 ubifs_assert(c, zbr->len != 0); 352 ubifs_assert(c, is_hash_key(c, &zbr->key)); 353 354 err = ubifs_validate_entry(c, dent); 355 if (err) { 356 dump_stack(); 357 ubifs_dump_node(c, dent, zbr->len); 358 return err; 359 } 360 361 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 362 if (!lnc_node) 363 /* We don't have to have the cache, so no error */ 364 return 0; 365 366 zbr->leaf = lnc_node; 367 return 0; 368 } 369 370 /** 371 * lnc_add_directly - add a leaf node to the leaf-node-cache. 372 * @c: UBIFS file-system description object 373 * @zbr: zbranch of leaf node 374 * @node: leaf node 375 * 376 * This function is similar to 'lnc_add()', but it does not create a copy of 377 * @node but inserts @node to TNC directly. 378 */ 379 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 380 void *node) 381 { 382 int err; 383 384 ubifs_assert(c, !zbr->leaf); 385 ubifs_assert(c, zbr->len != 0); 386 387 err = ubifs_validate_entry(c, node); 388 if (err) { 389 dump_stack(); 390 ubifs_dump_node(c, node, zbr->len); 391 return err; 392 } 393 394 zbr->leaf = node; 395 return 0; 396 } 397 398 /** 399 * lnc_free - remove a leaf node from the leaf node cache. 400 * @zbr: zbranch of leaf node 401 */ 402 static void lnc_free(struct ubifs_zbranch *zbr) 403 { 404 if (!zbr->leaf) 405 return; 406 kfree(zbr->leaf); 407 zbr->leaf = NULL; 408 } 409 410 /** 411 * tnc_read_hashed_node - read a "hashed" leaf node. 412 * @c: UBIFS file-system description object 413 * @zbr: key and position of the node 414 * @node: node is returned here 415 * 416 * This function reads a "hashed" node defined by @zbr from the leaf node cache 417 * (in it is there) or from the hash media, in which case the node is also 418 * added to LNC. Returns zero in case of success or a negative error 419 * code in case of failure. 420 */ 421 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 422 void *node) 423 { 424 int err; 425 426 ubifs_assert(c, is_hash_key(c, &zbr->key)); 427 428 if (zbr->leaf) { 429 /* Read from the leaf node cache */ 430 ubifs_assert(c, zbr->len != 0); 431 memcpy(node, zbr->leaf, zbr->len); 432 return 0; 433 } 434 435 if (c->replaying) { 436 err = fallible_read_node(c, &zbr->key, zbr, node); 437 /* 438 * When the node was not found, return -ENOENT, 0 otherwise. 439 * Negative return codes stay as-is. 440 */ 441 if (err == 0) 442 err = -ENOENT; 443 else if (err == 1) 444 err = 0; 445 } else { 446 err = ubifs_tnc_read_node(c, zbr, node); 447 } 448 if (err) 449 return err; 450 451 /* Add the node to the leaf node cache */ 452 err = lnc_add(c, zbr, node); 453 return err; 454 } 455 456 /** 457 * try_read_node - read a node if it is a node. 458 * @c: UBIFS file-system description object 459 * @buf: buffer to read to 460 * @type: node type 461 * @zbr: the zbranch describing the node to read 462 * 463 * This function tries to read a node of known type and length, checks it and 464 * stores it in @buf. This function returns %1 if a node is present and %0 if 465 * a node is not present. A negative error code is returned for I/O errors. 466 * This function performs that same function as ubifs_read_node except that 467 * it does not require that there is actually a node present and instead 468 * the return code indicates if a node was read. 469 * 470 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 471 * is true (it is controlled by corresponding mount option). However, if 472 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 473 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 474 * because during mounting or re-mounting from R/O mode to R/W mode we may read 475 * journal nodes (when replying the journal or doing the recovery) and the 476 * journal nodes may potentially be corrupted, so checking is required. 477 */ 478 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 479 struct ubifs_zbranch *zbr) 480 { 481 int len = zbr->len; 482 int lnum = zbr->lnum; 483 int offs = zbr->offs; 484 int err, node_len; 485 struct ubifs_ch *ch = buf; 486 uint32_t crc, node_crc; 487 488 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 489 490 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 491 if (err) { 492 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 493 type, lnum, offs, err); 494 return err; 495 } 496 497 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 498 return 0; 499 500 if (ch->node_type != type) 501 return 0; 502 503 node_len = le32_to_cpu(ch->len); 504 if (node_len != len) 505 return 0; 506 507 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting || 508 c->remounting_rw) { 509 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 510 node_crc = le32_to_cpu(ch->crc); 511 if (crc != node_crc) 512 return 0; 513 } 514 515 err = ubifs_node_check_hash(c, buf, zbr->hash); 516 if (err) { 517 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); 518 return 0; 519 } 520 521 return 1; 522 } 523 524 /** 525 * fallible_read_node - try to read a leaf node. 526 * @c: UBIFS file-system description object 527 * @key: key of node to read 528 * @zbr: position of node 529 * @node: node returned 530 * 531 * This function tries to read a node and returns %1 if the node is read, %0 532 * if the node is not present, and a negative error code in the case of error. 533 */ 534 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 535 struct ubifs_zbranch *zbr, void *node) 536 { 537 int ret; 538 539 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 540 541 ret = try_read_node(c, node, key_type(c, key), zbr); 542 if (ret == 1) { 543 union ubifs_key node_key; 544 struct ubifs_dent_node *dent = node; 545 546 /* All nodes have key in the same place */ 547 key_read(c, &dent->key, &node_key); 548 if (keys_cmp(c, key, &node_key) != 0) 549 ret = 0; 550 } 551 if (ret == 0 && c->replaying) 552 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 553 zbr->lnum, zbr->offs, zbr->len); 554 return ret; 555 } 556 557 /** 558 * matches_name - determine if a direntry or xattr entry matches a given name. 559 * @c: UBIFS file-system description object 560 * @zbr: zbranch of dent 561 * @nm: name to match 562 * 563 * This function checks if xentry/direntry referred by zbranch @zbr matches name 564 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 565 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 566 * of failure, a negative error code is returned. 567 */ 568 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 569 const struct fscrypt_name *nm) 570 { 571 struct ubifs_dent_node *dent; 572 int nlen, err; 573 574 /* If possible, match against the dent in the leaf node cache */ 575 if (!zbr->leaf) { 576 dent = kmalloc(zbr->len, GFP_NOFS); 577 if (!dent) 578 return -ENOMEM; 579 580 err = ubifs_tnc_read_node(c, zbr, dent); 581 if (err) 582 goto out_free; 583 584 /* Add the node to the leaf node cache */ 585 err = lnc_add_directly(c, zbr, dent); 586 if (err) 587 goto out_free; 588 } else 589 dent = zbr->leaf; 590 591 nlen = le16_to_cpu(dent->nlen); 592 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 593 if (err == 0) { 594 if (nlen == fname_len(nm)) 595 return NAME_MATCHES; 596 else if (nlen < fname_len(nm)) 597 return NAME_LESS; 598 else 599 return NAME_GREATER; 600 } else if (err < 0) 601 return NAME_LESS; 602 else 603 return NAME_GREATER; 604 605 out_free: 606 kfree(dent); 607 return err; 608 } 609 610 /** 611 * get_znode - get a TNC znode that may not be loaded yet. 612 * @c: UBIFS file-system description object 613 * @znode: parent znode 614 * @n: znode branch slot number 615 * 616 * This function returns the znode or a negative error code. 617 */ 618 static struct ubifs_znode *get_znode(struct ubifs_info *c, 619 struct ubifs_znode *znode, int n) 620 { 621 struct ubifs_zbranch *zbr; 622 623 zbr = &znode->zbranch[n]; 624 if (zbr->znode) 625 znode = zbr->znode; 626 else 627 znode = ubifs_load_znode(c, zbr, znode, n); 628 return znode; 629 } 630 631 /** 632 * tnc_next - find next TNC entry. 633 * @c: UBIFS file-system description object 634 * @zn: znode is passed and returned here 635 * @n: znode branch slot number is passed and returned here 636 * 637 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 638 * no next entry, or a negative error code otherwise. 639 */ 640 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 641 { 642 struct ubifs_znode *znode = *zn; 643 int nn = *n; 644 645 nn += 1; 646 if (nn < znode->child_cnt) { 647 *n = nn; 648 return 0; 649 } 650 while (1) { 651 struct ubifs_znode *zp; 652 653 zp = znode->parent; 654 if (!zp) 655 return -ENOENT; 656 nn = znode->iip + 1; 657 znode = zp; 658 if (nn < znode->child_cnt) { 659 znode = get_znode(c, znode, nn); 660 if (IS_ERR(znode)) 661 return PTR_ERR(znode); 662 while (znode->level != 0) { 663 znode = get_znode(c, znode, 0); 664 if (IS_ERR(znode)) 665 return PTR_ERR(znode); 666 } 667 nn = 0; 668 break; 669 } 670 } 671 *zn = znode; 672 *n = nn; 673 return 0; 674 } 675 676 /** 677 * tnc_prev - find previous TNC entry. 678 * @c: UBIFS file-system description object 679 * @zn: znode is returned here 680 * @n: znode branch slot number is passed and returned here 681 * 682 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 683 * there is no next entry, or a negative error code otherwise. 684 */ 685 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 686 { 687 struct ubifs_znode *znode = *zn; 688 int nn = *n; 689 690 if (nn > 0) { 691 *n = nn - 1; 692 return 0; 693 } 694 while (1) { 695 struct ubifs_znode *zp; 696 697 zp = znode->parent; 698 if (!zp) 699 return -ENOENT; 700 nn = znode->iip - 1; 701 znode = zp; 702 if (nn >= 0) { 703 znode = get_znode(c, znode, nn); 704 if (IS_ERR(znode)) 705 return PTR_ERR(znode); 706 while (znode->level != 0) { 707 nn = znode->child_cnt - 1; 708 znode = get_znode(c, znode, nn); 709 if (IS_ERR(znode)) 710 return PTR_ERR(znode); 711 } 712 nn = znode->child_cnt - 1; 713 break; 714 } 715 } 716 *zn = znode; 717 *n = nn; 718 return 0; 719 } 720 721 /** 722 * resolve_collision - resolve a collision. 723 * @c: UBIFS file-system description object 724 * @key: key of a directory or extended attribute entry 725 * @zn: znode is returned here 726 * @n: zbranch number is passed and returned here 727 * @nm: name of the entry 728 * 729 * This function is called for "hashed" keys to make sure that the found key 730 * really corresponds to the looked up node (directory or extended attribute 731 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 732 * %0 is returned if @nm is not found and @zn and @n are set to the previous 733 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 734 * This means that @n may be set to %-1 if the leftmost key in @zn is the 735 * previous one. A negative error code is returned on failures. 736 */ 737 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 738 struct ubifs_znode **zn, int *n, 739 const struct fscrypt_name *nm) 740 { 741 int err; 742 743 err = matches_name(c, &(*zn)->zbranch[*n], nm); 744 if (unlikely(err < 0)) 745 return err; 746 if (err == NAME_MATCHES) 747 return 1; 748 749 if (err == NAME_GREATER) { 750 /* Look left */ 751 while (1) { 752 err = tnc_prev(c, zn, n); 753 if (err == -ENOENT) { 754 ubifs_assert(c, *n == 0); 755 *n = -1; 756 return 0; 757 } 758 if (err < 0) 759 return err; 760 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 761 /* 762 * We have found the branch after which we would 763 * like to insert, but inserting in this znode 764 * may still be wrong. Consider the following 3 765 * znodes, in the case where we are resolving a 766 * collision with Key2. 767 * 768 * znode zp 769 * ---------------------- 770 * level 1 | Key0 | Key1 | 771 * ----------------------- 772 * | | 773 * znode za | | znode zb 774 * ------------ ------------ 775 * level 0 | Key0 | | Key2 | 776 * ------------ ------------ 777 * 778 * The lookup finds Key2 in znode zb. Lets say 779 * there is no match and the name is greater so 780 * we look left. When we find Key0, we end up 781 * here. If we return now, we will insert into 782 * znode za at slot n = 1. But that is invalid 783 * according to the parent's keys. Key2 must 784 * be inserted into znode zb. 785 * 786 * Note, this problem is not relevant for the 787 * case when we go right, because 788 * 'tnc_insert()' would correct the parent key. 789 */ 790 if (*n == (*zn)->child_cnt - 1) { 791 err = tnc_next(c, zn, n); 792 if (err) { 793 /* Should be impossible */ 794 ubifs_assert(c, 0); 795 if (err == -ENOENT) 796 err = -EINVAL; 797 return err; 798 } 799 ubifs_assert(c, *n == 0); 800 *n = -1; 801 } 802 return 0; 803 } 804 err = matches_name(c, &(*zn)->zbranch[*n], nm); 805 if (err < 0) 806 return err; 807 if (err == NAME_LESS) 808 return 0; 809 if (err == NAME_MATCHES) 810 return 1; 811 ubifs_assert(c, err == NAME_GREATER); 812 } 813 } else { 814 int nn = *n; 815 struct ubifs_znode *znode = *zn; 816 817 /* Look right */ 818 while (1) { 819 err = tnc_next(c, &znode, &nn); 820 if (err == -ENOENT) 821 return 0; 822 if (err < 0) 823 return err; 824 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 825 return 0; 826 err = matches_name(c, &znode->zbranch[nn], nm); 827 if (err < 0) 828 return err; 829 if (err == NAME_GREATER) 830 return 0; 831 *zn = znode; 832 *n = nn; 833 if (err == NAME_MATCHES) 834 return 1; 835 ubifs_assert(c, err == NAME_LESS); 836 } 837 } 838 } 839 840 /** 841 * fallible_matches_name - determine if a dent matches a given name. 842 * @c: UBIFS file-system description object 843 * @zbr: zbranch of dent 844 * @nm: name to match 845 * 846 * This is a "fallible" version of 'matches_name()' function which does not 847 * panic if the direntry/xentry referred by @zbr does not exist on the media. 848 * 849 * This function checks if xentry/direntry referred by zbranch @zbr matches name 850 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 851 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 852 * if xentry/direntry referred by @zbr does not exist on the media. A negative 853 * error code is returned in case of failure. 854 */ 855 static int fallible_matches_name(struct ubifs_info *c, 856 struct ubifs_zbranch *zbr, 857 const struct fscrypt_name *nm) 858 { 859 struct ubifs_dent_node *dent; 860 int nlen, err; 861 862 /* If possible, match against the dent in the leaf node cache */ 863 if (!zbr->leaf) { 864 dent = kmalloc(zbr->len, GFP_NOFS); 865 if (!dent) 866 return -ENOMEM; 867 868 err = fallible_read_node(c, &zbr->key, zbr, dent); 869 if (err < 0) 870 goto out_free; 871 if (err == 0) { 872 /* The node was not present */ 873 err = NOT_ON_MEDIA; 874 goto out_free; 875 } 876 ubifs_assert(c, err == 1); 877 878 err = lnc_add_directly(c, zbr, dent); 879 if (err) 880 goto out_free; 881 } else 882 dent = zbr->leaf; 883 884 nlen = le16_to_cpu(dent->nlen); 885 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 886 if (err == 0) { 887 if (nlen == fname_len(nm)) 888 return NAME_MATCHES; 889 else if (nlen < fname_len(nm)) 890 return NAME_LESS; 891 else 892 return NAME_GREATER; 893 } else if (err < 0) 894 return NAME_LESS; 895 else 896 return NAME_GREATER; 897 898 out_free: 899 kfree(dent); 900 return err; 901 } 902 903 /** 904 * fallible_resolve_collision - resolve a collision even if nodes are missing. 905 * @c: UBIFS file-system description object 906 * @key: key 907 * @zn: znode is returned here 908 * @n: branch number is passed and returned here 909 * @nm: name of directory entry 910 * @adding: indicates caller is adding a key to the TNC 911 * 912 * This is a "fallible" version of the 'resolve_collision()' function which 913 * does not panic if one of the nodes referred to by TNC does not exist on the 914 * media. This may happen when replaying the journal if a deleted node was 915 * Garbage-collected and the commit was not done. A branch that refers to a node 916 * that is not present is called a dangling branch. The following are the return 917 * codes for this function: 918 * o if @nm was found, %1 is returned and @zn and @n are set to the found 919 * branch; 920 * o if we are @adding and @nm was not found, %0 is returned; 921 * o if we are not @adding and @nm was not found, but a dangling branch was 922 * found, then %1 is returned and @zn and @n are set to the dangling branch; 923 * o a negative error code is returned in case of failure. 924 */ 925 static int fallible_resolve_collision(struct ubifs_info *c, 926 const union ubifs_key *key, 927 struct ubifs_znode **zn, int *n, 928 const struct fscrypt_name *nm, 929 int adding) 930 { 931 struct ubifs_znode *o_znode = NULL, *znode = *zn; 932 int o_n, err, cmp, unsure = 0, nn = *n; 933 934 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 935 if (unlikely(cmp < 0)) 936 return cmp; 937 if (cmp == NAME_MATCHES) 938 return 1; 939 if (cmp == NOT_ON_MEDIA) { 940 o_znode = znode; 941 o_n = nn; 942 /* 943 * We are unlucky and hit a dangling branch straight away. 944 * Now we do not really know where to go to find the needed 945 * branch - to the left or to the right. Well, let's try left. 946 */ 947 unsure = 1; 948 } else if (!adding) 949 unsure = 1; /* Remove a dangling branch wherever it is */ 950 951 if (cmp == NAME_GREATER || unsure) { 952 /* Look left */ 953 while (1) { 954 err = tnc_prev(c, zn, n); 955 if (err == -ENOENT) { 956 ubifs_assert(c, *n == 0); 957 *n = -1; 958 break; 959 } 960 if (err < 0) 961 return err; 962 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 963 /* See comments in 'resolve_collision()' */ 964 if (*n == (*zn)->child_cnt - 1) { 965 err = tnc_next(c, zn, n); 966 if (err) { 967 /* Should be impossible */ 968 ubifs_assert(c, 0); 969 if (err == -ENOENT) 970 err = -EINVAL; 971 return err; 972 } 973 ubifs_assert(c, *n == 0); 974 *n = -1; 975 } 976 break; 977 } 978 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 979 if (err < 0) 980 return err; 981 if (err == NAME_MATCHES) 982 return 1; 983 if (err == NOT_ON_MEDIA) { 984 o_znode = *zn; 985 o_n = *n; 986 continue; 987 } 988 if (!adding) 989 continue; 990 if (err == NAME_LESS) 991 break; 992 else 993 unsure = 0; 994 } 995 } 996 997 if (cmp == NAME_LESS || unsure) { 998 /* Look right */ 999 *zn = znode; 1000 *n = nn; 1001 while (1) { 1002 err = tnc_next(c, &znode, &nn); 1003 if (err == -ENOENT) 1004 break; 1005 if (err < 0) 1006 return err; 1007 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1008 break; 1009 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 1010 if (err < 0) 1011 return err; 1012 if (err == NAME_GREATER) 1013 break; 1014 *zn = znode; 1015 *n = nn; 1016 if (err == NAME_MATCHES) 1017 return 1; 1018 if (err == NOT_ON_MEDIA) { 1019 o_znode = znode; 1020 o_n = nn; 1021 } 1022 } 1023 } 1024 1025 /* Never match a dangling branch when adding */ 1026 if (adding || !o_znode) 1027 return 0; 1028 1029 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 1030 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1031 o_znode->zbranch[o_n].len); 1032 *zn = o_znode; 1033 *n = o_n; 1034 return 1; 1035 } 1036 1037 /** 1038 * matches_position - determine if a zbranch matches a given position. 1039 * @zbr: zbranch of dent 1040 * @lnum: LEB number of dent to match 1041 * @offs: offset of dent to match 1042 * 1043 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1044 */ 1045 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1046 { 1047 if (zbr->lnum == lnum && zbr->offs == offs) 1048 return 1; 1049 else 1050 return 0; 1051 } 1052 1053 /** 1054 * resolve_collision_directly - resolve a collision directly. 1055 * @c: UBIFS file-system description object 1056 * @key: key of directory entry 1057 * @zn: znode is passed and returned here 1058 * @n: zbranch number is passed and returned here 1059 * @lnum: LEB number of dent node to match 1060 * @offs: offset of dent node to match 1061 * 1062 * This function is used for "hashed" keys to make sure the found directory or 1063 * extended attribute entry node is what was looked for. It is used when the 1064 * flash address of the right node is known (@lnum:@offs) which makes it much 1065 * easier to resolve collisions (no need to read entries and match full 1066 * names). This function returns %1 and sets @zn and @n if the collision is 1067 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1068 * previous directory entry. Otherwise a negative error code is returned. 1069 */ 1070 static int resolve_collision_directly(struct ubifs_info *c, 1071 const union ubifs_key *key, 1072 struct ubifs_znode **zn, int *n, 1073 int lnum, int offs) 1074 { 1075 struct ubifs_znode *znode; 1076 int nn, err; 1077 1078 znode = *zn; 1079 nn = *n; 1080 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1081 return 1; 1082 1083 /* Look left */ 1084 while (1) { 1085 err = tnc_prev(c, &znode, &nn); 1086 if (err == -ENOENT) 1087 break; 1088 if (err < 0) 1089 return err; 1090 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1091 break; 1092 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1093 *zn = znode; 1094 *n = nn; 1095 return 1; 1096 } 1097 } 1098 1099 /* Look right */ 1100 znode = *zn; 1101 nn = *n; 1102 while (1) { 1103 err = tnc_next(c, &znode, &nn); 1104 if (err == -ENOENT) 1105 return 0; 1106 if (err < 0) 1107 return err; 1108 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1109 return 0; 1110 *zn = znode; 1111 *n = nn; 1112 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1113 return 1; 1114 } 1115 } 1116 1117 /** 1118 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1119 * @c: UBIFS file-system description object 1120 * @znode: znode to dirty 1121 * 1122 * If we do not have a unique key that resides in a znode, then we cannot 1123 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1124 * This function records the path back to the last dirty ancestor, and then 1125 * dirties the znodes on that path. 1126 */ 1127 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1128 struct ubifs_znode *znode) 1129 { 1130 struct ubifs_znode *zp; 1131 int *path = c->bottom_up_buf, p = 0; 1132 1133 ubifs_assert(c, c->zroot.znode); 1134 ubifs_assert(c, znode); 1135 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1136 kfree(c->bottom_up_buf); 1137 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1138 sizeof(int), 1139 GFP_NOFS); 1140 if (!c->bottom_up_buf) 1141 return ERR_PTR(-ENOMEM); 1142 path = c->bottom_up_buf; 1143 } 1144 if (c->zroot.znode->level) { 1145 /* Go up until parent is dirty */ 1146 while (1) { 1147 int n; 1148 1149 zp = znode->parent; 1150 if (!zp) 1151 break; 1152 n = znode->iip; 1153 ubifs_assert(c, p < c->zroot.znode->level); 1154 path[p++] = n; 1155 if (!zp->cnext && ubifs_zn_dirty(znode)) 1156 break; 1157 znode = zp; 1158 } 1159 } 1160 1161 /* Come back down, dirtying as we go */ 1162 while (1) { 1163 struct ubifs_zbranch *zbr; 1164 1165 zp = znode->parent; 1166 if (zp) { 1167 ubifs_assert(c, path[p - 1] >= 0); 1168 ubifs_assert(c, path[p - 1] < zp->child_cnt); 1169 zbr = &zp->zbranch[path[--p]]; 1170 znode = dirty_cow_znode(c, zbr); 1171 } else { 1172 ubifs_assert(c, znode == c->zroot.znode); 1173 znode = dirty_cow_znode(c, &c->zroot); 1174 } 1175 if (IS_ERR(znode) || !p) 1176 break; 1177 ubifs_assert(c, path[p - 1] >= 0); 1178 ubifs_assert(c, path[p - 1] < znode->child_cnt); 1179 znode = znode->zbranch[path[p - 1]].znode; 1180 } 1181 1182 return znode; 1183 } 1184 1185 /** 1186 * ubifs_lookup_level0 - search for zero-level znode. 1187 * @c: UBIFS file-system description object 1188 * @key: key to lookup 1189 * @zn: znode is returned here 1190 * @n: znode branch slot number is returned here 1191 * 1192 * This function looks up the TNC tree and search for zero-level znode which 1193 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1194 * cases: 1195 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1196 * is returned and slot number of the matched branch is stored in @n; 1197 * o not exact match, which means that zero-level znode does not contain 1198 * @key, then %0 is returned and slot number of the closest branch or %-1 1199 * is stored in @n; In this case calling tnc_next() is mandatory. 1200 * o @key is so small that it is even less than the lowest key of the 1201 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1202 * 1203 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1204 * function reads corresponding indexing nodes and inserts them to TNC. In 1205 * case of failure, a negative error code is returned. 1206 */ 1207 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1208 struct ubifs_znode **zn, int *n) 1209 { 1210 int err, exact; 1211 struct ubifs_znode *znode; 1212 time64_t time = ktime_get_seconds(); 1213 1214 dbg_tnck(key, "search key "); 1215 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 1216 1217 znode = c->zroot.znode; 1218 if (unlikely(!znode)) { 1219 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1220 if (IS_ERR(znode)) 1221 return PTR_ERR(znode); 1222 } 1223 1224 znode->time = time; 1225 1226 while (1) { 1227 struct ubifs_zbranch *zbr; 1228 1229 exact = ubifs_search_zbranch(c, znode, key, n); 1230 1231 if (znode->level == 0) 1232 break; 1233 1234 if (*n < 0) 1235 *n = 0; 1236 zbr = &znode->zbranch[*n]; 1237 1238 if (zbr->znode) { 1239 znode->time = time; 1240 znode = zbr->znode; 1241 continue; 1242 } 1243 1244 /* znode is not in TNC cache, load it from the media */ 1245 znode = ubifs_load_znode(c, zbr, znode, *n); 1246 if (IS_ERR(znode)) 1247 return PTR_ERR(znode); 1248 } 1249 1250 *zn = znode; 1251 if (exact || !is_hash_key(c, key) || *n != -1) { 1252 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1253 return exact; 1254 } 1255 1256 /* 1257 * Here is a tricky place. We have not found the key and this is a 1258 * "hashed" key, which may collide. The rest of the code deals with 1259 * situations like this: 1260 * 1261 * | 3 | 5 | 1262 * / \ 1263 * | 3 | 5 | | 6 | 7 | (x) 1264 * 1265 * Or more a complex example: 1266 * 1267 * | 1 | 5 | 1268 * / \ 1269 * | 1 | 3 | | 5 | 8 | 1270 * \ / 1271 * | 5 | 5 | | 6 | 7 | (x) 1272 * 1273 * In the examples, if we are looking for key "5", we may reach nodes 1274 * marked with "(x)". In this case what we have do is to look at the 1275 * left and see if there is "5" key there. If there is, we have to 1276 * return it. 1277 * 1278 * Note, this whole situation is possible because we allow to have 1279 * elements which are equivalent to the next key in the parent in the 1280 * children of current znode. For example, this happens if we split a 1281 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1282 * like this: 1283 * | 3 | 5 | 1284 * / \ 1285 * | 3 | 5 | | 5 | 6 | 7 | 1286 * ^ 1287 * And this becomes what is at the first "picture" after key "5" marked 1288 * with "^" is removed. What could be done is we could prohibit 1289 * splitting in the middle of the colliding sequence. Also, when 1290 * removing the leftmost key, we would have to correct the key of the 1291 * parent node, which would introduce additional complications. Namely, 1292 * if we changed the leftmost key of the parent znode, the garbage 1293 * collector would be unable to find it (GC is doing this when GC'ing 1294 * indexing LEBs). Although we already have an additional RB-tree where 1295 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1296 * after the commit. But anyway, this does not look easy to implement 1297 * so we did not try this. 1298 */ 1299 err = tnc_prev(c, &znode, n); 1300 if (err == -ENOENT) { 1301 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1302 *n = -1; 1303 return 0; 1304 } 1305 if (unlikely(err < 0)) 1306 return err; 1307 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1308 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1309 *n = -1; 1310 return 0; 1311 } 1312 1313 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1314 *zn = znode; 1315 return 1; 1316 } 1317 1318 /** 1319 * lookup_level0_dirty - search for zero-level znode dirtying. 1320 * @c: UBIFS file-system description object 1321 * @key: key to lookup 1322 * @zn: znode is returned here 1323 * @n: znode branch slot number is returned here 1324 * 1325 * This function looks up the TNC tree and search for zero-level znode which 1326 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1327 * cases: 1328 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1329 * is returned and slot number of the matched branch is stored in @n; 1330 * o not exact match, which means that zero-level znode does not contain @key 1331 * then %0 is returned and slot number of the closed branch is stored in 1332 * @n; 1333 * o @key is so small that it is even less than the lowest key of the 1334 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1335 * 1336 * Additionally all znodes in the path from the root to the located zero-level 1337 * znode are marked as dirty. 1338 * 1339 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1340 * function reads corresponding indexing nodes and inserts them to TNC. In 1341 * case of failure, a negative error code is returned. 1342 */ 1343 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1344 struct ubifs_znode **zn, int *n) 1345 { 1346 int err, exact; 1347 struct ubifs_znode *znode; 1348 time64_t time = ktime_get_seconds(); 1349 1350 dbg_tnck(key, "search and dirty key "); 1351 1352 znode = c->zroot.znode; 1353 if (unlikely(!znode)) { 1354 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1355 if (IS_ERR(znode)) 1356 return PTR_ERR(znode); 1357 } 1358 1359 znode = dirty_cow_znode(c, &c->zroot); 1360 if (IS_ERR(znode)) 1361 return PTR_ERR(znode); 1362 1363 znode->time = time; 1364 1365 while (1) { 1366 struct ubifs_zbranch *zbr; 1367 1368 exact = ubifs_search_zbranch(c, znode, key, n); 1369 1370 if (znode->level == 0) 1371 break; 1372 1373 if (*n < 0) 1374 *n = 0; 1375 zbr = &znode->zbranch[*n]; 1376 1377 if (zbr->znode) { 1378 znode->time = time; 1379 znode = dirty_cow_znode(c, zbr); 1380 if (IS_ERR(znode)) 1381 return PTR_ERR(znode); 1382 continue; 1383 } 1384 1385 /* znode is not in TNC cache, load it from the media */ 1386 znode = ubifs_load_znode(c, zbr, znode, *n); 1387 if (IS_ERR(znode)) 1388 return PTR_ERR(znode); 1389 znode = dirty_cow_znode(c, zbr); 1390 if (IS_ERR(znode)) 1391 return PTR_ERR(znode); 1392 } 1393 1394 *zn = znode; 1395 if (exact || !is_hash_key(c, key) || *n != -1) { 1396 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1397 return exact; 1398 } 1399 1400 /* 1401 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1402 * code. 1403 */ 1404 err = tnc_prev(c, &znode, n); 1405 if (err == -ENOENT) { 1406 *n = -1; 1407 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1408 return 0; 1409 } 1410 if (unlikely(err < 0)) 1411 return err; 1412 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1413 *n = -1; 1414 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1415 return 0; 1416 } 1417 1418 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1419 znode = dirty_cow_bottom_up(c, znode); 1420 if (IS_ERR(znode)) 1421 return PTR_ERR(znode); 1422 } 1423 1424 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1425 *zn = znode; 1426 return 1; 1427 } 1428 1429 /** 1430 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1431 * @c: UBIFS file-system description object 1432 * @lnum: LEB number 1433 * @gc_seq1: garbage collection sequence number 1434 * 1435 * This function determines if @lnum may have been garbage collected since 1436 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1437 * %0 is returned. 1438 */ 1439 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1440 { 1441 int gc_seq2, gced_lnum; 1442 1443 gced_lnum = c->gced_lnum; 1444 smp_rmb(); 1445 gc_seq2 = c->gc_seq; 1446 /* Same seq means no GC */ 1447 if (gc_seq1 == gc_seq2) 1448 return 0; 1449 /* Different by more than 1 means we don't know */ 1450 if (gc_seq1 + 1 != gc_seq2) 1451 return 1; 1452 /* 1453 * We have seen the sequence number has increased by 1. Now we need to 1454 * be sure we read the right LEB number, so read it again. 1455 */ 1456 smp_rmb(); 1457 if (gced_lnum != c->gced_lnum) 1458 return 1; 1459 /* Finally we can check lnum */ 1460 if (gced_lnum == lnum) 1461 return 1; 1462 return 0; 1463 } 1464 1465 /** 1466 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1467 * @c: UBIFS file-system description object 1468 * @key: node key to lookup 1469 * @node: the node is returned here 1470 * @lnum: LEB number is returned here 1471 * @offs: offset is returned here 1472 * 1473 * This function looks up and reads node with key @key. The caller has to make 1474 * sure the @node buffer is large enough to fit the node. Returns zero in case 1475 * of success, %-ENOENT if the node was not found, and a negative error code in 1476 * case of failure. The node location can be returned in @lnum and @offs. 1477 */ 1478 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1479 void *node, int *lnum, int *offs) 1480 { 1481 int found, n, err, safely = 0, gc_seq1; 1482 struct ubifs_znode *znode; 1483 struct ubifs_zbranch zbr, *zt; 1484 1485 again: 1486 mutex_lock(&c->tnc_mutex); 1487 found = ubifs_lookup_level0(c, key, &znode, &n); 1488 if (!found) { 1489 err = -ENOENT; 1490 goto out; 1491 } else if (found < 0) { 1492 err = found; 1493 goto out; 1494 } 1495 zt = &znode->zbranch[n]; 1496 if (lnum) { 1497 *lnum = zt->lnum; 1498 *offs = zt->offs; 1499 } 1500 if (is_hash_key(c, key)) { 1501 /* 1502 * In this case the leaf node cache gets used, so we pass the 1503 * address of the zbranch and keep the mutex locked 1504 */ 1505 err = tnc_read_hashed_node(c, zt, node); 1506 goto out; 1507 } 1508 if (safely) { 1509 err = ubifs_tnc_read_node(c, zt, node); 1510 goto out; 1511 } 1512 /* Drop the TNC mutex prematurely and race with garbage collection */ 1513 zbr = znode->zbranch[n]; 1514 gc_seq1 = c->gc_seq; 1515 mutex_unlock(&c->tnc_mutex); 1516 1517 if (ubifs_get_wbuf(c, zbr.lnum)) { 1518 /* We do not GC journal heads */ 1519 err = ubifs_tnc_read_node(c, &zbr, node); 1520 return err; 1521 } 1522 1523 err = fallible_read_node(c, key, &zbr, node); 1524 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1525 /* 1526 * The node may have been GC'ed out from under us so try again 1527 * while keeping the TNC mutex locked. 1528 */ 1529 safely = 1; 1530 goto again; 1531 } 1532 return 0; 1533 1534 out: 1535 mutex_unlock(&c->tnc_mutex); 1536 return err; 1537 } 1538 1539 /** 1540 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1541 * @c: UBIFS file-system description object 1542 * @bu: bulk-read parameters and results 1543 * 1544 * Lookup consecutive data node keys for the same inode that reside 1545 * consecutively in the same LEB. This function returns zero in case of success 1546 * and a negative error code in case of failure. 1547 * 1548 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1549 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1550 * maximum possible amount of nodes for bulk-read. 1551 */ 1552 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1553 { 1554 int n, err = 0, lnum = -1, offs; 1555 int len; 1556 unsigned int block = key_block(c, &bu->key); 1557 struct ubifs_znode *znode; 1558 1559 bu->cnt = 0; 1560 bu->blk_cnt = 0; 1561 bu->eof = 0; 1562 1563 mutex_lock(&c->tnc_mutex); 1564 /* Find first key */ 1565 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1566 if (err < 0) 1567 goto out; 1568 if (err) { 1569 /* Key found */ 1570 len = znode->zbranch[n].len; 1571 /* The buffer must be big enough for at least 1 node */ 1572 if (len > bu->buf_len) { 1573 err = -EINVAL; 1574 goto out; 1575 } 1576 /* Add this key */ 1577 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1578 bu->blk_cnt += 1; 1579 lnum = znode->zbranch[n].lnum; 1580 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1581 } 1582 while (1) { 1583 struct ubifs_zbranch *zbr; 1584 union ubifs_key *key; 1585 unsigned int next_block; 1586 1587 /* Find next key */ 1588 err = tnc_next(c, &znode, &n); 1589 if (err) 1590 goto out; 1591 zbr = &znode->zbranch[n]; 1592 key = &zbr->key; 1593 /* See if there is another data key for this file */ 1594 if (key_inum(c, key) != key_inum(c, &bu->key) || 1595 key_type(c, key) != UBIFS_DATA_KEY) { 1596 err = -ENOENT; 1597 goto out; 1598 } 1599 if (lnum < 0) { 1600 /* First key found */ 1601 lnum = zbr->lnum; 1602 offs = ALIGN(zbr->offs + zbr->len, 8); 1603 len = zbr->len; 1604 if (len > bu->buf_len) { 1605 err = -EINVAL; 1606 goto out; 1607 } 1608 } else { 1609 /* 1610 * The data nodes must be in consecutive positions in 1611 * the same LEB. 1612 */ 1613 if (zbr->lnum != lnum || zbr->offs != offs) 1614 goto out; 1615 offs += ALIGN(zbr->len, 8); 1616 len = ALIGN(len, 8) + zbr->len; 1617 /* Must not exceed buffer length */ 1618 if (len > bu->buf_len) 1619 goto out; 1620 } 1621 /* Allow for holes */ 1622 next_block = key_block(c, key); 1623 bu->blk_cnt += (next_block - block - 1); 1624 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1625 goto out; 1626 block = next_block; 1627 /* Add this key */ 1628 bu->zbranch[bu->cnt++] = *zbr; 1629 bu->blk_cnt += 1; 1630 /* See if we have room for more */ 1631 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1632 goto out; 1633 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1634 goto out; 1635 } 1636 out: 1637 if (err == -ENOENT) { 1638 bu->eof = 1; 1639 err = 0; 1640 } 1641 bu->gc_seq = c->gc_seq; 1642 mutex_unlock(&c->tnc_mutex); 1643 if (err) 1644 return err; 1645 /* 1646 * An enormous hole could cause bulk-read to encompass too many 1647 * page cache pages, so limit the number here. 1648 */ 1649 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1650 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1651 /* 1652 * Ensure that bulk-read covers a whole number of page cache 1653 * pages. 1654 */ 1655 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1656 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1657 return 0; 1658 if (bu->eof) { 1659 /* At the end of file we can round up */ 1660 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1661 return 0; 1662 } 1663 /* Exclude data nodes that do not make up a whole page cache page */ 1664 block = key_block(c, &bu->key) + bu->blk_cnt; 1665 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1666 while (bu->cnt) { 1667 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1668 break; 1669 bu->cnt -= 1; 1670 } 1671 return 0; 1672 } 1673 1674 /** 1675 * read_wbuf - bulk-read from a LEB with a wbuf. 1676 * @wbuf: wbuf that may overlap the read 1677 * @buf: buffer into which to read 1678 * @len: read length 1679 * @lnum: LEB number from which to read 1680 * @offs: offset from which to read 1681 * 1682 * This functions returns %0 on success or a negative error code on failure. 1683 */ 1684 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1685 int offs) 1686 { 1687 const struct ubifs_info *c = wbuf->c; 1688 int rlen, overlap; 1689 1690 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1691 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1692 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1693 ubifs_assert(c, offs + len <= c->leb_size); 1694 1695 spin_lock(&wbuf->lock); 1696 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1697 if (!overlap) { 1698 /* We may safely unlock the write-buffer and read the data */ 1699 spin_unlock(&wbuf->lock); 1700 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1701 } 1702 1703 /* Don't read under wbuf */ 1704 rlen = wbuf->offs - offs; 1705 if (rlen < 0) 1706 rlen = 0; 1707 1708 /* Copy the rest from the write-buffer */ 1709 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1710 spin_unlock(&wbuf->lock); 1711 1712 if (rlen > 0) 1713 /* Read everything that goes before write-buffer */ 1714 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1715 1716 return 0; 1717 } 1718 1719 /** 1720 * validate_data_node - validate data nodes for bulk-read. 1721 * @c: UBIFS file-system description object 1722 * @buf: buffer containing data node to validate 1723 * @zbr: zbranch of data node to validate 1724 * 1725 * This functions returns %0 on success or a negative error code on failure. 1726 */ 1727 static int validate_data_node(struct ubifs_info *c, void *buf, 1728 struct ubifs_zbranch *zbr) 1729 { 1730 union ubifs_key key1; 1731 struct ubifs_ch *ch = buf; 1732 int err, len; 1733 1734 if (ch->node_type != UBIFS_DATA_NODE) { 1735 ubifs_err(c, "bad node type (%d but expected %d)", 1736 ch->node_type, UBIFS_DATA_NODE); 1737 goto out_err; 1738 } 1739 1740 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0); 1741 if (err) { 1742 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1743 goto out; 1744 } 1745 1746 err = ubifs_node_check_hash(c, buf, zbr->hash); 1747 if (err) { 1748 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); 1749 return err; 1750 } 1751 1752 len = le32_to_cpu(ch->len); 1753 if (len != zbr->len) { 1754 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1755 goto out_err; 1756 } 1757 1758 /* Make sure the key of the read node is correct */ 1759 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1760 if (!keys_eq(c, &zbr->key, &key1)) { 1761 ubifs_err(c, "bad key in node at LEB %d:%d", 1762 zbr->lnum, zbr->offs); 1763 dbg_tnck(&zbr->key, "looked for key "); 1764 dbg_tnck(&key1, "found node's key "); 1765 goto out_err; 1766 } 1767 1768 return 0; 1769 1770 out_err: 1771 err = -EINVAL; 1772 out: 1773 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1774 ubifs_dump_node(c, buf, zbr->len); 1775 dump_stack(); 1776 return err; 1777 } 1778 1779 /** 1780 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1781 * @c: UBIFS file-system description object 1782 * @bu: bulk-read parameters and results 1783 * 1784 * This functions reads and validates the data nodes that were identified by the 1785 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1786 * -EAGAIN to indicate a race with GC, or another negative error code on 1787 * failure. 1788 */ 1789 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1790 { 1791 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1792 struct ubifs_wbuf *wbuf; 1793 void *buf; 1794 1795 len = bu->zbranch[bu->cnt - 1].offs; 1796 len += bu->zbranch[bu->cnt - 1].len - offs; 1797 if (len > bu->buf_len) { 1798 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1799 return -EINVAL; 1800 } 1801 1802 /* Do the read */ 1803 wbuf = ubifs_get_wbuf(c, lnum); 1804 if (wbuf) 1805 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1806 else 1807 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1808 1809 /* Check for a race with GC */ 1810 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1811 return -EAGAIN; 1812 1813 if (err && err != -EBADMSG) { 1814 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1815 lnum, offs, err); 1816 dump_stack(); 1817 dbg_tnck(&bu->key, "key "); 1818 return err; 1819 } 1820 1821 /* Validate the nodes read */ 1822 buf = bu->buf; 1823 for (i = 0; i < bu->cnt; i++) { 1824 err = validate_data_node(c, buf, &bu->zbranch[i]); 1825 if (err) 1826 return err; 1827 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1828 } 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * do_lookup_nm- look up a "hashed" node. 1835 * @c: UBIFS file-system description object 1836 * @key: node key to lookup 1837 * @node: the node is returned here 1838 * @nm: node name 1839 * 1840 * This function looks up and reads a node which contains name hash in the key. 1841 * Since the hash may have collisions, there may be many nodes with the same 1842 * key, so we have to sequentially look to all of them until the needed one is 1843 * found. This function returns zero in case of success, %-ENOENT if the node 1844 * was not found, and a negative error code in case of failure. 1845 */ 1846 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1847 void *node, const struct fscrypt_name *nm) 1848 { 1849 int found, n, err; 1850 struct ubifs_znode *znode; 1851 1852 dbg_tnck(key, "key "); 1853 mutex_lock(&c->tnc_mutex); 1854 found = ubifs_lookup_level0(c, key, &znode, &n); 1855 if (!found) { 1856 err = -ENOENT; 1857 goto out_unlock; 1858 } else if (found < 0) { 1859 err = found; 1860 goto out_unlock; 1861 } 1862 1863 ubifs_assert(c, n >= 0); 1864 1865 err = resolve_collision(c, key, &znode, &n, nm); 1866 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1867 if (unlikely(err < 0)) 1868 goto out_unlock; 1869 if (err == 0) { 1870 err = -ENOENT; 1871 goto out_unlock; 1872 } 1873 1874 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1875 1876 out_unlock: 1877 mutex_unlock(&c->tnc_mutex); 1878 return err; 1879 } 1880 1881 /** 1882 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1883 * @c: UBIFS file-system description object 1884 * @key: node key to lookup 1885 * @node: the node is returned here 1886 * @nm: node name 1887 * 1888 * This function looks up and reads a node which contains name hash in the key. 1889 * Since the hash may have collisions, there may be many nodes with the same 1890 * key, so we have to sequentially look to all of them until the needed one is 1891 * found. This function returns zero in case of success, %-ENOENT if the node 1892 * was not found, and a negative error code in case of failure. 1893 */ 1894 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1895 void *node, const struct fscrypt_name *nm) 1896 { 1897 int err, len; 1898 const struct ubifs_dent_node *dent = node; 1899 1900 /* 1901 * We assume that in most of the cases there are no name collisions and 1902 * 'ubifs_tnc_lookup()' returns us the right direntry. 1903 */ 1904 err = ubifs_tnc_lookup(c, key, node); 1905 if (err) 1906 return err; 1907 1908 len = le16_to_cpu(dent->nlen); 1909 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1910 return 0; 1911 1912 /* 1913 * Unluckily, there are hash collisions and we have to iterate over 1914 * them look at each direntry with colliding name hash sequentially. 1915 */ 1916 1917 return do_lookup_nm(c, key, node, nm); 1918 } 1919 1920 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1921 struct ubifs_dent_node *dent, uint32_t cookie, 1922 struct ubifs_znode **zn, int *n, int exact) 1923 { 1924 int err; 1925 struct ubifs_znode *znode = *zn; 1926 struct ubifs_zbranch *zbr; 1927 union ubifs_key *dkey; 1928 1929 if (!exact) { 1930 err = tnc_next(c, &znode, n); 1931 if (err) 1932 return err; 1933 } 1934 1935 for (;;) { 1936 zbr = &znode->zbranch[*n]; 1937 dkey = &zbr->key; 1938 1939 if (key_inum(c, dkey) != key_inum(c, key) || 1940 key_type(c, dkey) != key_type(c, key)) { 1941 return -ENOENT; 1942 } 1943 1944 err = tnc_read_hashed_node(c, zbr, dent); 1945 if (err) 1946 return err; 1947 1948 if (key_hash(c, key) == key_hash(c, dkey) && 1949 le32_to_cpu(dent->cookie) == cookie) { 1950 *zn = znode; 1951 return 0; 1952 } 1953 1954 err = tnc_next(c, &znode, n); 1955 if (err) 1956 return err; 1957 } 1958 } 1959 1960 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1961 struct ubifs_dent_node *dent, uint32_t cookie) 1962 { 1963 int n, err; 1964 struct ubifs_znode *znode; 1965 union ubifs_key start_key; 1966 1967 ubifs_assert(c, is_hash_key(c, key)); 1968 1969 lowest_dent_key(c, &start_key, key_inum(c, key)); 1970 1971 mutex_lock(&c->tnc_mutex); 1972 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1973 if (unlikely(err < 0)) 1974 goto out_unlock; 1975 1976 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); 1977 1978 out_unlock: 1979 mutex_unlock(&c->tnc_mutex); 1980 return err; 1981 } 1982 1983 /** 1984 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1985 * @c: UBIFS file-system description object 1986 * @key: node key to lookup 1987 * @node: the node is returned here 1988 * @cookie: node cookie for collision resolution 1989 * 1990 * This function looks up and reads a node which contains name hash in the key. 1991 * Since the hash may have collisions, there may be many nodes with the same 1992 * key, so we have to sequentially look to all of them until the needed one 1993 * with the same cookie value is found. 1994 * This function returns zero in case of success, %-ENOENT if the node 1995 * was not found, and a negative error code in case of failure. 1996 */ 1997 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1998 void *node, uint32_t cookie) 1999 { 2000 int err; 2001 const struct ubifs_dent_node *dent = node; 2002 2003 if (!c->double_hash) 2004 return -EOPNOTSUPP; 2005 2006 /* 2007 * We assume that in most of the cases there are no name collisions and 2008 * 'ubifs_tnc_lookup()' returns us the right direntry. 2009 */ 2010 err = ubifs_tnc_lookup(c, key, node); 2011 if (err) 2012 return err; 2013 2014 if (le32_to_cpu(dent->cookie) == cookie) 2015 return 0; 2016 2017 /* 2018 * Unluckily, there are hash collisions and we have to iterate over 2019 * them look at each direntry with colliding name hash sequentially. 2020 */ 2021 return do_lookup_dh(c, key, node, cookie); 2022 } 2023 2024 /** 2025 * correct_parent_keys - correct parent znodes' keys. 2026 * @c: UBIFS file-system description object 2027 * @znode: znode to correct parent znodes for 2028 * 2029 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 2030 * zbranch changes, keys of parent znodes have to be corrected. This helper 2031 * function is called in such situations and corrects the keys if needed. 2032 */ 2033 static void correct_parent_keys(const struct ubifs_info *c, 2034 struct ubifs_znode *znode) 2035 { 2036 union ubifs_key *key, *key1; 2037 2038 ubifs_assert(c, znode->parent); 2039 ubifs_assert(c, znode->iip == 0); 2040 2041 key = &znode->zbranch[0].key; 2042 key1 = &znode->parent->zbranch[0].key; 2043 2044 while (keys_cmp(c, key, key1) < 0) { 2045 key_copy(c, key, key1); 2046 znode = znode->parent; 2047 znode->alt = 1; 2048 if (!znode->parent || znode->iip) 2049 break; 2050 key1 = &znode->parent->zbranch[0].key; 2051 } 2052 } 2053 2054 /** 2055 * insert_zbranch - insert a zbranch into a znode. 2056 * @c: UBIFS file-system description object 2057 * @znode: znode into which to insert 2058 * @zbr: zbranch to insert 2059 * @n: slot number to insert to 2060 * 2061 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2062 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2063 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2064 * slot, zbranches starting from @n have to be moved right. 2065 */ 2066 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, 2067 const struct ubifs_zbranch *zbr, int n) 2068 { 2069 int i; 2070 2071 ubifs_assert(c, ubifs_zn_dirty(znode)); 2072 2073 if (znode->level) { 2074 for (i = znode->child_cnt; i > n; i--) { 2075 znode->zbranch[i] = znode->zbranch[i - 1]; 2076 if (znode->zbranch[i].znode) 2077 znode->zbranch[i].znode->iip = i; 2078 } 2079 if (zbr->znode) 2080 zbr->znode->iip = n; 2081 } else 2082 for (i = znode->child_cnt; i > n; i--) 2083 znode->zbranch[i] = znode->zbranch[i - 1]; 2084 2085 znode->zbranch[n] = *zbr; 2086 znode->child_cnt += 1; 2087 2088 /* 2089 * After inserting at slot zero, the lower bound of the key range of 2090 * this znode may have changed. If this znode is subsequently split 2091 * then the upper bound of the key range may change, and furthermore 2092 * it could change to be lower than the original lower bound. If that 2093 * happens, then it will no longer be possible to find this znode in the 2094 * TNC using the key from the index node on flash. That is bad because 2095 * if it is not found, we will assume it is obsolete and may overwrite 2096 * it. Then if there is an unclean unmount, we will start using the 2097 * old index which will be broken. 2098 * 2099 * So we first mark znodes that have insertions at slot zero, and then 2100 * if they are split we add their lnum/offs to the old_idx tree. 2101 */ 2102 if (n == 0) 2103 znode->alt = 1; 2104 } 2105 2106 /** 2107 * tnc_insert - insert a node into TNC. 2108 * @c: UBIFS file-system description object 2109 * @znode: znode to insert into 2110 * @zbr: branch to insert 2111 * @n: slot number to insert new zbranch to 2112 * 2113 * This function inserts a new node described by @zbr into znode @znode. If 2114 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2115 * are splat as well if needed. Returns zero in case of success or a negative 2116 * error code in case of failure. 2117 */ 2118 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2119 struct ubifs_zbranch *zbr, int n) 2120 { 2121 struct ubifs_znode *zn, *zi, *zp; 2122 int i, keep, move, appending = 0; 2123 union ubifs_key *key = &zbr->key, *key1; 2124 2125 ubifs_assert(c, n >= 0 && n <= c->fanout); 2126 2127 /* Implement naive insert for now */ 2128 again: 2129 zp = znode->parent; 2130 if (znode->child_cnt < c->fanout) { 2131 ubifs_assert(c, n != c->fanout); 2132 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2133 2134 insert_zbranch(c, znode, zbr, n); 2135 2136 /* Ensure parent's key is correct */ 2137 if (n == 0 && zp && znode->iip == 0) 2138 correct_parent_keys(c, znode); 2139 2140 return 0; 2141 } 2142 2143 /* 2144 * Unfortunately, @znode does not have more empty slots and we have to 2145 * split it. 2146 */ 2147 dbg_tnck(key, "splitting level %d, key ", znode->level); 2148 2149 if (znode->alt) 2150 /* 2151 * We can no longer be sure of finding this znode by key, so we 2152 * record it in the old_idx tree. 2153 */ 2154 ins_clr_old_idx_znode(c, znode); 2155 2156 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2157 if (!zn) 2158 return -ENOMEM; 2159 zn->parent = zp; 2160 zn->level = znode->level; 2161 2162 /* Decide where to split */ 2163 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2164 /* Try not to split consecutive data keys */ 2165 if (n == c->fanout) { 2166 key1 = &znode->zbranch[n - 1].key; 2167 if (key_inum(c, key1) == key_inum(c, key) && 2168 key_type(c, key1) == UBIFS_DATA_KEY) 2169 appending = 1; 2170 } else 2171 goto check_split; 2172 } else if (appending && n != c->fanout) { 2173 /* Try not to split consecutive data keys */ 2174 appending = 0; 2175 check_split: 2176 if (n >= (c->fanout + 1) / 2) { 2177 key1 = &znode->zbranch[0].key; 2178 if (key_inum(c, key1) == key_inum(c, key) && 2179 key_type(c, key1) == UBIFS_DATA_KEY) { 2180 key1 = &znode->zbranch[n].key; 2181 if (key_inum(c, key1) != key_inum(c, key) || 2182 key_type(c, key1) != UBIFS_DATA_KEY) { 2183 keep = n; 2184 move = c->fanout - keep; 2185 zi = znode; 2186 goto do_split; 2187 } 2188 } 2189 } 2190 } 2191 2192 if (appending) { 2193 keep = c->fanout; 2194 move = 0; 2195 } else { 2196 keep = (c->fanout + 1) / 2; 2197 move = c->fanout - keep; 2198 } 2199 2200 /* 2201 * Although we don't at present, we could look at the neighbors and see 2202 * if we can move some zbranches there. 2203 */ 2204 2205 if (n < keep) { 2206 /* Insert into existing znode */ 2207 zi = znode; 2208 move += 1; 2209 keep -= 1; 2210 } else { 2211 /* Insert into new znode */ 2212 zi = zn; 2213 n -= keep; 2214 /* Re-parent */ 2215 if (zn->level != 0) 2216 zbr->znode->parent = zn; 2217 } 2218 2219 do_split: 2220 2221 __set_bit(DIRTY_ZNODE, &zn->flags); 2222 atomic_long_inc(&c->dirty_zn_cnt); 2223 2224 zn->child_cnt = move; 2225 znode->child_cnt = keep; 2226 2227 dbg_tnc("moving %d, keeping %d", move, keep); 2228 2229 /* Move zbranch */ 2230 for (i = 0; i < move; i++) { 2231 zn->zbranch[i] = znode->zbranch[keep + i]; 2232 /* Re-parent */ 2233 if (zn->level != 0) 2234 if (zn->zbranch[i].znode) { 2235 zn->zbranch[i].znode->parent = zn; 2236 zn->zbranch[i].znode->iip = i; 2237 } 2238 } 2239 2240 /* Insert new key and branch */ 2241 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2242 2243 insert_zbranch(c, zi, zbr, n); 2244 2245 /* Insert new znode (produced by spitting) into the parent */ 2246 if (zp) { 2247 if (n == 0 && zi == znode && znode->iip == 0) 2248 correct_parent_keys(c, znode); 2249 2250 /* Locate insertion point */ 2251 n = znode->iip + 1; 2252 2253 /* Tail recursion */ 2254 zbr->key = zn->zbranch[0].key; 2255 zbr->znode = zn; 2256 zbr->lnum = 0; 2257 zbr->offs = 0; 2258 zbr->len = 0; 2259 znode = zp; 2260 2261 goto again; 2262 } 2263 2264 /* We have to split root znode */ 2265 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2266 2267 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2268 if (!zi) 2269 return -ENOMEM; 2270 2271 zi->child_cnt = 2; 2272 zi->level = znode->level + 1; 2273 2274 __set_bit(DIRTY_ZNODE, &zi->flags); 2275 atomic_long_inc(&c->dirty_zn_cnt); 2276 2277 zi->zbranch[0].key = znode->zbranch[0].key; 2278 zi->zbranch[0].znode = znode; 2279 zi->zbranch[0].lnum = c->zroot.lnum; 2280 zi->zbranch[0].offs = c->zroot.offs; 2281 zi->zbranch[0].len = c->zroot.len; 2282 zi->zbranch[1].key = zn->zbranch[0].key; 2283 zi->zbranch[1].znode = zn; 2284 2285 c->zroot.lnum = 0; 2286 c->zroot.offs = 0; 2287 c->zroot.len = 0; 2288 c->zroot.znode = zi; 2289 2290 zn->parent = zi; 2291 zn->iip = 1; 2292 znode->parent = zi; 2293 znode->iip = 0; 2294 2295 return 0; 2296 } 2297 2298 /** 2299 * ubifs_tnc_add - add a node to TNC. 2300 * @c: UBIFS file-system description object 2301 * @key: key to add 2302 * @lnum: LEB number of node 2303 * @offs: node offset 2304 * @len: node length 2305 * @hash: The hash over the node 2306 * 2307 * This function adds a node with key @key to TNC. The node may be new or it may 2308 * obsolete some existing one. Returns %0 on success or negative error code on 2309 * failure. 2310 */ 2311 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2312 int offs, int len, const u8 *hash) 2313 { 2314 int found, n, err = 0; 2315 struct ubifs_znode *znode; 2316 2317 mutex_lock(&c->tnc_mutex); 2318 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2319 found = lookup_level0_dirty(c, key, &znode, &n); 2320 if (!found) { 2321 struct ubifs_zbranch zbr; 2322 2323 zbr.znode = NULL; 2324 zbr.lnum = lnum; 2325 zbr.offs = offs; 2326 zbr.len = len; 2327 ubifs_copy_hash(c, hash, zbr.hash); 2328 key_copy(c, key, &zbr.key); 2329 err = tnc_insert(c, znode, &zbr, n + 1); 2330 } else if (found == 1) { 2331 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2332 2333 lnc_free(zbr); 2334 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2335 zbr->lnum = lnum; 2336 zbr->offs = offs; 2337 zbr->len = len; 2338 ubifs_copy_hash(c, hash, zbr->hash); 2339 } else 2340 err = found; 2341 if (!err) 2342 err = dbg_check_tnc(c, 0); 2343 mutex_unlock(&c->tnc_mutex); 2344 2345 return err; 2346 } 2347 2348 /** 2349 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2350 * @c: UBIFS file-system description object 2351 * @key: key to add 2352 * @old_lnum: LEB number of old node 2353 * @old_offs: old node offset 2354 * @lnum: LEB number of node 2355 * @offs: node offset 2356 * @len: node length 2357 * 2358 * This function replaces a node with key @key in the TNC only if the old node 2359 * is found. This function is called by garbage collection when node are moved. 2360 * Returns %0 on success or negative error code on failure. 2361 */ 2362 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2363 int old_lnum, int old_offs, int lnum, int offs, int len) 2364 { 2365 int found, n, err = 0; 2366 struct ubifs_znode *znode; 2367 2368 mutex_lock(&c->tnc_mutex); 2369 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2370 old_offs, lnum, offs, len); 2371 found = lookup_level0_dirty(c, key, &znode, &n); 2372 if (found < 0) { 2373 err = found; 2374 goto out_unlock; 2375 } 2376 2377 if (found == 1) { 2378 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2379 2380 found = 0; 2381 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2382 lnc_free(zbr); 2383 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2384 if (err) 2385 goto out_unlock; 2386 zbr->lnum = lnum; 2387 zbr->offs = offs; 2388 zbr->len = len; 2389 found = 1; 2390 } else if (is_hash_key(c, key)) { 2391 found = resolve_collision_directly(c, key, &znode, &n, 2392 old_lnum, old_offs); 2393 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2394 found, znode, n, old_lnum, old_offs); 2395 if (found < 0) { 2396 err = found; 2397 goto out_unlock; 2398 } 2399 2400 if (found) { 2401 /* Ensure the znode is dirtied */ 2402 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2403 znode = dirty_cow_bottom_up(c, znode); 2404 if (IS_ERR(znode)) { 2405 err = PTR_ERR(znode); 2406 goto out_unlock; 2407 } 2408 } 2409 zbr = &znode->zbranch[n]; 2410 lnc_free(zbr); 2411 err = ubifs_add_dirt(c, zbr->lnum, 2412 zbr->len); 2413 if (err) 2414 goto out_unlock; 2415 zbr->lnum = lnum; 2416 zbr->offs = offs; 2417 zbr->len = len; 2418 } 2419 } 2420 } 2421 2422 if (!found) 2423 err = ubifs_add_dirt(c, lnum, len); 2424 2425 if (!err) 2426 err = dbg_check_tnc(c, 0); 2427 2428 out_unlock: 2429 mutex_unlock(&c->tnc_mutex); 2430 return err; 2431 } 2432 2433 /** 2434 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2435 * @c: UBIFS file-system description object 2436 * @key: key to add 2437 * @lnum: LEB number of node 2438 * @offs: node offset 2439 * @len: node length 2440 * @hash: The hash over the node 2441 * @nm: node name 2442 * 2443 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2444 * may have collisions, like directory entry keys. 2445 */ 2446 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2447 int lnum, int offs, int len, const u8 *hash, 2448 const struct fscrypt_name *nm) 2449 { 2450 int found, n, err = 0; 2451 struct ubifs_znode *znode; 2452 2453 mutex_lock(&c->tnc_mutex); 2454 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2455 found = lookup_level0_dirty(c, key, &znode, &n); 2456 if (found < 0) { 2457 err = found; 2458 goto out_unlock; 2459 } 2460 2461 if (found == 1) { 2462 if (c->replaying) 2463 found = fallible_resolve_collision(c, key, &znode, &n, 2464 nm, 1); 2465 else 2466 found = resolve_collision(c, key, &znode, &n, nm); 2467 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2468 if (found < 0) { 2469 err = found; 2470 goto out_unlock; 2471 } 2472 2473 /* Ensure the znode is dirtied */ 2474 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2475 znode = dirty_cow_bottom_up(c, znode); 2476 if (IS_ERR(znode)) { 2477 err = PTR_ERR(znode); 2478 goto out_unlock; 2479 } 2480 } 2481 2482 if (found == 1) { 2483 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2484 2485 lnc_free(zbr); 2486 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2487 zbr->lnum = lnum; 2488 zbr->offs = offs; 2489 zbr->len = len; 2490 ubifs_copy_hash(c, hash, zbr->hash); 2491 goto out_unlock; 2492 } 2493 } 2494 2495 if (!found) { 2496 struct ubifs_zbranch zbr; 2497 2498 zbr.znode = NULL; 2499 zbr.lnum = lnum; 2500 zbr.offs = offs; 2501 zbr.len = len; 2502 ubifs_copy_hash(c, hash, zbr.hash); 2503 key_copy(c, key, &zbr.key); 2504 err = tnc_insert(c, znode, &zbr, n + 1); 2505 if (err) 2506 goto out_unlock; 2507 if (c->replaying) { 2508 /* 2509 * We did not find it in the index so there may be a 2510 * dangling branch still in the index. So we remove it 2511 * by passing 'ubifs_tnc_remove_nm()' the same key but 2512 * an unmatchable name. 2513 */ 2514 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2515 2516 err = dbg_check_tnc(c, 0); 2517 mutex_unlock(&c->tnc_mutex); 2518 if (err) 2519 return err; 2520 return ubifs_tnc_remove_nm(c, key, &noname); 2521 } 2522 } 2523 2524 out_unlock: 2525 if (!err) 2526 err = dbg_check_tnc(c, 0); 2527 mutex_unlock(&c->tnc_mutex); 2528 return err; 2529 } 2530 2531 /** 2532 * tnc_delete - delete a znode form TNC. 2533 * @c: UBIFS file-system description object 2534 * @znode: znode to delete from 2535 * @n: zbranch slot number to delete 2536 * 2537 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2538 * case of success and a negative error code in case of failure. 2539 */ 2540 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2541 { 2542 struct ubifs_zbranch *zbr; 2543 struct ubifs_znode *zp; 2544 int i, err; 2545 2546 /* Delete without merge for now */ 2547 ubifs_assert(c, znode->level == 0); 2548 ubifs_assert(c, n >= 0 && n < c->fanout); 2549 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2550 2551 zbr = &znode->zbranch[n]; 2552 lnc_free(zbr); 2553 2554 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2555 if (err) { 2556 ubifs_dump_znode(c, znode); 2557 return err; 2558 } 2559 2560 /* We do not "gap" zbranch slots */ 2561 for (i = n; i < znode->child_cnt - 1; i++) 2562 znode->zbranch[i] = znode->zbranch[i + 1]; 2563 znode->child_cnt -= 1; 2564 2565 if (znode->child_cnt > 0) 2566 return 0; 2567 2568 /* 2569 * This was the last zbranch, we have to delete this znode from the 2570 * parent. 2571 */ 2572 2573 do { 2574 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 2575 ubifs_assert(c, ubifs_zn_dirty(znode)); 2576 2577 zp = znode->parent; 2578 n = znode->iip; 2579 2580 atomic_long_dec(&c->dirty_zn_cnt); 2581 2582 err = insert_old_idx_znode(c, znode); 2583 if (err) 2584 return err; 2585 2586 if (znode->cnext) { 2587 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2588 atomic_long_inc(&c->clean_zn_cnt); 2589 atomic_long_inc(&ubifs_clean_zn_cnt); 2590 } else 2591 kfree(znode); 2592 znode = zp; 2593 } while (znode->child_cnt == 1); /* while removing last child */ 2594 2595 /* Remove from znode, entry n - 1 */ 2596 znode->child_cnt -= 1; 2597 ubifs_assert(c, znode->level != 0); 2598 for (i = n; i < znode->child_cnt; i++) { 2599 znode->zbranch[i] = znode->zbranch[i + 1]; 2600 if (znode->zbranch[i].znode) 2601 znode->zbranch[i].znode->iip = i; 2602 } 2603 2604 /* 2605 * If this is the root and it has only 1 child then 2606 * collapse the tree. 2607 */ 2608 if (!znode->parent) { 2609 while (znode->child_cnt == 1 && znode->level != 0) { 2610 zp = znode; 2611 zbr = &znode->zbranch[0]; 2612 znode = get_znode(c, znode, 0); 2613 if (IS_ERR(znode)) 2614 return PTR_ERR(znode); 2615 znode = dirty_cow_znode(c, zbr); 2616 if (IS_ERR(znode)) 2617 return PTR_ERR(znode); 2618 znode->parent = NULL; 2619 znode->iip = 0; 2620 if (c->zroot.len) { 2621 err = insert_old_idx(c, c->zroot.lnum, 2622 c->zroot.offs); 2623 if (err) 2624 return err; 2625 } 2626 c->zroot.lnum = zbr->lnum; 2627 c->zroot.offs = zbr->offs; 2628 c->zroot.len = zbr->len; 2629 c->zroot.znode = znode; 2630 ubifs_assert(c, !ubifs_zn_obsolete(zp)); 2631 ubifs_assert(c, ubifs_zn_dirty(zp)); 2632 atomic_long_dec(&c->dirty_zn_cnt); 2633 2634 if (zp->cnext) { 2635 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2636 atomic_long_inc(&c->clean_zn_cnt); 2637 atomic_long_inc(&ubifs_clean_zn_cnt); 2638 } else 2639 kfree(zp); 2640 } 2641 } 2642 2643 return 0; 2644 } 2645 2646 /** 2647 * ubifs_tnc_remove - remove an index entry of a node. 2648 * @c: UBIFS file-system description object 2649 * @key: key of node 2650 * 2651 * Returns %0 on success or negative error code on failure. 2652 */ 2653 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2654 { 2655 int found, n, err = 0; 2656 struct ubifs_znode *znode; 2657 2658 mutex_lock(&c->tnc_mutex); 2659 dbg_tnck(key, "key "); 2660 found = lookup_level0_dirty(c, key, &znode, &n); 2661 if (found < 0) { 2662 err = found; 2663 goto out_unlock; 2664 } 2665 if (found == 1) 2666 err = tnc_delete(c, znode, n); 2667 if (!err) 2668 err = dbg_check_tnc(c, 0); 2669 2670 out_unlock: 2671 mutex_unlock(&c->tnc_mutex); 2672 return err; 2673 } 2674 2675 /** 2676 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2677 * @c: UBIFS file-system description object 2678 * @key: key of node 2679 * @nm: directory entry name 2680 * 2681 * Returns %0 on success or negative error code on failure. 2682 */ 2683 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2684 const struct fscrypt_name *nm) 2685 { 2686 int n, err; 2687 struct ubifs_znode *znode; 2688 2689 mutex_lock(&c->tnc_mutex); 2690 dbg_tnck(key, "key "); 2691 err = lookup_level0_dirty(c, key, &znode, &n); 2692 if (err < 0) 2693 goto out_unlock; 2694 2695 if (err) { 2696 if (c->replaying) 2697 err = fallible_resolve_collision(c, key, &znode, &n, 2698 nm, 0); 2699 else 2700 err = resolve_collision(c, key, &znode, &n, nm); 2701 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2702 if (err < 0) 2703 goto out_unlock; 2704 if (err) { 2705 /* Ensure the znode is dirtied */ 2706 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2707 znode = dirty_cow_bottom_up(c, znode); 2708 if (IS_ERR(znode)) { 2709 err = PTR_ERR(znode); 2710 goto out_unlock; 2711 } 2712 } 2713 err = tnc_delete(c, znode, n); 2714 } 2715 } 2716 2717 out_unlock: 2718 if (!err) 2719 err = dbg_check_tnc(c, 0); 2720 mutex_unlock(&c->tnc_mutex); 2721 return err; 2722 } 2723 2724 /** 2725 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2726 * @c: UBIFS file-system description object 2727 * @key: key of node 2728 * @cookie: node cookie for collision resolution 2729 * 2730 * Returns %0 on success or negative error code on failure. 2731 */ 2732 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2733 uint32_t cookie) 2734 { 2735 int n, err; 2736 struct ubifs_znode *znode; 2737 struct ubifs_dent_node *dent; 2738 struct ubifs_zbranch *zbr; 2739 2740 if (!c->double_hash) 2741 return -EOPNOTSUPP; 2742 2743 mutex_lock(&c->tnc_mutex); 2744 err = lookup_level0_dirty(c, key, &znode, &n); 2745 if (err <= 0) 2746 goto out_unlock; 2747 2748 zbr = &znode->zbranch[n]; 2749 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2750 if (!dent) { 2751 err = -ENOMEM; 2752 goto out_unlock; 2753 } 2754 2755 err = tnc_read_hashed_node(c, zbr, dent); 2756 if (err) 2757 goto out_free; 2758 2759 /* If the cookie does not match, we're facing a hash collision. */ 2760 if (le32_to_cpu(dent->cookie) != cookie) { 2761 union ubifs_key start_key; 2762 2763 lowest_dent_key(c, &start_key, key_inum(c, key)); 2764 2765 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2766 if (unlikely(err < 0)) 2767 goto out_free; 2768 2769 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); 2770 if (err) 2771 goto out_free; 2772 } 2773 2774 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2775 znode = dirty_cow_bottom_up(c, znode); 2776 if (IS_ERR(znode)) { 2777 err = PTR_ERR(znode); 2778 goto out_free; 2779 } 2780 } 2781 err = tnc_delete(c, znode, n); 2782 2783 out_free: 2784 kfree(dent); 2785 out_unlock: 2786 if (!err) 2787 err = dbg_check_tnc(c, 0); 2788 mutex_unlock(&c->tnc_mutex); 2789 return err; 2790 } 2791 2792 /** 2793 * key_in_range - determine if a key falls within a range of keys. 2794 * @c: UBIFS file-system description object 2795 * @key: key to check 2796 * @from_key: lowest key in range 2797 * @to_key: highest key in range 2798 * 2799 * This function returns %1 if the key is in range and %0 otherwise. 2800 */ 2801 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2802 union ubifs_key *from_key, union ubifs_key *to_key) 2803 { 2804 if (keys_cmp(c, key, from_key) < 0) 2805 return 0; 2806 if (keys_cmp(c, key, to_key) > 0) 2807 return 0; 2808 return 1; 2809 } 2810 2811 /** 2812 * ubifs_tnc_remove_range - remove index entries in range. 2813 * @c: UBIFS file-system description object 2814 * @from_key: lowest key to remove 2815 * @to_key: highest key to remove 2816 * 2817 * This function removes index entries starting at @from_key and ending at 2818 * @to_key. This function returns zero in case of success and a negative error 2819 * code in case of failure. 2820 */ 2821 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2822 union ubifs_key *to_key) 2823 { 2824 int i, n, k, err = 0; 2825 struct ubifs_znode *znode; 2826 union ubifs_key *key; 2827 2828 mutex_lock(&c->tnc_mutex); 2829 while (1) { 2830 /* Find first level 0 znode that contains keys to remove */ 2831 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2832 if (err < 0) 2833 goto out_unlock; 2834 2835 if (err) 2836 key = from_key; 2837 else { 2838 err = tnc_next(c, &znode, &n); 2839 if (err == -ENOENT) { 2840 err = 0; 2841 goto out_unlock; 2842 } 2843 if (err < 0) 2844 goto out_unlock; 2845 key = &znode->zbranch[n].key; 2846 if (!key_in_range(c, key, from_key, to_key)) { 2847 err = 0; 2848 goto out_unlock; 2849 } 2850 } 2851 2852 /* Ensure the znode is dirtied */ 2853 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2854 znode = dirty_cow_bottom_up(c, znode); 2855 if (IS_ERR(znode)) { 2856 err = PTR_ERR(znode); 2857 goto out_unlock; 2858 } 2859 } 2860 2861 /* Remove all keys in range except the first */ 2862 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2863 key = &znode->zbranch[i].key; 2864 if (!key_in_range(c, key, from_key, to_key)) 2865 break; 2866 lnc_free(&znode->zbranch[i]); 2867 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2868 znode->zbranch[i].len); 2869 if (err) { 2870 ubifs_dump_znode(c, znode); 2871 goto out_unlock; 2872 } 2873 dbg_tnck(key, "removing key "); 2874 } 2875 if (k) { 2876 for (i = n + 1 + k; i < znode->child_cnt; i++) 2877 znode->zbranch[i - k] = znode->zbranch[i]; 2878 znode->child_cnt -= k; 2879 } 2880 2881 /* Now delete the first */ 2882 err = tnc_delete(c, znode, n); 2883 if (err) 2884 goto out_unlock; 2885 } 2886 2887 out_unlock: 2888 if (!err) 2889 err = dbg_check_tnc(c, 0); 2890 mutex_unlock(&c->tnc_mutex); 2891 return err; 2892 } 2893 2894 /** 2895 * ubifs_tnc_remove_ino - remove an inode from TNC. 2896 * @c: UBIFS file-system description object 2897 * @inum: inode number to remove 2898 * 2899 * This function remove inode @inum and all the extended attributes associated 2900 * with the anode from TNC and returns zero in case of success or a negative 2901 * error code in case of failure. 2902 */ 2903 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2904 { 2905 union ubifs_key key1, key2; 2906 struct ubifs_dent_node *xent, *pxent = NULL; 2907 struct fscrypt_name nm = {0}; 2908 2909 dbg_tnc("ino %lu", (unsigned long)inum); 2910 2911 /* 2912 * Walk all extended attribute entries and remove them together with 2913 * corresponding extended attribute inodes. 2914 */ 2915 lowest_xent_key(c, &key1, inum); 2916 while (1) { 2917 ino_t xattr_inum; 2918 int err; 2919 2920 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2921 if (IS_ERR(xent)) { 2922 err = PTR_ERR(xent); 2923 if (err == -ENOENT) 2924 break; 2925 kfree(pxent); 2926 return err; 2927 } 2928 2929 xattr_inum = le64_to_cpu(xent->inum); 2930 dbg_tnc("xent '%s', ino %lu", xent->name, 2931 (unsigned long)xattr_inum); 2932 2933 ubifs_evict_xattr_inode(c, xattr_inum); 2934 2935 fname_name(&nm) = xent->name; 2936 fname_len(&nm) = le16_to_cpu(xent->nlen); 2937 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2938 if (err) { 2939 kfree(pxent); 2940 kfree(xent); 2941 return err; 2942 } 2943 2944 lowest_ino_key(c, &key1, xattr_inum); 2945 highest_ino_key(c, &key2, xattr_inum); 2946 err = ubifs_tnc_remove_range(c, &key1, &key2); 2947 if (err) { 2948 kfree(pxent); 2949 kfree(xent); 2950 return err; 2951 } 2952 2953 kfree(pxent); 2954 pxent = xent; 2955 key_read(c, &xent->key, &key1); 2956 } 2957 2958 kfree(pxent); 2959 lowest_ino_key(c, &key1, inum); 2960 highest_ino_key(c, &key2, inum); 2961 2962 return ubifs_tnc_remove_range(c, &key1, &key2); 2963 } 2964 2965 /** 2966 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2967 * @c: UBIFS file-system description object 2968 * @key: key of last entry 2969 * @nm: name of last entry found or %NULL 2970 * 2971 * This function finds and reads the next directory or extended attribute entry 2972 * after the given key (@key) if there is one. @nm is used to resolve 2973 * collisions. 2974 * 2975 * If the name of the current entry is not known and only the key is known, 2976 * @nm->name has to be %NULL. In this case the semantics of this function is a 2977 * little bit different and it returns the entry corresponding to this key, not 2978 * the next one. If the key was not found, the closest "right" entry is 2979 * returned. 2980 * 2981 * If the fist entry has to be found, @key has to contain the lowest possible 2982 * key value for this inode and @name has to be %NULL. 2983 * 2984 * This function returns the found directory or extended attribute entry node 2985 * in case of success, %-ENOENT is returned if no entry was found, and a 2986 * negative error code is returned in case of failure. 2987 */ 2988 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2989 union ubifs_key *key, 2990 const struct fscrypt_name *nm) 2991 { 2992 int n, err, type = key_type(c, key); 2993 struct ubifs_znode *znode; 2994 struct ubifs_dent_node *dent; 2995 struct ubifs_zbranch *zbr; 2996 union ubifs_key *dkey; 2997 2998 dbg_tnck(key, "key "); 2999 ubifs_assert(c, is_hash_key(c, key)); 3000 3001 mutex_lock(&c->tnc_mutex); 3002 err = ubifs_lookup_level0(c, key, &znode, &n); 3003 if (unlikely(err < 0)) 3004 goto out_unlock; 3005 3006 if (fname_len(nm) > 0) { 3007 if (err) { 3008 /* Handle collisions */ 3009 if (c->replaying) 3010 err = fallible_resolve_collision(c, key, &znode, &n, 3011 nm, 0); 3012 else 3013 err = resolve_collision(c, key, &znode, &n, nm); 3014 dbg_tnc("rc returned %d, znode %p, n %d", 3015 err, znode, n); 3016 if (unlikely(err < 0)) 3017 goto out_unlock; 3018 } 3019 3020 /* Now find next entry */ 3021 err = tnc_next(c, &znode, &n); 3022 if (unlikely(err)) 3023 goto out_unlock; 3024 } else { 3025 /* 3026 * The full name of the entry was not given, in which case the 3027 * behavior of this function is a little different and it 3028 * returns current entry, not the next one. 3029 */ 3030 if (!err) { 3031 /* 3032 * However, the given key does not exist in the TNC 3033 * tree and @znode/@n variables contain the closest 3034 * "preceding" element. Switch to the next one. 3035 */ 3036 err = tnc_next(c, &znode, &n); 3037 if (err) 3038 goto out_unlock; 3039 } 3040 } 3041 3042 zbr = &znode->zbranch[n]; 3043 dent = kmalloc(zbr->len, GFP_NOFS); 3044 if (unlikely(!dent)) { 3045 err = -ENOMEM; 3046 goto out_unlock; 3047 } 3048 3049 /* 3050 * The above 'tnc_next()' call could lead us to the next inode, check 3051 * this. 3052 */ 3053 dkey = &zbr->key; 3054 if (key_inum(c, dkey) != key_inum(c, key) || 3055 key_type(c, dkey) != type) { 3056 err = -ENOENT; 3057 goto out_free; 3058 } 3059 3060 err = tnc_read_hashed_node(c, zbr, dent); 3061 if (unlikely(err)) 3062 goto out_free; 3063 3064 mutex_unlock(&c->tnc_mutex); 3065 return dent; 3066 3067 out_free: 3068 kfree(dent); 3069 out_unlock: 3070 mutex_unlock(&c->tnc_mutex); 3071 return ERR_PTR(err); 3072 } 3073 3074 /** 3075 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3076 * @c: UBIFS file-system description object 3077 * 3078 * Destroy left-over obsolete znodes from a failed commit. 3079 */ 3080 static void tnc_destroy_cnext(struct ubifs_info *c) 3081 { 3082 struct ubifs_znode *cnext; 3083 3084 if (!c->cnext) 3085 return; 3086 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); 3087 cnext = c->cnext; 3088 do { 3089 struct ubifs_znode *znode = cnext; 3090 3091 cnext = cnext->cnext; 3092 if (ubifs_zn_obsolete(znode)) 3093 kfree(znode); 3094 else if (!ubifs_zn_cow(znode)) { 3095 /* 3096 * Don't forget to update clean znode count after 3097 * committing failed, because ubifs will check this 3098 * count while closing tnc. Non-obsolete znode could 3099 * be re-dirtied during committing process, so dirty 3100 * flag is untrustable. The flag 'COW_ZNODE' is set 3101 * for each dirty znode before committing, and it is 3102 * cleared as long as the znode become clean, so we 3103 * can statistic clean znode count according to this 3104 * flag. 3105 */ 3106 atomic_long_inc(&c->clean_zn_cnt); 3107 atomic_long_inc(&ubifs_clean_zn_cnt); 3108 } 3109 } while (cnext && cnext != c->cnext); 3110 } 3111 3112 /** 3113 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3114 * @c: UBIFS file-system description object 3115 */ 3116 void ubifs_tnc_close(struct ubifs_info *c) 3117 { 3118 tnc_destroy_cnext(c); 3119 if (c->zroot.znode) { 3120 long n, freed; 3121 3122 n = atomic_long_read(&c->clean_zn_cnt); 3123 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 3124 ubifs_assert(c, freed == n); 3125 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3126 } 3127 kfree(c->gap_lebs); 3128 kfree(c->ilebs); 3129 destroy_old_idx(c); 3130 } 3131 3132 /** 3133 * left_znode - get the znode to the left. 3134 * @c: UBIFS file-system description object 3135 * @znode: znode 3136 * 3137 * This function returns a pointer to the znode to the left of @znode or NULL if 3138 * there is not one. A negative error code is returned on failure. 3139 */ 3140 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3141 struct ubifs_znode *znode) 3142 { 3143 int level = znode->level; 3144 3145 while (1) { 3146 int n = znode->iip - 1; 3147 3148 /* Go up until we can go left */ 3149 znode = znode->parent; 3150 if (!znode) 3151 return NULL; 3152 if (n >= 0) { 3153 /* Now go down the rightmost branch to 'level' */ 3154 znode = get_znode(c, znode, n); 3155 if (IS_ERR(znode)) 3156 return znode; 3157 while (znode->level != level) { 3158 n = znode->child_cnt - 1; 3159 znode = get_znode(c, znode, n); 3160 if (IS_ERR(znode)) 3161 return znode; 3162 } 3163 break; 3164 } 3165 } 3166 return znode; 3167 } 3168 3169 /** 3170 * right_znode - get the znode to the right. 3171 * @c: UBIFS file-system description object 3172 * @znode: znode 3173 * 3174 * This function returns a pointer to the znode to the right of @znode or NULL 3175 * if there is not one. A negative error code is returned on failure. 3176 */ 3177 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3178 struct ubifs_znode *znode) 3179 { 3180 int level = znode->level; 3181 3182 while (1) { 3183 int n = znode->iip + 1; 3184 3185 /* Go up until we can go right */ 3186 znode = znode->parent; 3187 if (!znode) 3188 return NULL; 3189 if (n < znode->child_cnt) { 3190 /* Now go down the leftmost branch to 'level' */ 3191 znode = get_znode(c, znode, n); 3192 if (IS_ERR(znode)) 3193 return znode; 3194 while (znode->level != level) { 3195 znode = get_znode(c, znode, 0); 3196 if (IS_ERR(znode)) 3197 return znode; 3198 } 3199 break; 3200 } 3201 } 3202 return znode; 3203 } 3204 3205 /** 3206 * lookup_znode - find a particular indexing node from TNC. 3207 * @c: UBIFS file-system description object 3208 * @key: index node key to lookup 3209 * @level: index node level 3210 * @lnum: index node LEB number 3211 * @offs: index node offset 3212 * 3213 * This function searches an indexing node by its first key @key and its 3214 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3215 * nodes it traverses to TNC. This function is called for indexing nodes which 3216 * were found on the media by scanning, for example when garbage-collecting or 3217 * when doing in-the-gaps commit. This means that the indexing node which is 3218 * looked for does not have to have exactly the same leftmost key @key, because 3219 * the leftmost key may have been changed, in which case TNC will contain a 3220 * dirty znode which still refers the same @lnum:@offs. This function is clever 3221 * enough to recognize such indexing nodes. 3222 * 3223 * Note, if a znode was deleted or changed too much, then this function will 3224 * not find it. For situations like this UBIFS has the old index RB-tree 3225 * (indexed by @lnum:@offs). 3226 * 3227 * This function returns a pointer to the znode found or %NULL if it is not 3228 * found. A negative error code is returned on failure. 3229 */ 3230 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3231 union ubifs_key *key, int level, 3232 int lnum, int offs) 3233 { 3234 struct ubifs_znode *znode, *zn; 3235 int n, nn; 3236 3237 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 3238 3239 /* 3240 * The arguments have probably been read off flash, so don't assume 3241 * they are valid. 3242 */ 3243 if (level < 0) 3244 return ERR_PTR(-EINVAL); 3245 3246 /* Get the root znode */ 3247 znode = c->zroot.znode; 3248 if (!znode) { 3249 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3250 if (IS_ERR(znode)) 3251 return znode; 3252 } 3253 /* Check if it is the one we are looking for */ 3254 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3255 return znode; 3256 /* Descend to the parent level i.e. (level + 1) */ 3257 if (level >= znode->level) 3258 return NULL; 3259 while (1) { 3260 ubifs_search_zbranch(c, znode, key, &n); 3261 if (n < 0) { 3262 /* 3263 * We reached a znode where the leftmost key is greater 3264 * than the key we are searching for. This is the same 3265 * situation as the one described in a huge comment at 3266 * the end of the 'ubifs_lookup_level0()' function. And 3267 * for exactly the same reasons we have to try to look 3268 * left before giving up. 3269 */ 3270 znode = left_znode(c, znode); 3271 if (!znode) 3272 return NULL; 3273 if (IS_ERR(znode)) 3274 return znode; 3275 ubifs_search_zbranch(c, znode, key, &n); 3276 ubifs_assert(c, n >= 0); 3277 } 3278 if (znode->level == level + 1) 3279 break; 3280 znode = get_znode(c, znode, n); 3281 if (IS_ERR(znode)) 3282 return znode; 3283 } 3284 /* Check if the child is the one we are looking for */ 3285 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3286 return get_znode(c, znode, n); 3287 /* If the key is unique, there is nowhere else to look */ 3288 if (!is_hash_key(c, key)) 3289 return NULL; 3290 /* 3291 * The key is not unique and so may be also in the znodes to either 3292 * side. 3293 */ 3294 zn = znode; 3295 nn = n; 3296 /* Look left */ 3297 while (1) { 3298 /* Move one branch to the left */ 3299 if (n) 3300 n -= 1; 3301 else { 3302 znode = left_znode(c, znode); 3303 if (!znode) 3304 break; 3305 if (IS_ERR(znode)) 3306 return znode; 3307 n = znode->child_cnt - 1; 3308 } 3309 /* Check it */ 3310 if (znode->zbranch[n].lnum == lnum && 3311 znode->zbranch[n].offs == offs) 3312 return get_znode(c, znode, n); 3313 /* Stop if the key is less than the one we are looking for */ 3314 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3315 break; 3316 } 3317 /* Back to the middle */ 3318 znode = zn; 3319 n = nn; 3320 /* Look right */ 3321 while (1) { 3322 /* Move one branch to the right */ 3323 if (++n >= znode->child_cnt) { 3324 znode = right_znode(c, znode); 3325 if (!znode) 3326 break; 3327 if (IS_ERR(znode)) 3328 return znode; 3329 n = 0; 3330 } 3331 /* Check it */ 3332 if (znode->zbranch[n].lnum == lnum && 3333 znode->zbranch[n].offs == offs) 3334 return get_znode(c, znode, n); 3335 /* Stop if the key is greater than the one we are looking for */ 3336 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3337 break; 3338 } 3339 return NULL; 3340 } 3341 3342 /** 3343 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3344 * @c: UBIFS file-system description object 3345 * @key: key of index node 3346 * @level: index node level 3347 * @lnum: LEB number of index node 3348 * @offs: offset of index node 3349 * 3350 * This function returns %0 if the index node is not referred to in the TNC, %1 3351 * if the index node is referred to in the TNC and the corresponding znode is 3352 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3353 * znode is clean, and a negative error code in case of failure. 3354 * 3355 * Note, the @key argument has to be the key of the first child. Also note, 3356 * this function relies on the fact that 0:0 is never a valid LEB number and 3357 * offset for a main-area node. 3358 */ 3359 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3360 int lnum, int offs) 3361 { 3362 struct ubifs_znode *znode; 3363 3364 znode = lookup_znode(c, key, level, lnum, offs); 3365 if (!znode) 3366 return 0; 3367 if (IS_ERR(znode)) 3368 return PTR_ERR(znode); 3369 3370 return ubifs_zn_dirty(znode) ? 1 : 2; 3371 } 3372 3373 /** 3374 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3375 * @c: UBIFS file-system description object 3376 * @key: node key 3377 * @lnum: node LEB number 3378 * @offs: node offset 3379 * 3380 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3381 * not, and a negative error code in case of failure. 3382 * 3383 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3384 * and offset for a main-area node. 3385 */ 3386 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3387 int lnum, int offs) 3388 { 3389 struct ubifs_zbranch *zbr; 3390 struct ubifs_znode *znode, *zn; 3391 int n, found, err, nn; 3392 const int unique = !is_hash_key(c, key); 3393 3394 found = ubifs_lookup_level0(c, key, &znode, &n); 3395 if (found < 0) 3396 return found; /* Error code */ 3397 if (!found) 3398 return 0; 3399 zbr = &znode->zbranch[n]; 3400 if (lnum == zbr->lnum && offs == zbr->offs) 3401 return 1; /* Found it */ 3402 if (unique) 3403 return 0; 3404 /* 3405 * Because the key is not unique, we have to look left 3406 * and right as well 3407 */ 3408 zn = znode; 3409 nn = n; 3410 /* Look left */ 3411 while (1) { 3412 err = tnc_prev(c, &znode, &n); 3413 if (err == -ENOENT) 3414 break; 3415 if (err) 3416 return err; 3417 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3418 break; 3419 zbr = &znode->zbranch[n]; 3420 if (lnum == zbr->lnum && offs == zbr->offs) 3421 return 1; /* Found it */ 3422 } 3423 /* Look right */ 3424 znode = zn; 3425 n = nn; 3426 while (1) { 3427 err = tnc_next(c, &znode, &n); 3428 if (err) { 3429 if (err == -ENOENT) 3430 return 0; 3431 return err; 3432 } 3433 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3434 break; 3435 zbr = &znode->zbranch[n]; 3436 if (lnum == zbr->lnum && offs == zbr->offs) 3437 return 1; /* Found it */ 3438 } 3439 return 0; 3440 } 3441 3442 /** 3443 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3444 * @c: UBIFS file-system description object 3445 * @key: node key 3446 * @level: index node level (if it is an index node) 3447 * @lnum: node LEB number 3448 * @offs: node offset 3449 * @is_idx: non-zero if the node is an index node 3450 * 3451 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3452 * negative error code in case of failure. For index nodes, @key has to be the 3453 * key of the first child. An index node is considered to be in the TNC only if 3454 * the corresponding znode is clean or has not been loaded. 3455 */ 3456 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3457 int lnum, int offs, int is_idx) 3458 { 3459 int err; 3460 3461 mutex_lock(&c->tnc_mutex); 3462 if (is_idx) { 3463 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3464 if (err < 0) 3465 goto out_unlock; 3466 if (err == 1) 3467 /* The index node was found but it was dirty */ 3468 err = 0; 3469 else if (err == 2) 3470 /* The index node was found and it was clean */ 3471 err = 1; 3472 else 3473 BUG_ON(err != 0); 3474 } else 3475 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3476 3477 out_unlock: 3478 mutex_unlock(&c->tnc_mutex); 3479 return err; 3480 } 3481 3482 /** 3483 * ubifs_dirty_idx_node - dirty an index node. 3484 * @c: UBIFS file-system description object 3485 * @key: index node key 3486 * @level: index node level 3487 * @lnum: index node LEB number 3488 * @offs: index node offset 3489 * 3490 * This function loads and dirties an index node so that it can be garbage 3491 * collected. The @key argument has to be the key of the first child. This 3492 * function relies on the fact that 0:0 is never a valid LEB number and offset 3493 * for a main-area node. Returns %0 on success and a negative error code on 3494 * failure. 3495 */ 3496 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3497 int lnum, int offs) 3498 { 3499 struct ubifs_znode *znode; 3500 int err = 0; 3501 3502 mutex_lock(&c->tnc_mutex); 3503 znode = lookup_znode(c, key, level, lnum, offs); 3504 if (!znode) 3505 goto out_unlock; 3506 if (IS_ERR(znode)) { 3507 err = PTR_ERR(znode); 3508 goto out_unlock; 3509 } 3510 znode = dirty_cow_bottom_up(c, znode); 3511 if (IS_ERR(znode)) { 3512 err = PTR_ERR(znode); 3513 goto out_unlock; 3514 } 3515 3516 out_unlock: 3517 mutex_unlock(&c->tnc_mutex); 3518 return err; 3519 } 3520 3521 /** 3522 * dbg_check_inode_size - check if inode size is correct. 3523 * @c: UBIFS file-system description object 3524 * @inode: inode to check 3525 * @size: inode size 3526 * 3527 * This function makes sure that the inode size (@size) is correct and it does 3528 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3529 * if it has a data page beyond @size, and other negative error code in case of 3530 * other errors. 3531 */ 3532 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3533 loff_t size) 3534 { 3535 int err, n; 3536 union ubifs_key from_key, to_key, *key; 3537 struct ubifs_znode *znode; 3538 unsigned int block; 3539 3540 if (!S_ISREG(inode->i_mode)) 3541 return 0; 3542 if (!dbg_is_chk_gen(c)) 3543 return 0; 3544 3545 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3546 data_key_init(c, &from_key, inode->i_ino, block); 3547 highest_data_key(c, &to_key, inode->i_ino); 3548 3549 mutex_lock(&c->tnc_mutex); 3550 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3551 if (err < 0) 3552 goto out_unlock; 3553 3554 if (err) { 3555 key = &from_key; 3556 goto out_dump; 3557 } 3558 3559 err = tnc_next(c, &znode, &n); 3560 if (err == -ENOENT) { 3561 err = 0; 3562 goto out_unlock; 3563 } 3564 if (err < 0) 3565 goto out_unlock; 3566 3567 ubifs_assert(c, err == 0); 3568 key = &znode->zbranch[n].key; 3569 if (!key_in_range(c, key, &from_key, &to_key)) 3570 goto out_unlock; 3571 3572 out_dump: 3573 block = key_block(c, key); 3574 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3575 (unsigned long)inode->i_ino, size, 3576 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3577 mutex_unlock(&c->tnc_mutex); 3578 ubifs_dump_inode(c, inode); 3579 dump_stack(); 3580 return -EINVAL; 3581 3582 out_unlock: 3583 mutex_unlock(&c->tnc_mutex); 3584 return err; 3585 } 3586