xref: /openbmc/linux/fs/ubifs/tnc.c (revision 74ba9207)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 			 struct ubifs_zbranch *zbr);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 			      struct ubifs_zbranch *zbr, void *node);
41 
42 /*
43  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44  * @NAME_LESS: name corresponding to the first argument is less than second
45  * @NAME_MATCHES: names match
46  * @NAME_GREATER: name corresponding to the second argument is greater than
47  *                first
48  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49  *
50  * These constants were introduce to improve readability.
51  */
52 enum {
53 	NAME_LESS    = 0,
54 	NAME_MATCHES = 1,
55 	NAME_GREATER = 2,
56 	NOT_ON_MEDIA = 3,
57 };
58 
59 /**
60  * insert_old_idx - record an index node obsoleted since the last commit start.
61  * @c: UBIFS file-system description object
62  * @lnum: LEB number of obsoleted index node
63  * @offs: offset of obsoleted index node
64  *
65  * Returns %0 on success, and a negative error code on failure.
66  *
67  * For recovery, there must always be a complete intact version of the index on
68  * flash at all times. That is called the "old index". It is the index as at the
69  * time of the last successful commit. Many of the index nodes in the old index
70  * may be dirty, but they must not be erased until the next successful commit
71  * (at which point that index becomes the old index).
72  *
73  * That means that the garbage collection and the in-the-gaps method of
74  * committing must be able to determine if an index node is in the old index.
75  * Most of the old index nodes can be found by looking up the TNC using the
76  * 'lookup_znode()' function. However, some of the old index nodes may have
77  * been deleted from the current index or may have been changed so much that
78  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79  * That is what this function does. The RB-tree is ordered by LEB number and
80  * offset because they uniquely identify the old index node.
81  */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 	struct ubifs_old_idx *old_idx, *o;
85 	struct rb_node **p, *parent = NULL;
86 
87 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 	if (unlikely(!old_idx))
89 		return -ENOMEM;
90 	old_idx->lnum = lnum;
91 	old_idx->offs = offs;
92 
93 	p = &c->old_idx.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		o = rb_entry(parent, struct ubifs_old_idx, rb);
97 		if (lnum < o->lnum)
98 			p = &(*p)->rb_left;
99 		else if (lnum > o->lnum)
100 			p = &(*p)->rb_right;
101 		else if (offs < o->offs)
102 			p = &(*p)->rb_left;
103 		else if (offs > o->offs)
104 			p = &(*p)->rb_right;
105 		else {
106 			ubifs_err(c, "old idx added twice!");
107 			kfree(old_idx);
108 			return 0;
109 		}
110 	}
111 	rb_link_node(&old_idx->rb, parent, p);
112 	rb_insert_color(&old_idx->rb, &c->old_idx);
113 	return 0;
114 }
115 
116 /**
117  * insert_old_idx_znode - record a znode obsoleted since last commit start.
118  * @c: UBIFS file-system description object
119  * @znode: znode of obsoleted index node
120  *
121  * Returns %0 on success, and a negative error code on failure.
122  */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 	if (znode->parent) {
126 		struct ubifs_zbranch *zbr;
127 
128 		zbr = &znode->parent->zbranch[znode->iip];
129 		if (zbr->len)
130 			return insert_old_idx(c, zbr->lnum, zbr->offs);
131 	} else
132 		if (c->zroot.len)
133 			return insert_old_idx(c, c->zroot.lnum,
134 					      c->zroot.offs);
135 	return 0;
136 }
137 
138 /**
139  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140  * @c: UBIFS file-system description object
141  * @znode: znode of obsoleted index node
142  *
143  * Returns %0 on success, and a negative error code on failure.
144  */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 				 struct ubifs_znode *znode)
147 {
148 	int err;
149 
150 	if (znode->parent) {
151 		struct ubifs_zbranch *zbr;
152 
153 		zbr = &znode->parent->zbranch[znode->iip];
154 		if (zbr->len) {
155 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 			if (err)
157 				return err;
158 			zbr->lnum = 0;
159 			zbr->offs = 0;
160 			zbr->len = 0;
161 		}
162 	} else
163 		if (c->zroot.len) {
164 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 			if (err)
166 				return err;
167 			c->zroot.lnum = 0;
168 			c->zroot.offs = 0;
169 			c->zroot.len = 0;
170 		}
171 	return 0;
172 }
173 
174 /**
175  * destroy_old_idx - destroy the old_idx RB-tree.
176  * @c: UBIFS file-system description object
177  *
178  * During start commit, the old_idx RB-tree is used to avoid overwriting index
179  * nodes that were in the index last commit but have since been deleted.  This
180  * is necessary for recovery i.e. the old index must be kept intact until the
181  * new index is successfully written.  The old-idx RB-tree is used for the
182  * in-the-gaps method of writing index nodes and is destroyed every commit.
183  */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 	struct ubifs_old_idx *old_idx, *n;
187 
188 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 		kfree(old_idx);
190 
191 	c->old_idx = RB_ROOT;
192 }
193 
194 /**
195  * copy_znode - copy a dirty znode.
196  * @c: UBIFS file-system description object
197  * @znode: znode to copy
198  *
199  * A dirty znode being committed may not be changed, so it is copied.
200  */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 				      struct ubifs_znode *znode)
203 {
204 	struct ubifs_znode *zn;
205 
206 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 	if (unlikely(!zn))
208 		return ERR_PTR(-ENOMEM);
209 
210 	zn->cnext = NULL;
211 	__set_bit(DIRTY_ZNODE, &zn->flags);
212 	__clear_bit(COW_ZNODE, &zn->flags);
213 
214 	ubifs_assert(c, !ubifs_zn_obsolete(znode));
215 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
216 
217 	if (znode->level != 0) {
218 		int i;
219 		const int n = zn->child_cnt;
220 
221 		/* The children now have new parent */
222 		for (i = 0; i < n; i++) {
223 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
224 
225 			if (zbr->znode)
226 				zbr->znode->parent = zn;
227 		}
228 	}
229 
230 	atomic_long_inc(&c->dirty_zn_cnt);
231 	return zn;
232 }
233 
234 /**
235  * add_idx_dirt - add dirt due to a dirty znode.
236  * @c: UBIFS file-system description object
237  * @lnum: LEB number of index node
238  * @dirt: size of index node
239  *
240  * This function updates lprops dirty space and the new size of the index.
241  */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 	c->calc_idx_sz -= ALIGN(dirt, 8);
245 	return ubifs_add_dirt(c, lnum, dirt);
246 }
247 
248 /**
249  * dirty_cow_znode - ensure a znode is not being committed.
250  * @c: UBIFS file-system description object
251  * @zbr: branch of znode to check
252  *
253  * Returns dirtied znode on success or negative error code on failure.
254  */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 					   struct ubifs_zbranch *zbr)
257 {
258 	struct ubifs_znode *znode = zbr->znode;
259 	struct ubifs_znode *zn;
260 	int err;
261 
262 	if (!ubifs_zn_cow(znode)) {
263 		/* znode is not being committed */
264 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 			atomic_long_inc(&c->dirty_zn_cnt);
266 			atomic_long_dec(&c->clean_zn_cnt);
267 			atomic_long_dec(&ubifs_clean_zn_cnt);
268 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 			if (unlikely(err))
270 				return ERR_PTR(err);
271 		}
272 		return znode;
273 	}
274 
275 	zn = copy_znode(c, znode);
276 	if (IS_ERR(zn))
277 		return zn;
278 
279 	if (zbr->len) {
280 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 		if (unlikely(err))
282 			return ERR_PTR(err);
283 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 	} else
285 		err = 0;
286 
287 	zbr->znode = zn;
288 	zbr->lnum = 0;
289 	zbr->offs = 0;
290 	zbr->len = 0;
291 
292 	if (unlikely(err))
293 		return ERR_PTR(err);
294 	return zn;
295 }
296 
297 /**
298  * lnc_add - add a leaf node to the leaf node cache.
299  * @c: UBIFS file-system description object
300  * @zbr: zbranch of leaf node
301  * @node: leaf node
302  *
303  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304  * purpose of the leaf node cache is to save re-reading the same leaf node over
305  * and over again. Most things are cached by VFS, however the file system must
306  * cache directory entries for readdir and for resolving hash collisions. The
307  * present implementation of the leaf node cache is extremely simple, and
308  * allows for error returns that are not used but that may be needed if a more
309  * complex implementation is created.
310  *
311  * Note, this function does not add the @node object to LNC directly, but
312  * allocates a copy of the object and adds the copy to LNC. The reason for this
313  * is that @node has been allocated outside of the TNC subsystem and will be
314  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315  * may be changed at any time, e.g. freed by the shrinker.
316  */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 		   const void *node)
319 {
320 	int err;
321 	void *lnc_node;
322 	const struct ubifs_dent_node *dent = node;
323 
324 	ubifs_assert(c, !zbr->leaf);
325 	ubifs_assert(c, zbr->len != 0);
326 	ubifs_assert(c, is_hash_key(c, &zbr->key));
327 
328 	err = ubifs_validate_entry(c, dent);
329 	if (err) {
330 		dump_stack();
331 		ubifs_dump_node(c, dent);
332 		return err;
333 	}
334 
335 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 	if (!lnc_node)
337 		/* We don't have to have the cache, so no error */
338 		return 0;
339 
340 	zbr->leaf = lnc_node;
341 	return 0;
342 }
343 
344  /**
345  * lnc_add_directly - add a leaf node to the leaf-node-cache.
346  * @c: UBIFS file-system description object
347  * @zbr: zbranch of leaf node
348  * @node: leaf node
349  *
350  * This function is similar to 'lnc_add()', but it does not create a copy of
351  * @node but inserts @node to TNC directly.
352  */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 			    void *node)
355 {
356 	int err;
357 
358 	ubifs_assert(c, !zbr->leaf);
359 	ubifs_assert(c, zbr->len != 0);
360 
361 	err = ubifs_validate_entry(c, node);
362 	if (err) {
363 		dump_stack();
364 		ubifs_dump_node(c, node);
365 		return err;
366 	}
367 
368 	zbr->leaf = node;
369 	return 0;
370 }
371 
372 /**
373  * lnc_free - remove a leaf node from the leaf node cache.
374  * @zbr: zbranch of leaf node
375  * @node: leaf node
376  */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 	if (!zbr->leaf)
380 		return;
381 	kfree(zbr->leaf);
382 	zbr->leaf = NULL;
383 }
384 
385 /**
386  * tnc_read_hashed_node - read a "hashed" leaf node.
387  * @c: UBIFS file-system description object
388  * @zbr: key and position of the node
389  * @node: node is returned here
390  *
391  * This function reads a "hashed" node defined by @zbr from the leaf node cache
392  * (in it is there) or from the hash media, in which case the node is also
393  * added to LNC. Returns zero in case of success or a negative negative error
394  * code in case of failure.
395  */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 				void *node)
398 {
399 	int err;
400 
401 	ubifs_assert(c, is_hash_key(c, &zbr->key));
402 
403 	if (zbr->leaf) {
404 		/* Read from the leaf node cache */
405 		ubifs_assert(c, zbr->len != 0);
406 		memcpy(node, zbr->leaf, zbr->len);
407 		return 0;
408 	}
409 
410 	if (c->replaying) {
411 		err = fallible_read_node(c, &zbr->key, zbr, node);
412 		/*
413 		 * When the node was not found, return -ENOENT, 0 otherwise.
414 		 * Negative return codes stay as-is.
415 		 */
416 		if (err == 0)
417 			err = -ENOENT;
418 		else if (err == 1)
419 			err = 0;
420 	} else {
421 		err = ubifs_tnc_read_node(c, zbr, node);
422 	}
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @zbr: the zbranch describing the node to read
437  *
438  * This function tries to read a node of known type and length, checks it and
439  * stores it in @buf. This function returns %1 if a node is present and %0 if
440  * a node is not present. A negative error code is returned for I/O errors.
441  * This function performs that same function as ubifs_read_node except that
442  * it does not require that there is actually a node present and instead
443  * the return code indicates if a node was read.
444  *
445  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
446  * is true (it is controlled by corresponding mount option). However, if
447  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
448  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
449  * because during mounting or re-mounting from R/O mode to R/W mode we may read
450  * journal nodes (when replying the journal or doing the recovery) and the
451  * journal nodes may potentially be corrupted, so checking is required.
452  */
453 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
454 			 struct ubifs_zbranch *zbr)
455 {
456 	int len = zbr->len;
457 	int lnum = zbr->lnum;
458 	int offs = zbr->offs;
459 	int err, node_len;
460 	struct ubifs_ch *ch = buf;
461 	uint32_t crc, node_crc;
462 
463 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
464 
465 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
466 	if (err) {
467 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
468 			  type, lnum, offs, err);
469 		return err;
470 	}
471 
472 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
473 		return 0;
474 
475 	if (ch->node_type != type)
476 		return 0;
477 
478 	node_len = le32_to_cpu(ch->len);
479 	if (node_len != len)
480 		return 0;
481 
482 	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
483 	    c->remounting_rw) {
484 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
485 		node_crc = le32_to_cpu(ch->crc);
486 		if (crc != node_crc)
487 			return 0;
488 	}
489 
490 	err = ubifs_node_check_hash(c, buf, zbr->hash);
491 	if (err) {
492 		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
493 		return 0;
494 	}
495 
496 	return 1;
497 }
498 
499 /**
500  * fallible_read_node - try to read a leaf node.
501  * @c: UBIFS file-system description object
502  * @key:  key of node to read
503  * @zbr:  position of node
504  * @node: node returned
505  *
506  * This function tries to read a node and returns %1 if the node is read, %0
507  * if the node is not present, and a negative error code in the case of error.
508  */
509 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
510 			      struct ubifs_zbranch *zbr, void *node)
511 {
512 	int ret;
513 
514 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
515 
516 	ret = try_read_node(c, node, key_type(c, key), zbr);
517 	if (ret == 1) {
518 		union ubifs_key node_key;
519 		struct ubifs_dent_node *dent = node;
520 
521 		/* All nodes have key in the same place */
522 		key_read(c, &dent->key, &node_key);
523 		if (keys_cmp(c, key, &node_key) != 0)
524 			ret = 0;
525 	}
526 	if (ret == 0 && c->replaying)
527 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
528 			zbr->lnum, zbr->offs, zbr->len);
529 	return ret;
530 }
531 
532 /**
533  * matches_name - determine if a direntry or xattr entry matches a given name.
534  * @c: UBIFS file-system description object
535  * @zbr: zbranch of dent
536  * @nm: name to match
537  *
538  * This function checks if xentry/direntry referred by zbranch @zbr matches name
539  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
540  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
541  * of failure, a negative error code is returned.
542  */
543 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
544 			const struct fscrypt_name *nm)
545 {
546 	struct ubifs_dent_node *dent;
547 	int nlen, err;
548 
549 	/* If possible, match against the dent in the leaf node cache */
550 	if (!zbr->leaf) {
551 		dent = kmalloc(zbr->len, GFP_NOFS);
552 		if (!dent)
553 			return -ENOMEM;
554 
555 		err = ubifs_tnc_read_node(c, zbr, dent);
556 		if (err)
557 			goto out_free;
558 
559 		/* Add the node to the leaf node cache */
560 		err = lnc_add_directly(c, zbr, dent);
561 		if (err)
562 			goto out_free;
563 	} else
564 		dent = zbr->leaf;
565 
566 	nlen = le16_to_cpu(dent->nlen);
567 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
568 	if (err == 0) {
569 		if (nlen == fname_len(nm))
570 			return NAME_MATCHES;
571 		else if (nlen < fname_len(nm))
572 			return NAME_LESS;
573 		else
574 			return NAME_GREATER;
575 	} else if (err < 0)
576 		return NAME_LESS;
577 	else
578 		return NAME_GREATER;
579 
580 out_free:
581 	kfree(dent);
582 	return err;
583 }
584 
585 /**
586  * get_znode - get a TNC znode that may not be loaded yet.
587  * @c: UBIFS file-system description object
588  * @znode: parent znode
589  * @n: znode branch slot number
590  *
591  * This function returns the znode or a negative error code.
592  */
593 static struct ubifs_znode *get_znode(struct ubifs_info *c,
594 				     struct ubifs_znode *znode, int n)
595 {
596 	struct ubifs_zbranch *zbr;
597 
598 	zbr = &znode->zbranch[n];
599 	if (zbr->znode)
600 		znode = zbr->znode;
601 	else
602 		znode = ubifs_load_znode(c, zbr, znode, n);
603 	return znode;
604 }
605 
606 /**
607  * tnc_next - find next TNC entry.
608  * @c: UBIFS file-system description object
609  * @zn: znode is passed and returned here
610  * @n: znode branch slot number is passed and returned here
611  *
612  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
613  * no next entry, or a negative error code otherwise.
614  */
615 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
616 {
617 	struct ubifs_znode *znode = *zn;
618 	int nn = *n;
619 
620 	nn += 1;
621 	if (nn < znode->child_cnt) {
622 		*n = nn;
623 		return 0;
624 	}
625 	while (1) {
626 		struct ubifs_znode *zp;
627 
628 		zp = znode->parent;
629 		if (!zp)
630 			return -ENOENT;
631 		nn = znode->iip + 1;
632 		znode = zp;
633 		if (nn < znode->child_cnt) {
634 			znode = get_znode(c, znode, nn);
635 			if (IS_ERR(znode))
636 				return PTR_ERR(znode);
637 			while (znode->level != 0) {
638 				znode = get_znode(c, znode, 0);
639 				if (IS_ERR(znode))
640 					return PTR_ERR(znode);
641 			}
642 			nn = 0;
643 			break;
644 		}
645 	}
646 	*zn = znode;
647 	*n = nn;
648 	return 0;
649 }
650 
651 /**
652  * tnc_prev - find previous TNC entry.
653  * @c: UBIFS file-system description object
654  * @zn: znode is returned here
655  * @n: znode branch slot number is passed and returned here
656  *
657  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
658  * there is no next entry, or a negative error code otherwise.
659  */
660 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
661 {
662 	struct ubifs_znode *znode = *zn;
663 	int nn = *n;
664 
665 	if (nn > 0) {
666 		*n = nn - 1;
667 		return 0;
668 	}
669 	while (1) {
670 		struct ubifs_znode *zp;
671 
672 		zp = znode->parent;
673 		if (!zp)
674 			return -ENOENT;
675 		nn = znode->iip - 1;
676 		znode = zp;
677 		if (nn >= 0) {
678 			znode = get_znode(c, znode, nn);
679 			if (IS_ERR(znode))
680 				return PTR_ERR(znode);
681 			while (znode->level != 0) {
682 				nn = znode->child_cnt - 1;
683 				znode = get_znode(c, znode, nn);
684 				if (IS_ERR(znode))
685 					return PTR_ERR(znode);
686 			}
687 			nn = znode->child_cnt - 1;
688 			break;
689 		}
690 	}
691 	*zn = znode;
692 	*n = nn;
693 	return 0;
694 }
695 
696 /**
697  * resolve_collision - resolve a collision.
698  * @c: UBIFS file-system description object
699  * @key: key of a directory or extended attribute entry
700  * @zn: znode is returned here
701  * @n: zbranch number is passed and returned here
702  * @nm: name of the entry
703  *
704  * This function is called for "hashed" keys to make sure that the found key
705  * really corresponds to the looked up node (directory or extended attribute
706  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
707  * %0 is returned if @nm is not found and @zn and @n are set to the previous
708  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
709  * This means that @n may be set to %-1 if the leftmost key in @zn is the
710  * previous one. A negative error code is returned on failures.
711  */
712 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
713 			     struct ubifs_znode **zn, int *n,
714 			     const struct fscrypt_name *nm)
715 {
716 	int err;
717 
718 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
719 	if (unlikely(err < 0))
720 		return err;
721 	if (err == NAME_MATCHES)
722 		return 1;
723 
724 	if (err == NAME_GREATER) {
725 		/* Look left */
726 		while (1) {
727 			err = tnc_prev(c, zn, n);
728 			if (err == -ENOENT) {
729 				ubifs_assert(c, *n == 0);
730 				*n = -1;
731 				return 0;
732 			}
733 			if (err < 0)
734 				return err;
735 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
736 				/*
737 				 * We have found the branch after which we would
738 				 * like to insert, but inserting in this znode
739 				 * may still be wrong. Consider the following 3
740 				 * znodes, in the case where we are resolving a
741 				 * collision with Key2.
742 				 *
743 				 *                  znode zp
744 				 *            ----------------------
745 				 * level 1     |  Key0  |  Key1  |
746 				 *            -----------------------
747 				 *                 |            |
748 				 *       znode za  |            |  znode zb
749 				 *          ------------      ------------
750 				 * level 0  |  Key0  |        |  Key2  |
751 				 *          ------------      ------------
752 				 *
753 				 * The lookup finds Key2 in znode zb. Lets say
754 				 * there is no match and the name is greater so
755 				 * we look left. When we find Key0, we end up
756 				 * here. If we return now, we will insert into
757 				 * znode za at slot n = 1.  But that is invalid
758 				 * according to the parent's keys.  Key2 must
759 				 * be inserted into znode zb.
760 				 *
761 				 * Note, this problem is not relevant for the
762 				 * case when we go right, because
763 				 * 'tnc_insert()' would correct the parent key.
764 				 */
765 				if (*n == (*zn)->child_cnt - 1) {
766 					err = tnc_next(c, zn, n);
767 					if (err) {
768 						/* Should be impossible */
769 						ubifs_assert(c, 0);
770 						if (err == -ENOENT)
771 							err = -EINVAL;
772 						return err;
773 					}
774 					ubifs_assert(c, *n == 0);
775 					*n = -1;
776 				}
777 				return 0;
778 			}
779 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
780 			if (err < 0)
781 				return err;
782 			if (err == NAME_LESS)
783 				return 0;
784 			if (err == NAME_MATCHES)
785 				return 1;
786 			ubifs_assert(c, err == NAME_GREATER);
787 		}
788 	} else {
789 		int nn = *n;
790 		struct ubifs_znode *znode = *zn;
791 
792 		/* Look right */
793 		while (1) {
794 			err = tnc_next(c, &znode, &nn);
795 			if (err == -ENOENT)
796 				return 0;
797 			if (err < 0)
798 				return err;
799 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
800 				return 0;
801 			err = matches_name(c, &znode->zbranch[nn], nm);
802 			if (err < 0)
803 				return err;
804 			if (err == NAME_GREATER)
805 				return 0;
806 			*zn = znode;
807 			*n = nn;
808 			if (err == NAME_MATCHES)
809 				return 1;
810 			ubifs_assert(c, err == NAME_LESS);
811 		}
812 	}
813 }
814 
815 /**
816  * fallible_matches_name - determine if a dent matches a given name.
817  * @c: UBIFS file-system description object
818  * @zbr: zbranch of dent
819  * @nm: name to match
820  *
821  * This is a "fallible" version of 'matches_name()' function which does not
822  * panic if the direntry/xentry referred by @zbr does not exist on the media.
823  *
824  * This function checks if xentry/direntry referred by zbranch @zbr matches name
825  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
826  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
827  * if xentry/direntry referred by @zbr does not exist on the media. A negative
828  * error code is returned in case of failure.
829  */
830 static int fallible_matches_name(struct ubifs_info *c,
831 				 struct ubifs_zbranch *zbr,
832 				 const struct fscrypt_name *nm)
833 {
834 	struct ubifs_dent_node *dent;
835 	int nlen, err;
836 
837 	/* If possible, match against the dent in the leaf node cache */
838 	if (!zbr->leaf) {
839 		dent = kmalloc(zbr->len, GFP_NOFS);
840 		if (!dent)
841 			return -ENOMEM;
842 
843 		err = fallible_read_node(c, &zbr->key, zbr, dent);
844 		if (err < 0)
845 			goto out_free;
846 		if (err == 0) {
847 			/* The node was not present */
848 			err = NOT_ON_MEDIA;
849 			goto out_free;
850 		}
851 		ubifs_assert(c, err == 1);
852 
853 		err = lnc_add_directly(c, zbr, dent);
854 		if (err)
855 			goto out_free;
856 	} else
857 		dent = zbr->leaf;
858 
859 	nlen = le16_to_cpu(dent->nlen);
860 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
861 	if (err == 0) {
862 		if (nlen == fname_len(nm))
863 			return NAME_MATCHES;
864 		else if (nlen < fname_len(nm))
865 			return NAME_LESS;
866 		else
867 			return NAME_GREATER;
868 	} else if (err < 0)
869 		return NAME_LESS;
870 	else
871 		return NAME_GREATER;
872 
873 out_free:
874 	kfree(dent);
875 	return err;
876 }
877 
878 /**
879  * fallible_resolve_collision - resolve a collision even if nodes are missing.
880  * @c: UBIFS file-system description object
881  * @key: key
882  * @zn: znode is returned here
883  * @n: branch number is passed and returned here
884  * @nm: name of directory entry
885  * @adding: indicates caller is adding a key to the TNC
886  *
887  * This is a "fallible" version of the 'resolve_collision()' function which
888  * does not panic if one of the nodes referred to by TNC does not exist on the
889  * media. This may happen when replaying the journal if a deleted node was
890  * Garbage-collected and the commit was not done. A branch that refers to a node
891  * that is not present is called a dangling branch. The following are the return
892  * codes for this function:
893  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
894  *    branch;
895  *  o if we are @adding and @nm was not found, %0 is returned;
896  *  o if we are not @adding and @nm was not found, but a dangling branch was
897  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
898  *  o a negative error code is returned in case of failure.
899  */
900 static int fallible_resolve_collision(struct ubifs_info *c,
901 				      const union ubifs_key *key,
902 				      struct ubifs_znode **zn, int *n,
903 				      const struct fscrypt_name *nm,
904 				      int adding)
905 {
906 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
907 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
908 
909 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
910 	if (unlikely(cmp < 0))
911 		return cmp;
912 	if (cmp == NAME_MATCHES)
913 		return 1;
914 	if (cmp == NOT_ON_MEDIA) {
915 		o_znode = znode;
916 		o_n = nn;
917 		/*
918 		 * We are unlucky and hit a dangling branch straight away.
919 		 * Now we do not really know where to go to find the needed
920 		 * branch - to the left or to the right. Well, let's try left.
921 		 */
922 		unsure = 1;
923 	} else if (!adding)
924 		unsure = 1; /* Remove a dangling branch wherever it is */
925 
926 	if (cmp == NAME_GREATER || unsure) {
927 		/* Look left */
928 		while (1) {
929 			err = tnc_prev(c, zn, n);
930 			if (err == -ENOENT) {
931 				ubifs_assert(c, *n == 0);
932 				*n = -1;
933 				break;
934 			}
935 			if (err < 0)
936 				return err;
937 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
938 				/* See comments in 'resolve_collision()' */
939 				if (*n == (*zn)->child_cnt - 1) {
940 					err = tnc_next(c, zn, n);
941 					if (err) {
942 						/* Should be impossible */
943 						ubifs_assert(c, 0);
944 						if (err == -ENOENT)
945 							err = -EINVAL;
946 						return err;
947 					}
948 					ubifs_assert(c, *n == 0);
949 					*n = -1;
950 				}
951 				break;
952 			}
953 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
954 			if (err < 0)
955 				return err;
956 			if (err == NAME_MATCHES)
957 				return 1;
958 			if (err == NOT_ON_MEDIA) {
959 				o_znode = *zn;
960 				o_n = *n;
961 				continue;
962 			}
963 			if (!adding)
964 				continue;
965 			if (err == NAME_LESS)
966 				break;
967 			else
968 				unsure = 0;
969 		}
970 	}
971 
972 	if (cmp == NAME_LESS || unsure) {
973 		/* Look right */
974 		*zn = znode;
975 		*n = nn;
976 		while (1) {
977 			err = tnc_next(c, &znode, &nn);
978 			if (err == -ENOENT)
979 				break;
980 			if (err < 0)
981 				return err;
982 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
983 				break;
984 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
985 			if (err < 0)
986 				return err;
987 			if (err == NAME_GREATER)
988 				break;
989 			*zn = znode;
990 			*n = nn;
991 			if (err == NAME_MATCHES)
992 				return 1;
993 			if (err == NOT_ON_MEDIA) {
994 				o_znode = znode;
995 				o_n = nn;
996 			}
997 		}
998 	}
999 
1000 	/* Never match a dangling branch when adding */
1001 	if (adding || !o_znode)
1002 		return 0;
1003 
1004 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1005 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1006 		o_znode->zbranch[o_n].len);
1007 	*zn = o_znode;
1008 	*n = o_n;
1009 	return 1;
1010 }
1011 
1012 /**
1013  * matches_position - determine if a zbranch matches a given position.
1014  * @zbr: zbranch of dent
1015  * @lnum: LEB number of dent to match
1016  * @offs: offset of dent to match
1017  *
1018  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1019  */
1020 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1021 {
1022 	if (zbr->lnum == lnum && zbr->offs == offs)
1023 		return 1;
1024 	else
1025 		return 0;
1026 }
1027 
1028 /**
1029  * resolve_collision_directly - resolve a collision directly.
1030  * @c: UBIFS file-system description object
1031  * @key: key of directory entry
1032  * @zn: znode is passed and returned here
1033  * @n: zbranch number is passed and returned here
1034  * @lnum: LEB number of dent node to match
1035  * @offs: offset of dent node to match
1036  *
1037  * This function is used for "hashed" keys to make sure the found directory or
1038  * extended attribute entry node is what was looked for. It is used when the
1039  * flash address of the right node is known (@lnum:@offs) which makes it much
1040  * easier to resolve collisions (no need to read entries and match full
1041  * names). This function returns %1 and sets @zn and @n if the collision is
1042  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1043  * previous directory entry. Otherwise a negative error code is returned.
1044  */
1045 static int resolve_collision_directly(struct ubifs_info *c,
1046 				      const union ubifs_key *key,
1047 				      struct ubifs_znode **zn, int *n,
1048 				      int lnum, int offs)
1049 {
1050 	struct ubifs_znode *znode;
1051 	int nn, err;
1052 
1053 	znode = *zn;
1054 	nn = *n;
1055 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1056 		return 1;
1057 
1058 	/* Look left */
1059 	while (1) {
1060 		err = tnc_prev(c, &znode, &nn);
1061 		if (err == -ENOENT)
1062 			break;
1063 		if (err < 0)
1064 			return err;
1065 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1066 			break;
1067 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1068 			*zn = znode;
1069 			*n = nn;
1070 			return 1;
1071 		}
1072 	}
1073 
1074 	/* Look right */
1075 	znode = *zn;
1076 	nn = *n;
1077 	while (1) {
1078 		err = tnc_next(c, &znode, &nn);
1079 		if (err == -ENOENT)
1080 			return 0;
1081 		if (err < 0)
1082 			return err;
1083 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1084 			return 0;
1085 		*zn = znode;
1086 		*n = nn;
1087 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1088 			return 1;
1089 	}
1090 }
1091 
1092 /**
1093  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1094  * @c: UBIFS file-system description object
1095  * @znode: znode to dirty
1096  *
1097  * If we do not have a unique key that resides in a znode, then we cannot
1098  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1099  * This function records the path back to the last dirty ancestor, and then
1100  * dirties the znodes on that path.
1101  */
1102 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1103 					       struct ubifs_znode *znode)
1104 {
1105 	struct ubifs_znode *zp;
1106 	int *path = c->bottom_up_buf, p = 0;
1107 
1108 	ubifs_assert(c, c->zroot.znode);
1109 	ubifs_assert(c, znode);
1110 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1111 		kfree(c->bottom_up_buf);
1112 		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1113 						 sizeof(int),
1114 						 GFP_NOFS);
1115 		if (!c->bottom_up_buf)
1116 			return ERR_PTR(-ENOMEM);
1117 		path = c->bottom_up_buf;
1118 	}
1119 	if (c->zroot.znode->level) {
1120 		/* Go up until parent is dirty */
1121 		while (1) {
1122 			int n;
1123 
1124 			zp = znode->parent;
1125 			if (!zp)
1126 				break;
1127 			n = znode->iip;
1128 			ubifs_assert(c, p < c->zroot.znode->level);
1129 			path[p++] = n;
1130 			if (!zp->cnext && ubifs_zn_dirty(znode))
1131 				break;
1132 			znode = zp;
1133 		}
1134 	}
1135 
1136 	/* Come back down, dirtying as we go */
1137 	while (1) {
1138 		struct ubifs_zbranch *zbr;
1139 
1140 		zp = znode->parent;
1141 		if (zp) {
1142 			ubifs_assert(c, path[p - 1] >= 0);
1143 			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1144 			zbr = &zp->zbranch[path[--p]];
1145 			znode = dirty_cow_znode(c, zbr);
1146 		} else {
1147 			ubifs_assert(c, znode == c->zroot.znode);
1148 			znode = dirty_cow_znode(c, &c->zroot);
1149 		}
1150 		if (IS_ERR(znode) || !p)
1151 			break;
1152 		ubifs_assert(c, path[p - 1] >= 0);
1153 		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1154 		znode = znode->zbranch[path[p - 1]].znode;
1155 	}
1156 
1157 	return znode;
1158 }
1159 
1160 /**
1161  * ubifs_lookup_level0 - search for zero-level znode.
1162  * @c: UBIFS file-system description object
1163  * @key:  key to lookup
1164  * @zn: znode is returned here
1165  * @n: znode branch slot number is returned here
1166  *
1167  * This function looks up the TNC tree and search for zero-level znode which
1168  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1169  * cases:
1170  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1171  *     is returned and slot number of the matched branch is stored in @n;
1172  *   o not exact match, which means that zero-level znode does not contain
1173  *     @key, then %0 is returned and slot number of the closest branch is stored
1174  *     in @n;
1175  *   o @key is so small that it is even less than the lowest key of the
1176  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1177  *
1178  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1179  * function reads corresponding indexing nodes and inserts them to TNC. In
1180  * case of failure, a negative error code is returned.
1181  */
1182 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1183 			struct ubifs_znode **zn, int *n)
1184 {
1185 	int err, exact;
1186 	struct ubifs_znode *znode;
1187 	time64_t time = ktime_get_seconds();
1188 
1189 	dbg_tnck(key, "search key ");
1190 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1191 
1192 	znode = c->zroot.znode;
1193 	if (unlikely(!znode)) {
1194 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1195 		if (IS_ERR(znode))
1196 			return PTR_ERR(znode);
1197 	}
1198 
1199 	znode->time = time;
1200 
1201 	while (1) {
1202 		struct ubifs_zbranch *zbr;
1203 
1204 		exact = ubifs_search_zbranch(c, znode, key, n);
1205 
1206 		if (znode->level == 0)
1207 			break;
1208 
1209 		if (*n < 0)
1210 			*n = 0;
1211 		zbr = &znode->zbranch[*n];
1212 
1213 		if (zbr->znode) {
1214 			znode->time = time;
1215 			znode = zbr->znode;
1216 			continue;
1217 		}
1218 
1219 		/* znode is not in TNC cache, load it from the media */
1220 		znode = ubifs_load_znode(c, zbr, znode, *n);
1221 		if (IS_ERR(znode))
1222 			return PTR_ERR(znode);
1223 	}
1224 
1225 	*zn = znode;
1226 	if (exact || !is_hash_key(c, key) || *n != -1) {
1227 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1228 		return exact;
1229 	}
1230 
1231 	/*
1232 	 * Here is a tricky place. We have not found the key and this is a
1233 	 * "hashed" key, which may collide. The rest of the code deals with
1234 	 * situations like this:
1235 	 *
1236 	 *                  | 3 | 5 |
1237 	 *                  /       \
1238 	 *          | 3 | 5 |      | 6 | 7 | (x)
1239 	 *
1240 	 * Or more a complex example:
1241 	 *
1242 	 *                | 1 | 5 |
1243 	 *                /       \
1244 	 *       | 1 | 3 |         | 5 | 8 |
1245 	 *              \           /
1246 	 *          | 5 | 5 |   | 6 | 7 | (x)
1247 	 *
1248 	 * In the examples, if we are looking for key "5", we may reach nodes
1249 	 * marked with "(x)". In this case what we have do is to look at the
1250 	 * left and see if there is "5" key there. If there is, we have to
1251 	 * return it.
1252 	 *
1253 	 * Note, this whole situation is possible because we allow to have
1254 	 * elements which are equivalent to the next key in the parent in the
1255 	 * children of current znode. For example, this happens if we split a
1256 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1257 	 * like this:
1258 	 *                      | 3 | 5 |
1259 	 *                       /     \
1260 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1261 	 *                              ^
1262 	 * And this becomes what is at the first "picture" after key "5" marked
1263 	 * with "^" is removed. What could be done is we could prohibit
1264 	 * splitting in the middle of the colliding sequence. Also, when
1265 	 * removing the leftmost key, we would have to correct the key of the
1266 	 * parent node, which would introduce additional complications. Namely,
1267 	 * if we changed the leftmost key of the parent znode, the garbage
1268 	 * collector would be unable to find it (GC is doing this when GC'ing
1269 	 * indexing LEBs). Although we already have an additional RB-tree where
1270 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1271 	 * after the commit. But anyway, this does not look easy to implement
1272 	 * so we did not try this.
1273 	 */
1274 	err = tnc_prev(c, &znode, n);
1275 	if (err == -ENOENT) {
1276 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1277 		*n = -1;
1278 		return 0;
1279 	}
1280 	if (unlikely(err < 0))
1281 		return err;
1282 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1283 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1284 		*n = -1;
1285 		return 0;
1286 	}
1287 
1288 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1289 	*zn = znode;
1290 	return 1;
1291 }
1292 
1293 /**
1294  * lookup_level0_dirty - search for zero-level znode dirtying.
1295  * @c: UBIFS file-system description object
1296  * @key:  key to lookup
1297  * @zn: znode is returned here
1298  * @n: znode branch slot number is returned here
1299  *
1300  * This function looks up the TNC tree and search for zero-level znode which
1301  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1302  * cases:
1303  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1304  *     is returned and slot number of the matched branch is stored in @n;
1305  *   o not exact match, which means that zero-level znode does not contain @key
1306  *     then %0 is returned and slot number of the closed branch is stored in
1307  *     @n;
1308  *   o @key is so small that it is even less than the lowest key of the
1309  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1310  *
1311  * Additionally all znodes in the path from the root to the located zero-level
1312  * znode are marked as dirty.
1313  *
1314  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1315  * function reads corresponding indexing nodes and inserts them to TNC. In
1316  * case of failure, a negative error code is returned.
1317  */
1318 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1319 			       struct ubifs_znode **zn, int *n)
1320 {
1321 	int err, exact;
1322 	struct ubifs_znode *znode;
1323 	time64_t time = ktime_get_seconds();
1324 
1325 	dbg_tnck(key, "search and dirty key ");
1326 
1327 	znode = c->zroot.znode;
1328 	if (unlikely(!znode)) {
1329 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1330 		if (IS_ERR(znode))
1331 			return PTR_ERR(znode);
1332 	}
1333 
1334 	znode = dirty_cow_znode(c, &c->zroot);
1335 	if (IS_ERR(znode))
1336 		return PTR_ERR(znode);
1337 
1338 	znode->time = time;
1339 
1340 	while (1) {
1341 		struct ubifs_zbranch *zbr;
1342 
1343 		exact = ubifs_search_zbranch(c, znode, key, n);
1344 
1345 		if (znode->level == 0)
1346 			break;
1347 
1348 		if (*n < 0)
1349 			*n = 0;
1350 		zbr = &znode->zbranch[*n];
1351 
1352 		if (zbr->znode) {
1353 			znode->time = time;
1354 			znode = dirty_cow_znode(c, zbr);
1355 			if (IS_ERR(znode))
1356 				return PTR_ERR(znode);
1357 			continue;
1358 		}
1359 
1360 		/* znode is not in TNC cache, load it from the media */
1361 		znode = ubifs_load_znode(c, zbr, znode, *n);
1362 		if (IS_ERR(znode))
1363 			return PTR_ERR(znode);
1364 		znode = dirty_cow_znode(c, zbr);
1365 		if (IS_ERR(znode))
1366 			return PTR_ERR(znode);
1367 	}
1368 
1369 	*zn = znode;
1370 	if (exact || !is_hash_key(c, key) || *n != -1) {
1371 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1372 		return exact;
1373 	}
1374 
1375 	/*
1376 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1377 	 * code.
1378 	 */
1379 	err = tnc_prev(c, &znode, n);
1380 	if (err == -ENOENT) {
1381 		*n = -1;
1382 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1383 		return 0;
1384 	}
1385 	if (unlikely(err < 0))
1386 		return err;
1387 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1388 		*n = -1;
1389 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1390 		return 0;
1391 	}
1392 
1393 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1394 		znode = dirty_cow_bottom_up(c, znode);
1395 		if (IS_ERR(znode))
1396 			return PTR_ERR(znode);
1397 	}
1398 
1399 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1400 	*zn = znode;
1401 	return 1;
1402 }
1403 
1404 /**
1405  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1406  * @c: UBIFS file-system description object
1407  * @lnum: LEB number
1408  * @gc_seq1: garbage collection sequence number
1409  *
1410  * This function determines if @lnum may have been garbage collected since
1411  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1412  * %0 is returned.
1413  */
1414 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1415 {
1416 	int gc_seq2, gced_lnum;
1417 
1418 	gced_lnum = c->gced_lnum;
1419 	smp_rmb();
1420 	gc_seq2 = c->gc_seq;
1421 	/* Same seq means no GC */
1422 	if (gc_seq1 == gc_seq2)
1423 		return 0;
1424 	/* Different by more than 1 means we don't know */
1425 	if (gc_seq1 + 1 != gc_seq2)
1426 		return 1;
1427 	/*
1428 	 * We have seen the sequence number has increased by 1. Now we need to
1429 	 * be sure we read the right LEB number, so read it again.
1430 	 */
1431 	smp_rmb();
1432 	if (gced_lnum != c->gced_lnum)
1433 		return 1;
1434 	/* Finally we can check lnum */
1435 	if (gced_lnum == lnum)
1436 		return 1;
1437 	return 0;
1438 }
1439 
1440 /**
1441  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1442  * @c: UBIFS file-system description object
1443  * @key: node key to lookup
1444  * @node: the node is returned here
1445  * @lnum: LEB number is returned here
1446  * @offs: offset is returned here
1447  *
1448  * This function looks up and reads node with key @key. The caller has to make
1449  * sure the @node buffer is large enough to fit the node. Returns zero in case
1450  * of success, %-ENOENT if the node was not found, and a negative error code in
1451  * case of failure. The node location can be returned in @lnum and @offs.
1452  */
1453 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1454 		     void *node, int *lnum, int *offs)
1455 {
1456 	int found, n, err, safely = 0, gc_seq1;
1457 	struct ubifs_znode *znode;
1458 	struct ubifs_zbranch zbr, *zt;
1459 
1460 again:
1461 	mutex_lock(&c->tnc_mutex);
1462 	found = ubifs_lookup_level0(c, key, &znode, &n);
1463 	if (!found) {
1464 		err = -ENOENT;
1465 		goto out;
1466 	} else if (found < 0) {
1467 		err = found;
1468 		goto out;
1469 	}
1470 	zt = &znode->zbranch[n];
1471 	if (lnum) {
1472 		*lnum = zt->lnum;
1473 		*offs = zt->offs;
1474 	}
1475 	if (is_hash_key(c, key)) {
1476 		/*
1477 		 * In this case the leaf node cache gets used, so we pass the
1478 		 * address of the zbranch and keep the mutex locked
1479 		 */
1480 		err = tnc_read_hashed_node(c, zt, node);
1481 		goto out;
1482 	}
1483 	if (safely) {
1484 		err = ubifs_tnc_read_node(c, zt, node);
1485 		goto out;
1486 	}
1487 	/* Drop the TNC mutex prematurely and race with garbage collection */
1488 	zbr = znode->zbranch[n];
1489 	gc_seq1 = c->gc_seq;
1490 	mutex_unlock(&c->tnc_mutex);
1491 
1492 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1493 		/* We do not GC journal heads */
1494 		err = ubifs_tnc_read_node(c, &zbr, node);
1495 		return err;
1496 	}
1497 
1498 	err = fallible_read_node(c, key, &zbr, node);
1499 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1500 		/*
1501 		 * The node may have been GC'ed out from under us so try again
1502 		 * while keeping the TNC mutex locked.
1503 		 */
1504 		safely = 1;
1505 		goto again;
1506 	}
1507 	return 0;
1508 
1509 out:
1510 	mutex_unlock(&c->tnc_mutex);
1511 	return err;
1512 }
1513 
1514 /**
1515  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1516  * @c: UBIFS file-system description object
1517  * @bu: bulk-read parameters and results
1518  *
1519  * Lookup consecutive data node keys for the same inode that reside
1520  * consecutively in the same LEB. This function returns zero in case of success
1521  * and a negative error code in case of failure.
1522  *
1523  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1524  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1525  * maximum possible amount of nodes for bulk-read.
1526  */
1527 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1528 {
1529 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1530 	int uninitialized_var(len);
1531 	unsigned int block = key_block(c, &bu->key);
1532 	struct ubifs_znode *znode;
1533 
1534 	bu->cnt = 0;
1535 	bu->blk_cnt = 0;
1536 	bu->eof = 0;
1537 
1538 	mutex_lock(&c->tnc_mutex);
1539 	/* Find first key */
1540 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1541 	if (err < 0)
1542 		goto out;
1543 	if (err) {
1544 		/* Key found */
1545 		len = znode->zbranch[n].len;
1546 		/* The buffer must be big enough for at least 1 node */
1547 		if (len > bu->buf_len) {
1548 			err = -EINVAL;
1549 			goto out;
1550 		}
1551 		/* Add this key */
1552 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1553 		bu->blk_cnt += 1;
1554 		lnum = znode->zbranch[n].lnum;
1555 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1556 	}
1557 	while (1) {
1558 		struct ubifs_zbranch *zbr;
1559 		union ubifs_key *key;
1560 		unsigned int next_block;
1561 
1562 		/* Find next key */
1563 		err = tnc_next(c, &znode, &n);
1564 		if (err)
1565 			goto out;
1566 		zbr = &znode->zbranch[n];
1567 		key = &zbr->key;
1568 		/* See if there is another data key for this file */
1569 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1570 		    key_type(c, key) != UBIFS_DATA_KEY) {
1571 			err = -ENOENT;
1572 			goto out;
1573 		}
1574 		if (lnum < 0) {
1575 			/* First key found */
1576 			lnum = zbr->lnum;
1577 			offs = ALIGN(zbr->offs + zbr->len, 8);
1578 			len = zbr->len;
1579 			if (len > bu->buf_len) {
1580 				err = -EINVAL;
1581 				goto out;
1582 			}
1583 		} else {
1584 			/*
1585 			 * The data nodes must be in consecutive positions in
1586 			 * the same LEB.
1587 			 */
1588 			if (zbr->lnum != lnum || zbr->offs != offs)
1589 				goto out;
1590 			offs += ALIGN(zbr->len, 8);
1591 			len = ALIGN(len, 8) + zbr->len;
1592 			/* Must not exceed buffer length */
1593 			if (len > bu->buf_len)
1594 				goto out;
1595 		}
1596 		/* Allow for holes */
1597 		next_block = key_block(c, key);
1598 		bu->blk_cnt += (next_block - block - 1);
1599 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1600 			goto out;
1601 		block = next_block;
1602 		/* Add this key */
1603 		bu->zbranch[bu->cnt++] = *zbr;
1604 		bu->blk_cnt += 1;
1605 		/* See if we have room for more */
1606 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1607 			goto out;
1608 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1609 			goto out;
1610 	}
1611 out:
1612 	if (err == -ENOENT) {
1613 		bu->eof = 1;
1614 		err = 0;
1615 	}
1616 	bu->gc_seq = c->gc_seq;
1617 	mutex_unlock(&c->tnc_mutex);
1618 	if (err)
1619 		return err;
1620 	/*
1621 	 * An enormous hole could cause bulk-read to encompass too many
1622 	 * page cache pages, so limit the number here.
1623 	 */
1624 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1625 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1626 	/*
1627 	 * Ensure that bulk-read covers a whole number of page cache
1628 	 * pages.
1629 	 */
1630 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1631 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1632 		return 0;
1633 	if (bu->eof) {
1634 		/* At the end of file we can round up */
1635 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1636 		return 0;
1637 	}
1638 	/* Exclude data nodes that do not make up a whole page cache page */
1639 	block = key_block(c, &bu->key) + bu->blk_cnt;
1640 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1641 	while (bu->cnt) {
1642 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1643 			break;
1644 		bu->cnt -= 1;
1645 	}
1646 	return 0;
1647 }
1648 
1649 /**
1650  * read_wbuf - bulk-read from a LEB with a wbuf.
1651  * @wbuf: wbuf that may overlap the read
1652  * @buf: buffer into which to read
1653  * @len: read length
1654  * @lnum: LEB number from which to read
1655  * @offs: offset from which to read
1656  *
1657  * This functions returns %0 on success or a negative error code on failure.
1658  */
1659 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1660 		     int offs)
1661 {
1662 	const struct ubifs_info *c = wbuf->c;
1663 	int rlen, overlap;
1664 
1665 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1666 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1667 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1668 	ubifs_assert(c, offs + len <= c->leb_size);
1669 
1670 	spin_lock(&wbuf->lock);
1671 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1672 	if (!overlap) {
1673 		/* We may safely unlock the write-buffer and read the data */
1674 		spin_unlock(&wbuf->lock);
1675 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1676 	}
1677 
1678 	/* Don't read under wbuf */
1679 	rlen = wbuf->offs - offs;
1680 	if (rlen < 0)
1681 		rlen = 0;
1682 
1683 	/* Copy the rest from the write-buffer */
1684 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1685 	spin_unlock(&wbuf->lock);
1686 
1687 	if (rlen > 0)
1688 		/* Read everything that goes before write-buffer */
1689 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * validate_data_node - validate data nodes for bulk-read.
1696  * @c: UBIFS file-system description object
1697  * @buf: buffer containing data node to validate
1698  * @zbr: zbranch of data node to validate
1699  *
1700  * This functions returns %0 on success or a negative error code on failure.
1701  */
1702 static int validate_data_node(struct ubifs_info *c, void *buf,
1703 			      struct ubifs_zbranch *zbr)
1704 {
1705 	union ubifs_key key1;
1706 	struct ubifs_ch *ch = buf;
1707 	int err, len;
1708 
1709 	if (ch->node_type != UBIFS_DATA_NODE) {
1710 		ubifs_err(c, "bad node type (%d but expected %d)",
1711 			  ch->node_type, UBIFS_DATA_NODE);
1712 		goto out_err;
1713 	}
1714 
1715 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1716 	if (err) {
1717 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1718 		goto out;
1719 	}
1720 
1721 	err = ubifs_node_check_hash(c, buf, zbr->hash);
1722 	if (err) {
1723 		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1724 		return err;
1725 	}
1726 
1727 	len = le32_to_cpu(ch->len);
1728 	if (len != zbr->len) {
1729 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1730 		goto out_err;
1731 	}
1732 
1733 	/* Make sure the key of the read node is correct */
1734 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1735 	if (!keys_eq(c, &zbr->key, &key1)) {
1736 		ubifs_err(c, "bad key in node at LEB %d:%d",
1737 			  zbr->lnum, zbr->offs);
1738 		dbg_tnck(&zbr->key, "looked for key ");
1739 		dbg_tnck(&key1, "found node's key ");
1740 		goto out_err;
1741 	}
1742 
1743 	return 0;
1744 
1745 out_err:
1746 	err = -EINVAL;
1747 out:
1748 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1749 	ubifs_dump_node(c, buf);
1750 	dump_stack();
1751 	return err;
1752 }
1753 
1754 /**
1755  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1756  * @c: UBIFS file-system description object
1757  * @bu: bulk-read parameters and results
1758  *
1759  * This functions reads and validates the data nodes that were identified by the
1760  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1761  * -EAGAIN to indicate a race with GC, or another negative error code on
1762  * failure.
1763  */
1764 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1765 {
1766 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1767 	struct ubifs_wbuf *wbuf;
1768 	void *buf;
1769 
1770 	len = bu->zbranch[bu->cnt - 1].offs;
1771 	len += bu->zbranch[bu->cnt - 1].len - offs;
1772 	if (len > bu->buf_len) {
1773 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1774 		return -EINVAL;
1775 	}
1776 
1777 	/* Do the read */
1778 	wbuf = ubifs_get_wbuf(c, lnum);
1779 	if (wbuf)
1780 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1781 	else
1782 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1783 
1784 	/* Check for a race with GC */
1785 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1786 		return -EAGAIN;
1787 
1788 	if (err && err != -EBADMSG) {
1789 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1790 			  lnum, offs, err);
1791 		dump_stack();
1792 		dbg_tnck(&bu->key, "key ");
1793 		return err;
1794 	}
1795 
1796 	/* Validate the nodes read */
1797 	buf = bu->buf;
1798 	for (i = 0; i < bu->cnt; i++) {
1799 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1800 		if (err)
1801 			return err;
1802 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 /**
1809  * do_lookup_nm- look up a "hashed" node.
1810  * @c: UBIFS file-system description object
1811  * @key: node key to lookup
1812  * @node: the node is returned here
1813  * @nm: node name
1814  *
1815  * This function looks up and reads a node which contains name hash in the key.
1816  * Since the hash may have collisions, there may be many nodes with the same
1817  * key, so we have to sequentially look to all of them until the needed one is
1818  * found. This function returns zero in case of success, %-ENOENT if the node
1819  * was not found, and a negative error code in case of failure.
1820  */
1821 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1822 			void *node, const struct fscrypt_name *nm)
1823 {
1824 	int found, n, err;
1825 	struct ubifs_znode *znode;
1826 
1827 	dbg_tnck(key, "key ");
1828 	mutex_lock(&c->tnc_mutex);
1829 	found = ubifs_lookup_level0(c, key, &znode, &n);
1830 	if (!found) {
1831 		err = -ENOENT;
1832 		goto out_unlock;
1833 	} else if (found < 0) {
1834 		err = found;
1835 		goto out_unlock;
1836 	}
1837 
1838 	ubifs_assert(c, n >= 0);
1839 
1840 	err = resolve_collision(c, key, &znode, &n, nm);
1841 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1842 	if (unlikely(err < 0))
1843 		goto out_unlock;
1844 	if (err == 0) {
1845 		err = -ENOENT;
1846 		goto out_unlock;
1847 	}
1848 
1849 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1850 
1851 out_unlock:
1852 	mutex_unlock(&c->tnc_mutex);
1853 	return err;
1854 }
1855 
1856 /**
1857  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1858  * @c: UBIFS file-system description object
1859  * @key: node key to lookup
1860  * @node: the node is returned here
1861  * @nm: node name
1862  *
1863  * This function looks up and reads a node which contains name hash in the key.
1864  * Since the hash may have collisions, there may be many nodes with the same
1865  * key, so we have to sequentially look to all of them until the needed one is
1866  * found. This function returns zero in case of success, %-ENOENT if the node
1867  * was not found, and a negative error code in case of failure.
1868  */
1869 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1870 			void *node, const struct fscrypt_name *nm)
1871 {
1872 	int err, len;
1873 	const struct ubifs_dent_node *dent = node;
1874 
1875 	/*
1876 	 * We assume that in most of the cases there are no name collisions and
1877 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1878 	 */
1879 	err = ubifs_tnc_lookup(c, key, node);
1880 	if (err)
1881 		return err;
1882 
1883 	len = le16_to_cpu(dent->nlen);
1884 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1885 		return 0;
1886 
1887 	/*
1888 	 * Unluckily, there are hash collisions and we have to iterate over
1889 	 * them look at each direntry with colliding name hash sequentially.
1890 	 */
1891 
1892 	return do_lookup_nm(c, key, node, nm);
1893 }
1894 
1895 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1896 			    struct ubifs_dent_node *dent, uint32_t cookie,
1897 			    struct ubifs_znode **zn, int *n)
1898 {
1899 	int err;
1900 	struct ubifs_znode *znode = *zn;
1901 	struct ubifs_zbranch *zbr;
1902 	union ubifs_key *dkey;
1903 
1904 	for (;;) {
1905 		zbr = &znode->zbranch[*n];
1906 		dkey = &zbr->key;
1907 
1908 		if (key_inum(c, dkey) != key_inum(c, key) ||
1909 		    key_type(c, dkey) != key_type(c, key)) {
1910 			return -ENOENT;
1911 		}
1912 
1913 		err = tnc_read_hashed_node(c, zbr, dent);
1914 		if (err)
1915 			return err;
1916 
1917 		if (key_hash(c, key) == key_hash(c, dkey) &&
1918 		    le32_to_cpu(dent->cookie) == cookie) {
1919 			*zn = znode;
1920 			return 0;
1921 		}
1922 
1923 		err = tnc_next(c, &znode, n);
1924 		if (err)
1925 			return err;
1926 	}
1927 }
1928 
1929 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1930 			struct ubifs_dent_node *dent, uint32_t cookie)
1931 {
1932 	int n, err;
1933 	struct ubifs_znode *znode;
1934 	union ubifs_key start_key;
1935 
1936 	ubifs_assert(c, is_hash_key(c, key));
1937 
1938 	lowest_dent_key(c, &start_key, key_inum(c, key));
1939 
1940 	mutex_lock(&c->tnc_mutex);
1941 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1942 	if (unlikely(err < 0))
1943 		goto out_unlock;
1944 
1945 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1946 
1947 out_unlock:
1948 	mutex_unlock(&c->tnc_mutex);
1949 	return err;
1950 }
1951 
1952 /**
1953  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1954  * @c: UBIFS file-system description object
1955  * @key: node key to lookup
1956  * @node: the node is returned here
1957  * @cookie: node cookie for collision resolution
1958  *
1959  * This function looks up and reads a node which contains name hash in the key.
1960  * Since the hash may have collisions, there may be many nodes with the same
1961  * key, so we have to sequentially look to all of them until the needed one
1962  * with the same cookie value is found.
1963  * This function returns zero in case of success, %-ENOENT if the node
1964  * was not found, and a negative error code in case of failure.
1965  */
1966 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1967 			void *node, uint32_t cookie)
1968 {
1969 	int err;
1970 	const struct ubifs_dent_node *dent = node;
1971 
1972 	if (!c->double_hash)
1973 		return -EOPNOTSUPP;
1974 
1975 	/*
1976 	 * We assume that in most of the cases there are no name collisions and
1977 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1978 	 */
1979 	err = ubifs_tnc_lookup(c, key, node);
1980 	if (err)
1981 		return err;
1982 
1983 	if (le32_to_cpu(dent->cookie) == cookie)
1984 		return 0;
1985 
1986 	/*
1987 	 * Unluckily, there are hash collisions and we have to iterate over
1988 	 * them look at each direntry with colliding name hash sequentially.
1989 	 */
1990 	return do_lookup_dh(c, key, node, cookie);
1991 }
1992 
1993 /**
1994  * correct_parent_keys - correct parent znodes' keys.
1995  * @c: UBIFS file-system description object
1996  * @znode: znode to correct parent znodes for
1997  *
1998  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1999  * zbranch changes, keys of parent znodes have to be corrected. This helper
2000  * function is called in such situations and corrects the keys if needed.
2001  */
2002 static void correct_parent_keys(const struct ubifs_info *c,
2003 				struct ubifs_znode *znode)
2004 {
2005 	union ubifs_key *key, *key1;
2006 
2007 	ubifs_assert(c, znode->parent);
2008 	ubifs_assert(c, znode->iip == 0);
2009 
2010 	key = &znode->zbranch[0].key;
2011 	key1 = &znode->parent->zbranch[0].key;
2012 
2013 	while (keys_cmp(c, key, key1) < 0) {
2014 		key_copy(c, key, key1);
2015 		znode = znode->parent;
2016 		znode->alt = 1;
2017 		if (!znode->parent || znode->iip)
2018 			break;
2019 		key1 = &znode->parent->zbranch[0].key;
2020 	}
2021 }
2022 
2023 /**
2024  * insert_zbranch - insert a zbranch into a znode.
2025  * @c: UBIFS file-system description object
2026  * @znode: znode into which to insert
2027  * @zbr: zbranch to insert
2028  * @n: slot number to insert to
2029  *
2030  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2031  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2032  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2033  * slot, zbranches starting from @n have to be moved right.
2034  */
2035 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2036 			   const struct ubifs_zbranch *zbr, int n)
2037 {
2038 	int i;
2039 
2040 	ubifs_assert(c, ubifs_zn_dirty(znode));
2041 
2042 	if (znode->level) {
2043 		for (i = znode->child_cnt; i > n; i--) {
2044 			znode->zbranch[i] = znode->zbranch[i - 1];
2045 			if (znode->zbranch[i].znode)
2046 				znode->zbranch[i].znode->iip = i;
2047 		}
2048 		if (zbr->znode)
2049 			zbr->znode->iip = n;
2050 	} else
2051 		for (i = znode->child_cnt; i > n; i--)
2052 			znode->zbranch[i] = znode->zbranch[i - 1];
2053 
2054 	znode->zbranch[n] = *zbr;
2055 	znode->child_cnt += 1;
2056 
2057 	/*
2058 	 * After inserting at slot zero, the lower bound of the key range of
2059 	 * this znode may have changed. If this znode is subsequently split
2060 	 * then the upper bound of the key range may change, and furthermore
2061 	 * it could change to be lower than the original lower bound. If that
2062 	 * happens, then it will no longer be possible to find this znode in the
2063 	 * TNC using the key from the index node on flash. That is bad because
2064 	 * if it is not found, we will assume it is obsolete and may overwrite
2065 	 * it. Then if there is an unclean unmount, we will start using the
2066 	 * old index which will be broken.
2067 	 *
2068 	 * So we first mark znodes that have insertions at slot zero, and then
2069 	 * if they are split we add their lnum/offs to the old_idx tree.
2070 	 */
2071 	if (n == 0)
2072 		znode->alt = 1;
2073 }
2074 
2075 /**
2076  * tnc_insert - insert a node into TNC.
2077  * @c: UBIFS file-system description object
2078  * @znode: znode to insert into
2079  * @zbr: branch to insert
2080  * @n: slot number to insert new zbranch to
2081  *
2082  * This function inserts a new node described by @zbr into znode @znode. If
2083  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2084  * are splat as well if needed. Returns zero in case of success or a negative
2085  * error code in case of failure.
2086  */
2087 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2088 		      struct ubifs_zbranch *zbr, int n)
2089 {
2090 	struct ubifs_znode *zn, *zi, *zp;
2091 	int i, keep, move, appending = 0;
2092 	union ubifs_key *key = &zbr->key, *key1;
2093 
2094 	ubifs_assert(c, n >= 0 && n <= c->fanout);
2095 
2096 	/* Implement naive insert for now */
2097 again:
2098 	zp = znode->parent;
2099 	if (znode->child_cnt < c->fanout) {
2100 		ubifs_assert(c, n != c->fanout);
2101 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2102 
2103 		insert_zbranch(c, znode, zbr, n);
2104 
2105 		/* Ensure parent's key is correct */
2106 		if (n == 0 && zp && znode->iip == 0)
2107 			correct_parent_keys(c, znode);
2108 
2109 		return 0;
2110 	}
2111 
2112 	/*
2113 	 * Unfortunately, @znode does not have more empty slots and we have to
2114 	 * split it.
2115 	 */
2116 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2117 
2118 	if (znode->alt)
2119 		/*
2120 		 * We can no longer be sure of finding this znode by key, so we
2121 		 * record it in the old_idx tree.
2122 		 */
2123 		ins_clr_old_idx_znode(c, znode);
2124 
2125 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2126 	if (!zn)
2127 		return -ENOMEM;
2128 	zn->parent = zp;
2129 	zn->level = znode->level;
2130 
2131 	/* Decide where to split */
2132 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2133 		/* Try not to split consecutive data keys */
2134 		if (n == c->fanout) {
2135 			key1 = &znode->zbranch[n - 1].key;
2136 			if (key_inum(c, key1) == key_inum(c, key) &&
2137 			    key_type(c, key1) == UBIFS_DATA_KEY)
2138 				appending = 1;
2139 		} else
2140 			goto check_split;
2141 	} else if (appending && n != c->fanout) {
2142 		/* Try not to split consecutive data keys */
2143 		appending = 0;
2144 check_split:
2145 		if (n >= (c->fanout + 1) / 2) {
2146 			key1 = &znode->zbranch[0].key;
2147 			if (key_inum(c, key1) == key_inum(c, key) &&
2148 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2149 				key1 = &znode->zbranch[n].key;
2150 				if (key_inum(c, key1) != key_inum(c, key) ||
2151 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2152 					keep = n;
2153 					move = c->fanout - keep;
2154 					zi = znode;
2155 					goto do_split;
2156 				}
2157 			}
2158 		}
2159 	}
2160 
2161 	if (appending) {
2162 		keep = c->fanout;
2163 		move = 0;
2164 	} else {
2165 		keep = (c->fanout + 1) / 2;
2166 		move = c->fanout - keep;
2167 	}
2168 
2169 	/*
2170 	 * Although we don't at present, we could look at the neighbors and see
2171 	 * if we can move some zbranches there.
2172 	 */
2173 
2174 	if (n < keep) {
2175 		/* Insert into existing znode */
2176 		zi = znode;
2177 		move += 1;
2178 		keep -= 1;
2179 	} else {
2180 		/* Insert into new znode */
2181 		zi = zn;
2182 		n -= keep;
2183 		/* Re-parent */
2184 		if (zn->level != 0)
2185 			zbr->znode->parent = zn;
2186 	}
2187 
2188 do_split:
2189 
2190 	__set_bit(DIRTY_ZNODE, &zn->flags);
2191 	atomic_long_inc(&c->dirty_zn_cnt);
2192 
2193 	zn->child_cnt = move;
2194 	znode->child_cnt = keep;
2195 
2196 	dbg_tnc("moving %d, keeping %d", move, keep);
2197 
2198 	/* Move zbranch */
2199 	for (i = 0; i < move; i++) {
2200 		zn->zbranch[i] = znode->zbranch[keep + i];
2201 		/* Re-parent */
2202 		if (zn->level != 0)
2203 			if (zn->zbranch[i].znode) {
2204 				zn->zbranch[i].znode->parent = zn;
2205 				zn->zbranch[i].znode->iip = i;
2206 			}
2207 	}
2208 
2209 	/* Insert new key and branch */
2210 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2211 
2212 	insert_zbranch(c, zi, zbr, n);
2213 
2214 	/* Insert new znode (produced by spitting) into the parent */
2215 	if (zp) {
2216 		if (n == 0 && zi == znode && znode->iip == 0)
2217 			correct_parent_keys(c, znode);
2218 
2219 		/* Locate insertion point */
2220 		n = znode->iip + 1;
2221 
2222 		/* Tail recursion */
2223 		zbr->key = zn->zbranch[0].key;
2224 		zbr->znode = zn;
2225 		zbr->lnum = 0;
2226 		zbr->offs = 0;
2227 		zbr->len = 0;
2228 		znode = zp;
2229 
2230 		goto again;
2231 	}
2232 
2233 	/* We have to split root znode */
2234 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2235 
2236 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2237 	if (!zi)
2238 		return -ENOMEM;
2239 
2240 	zi->child_cnt = 2;
2241 	zi->level = znode->level + 1;
2242 
2243 	__set_bit(DIRTY_ZNODE, &zi->flags);
2244 	atomic_long_inc(&c->dirty_zn_cnt);
2245 
2246 	zi->zbranch[0].key = znode->zbranch[0].key;
2247 	zi->zbranch[0].znode = znode;
2248 	zi->zbranch[0].lnum = c->zroot.lnum;
2249 	zi->zbranch[0].offs = c->zroot.offs;
2250 	zi->zbranch[0].len = c->zroot.len;
2251 	zi->zbranch[1].key = zn->zbranch[0].key;
2252 	zi->zbranch[1].znode = zn;
2253 
2254 	c->zroot.lnum = 0;
2255 	c->zroot.offs = 0;
2256 	c->zroot.len = 0;
2257 	c->zroot.znode = zi;
2258 
2259 	zn->parent = zi;
2260 	zn->iip = 1;
2261 	znode->parent = zi;
2262 	znode->iip = 0;
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * ubifs_tnc_add - add a node to TNC.
2269  * @c: UBIFS file-system description object
2270  * @key: key to add
2271  * @lnum: LEB number of node
2272  * @offs: node offset
2273  * @len: node length
2274  * @hash: The hash over the node
2275  *
2276  * This function adds a node with key @key to TNC. The node may be new or it may
2277  * obsolete some existing one. Returns %0 on success or negative error code on
2278  * failure.
2279  */
2280 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2281 		  int offs, int len, const u8 *hash)
2282 {
2283 	int found, n, err = 0;
2284 	struct ubifs_znode *znode;
2285 
2286 	mutex_lock(&c->tnc_mutex);
2287 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2288 	found = lookup_level0_dirty(c, key, &znode, &n);
2289 	if (!found) {
2290 		struct ubifs_zbranch zbr;
2291 
2292 		zbr.znode = NULL;
2293 		zbr.lnum = lnum;
2294 		zbr.offs = offs;
2295 		zbr.len = len;
2296 		ubifs_copy_hash(c, hash, zbr.hash);
2297 		key_copy(c, key, &zbr.key);
2298 		err = tnc_insert(c, znode, &zbr, n + 1);
2299 	} else if (found == 1) {
2300 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2301 
2302 		lnc_free(zbr);
2303 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2304 		zbr->lnum = lnum;
2305 		zbr->offs = offs;
2306 		zbr->len = len;
2307 		ubifs_copy_hash(c, hash, zbr->hash);
2308 	} else
2309 		err = found;
2310 	if (!err)
2311 		err = dbg_check_tnc(c, 0);
2312 	mutex_unlock(&c->tnc_mutex);
2313 
2314 	return err;
2315 }
2316 
2317 /**
2318  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2319  * @c: UBIFS file-system description object
2320  * @key: key to add
2321  * @old_lnum: LEB number of old node
2322  * @old_offs: old node offset
2323  * @lnum: LEB number of node
2324  * @offs: node offset
2325  * @len: node length
2326  *
2327  * This function replaces a node with key @key in the TNC only if the old node
2328  * is found.  This function is called by garbage collection when node are moved.
2329  * Returns %0 on success or negative error code on failure.
2330  */
2331 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2332 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2333 {
2334 	int found, n, err = 0;
2335 	struct ubifs_znode *znode;
2336 
2337 	mutex_lock(&c->tnc_mutex);
2338 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2339 		 old_offs, lnum, offs, len);
2340 	found = lookup_level0_dirty(c, key, &znode, &n);
2341 	if (found < 0) {
2342 		err = found;
2343 		goto out_unlock;
2344 	}
2345 
2346 	if (found == 1) {
2347 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2348 
2349 		found = 0;
2350 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2351 			lnc_free(zbr);
2352 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2353 			if (err)
2354 				goto out_unlock;
2355 			zbr->lnum = lnum;
2356 			zbr->offs = offs;
2357 			zbr->len = len;
2358 			found = 1;
2359 		} else if (is_hash_key(c, key)) {
2360 			found = resolve_collision_directly(c, key, &znode, &n,
2361 							   old_lnum, old_offs);
2362 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2363 				found, znode, n, old_lnum, old_offs);
2364 			if (found < 0) {
2365 				err = found;
2366 				goto out_unlock;
2367 			}
2368 
2369 			if (found) {
2370 				/* Ensure the znode is dirtied */
2371 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2372 					znode = dirty_cow_bottom_up(c, znode);
2373 					if (IS_ERR(znode)) {
2374 						err = PTR_ERR(znode);
2375 						goto out_unlock;
2376 					}
2377 				}
2378 				zbr = &znode->zbranch[n];
2379 				lnc_free(zbr);
2380 				err = ubifs_add_dirt(c, zbr->lnum,
2381 						     zbr->len);
2382 				if (err)
2383 					goto out_unlock;
2384 				zbr->lnum = lnum;
2385 				zbr->offs = offs;
2386 				zbr->len = len;
2387 			}
2388 		}
2389 	}
2390 
2391 	if (!found)
2392 		err = ubifs_add_dirt(c, lnum, len);
2393 
2394 	if (!err)
2395 		err = dbg_check_tnc(c, 0);
2396 
2397 out_unlock:
2398 	mutex_unlock(&c->tnc_mutex);
2399 	return err;
2400 }
2401 
2402 /**
2403  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2404  * @c: UBIFS file-system description object
2405  * @key: key to add
2406  * @lnum: LEB number of node
2407  * @offs: node offset
2408  * @len: node length
2409  * @hash: The hash over the node
2410  * @nm: node name
2411  *
2412  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2413  * may have collisions, like directory entry keys.
2414  */
2415 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2416 		     int lnum, int offs, int len, const u8 *hash,
2417 		     const struct fscrypt_name *nm)
2418 {
2419 	int found, n, err = 0;
2420 	struct ubifs_znode *znode;
2421 
2422 	mutex_lock(&c->tnc_mutex);
2423 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2424 	found = lookup_level0_dirty(c, key, &znode, &n);
2425 	if (found < 0) {
2426 		err = found;
2427 		goto out_unlock;
2428 	}
2429 
2430 	if (found == 1) {
2431 		if (c->replaying)
2432 			found = fallible_resolve_collision(c, key, &znode, &n,
2433 							   nm, 1);
2434 		else
2435 			found = resolve_collision(c, key, &znode, &n, nm);
2436 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2437 		if (found < 0) {
2438 			err = found;
2439 			goto out_unlock;
2440 		}
2441 
2442 		/* Ensure the znode is dirtied */
2443 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2444 			znode = dirty_cow_bottom_up(c, znode);
2445 			if (IS_ERR(znode)) {
2446 				err = PTR_ERR(znode);
2447 				goto out_unlock;
2448 			}
2449 		}
2450 
2451 		if (found == 1) {
2452 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2453 
2454 			lnc_free(zbr);
2455 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2456 			zbr->lnum = lnum;
2457 			zbr->offs = offs;
2458 			zbr->len = len;
2459 			ubifs_copy_hash(c, hash, zbr->hash);
2460 			goto out_unlock;
2461 		}
2462 	}
2463 
2464 	if (!found) {
2465 		struct ubifs_zbranch zbr;
2466 
2467 		zbr.znode = NULL;
2468 		zbr.lnum = lnum;
2469 		zbr.offs = offs;
2470 		zbr.len = len;
2471 		ubifs_copy_hash(c, hash, zbr.hash);
2472 		key_copy(c, key, &zbr.key);
2473 		err = tnc_insert(c, znode, &zbr, n + 1);
2474 		if (err)
2475 			goto out_unlock;
2476 		if (c->replaying) {
2477 			/*
2478 			 * We did not find it in the index so there may be a
2479 			 * dangling branch still in the index. So we remove it
2480 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2481 			 * an unmatchable name.
2482 			 */
2483 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2484 
2485 			err = dbg_check_tnc(c, 0);
2486 			mutex_unlock(&c->tnc_mutex);
2487 			if (err)
2488 				return err;
2489 			return ubifs_tnc_remove_nm(c, key, &noname);
2490 		}
2491 	}
2492 
2493 out_unlock:
2494 	if (!err)
2495 		err = dbg_check_tnc(c, 0);
2496 	mutex_unlock(&c->tnc_mutex);
2497 	return err;
2498 }
2499 
2500 /**
2501  * tnc_delete - delete a znode form TNC.
2502  * @c: UBIFS file-system description object
2503  * @znode: znode to delete from
2504  * @n: zbranch slot number to delete
2505  *
2506  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2507  * case of success and a negative error code in case of failure.
2508  */
2509 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2510 {
2511 	struct ubifs_zbranch *zbr;
2512 	struct ubifs_znode *zp;
2513 	int i, err;
2514 
2515 	/* Delete without merge for now */
2516 	ubifs_assert(c, znode->level == 0);
2517 	ubifs_assert(c, n >= 0 && n < c->fanout);
2518 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2519 
2520 	zbr = &znode->zbranch[n];
2521 	lnc_free(zbr);
2522 
2523 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2524 	if (err) {
2525 		ubifs_dump_znode(c, znode);
2526 		return err;
2527 	}
2528 
2529 	/* We do not "gap" zbranch slots */
2530 	for (i = n; i < znode->child_cnt - 1; i++)
2531 		znode->zbranch[i] = znode->zbranch[i + 1];
2532 	znode->child_cnt -= 1;
2533 
2534 	if (znode->child_cnt > 0)
2535 		return 0;
2536 
2537 	/*
2538 	 * This was the last zbranch, we have to delete this znode from the
2539 	 * parent.
2540 	 */
2541 
2542 	do {
2543 		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2544 		ubifs_assert(c, ubifs_zn_dirty(znode));
2545 
2546 		zp = znode->parent;
2547 		n = znode->iip;
2548 
2549 		atomic_long_dec(&c->dirty_zn_cnt);
2550 
2551 		err = insert_old_idx_znode(c, znode);
2552 		if (err)
2553 			return err;
2554 
2555 		if (znode->cnext) {
2556 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2557 			atomic_long_inc(&c->clean_zn_cnt);
2558 			atomic_long_inc(&ubifs_clean_zn_cnt);
2559 		} else
2560 			kfree(znode);
2561 		znode = zp;
2562 	} while (znode->child_cnt == 1); /* while removing last child */
2563 
2564 	/* Remove from znode, entry n - 1 */
2565 	znode->child_cnt -= 1;
2566 	ubifs_assert(c, znode->level != 0);
2567 	for (i = n; i < znode->child_cnt; i++) {
2568 		znode->zbranch[i] = znode->zbranch[i + 1];
2569 		if (znode->zbranch[i].znode)
2570 			znode->zbranch[i].znode->iip = i;
2571 	}
2572 
2573 	/*
2574 	 * If this is the root and it has only 1 child then
2575 	 * collapse the tree.
2576 	 */
2577 	if (!znode->parent) {
2578 		while (znode->child_cnt == 1 && znode->level != 0) {
2579 			zp = znode;
2580 			zbr = &znode->zbranch[0];
2581 			znode = get_znode(c, znode, 0);
2582 			if (IS_ERR(znode))
2583 				return PTR_ERR(znode);
2584 			znode = dirty_cow_znode(c, zbr);
2585 			if (IS_ERR(znode))
2586 				return PTR_ERR(znode);
2587 			znode->parent = NULL;
2588 			znode->iip = 0;
2589 			if (c->zroot.len) {
2590 				err = insert_old_idx(c, c->zroot.lnum,
2591 						     c->zroot.offs);
2592 				if (err)
2593 					return err;
2594 			}
2595 			c->zroot.lnum = zbr->lnum;
2596 			c->zroot.offs = zbr->offs;
2597 			c->zroot.len = zbr->len;
2598 			c->zroot.znode = znode;
2599 			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2600 			ubifs_assert(c, ubifs_zn_dirty(zp));
2601 			atomic_long_dec(&c->dirty_zn_cnt);
2602 
2603 			if (zp->cnext) {
2604 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2605 				atomic_long_inc(&c->clean_zn_cnt);
2606 				atomic_long_inc(&ubifs_clean_zn_cnt);
2607 			} else
2608 				kfree(zp);
2609 		}
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * ubifs_tnc_remove - remove an index entry of a node.
2617  * @c: UBIFS file-system description object
2618  * @key: key of node
2619  *
2620  * Returns %0 on success or negative error code on failure.
2621  */
2622 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2623 {
2624 	int found, n, err = 0;
2625 	struct ubifs_znode *znode;
2626 
2627 	mutex_lock(&c->tnc_mutex);
2628 	dbg_tnck(key, "key ");
2629 	found = lookup_level0_dirty(c, key, &znode, &n);
2630 	if (found < 0) {
2631 		err = found;
2632 		goto out_unlock;
2633 	}
2634 	if (found == 1)
2635 		err = tnc_delete(c, znode, n);
2636 	if (!err)
2637 		err = dbg_check_tnc(c, 0);
2638 
2639 out_unlock:
2640 	mutex_unlock(&c->tnc_mutex);
2641 	return err;
2642 }
2643 
2644 /**
2645  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2646  * @c: UBIFS file-system description object
2647  * @key: key of node
2648  * @nm: directory entry name
2649  *
2650  * Returns %0 on success or negative error code on failure.
2651  */
2652 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2653 			const struct fscrypt_name *nm)
2654 {
2655 	int n, err;
2656 	struct ubifs_znode *znode;
2657 
2658 	mutex_lock(&c->tnc_mutex);
2659 	dbg_tnck(key, "key ");
2660 	err = lookup_level0_dirty(c, key, &znode, &n);
2661 	if (err < 0)
2662 		goto out_unlock;
2663 
2664 	if (err) {
2665 		if (c->replaying)
2666 			err = fallible_resolve_collision(c, key, &znode, &n,
2667 							 nm, 0);
2668 		else
2669 			err = resolve_collision(c, key, &znode, &n, nm);
2670 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2671 		if (err < 0)
2672 			goto out_unlock;
2673 		if (err) {
2674 			/* Ensure the znode is dirtied */
2675 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2676 				znode = dirty_cow_bottom_up(c, znode);
2677 				if (IS_ERR(znode)) {
2678 					err = PTR_ERR(znode);
2679 					goto out_unlock;
2680 				}
2681 			}
2682 			err = tnc_delete(c, znode, n);
2683 		}
2684 	}
2685 
2686 out_unlock:
2687 	if (!err)
2688 		err = dbg_check_tnc(c, 0);
2689 	mutex_unlock(&c->tnc_mutex);
2690 	return err;
2691 }
2692 
2693 /**
2694  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2695  * @c: UBIFS file-system description object
2696  * @key: key of node
2697  * @cookie: node cookie for collision resolution
2698  *
2699  * Returns %0 on success or negative error code on failure.
2700  */
2701 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2702 			uint32_t cookie)
2703 {
2704 	int n, err;
2705 	struct ubifs_znode *znode;
2706 	struct ubifs_dent_node *dent;
2707 	struct ubifs_zbranch *zbr;
2708 
2709 	if (!c->double_hash)
2710 		return -EOPNOTSUPP;
2711 
2712 	mutex_lock(&c->tnc_mutex);
2713 	err = lookup_level0_dirty(c, key, &znode, &n);
2714 	if (err <= 0)
2715 		goto out_unlock;
2716 
2717 	zbr = &znode->zbranch[n];
2718 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2719 	if (!dent) {
2720 		err = -ENOMEM;
2721 		goto out_unlock;
2722 	}
2723 
2724 	err = tnc_read_hashed_node(c, zbr, dent);
2725 	if (err)
2726 		goto out_free;
2727 
2728 	/* If the cookie does not match, we're facing a hash collision. */
2729 	if (le32_to_cpu(dent->cookie) != cookie) {
2730 		union ubifs_key start_key;
2731 
2732 		lowest_dent_key(c, &start_key, key_inum(c, key));
2733 
2734 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2735 		if (unlikely(err < 0))
2736 			goto out_free;
2737 
2738 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2739 		if (err)
2740 			goto out_free;
2741 	}
2742 
2743 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2744 		znode = dirty_cow_bottom_up(c, znode);
2745 		if (IS_ERR(znode)) {
2746 			err = PTR_ERR(znode);
2747 			goto out_free;
2748 		}
2749 	}
2750 	err = tnc_delete(c, znode, n);
2751 
2752 out_free:
2753 	kfree(dent);
2754 out_unlock:
2755 	if (!err)
2756 		err = dbg_check_tnc(c, 0);
2757 	mutex_unlock(&c->tnc_mutex);
2758 	return err;
2759 }
2760 
2761 /**
2762  * key_in_range - determine if a key falls within a range of keys.
2763  * @c: UBIFS file-system description object
2764  * @key: key to check
2765  * @from_key: lowest key in range
2766  * @to_key: highest key in range
2767  *
2768  * This function returns %1 if the key is in range and %0 otherwise.
2769  */
2770 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2771 			union ubifs_key *from_key, union ubifs_key *to_key)
2772 {
2773 	if (keys_cmp(c, key, from_key) < 0)
2774 		return 0;
2775 	if (keys_cmp(c, key, to_key) > 0)
2776 		return 0;
2777 	return 1;
2778 }
2779 
2780 /**
2781  * ubifs_tnc_remove_range - remove index entries in range.
2782  * @c: UBIFS file-system description object
2783  * @from_key: lowest key to remove
2784  * @to_key: highest key to remove
2785  *
2786  * This function removes index entries starting at @from_key and ending at
2787  * @to_key.  This function returns zero in case of success and a negative error
2788  * code in case of failure.
2789  */
2790 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2791 			   union ubifs_key *to_key)
2792 {
2793 	int i, n, k, err = 0;
2794 	struct ubifs_znode *znode;
2795 	union ubifs_key *key;
2796 
2797 	mutex_lock(&c->tnc_mutex);
2798 	while (1) {
2799 		/* Find first level 0 znode that contains keys to remove */
2800 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2801 		if (err < 0)
2802 			goto out_unlock;
2803 
2804 		if (err)
2805 			key = from_key;
2806 		else {
2807 			err = tnc_next(c, &znode, &n);
2808 			if (err == -ENOENT) {
2809 				err = 0;
2810 				goto out_unlock;
2811 			}
2812 			if (err < 0)
2813 				goto out_unlock;
2814 			key = &znode->zbranch[n].key;
2815 			if (!key_in_range(c, key, from_key, to_key)) {
2816 				err = 0;
2817 				goto out_unlock;
2818 			}
2819 		}
2820 
2821 		/* Ensure the znode is dirtied */
2822 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2823 			znode = dirty_cow_bottom_up(c, znode);
2824 			if (IS_ERR(znode)) {
2825 				err = PTR_ERR(znode);
2826 				goto out_unlock;
2827 			}
2828 		}
2829 
2830 		/* Remove all keys in range except the first */
2831 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2832 			key = &znode->zbranch[i].key;
2833 			if (!key_in_range(c, key, from_key, to_key))
2834 				break;
2835 			lnc_free(&znode->zbranch[i]);
2836 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2837 					     znode->zbranch[i].len);
2838 			if (err) {
2839 				ubifs_dump_znode(c, znode);
2840 				goto out_unlock;
2841 			}
2842 			dbg_tnck(key, "removing key ");
2843 		}
2844 		if (k) {
2845 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2846 				znode->zbranch[i - k] = znode->zbranch[i];
2847 			znode->child_cnt -= k;
2848 		}
2849 
2850 		/* Now delete the first */
2851 		err = tnc_delete(c, znode, n);
2852 		if (err)
2853 			goto out_unlock;
2854 	}
2855 
2856 out_unlock:
2857 	if (!err)
2858 		err = dbg_check_tnc(c, 0);
2859 	mutex_unlock(&c->tnc_mutex);
2860 	return err;
2861 }
2862 
2863 /**
2864  * ubifs_tnc_remove_ino - remove an inode from TNC.
2865  * @c: UBIFS file-system description object
2866  * @inum: inode number to remove
2867  *
2868  * This function remove inode @inum and all the extended attributes associated
2869  * with the anode from TNC and returns zero in case of success or a negative
2870  * error code in case of failure.
2871  */
2872 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2873 {
2874 	union ubifs_key key1, key2;
2875 	struct ubifs_dent_node *xent, *pxent = NULL;
2876 	struct fscrypt_name nm = {0};
2877 
2878 	dbg_tnc("ino %lu", (unsigned long)inum);
2879 
2880 	/*
2881 	 * Walk all extended attribute entries and remove them together with
2882 	 * corresponding extended attribute inodes.
2883 	 */
2884 	lowest_xent_key(c, &key1, inum);
2885 	while (1) {
2886 		ino_t xattr_inum;
2887 		int err;
2888 
2889 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2890 		if (IS_ERR(xent)) {
2891 			err = PTR_ERR(xent);
2892 			if (err == -ENOENT)
2893 				break;
2894 			return err;
2895 		}
2896 
2897 		xattr_inum = le64_to_cpu(xent->inum);
2898 		dbg_tnc("xent '%s', ino %lu", xent->name,
2899 			(unsigned long)xattr_inum);
2900 
2901 		ubifs_evict_xattr_inode(c, xattr_inum);
2902 
2903 		fname_name(&nm) = xent->name;
2904 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2905 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2906 		if (err) {
2907 			kfree(xent);
2908 			return err;
2909 		}
2910 
2911 		lowest_ino_key(c, &key1, xattr_inum);
2912 		highest_ino_key(c, &key2, xattr_inum);
2913 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2914 		if (err) {
2915 			kfree(xent);
2916 			return err;
2917 		}
2918 
2919 		kfree(pxent);
2920 		pxent = xent;
2921 		key_read(c, &xent->key, &key1);
2922 	}
2923 
2924 	kfree(pxent);
2925 	lowest_ino_key(c, &key1, inum);
2926 	highest_ino_key(c, &key2, inum);
2927 
2928 	return ubifs_tnc_remove_range(c, &key1, &key2);
2929 }
2930 
2931 /**
2932  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2933  * @c: UBIFS file-system description object
2934  * @key: key of last entry
2935  * @nm: name of last entry found or %NULL
2936  *
2937  * This function finds and reads the next directory or extended attribute entry
2938  * after the given key (@key) if there is one. @nm is used to resolve
2939  * collisions.
2940  *
2941  * If the name of the current entry is not known and only the key is known,
2942  * @nm->name has to be %NULL. In this case the semantics of this function is a
2943  * little bit different and it returns the entry corresponding to this key, not
2944  * the next one. If the key was not found, the closest "right" entry is
2945  * returned.
2946  *
2947  * If the fist entry has to be found, @key has to contain the lowest possible
2948  * key value for this inode and @name has to be %NULL.
2949  *
2950  * This function returns the found directory or extended attribute entry node
2951  * in case of success, %-ENOENT is returned if no entry was found, and a
2952  * negative error code is returned in case of failure.
2953  */
2954 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2955 					   union ubifs_key *key,
2956 					   const struct fscrypt_name *nm)
2957 {
2958 	int n, err, type = key_type(c, key);
2959 	struct ubifs_znode *znode;
2960 	struct ubifs_dent_node *dent;
2961 	struct ubifs_zbranch *zbr;
2962 	union ubifs_key *dkey;
2963 
2964 	dbg_tnck(key, "key ");
2965 	ubifs_assert(c, is_hash_key(c, key));
2966 
2967 	mutex_lock(&c->tnc_mutex);
2968 	err = ubifs_lookup_level0(c, key, &znode, &n);
2969 	if (unlikely(err < 0))
2970 		goto out_unlock;
2971 
2972 	if (fname_len(nm) > 0) {
2973 		if (err) {
2974 			/* Handle collisions */
2975 			if (c->replaying)
2976 				err = fallible_resolve_collision(c, key, &znode, &n,
2977 							 nm, 0);
2978 			else
2979 				err = resolve_collision(c, key, &znode, &n, nm);
2980 			dbg_tnc("rc returned %d, znode %p, n %d",
2981 				err, znode, n);
2982 			if (unlikely(err < 0))
2983 				goto out_unlock;
2984 		}
2985 
2986 		/* Now find next entry */
2987 		err = tnc_next(c, &znode, &n);
2988 		if (unlikely(err))
2989 			goto out_unlock;
2990 	} else {
2991 		/*
2992 		 * The full name of the entry was not given, in which case the
2993 		 * behavior of this function is a little different and it
2994 		 * returns current entry, not the next one.
2995 		 */
2996 		if (!err) {
2997 			/*
2998 			 * However, the given key does not exist in the TNC
2999 			 * tree and @znode/@n variables contain the closest
3000 			 * "preceding" element. Switch to the next one.
3001 			 */
3002 			err = tnc_next(c, &znode, &n);
3003 			if (err)
3004 				goto out_unlock;
3005 		}
3006 	}
3007 
3008 	zbr = &znode->zbranch[n];
3009 	dent = kmalloc(zbr->len, GFP_NOFS);
3010 	if (unlikely(!dent)) {
3011 		err = -ENOMEM;
3012 		goto out_unlock;
3013 	}
3014 
3015 	/*
3016 	 * The above 'tnc_next()' call could lead us to the next inode, check
3017 	 * this.
3018 	 */
3019 	dkey = &zbr->key;
3020 	if (key_inum(c, dkey) != key_inum(c, key) ||
3021 	    key_type(c, dkey) != type) {
3022 		err = -ENOENT;
3023 		goto out_free;
3024 	}
3025 
3026 	err = tnc_read_hashed_node(c, zbr, dent);
3027 	if (unlikely(err))
3028 		goto out_free;
3029 
3030 	mutex_unlock(&c->tnc_mutex);
3031 	return dent;
3032 
3033 out_free:
3034 	kfree(dent);
3035 out_unlock:
3036 	mutex_unlock(&c->tnc_mutex);
3037 	return ERR_PTR(err);
3038 }
3039 
3040 /**
3041  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3042  * @c: UBIFS file-system description object
3043  *
3044  * Destroy left-over obsolete znodes from a failed commit.
3045  */
3046 static void tnc_destroy_cnext(struct ubifs_info *c)
3047 {
3048 	struct ubifs_znode *cnext;
3049 
3050 	if (!c->cnext)
3051 		return;
3052 	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3053 	cnext = c->cnext;
3054 	do {
3055 		struct ubifs_znode *znode = cnext;
3056 
3057 		cnext = cnext->cnext;
3058 		if (ubifs_zn_obsolete(znode))
3059 			kfree(znode);
3060 	} while (cnext && cnext != c->cnext);
3061 }
3062 
3063 /**
3064  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3065  * @c: UBIFS file-system description object
3066  */
3067 void ubifs_tnc_close(struct ubifs_info *c)
3068 {
3069 	tnc_destroy_cnext(c);
3070 	if (c->zroot.znode) {
3071 		long n, freed;
3072 
3073 		n = atomic_long_read(&c->clean_zn_cnt);
3074 		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3075 		ubifs_assert(c, freed == n);
3076 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3077 	}
3078 	kfree(c->gap_lebs);
3079 	kfree(c->ilebs);
3080 	destroy_old_idx(c);
3081 }
3082 
3083 /**
3084  * left_znode - get the znode to the left.
3085  * @c: UBIFS file-system description object
3086  * @znode: znode
3087  *
3088  * This function returns a pointer to the znode to the left of @znode or NULL if
3089  * there is not one. A negative error code is returned on failure.
3090  */
3091 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3092 				      struct ubifs_znode *znode)
3093 {
3094 	int level = znode->level;
3095 
3096 	while (1) {
3097 		int n = znode->iip - 1;
3098 
3099 		/* Go up until we can go left */
3100 		znode = znode->parent;
3101 		if (!znode)
3102 			return NULL;
3103 		if (n >= 0) {
3104 			/* Now go down the rightmost branch to 'level' */
3105 			znode = get_znode(c, znode, n);
3106 			if (IS_ERR(znode))
3107 				return znode;
3108 			while (znode->level != level) {
3109 				n = znode->child_cnt - 1;
3110 				znode = get_znode(c, znode, n);
3111 				if (IS_ERR(znode))
3112 					return znode;
3113 			}
3114 			break;
3115 		}
3116 	}
3117 	return znode;
3118 }
3119 
3120 /**
3121  * right_znode - get the znode to the right.
3122  * @c: UBIFS file-system description object
3123  * @znode: znode
3124  *
3125  * This function returns a pointer to the znode to the right of @znode or NULL
3126  * if there is not one. A negative error code is returned on failure.
3127  */
3128 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3129 				       struct ubifs_znode *znode)
3130 {
3131 	int level = znode->level;
3132 
3133 	while (1) {
3134 		int n = znode->iip + 1;
3135 
3136 		/* Go up until we can go right */
3137 		znode = znode->parent;
3138 		if (!znode)
3139 			return NULL;
3140 		if (n < znode->child_cnt) {
3141 			/* Now go down the leftmost branch to 'level' */
3142 			znode = get_znode(c, znode, n);
3143 			if (IS_ERR(znode))
3144 				return znode;
3145 			while (znode->level != level) {
3146 				znode = get_znode(c, znode, 0);
3147 				if (IS_ERR(znode))
3148 					return znode;
3149 			}
3150 			break;
3151 		}
3152 	}
3153 	return znode;
3154 }
3155 
3156 /**
3157  * lookup_znode - find a particular indexing node from TNC.
3158  * @c: UBIFS file-system description object
3159  * @key: index node key to lookup
3160  * @level: index node level
3161  * @lnum: index node LEB number
3162  * @offs: index node offset
3163  *
3164  * This function searches an indexing node by its first key @key and its
3165  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3166  * nodes it traverses to TNC. This function is called for indexing nodes which
3167  * were found on the media by scanning, for example when garbage-collecting or
3168  * when doing in-the-gaps commit. This means that the indexing node which is
3169  * looked for does not have to have exactly the same leftmost key @key, because
3170  * the leftmost key may have been changed, in which case TNC will contain a
3171  * dirty znode which still refers the same @lnum:@offs. This function is clever
3172  * enough to recognize such indexing nodes.
3173  *
3174  * Note, if a znode was deleted or changed too much, then this function will
3175  * not find it. For situations like this UBIFS has the old index RB-tree
3176  * (indexed by @lnum:@offs).
3177  *
3178  * This function returns a pointer to the znode found or %NULL if it is not
3179  * found. A negative error code is returned on failure.
3180  */
3181 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3182 					union ubifs_key *key, int level,
3183 					int lnum, int offs)
3184 {
3185 	struct ubifs_znode *znode, *zn;
3186 	int n, nn;
3187 
3188 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3189 
3190 	/*
3191 	 * The arguments have probably been read off flash, so don't assume
3192 	 * they are valid.
3193 	 */
3194 	if (level < 0)
3195 		return ERR_PTR(-EINVAL);
3196 
3197 	/* Get the root znode */
3198 	znode = c->zroot.znode;
3199 	if (!znode) {
3200 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3201 		if (IS_ERR(znode))
3202 			return znode;
3203 	}
3204 	/* Check if it is the one we are looking for */
3205 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3206 		return znode;
3207 	/* Descend to the parent level i.e. (level + 1) */
3208 	if (level >= znode->level)
3209 		return NULL;
3210 	while (1) {
3211 		ubifs_search_zbranch(c, znode, key, &n);
3212 		if (n < 0) {
3213 			/*
3214 			 * We reached a znode where the leftmost key is greater
3215 			 * than the key we are searching for. This is the same
3216 			 * situation as the one described in a huge comment at
3217 			 * the end of the 'ubifs_lookup_level0()' function. And
3218 			 * for exactly the same reasons we have to try to look
3219 			 * left before giving up.
3220 			 */
3221 			znode = left_znode(c, znode);
3222 			if (!znode)
3223 				return NULL;
3224 			if (IS_ERR(znode))
3225 				return znode;
3226 			ubifs_search_zbranch(c, znode, key, &n);
3227 			ubifs_assert(c, n >= 0);
3228 		}
3229 		if (znode->level == level + 1)
3230 			break;
3231 		znode = get_znode(c, znode, n);
3232 		if (IS_ERR(znode))
3233 			return znode;
3234 	}
3235 	/* Check if the child is the one we are looking for */
3236 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3237 		return get_znode(c, znode, n);
3238 	/* If the key is unique, there is nowhere else to look */
3239 	if (!is_hash_key(c, key))
3240 		return NULL;
3241 	/*
3242 	 * The key is not unique and so may be also in the znodes to either
3243 	 * side.
3244 	 */
3245 	zn = znode;
3246 	nn = n;
3247 	/* Look left */
3248 	while (1) {
3249 		/* Move one branch to the left */
3250 		if (n)
3251 			n -= 1;
3252 		else {
3253 			znode = left_znode(c, znode);
3254 			if (!znode)
3255 				break;
3256 			if (IS_ERR(znode))
3257 				return znode;
3258 			n = znode->child_cnt - 1;
3259 		}
3260 		/* Check it */
3261 		if (znode->zbranch[n].lnum == lnum &&
3262 		    znode->zbranch[n].offs == offs)
3263 			return get_znode(c, znode, n);
3264 		/* Stop if the key is less than the one we are looking for */
3265 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3266 			break;
3267 	}
3268 	/* Back to the middle */
3269 	znode = zn;
3270 	n = nn;
3271 	/* Look right */
3272 	while (1) {
3273 		/* Move one branch to the right */
3274 		if (++n >= znode->child_cnt) {
3275 			znode = right_znode(c, znode);
3276 			if (!znode)
3277 				break;
3278 			if (IS_ERR(znode))
3279 				return znode;
3280 			n = 0;
3281 		}
3282 		/* Check it */
3283 		if (znode->zbranch[n].lnum == lnum &&
3284 		    znode->zbranch[n].offs == offs)
3285 			return get_znode(c, znode, n);
3286 		/* Stop if the key is greater than the one we are looking for */
3287 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3288 			break;
3289 	}
3290 	return NULL;
3291 }
3292 
3293 /**
3294  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3295  * @c: UBIFS file-system description object
3296  * @key: key of index node
3297  * @level: index node level
3298  * @lnum: LEB number of index node
3299  * @offs: offset of index node
3300  *
3301  * This function returns %0 if the index node is not referred to in the TNC, %1
3302  * if the index node is referred to in the TNC and the corresponding znode is
3303  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3304  * znode is clean, and a negative error code in case of failure.
3305  *
3306  * Note, the @key argument has to be the key of the first child. Also note,
3307  * this function relies on the fact that 0:0 is never a valid LEB number and
3308  * offset for a main-area node.
3309  */
3310 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3311 		       int lnum, int offs)
3312 {
3313 	struct ubifs_znode *znode;
3314 
3315 	znode = lookup_znode(c, key, level, lnum, offs);
3316 	if (!znode)
3317 		return 0;
3318 	if (IS_ERR(znode))
3319 		return PTR_ERR(znode);
3320 
3321 	return ubifs_zn_dirty(znode) ? 1 : 2;
3322 }
3323 
3324 /**
3325  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3326  * @c: UBIFS file-system description object
3327  * @key: node key
3328  * @lnum: node LEB number
3329  * @offs: node offset
3330  *
3331  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3332  * not, and a negative error code in case of failure.
3333  *
3334  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3335  * and offset for a main-area node.
3336  */
3337 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3338 			       int lnum, int offs)
3339 {
3340 	struct ubifs_zbranch *zbr;
3341 	struct ubifs_znode *znode, *zn;
3342 	int n, found, err, nn;
3343 	const int unique = !is_hash_key(c, key);
3344 
3345 	found = ubifs_lookup_level0(c, key, &znode, &n);
3346 	if (found < 0)
3347 		return found; /* Error code */
3348 	if (!found)
3349 		return 0;
3350 	zbr = &znode->zbranch[n];
3351 	if (lnum == zbr->lnum && offs == zbr->offs)
3352 		return 1; /* Found it */
3353 	if (unique)
3354 		return 0;
3355 	/*
3356 	 * Because the key is not unique, we have to look left
3357 	 * and right as well
3358 	 */
3359 	zn = znode;
3360 	nn = n;
3361 	/* Look left */
3362 	while (1) {
3363 		err = tnc_prev(c, &znode, &n);
3364 		if (err == -ENOENT)
3365 			break;
3366 		if (err)
3367 			return err;
3368 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3369 			break;
3370 		zbr = &znode->zbranch[n];
3371 		if (lnum == zbr->lnum && offs == zbr->offs)
3372 			return 1; /* Found it */
3373 	}
3374 	/* Look right */
3375 	znode = zn;
3376 	n = nn;
3377 	while (1) {
3378 		err = tnc_next(c, &znode, &n);
3379 		if (err) {
3380 			if (err == -ENOENT)
3381 				return 0;
3382 			return err;
3383 		}
3384 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3385 			break;
3386 		zbr = &znode->zbranch[n];
3387 		if (lnum == zbr->lnum && offs == zbr->offs)
3388 			return 1; /* Found it */
3389 	}
3390 	return 0;
3391 }
3392 
3393 /**
3394  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3395  * @c: UBIFS file-system description object
3396  * @key: node key
3397  * @level: index node level (if it is an index node)
3398  * @lnum: node LEB number
3399  * @offs: node offset
3400  * @is_idx: non-zero if the node is an index node
3401  *
3402  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3403  * negative error code in case of failure. For index nodes, @key has to be the
3404  * key of the first child. An index node is considered to be in the TNC only if
3405  * the corresponding znode is clean or has not been loaded.
3406  */
3407 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3408 		       int lnum, int offs, int is_idx)
3409 {
3410 	int err;
3411 
3412 	mutex_lock(&c->tnc_mutex);
3413 	if (is_idx) {
3414 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3415 		if (err < 0)
3416 			goto out_unlock;
3417 		if (err == 1)
3418 			/* The index node was found but it was dirty */
3419 			err = 0;
3420 		else if (err == 2)
3421 			/* The index node was found and it was clean */
3422 			err = 1;
3423 		else
3424 			BUG_ON(err != 0);
3425 	} else
3426 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3427 
3428 out_unlock:
3429 	mutex_unlock(&c->tnc_mutex);
3430 	return err;
3431 }
3432 
3433 /**
3434  * ubifs_dirty_idx_node - dirty an index node.
3435  * @c: UBIFS file-system description object
3436  * @key: index node key
3437  * @level: index node level
3438  * @lnum: index node LEB number
3439  * @offs: index node offset
3440  *
3441  * This function loads and dirties an index node so that it can be garbage
3442  * collected. The @key argument has to be the key of the first child. This
3443  * function relies on the fact that 0:0 is never a valid LEB number and offset
3444  * for a main-area node. Returns %0 on success and a negative error code on
3445  * failure.
3446  */
3447 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3448 			 int lnum, int offs)
3449 {
3450 	struct ubifs_znode *znode;
3451 	int err = 0;
3452 
3453 	mutex_lock(&c->tnc_mutex);
3454 	znode = lookup_znode(c, key, level, lnum, offs);
3455 	if (!znode)
3456 		goto out_unlock;
3457 	if (IS_ERR(znode)) {
3458 		err = PTR_ERR(znode);
3459 		goto out_unlock;
3460 	}
3461 	znode = dirty_cow_bottom_up(c, znode);
3462 	if (IS_ERR(znode)) {
3463 		err = PTR_ERR(znode);
3464 		goto out_unlock;
3465 	}
3466 
3467 out_unlock:
3468 	mutex_unlock(&c->tnc_mutex);
3469 	return err;
3470 }
3471 
3472 /**
3473  * dbg_check_inode_size - check if inode size is correct.
3474  * @c: UBIFS file-system description object
3475  * @inum: inode number
3476  * @size: inode size
3477  *
3478  * This function makes sure that the inode size (@size) is correct and it does
3479  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3480  * if it has a data page beyond @size, and other negative error code in case of
3481  * other errors.
3482  */
3483 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3484 			 loff_t size)
3485 {
3486 	int err, n;
3487 	union ubifs_key from_key, to_key, *key;
3488 	struct ubifs_znode *znode;
3489 	unsigned int block;
3490 
3491 	if (!S_ISREG(inode->i_mode))
3492 		return 0;
3493 	if (!dbg_is_chk_gen(c))
3494 		return 0;
3495 
3496 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3497 	data_key_init(c, &from_key, inode->i_ino, block);
3498 	highest_data_key(c, &to_key, inode->i_ino);
3499 
3500 	mutex_lock(&c->tnc_mutex);
3501 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3502 	if (err < 0)
3503 		goto out_unlock;
3504 
3505 	if (err) {
3506 		key = &from_key;
3507 		goto out_dump;
3508 	}
3509 
3510 	err = tnc_next(c, &znode, &n);
3511 	if (err == -ENOENT) {
3512 		err = 0;
3513 		goto out_unlock;
3514 	}
3515 	if (err < 0)
3516 		goto out_unlock;
3517 
3518 	ubifs_assert(c, err == 0);
3519 	key = &znode->zbranch[n].key;
3520 	if (!key_in_range(c, key, &from_key, &to_key))
3521 		goto out_unlock;
3522 
3523 out_dump:
3524 	block = key_block(c, key);
3525 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3526 		  (unsigned long)inode->i_ino, size,
3527 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3528 	mutex_unlock(&c->tnc_mutex);
3529 	ubifs_dump_inode(c, inode);
3530 	dump_stack();
3531 	return -EINVAL;
3532 
3533 out_unlock:
3534 	mutex_unlock(&c->tnc_mutex);
3535 	return err;
3536 }
3537