xref: /openbmc/linux/fs/ubifs/tnc.c (revision 64fc2a94)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /*
38  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39  * @NAME_LESS: name corresponding to the first argument is less than second
40  * @NAME_MATCHES: names match
41  * @NAME_GREATER: name corresponding to the second argument is greater than
42  *                first
43  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44  *
45  * These constants were introduce to improve readability.
46  */
47 enum {
48 	NAME_LESS    = 0,
49 	NAME_MATCHES = 1,
50 	NAME_GREATER = 2,
51 	NOT_ON_MEDIA = 3,
52 };
53 
54 /**
55  * insert_old_idx - record an index node obsoleted since the last commit start.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number of obsoleted index node
58  * @offs: offset of obsoleted index node
59  *
60  * Returns %0 on success, and a negative error code on failure.
61  *
62  * For recovery, there must always be a complete intact version of the index on
63  * flash at all times. That is called the "old index". It is the index as at the
64  * time of the last successful commit. Many of the index nodes in the old index
65  * may be dirty, but they must not be erased until the next successful commit
66  * (at which point that index becomes the old index).
67  *
68  * That means that the garbage collection and the in-the-gaps method of
69  * committing must be able to determine if an index node is in the old index.
70  * Most of the old index nodes can be found by looking up the TNC using the
71  * 'lookup_znode()' function. However, some of the old index nodes may have
72  * been deleted from the current index or may have been changed so much that
73  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74  * That is what this function does. The RB-tree is ordered by LEB number and
75  * offset because they uniquely identify the old index node.
76  */
77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 	struct ubifs_old_idx *old_idx, *o;
80 	struct rb_node **p, *parent = NULL;
81 
82 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 	if (unlikely(!old_idx))
84 		return -ENOMEM;
85 	old_idx->lnum = lnum;
86 	old_idx->offs = offs;
87 
88 	p = &c->old_idx.rb_node;
89 	while (*p) {
90 		parent = *p;
91 		o = rb_entry(parent, struct ubifs_old_idx, rb);
92 		if (lnum < o->lnum)
93 			p = &(*p)->rb_left;
94 		else if (lnum > o->lnum)
95 			p = &(*p)->rb_right;
96 		else if (offs < o->offs)
97 			p = &(*p)->rb_left;
98 		else if (offs > o->offs)
99 			p = &(*p)->rb_right;
100 		else {
101 			ubifs_err(c, "old idx added twice!");
102 			kfree(old_idx);
103 			return 0;
104 		}
105 	}
106 	rb_link_node(&old_idx->rb, parent, p);
107 	rb_insert_color(&old_idx->rb, &c->old_idx);
108 	return 0;
109 }
110 
111 /**
112  * insert_old_idx_znode - record a znode obsoleted since last commit start.
113  * @c: UBIFS file-system description object
114  * @znode: znode of obsoleted index node
115  *
116  * Returns %0 on success, and a negative error code on failure.
117  */
118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 	if (znode->parent) {
121 		struct ubifs_zbranch *zbr;
122 
123 		zbr = &znode->parent->zbranch[znode->iip];
124 		if (zbr->len)
125 			return insert_old_idx(c, zbr->lnum, zbr->offs);
126 	} else
127 		if (c->zroot.len)
128 			return insert_old_idx(c, c->zroot.lnum,
129 					      c->zroot.offs);
130 	return 0;
131 }
132 
133 /**
134  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135  * @c: UBIFS file-system description object
136  * @znode: znode of obsoleted index node
137  *
138  * Returns %0 on success, and a negative error code on failure.
139  */
140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 				 struct ubifs_znode *znode)
142 {
143 	int err;
144 
145 	if (znode->parent) {
146 		struct ubifs_zbranch *zbr;
147 
148 		zbr = &znode->parent->zbranch[znode->iip];
149 		if (zbr->len) {
150 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 			if (err)
152 				return err;
153 			zbr->lnum = 0;
154 			zbr->offs = 0;
155 			zbr->len = 0;
156 		}
157 	} else
158 		if (c->zroot.len) {
159 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 			if (err)
161 				return err;
162 			c->zroot.lnum = 0;
163 			c->zroot.offs = 0;
164 			c->zroot.len = 0;
165 		}
166 	return 0;
167 }
168 
169 /**
170  * destroy_old_idx - destroy the old_idx RB-tree.
171  * @c: UBIFS file-system description object
172  *
173  * During start commit, the old_idx RB-tree is used to avoid overwriting index
174  * nodes that were in the index last commit but have since been deleted.  This
175  * is necessary for recovery i.e. the old index must be kept intact until the
176  * new index is successfully written.  The old-idx RB-tree is used for the
177  * in-the-gaps method of writing index nodes and is destroyed every commit.
178  */
179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 	struct ubifs_old_idx *old_idx, *n;
182 
183 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
184 		kfree(old_idx);
185 
186 	c->old_idx = RB_ROOT;
187 }
188 
189 /**
190  * copy_znode - copy a dirty znode.
191  * @c: UBIFS file-system description object
192  * @znode: znode to copy
193  *
194  * A dirty znode being committed may not be changed, so it is copied.
195  */
196 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197 				      struct ubifs_znode *znode)
198 {
199 	struct ubifs_znode *zn;
200 
201 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
202 	if (unlikely(!zn))
203 		return ERR_PTR(-ENOMEM);
204 
205 	zn->cnext = NULL;
206 	__set_bit(DIRTY_ZNODE, &zn->flags);
207 	__clear_bit(COW_ZNODE, &zn->flags);
208 
209 	ubifs_assert(!ubifs_zn_obsolete(znode));
210 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
211 
212 	if (znode->level != 0) {
213 		int i;
214 		const int n = zn->child_cnt;
215 
216 		/* The children now have new parent */
217 		for (i = 0; i < n; i++) {
218 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
219 
220 			if (zbr->znode)
221 				zbr->znode->parent = zn;
222 		}
223 	}
224 
225 	atomic_long_inc(&c->dirty_zn_cnt);
226 	return zn;
227 }
228 
229 /**
230  * add_idx_dirt - add dirt due to a dirty znode.
231  * @c: UBIFS file-system description object
232  * @lnum: LEB number of index node
233  * @dirt: size of index node
234  *
235  * This function updates lprops dirty space and the new size of the index.
236  */
237 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
238 {
239 	c->calc_idx_sz -= ALIGN(dirt, 8);
240 	return ubifs_add_dirt(c, lnum, dirt);
241 }
242 
243 /**
244  * dirty_cow_znode - ensure a znode is not being committed.
245  * @c: UBIFS file-system description object
246  * @zbr: branch of znode to check
247  *
248  * Returns dirtied znode on success or negative error code on failure.
249  */
250 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
251 					   struct ubifs_zbranch *zbr)
252 {
253 	struct ubifs_znode *znode = zbr->znode;
254 	struct ubifs_znode *zn;
255 	int err;
256 
257 	if (!ubifs_zn_cow(znode)) {
258 		/* znode is not being committed */
259 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
260 			atomic_long_inc(&c->dirty_zn_cnt);
261 			atomic_long_dec(&c->clean_zn_cnt);
262 			atomic_long_dec(&ubifs_clean_zn_cnt);
263 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
264 			if (unlikely(err))
265 				return ERR_PTR(err);
266 		}
267 		return znode;
268 	}
269 
270 	zn = copy_znode(c, znode);
271 	if (IS_ERR(zn))
272 		return zn;
273 
274 	if (zbr->len) {
275 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
276 		if (unlikely(err))
277 			return ERR_PTR(err);
278 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
279 	} else
280 		err = 0;
281 
282 	zbr->znode = zn;
283 	zbr->lnum = 0;
284 	zbr->offs = 0;
285 	zbr->len = 0;
286 
287 	if (unlikely(err))
288 		return ERR_PTR(err);
289 	return zn;
290 }
291 
292 /**
293  * lnc_add - add a leaf node to the leaf node cache.
294  * @c: UBIFS file-system description object
295  * @zbr: zbranch of leaf node
296  * @node: leaf node
297  *
298  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299  * purpose of the leaf node cache is to save re-reading the same leaf node over
300  * and over again. Most things are cached by VFS, however the file system must
301  * cache directory entries for readdir and for resolving hash collisions. The
302  * present implementation of the leaf node cache is extremely simple, and
303  * allows for error returns that are not used but that may be needed if a more
304  * complex implementation is created.
305  *
306  * Note, this function does not add the @node object to LNC directly, but
307  * allocates a copy of the object and adds the copy to LNC. The reason for this
308  * is that @node has been allocated outside of the TNC subsystem and will be
309  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310  * may be changed at any time, e.g. freed by the shrinker.
311  */
312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 		   const void *node)
314 {
315 	int err;
316 	void *lnc_node;
317 	const struct ubifs_dent_node *dent = node;
318 
319 	ubifs_assert(!zbr->leaf);
320 	ubifs_assert(zbr->len != 0);
321 	ubifs_assert(is_hash_key(c, &zbr->key));
322 
323 	err = ubifs_validate_entry(c, dent);
324 	if (err) {
325 		dump_stack();
326 		ubifs_dump_node(c, dent);
327 		return err;
328 	}
329 
330 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
331 	if (!lnc_node)
332 		/* We don't have to have the cache, so no error */
333 		return 0;
334 
335 	zbr->leaf = lnc_node;
336 	return 0;
337 }
338 
339  /**
340  * lnc_add_directly - add a leaf node to the leaf-node-cache.
341  * @c: UBIFS file-system description object
342  * @zbr: zbranch of leaf node
343  * @node: leaf node
344  *
345  * This function is similar to 'lnc_add()', but it does not create a copy of
346  * @node but inserts @node to TNC directly.
347  */
348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 			    void *node)
350 {
351 	int err;
352 
353 	ubifs_assert(!zbr->leaf);
354 	ubifs_assert(zbr->len != 0);
355 
356 	err = ubifs_validate_entry(c, node);
357 	if (err) {
358 		dump_stack();
359 		ubifs_dump_node(c, node);
360 		return err;
361 	}
362 
363 	zbr->leaf = node;
364 	return 0;
365 }
366 
367 /**
368  * lnc_free - remove a leaf node from the leaf node cache.
369  * @zbr: zbranch of leaf node
370  * @node: leaf node
371  */
372 static void lnc_free(struct ubifs_zbranch *zbr)
373 {
374 	if (!zbr->leaf)
375 		return;
376 	kfree(zbr->leaf);
377 	zbr->leaf = NULL;
378 }
379 
380 /**
381  * tnc_read_hashed_node - read a "hashed" leaf node.
382  * @c: UBIFS file-system description object
383  * @zbr: key and position of the node
384  * @node: node is returned here
385  *
386  * This function reads a "hashed" node defined by @zbr from the leaf node cache
387  * (in it is there) or from the hash media, in which case the node is also
388  * added to LNC. Returns zero in case of success or a negative negative error
389  * code in case of failure.
390  */
391 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
392 				void *node)
393 {
394 	int err;
395 
396 	ubifs_assert(is_hash_key(c, &zbr->key));
397 
398 	if (zbr->leaf) {
399 		/* Read from the leaf node cache */
400 		ubifs_assert(zbr->len != 0);
401 		memcpy(node, zbr->leaf, zbr->len);
402 		return 0;
403 	}
404 
405 	err = ubifs_tnc_read_node(c, zbr, node);
406 	if (err)
407 		return err;
408 
409 	/* Add the node to the leaf node cache */
410 	err = lnc_add(c, zbr, node);
411 	return err;
412 }
413 
414 /**
415  * try_read_node - read a node if it is a node.
416  * @c: UBIFS file-system description object
417  * @buf: buffer to read to
418  * @type: node type
419  * @len: node length (not aligned)
420  * @lnum: LEB number of node to read
421  * @offs: offset of node to read
422  *
423  * This function tries to read a node of known type and length, checks it and
424  * stores it in @buf. This function returns %1 if a node is present and %0 if
425  * a node is not present. A negative error code is returned for I/O errors.
426  * This function performs that same function as ubifs_read_node except that
427  * it does not require that there is actually a node present and instead
428  * the return code indicates if a node was read.
429  *
430  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
431  * is true (it is controlled by corresponding mount option). However, if
432  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
433  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
434  * because during mounting or re-mounting from R/O mode to R/W mode we may read
435  * journal nodes (when replying the journal or doing the recovery) and the
436  * journal nodes may potentially be corrupted, so checking is required.
437  */
438 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
439 			 int len, int lnum, int offs)
440 {
441 	int err, node_len;
442 	struct ubifs_ch *ch = buf;
443 	uint32_t crc, node_crc;
444 
445 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
446 
447 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
448 	if (err) {
449 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
450 			  type, lnum, offs, err);
451 		return err;
452 	}
453 
454 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
455 		return 0;
456 
457 	if (ch->node_type != type)
458 		return 0;
459 
460 	node_len = le32_to_cpu(ch->len);
461 	if (node_len != len)
462 		return 0;
463 
464 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
465 	    !c->remounting_rw)
466 		return 1;
467 
468 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
469 	node_crc = le32_to_cpu(ch->crc);
470 	if (crc != node_crc)
471 		return 0;
472 
473 	return 1;
474 }
475 
476 /**
477  * fallible_read_node - try to read a leaf node.
478  * @c: UBIFS file-system description object
479  * @key:  key of node to read
480  * @zbr:  position of node
481  * @node: node returned
482  *
483  * This function tries to read a node and returns %1 if the node is read, %0
484  * if the node is not present, and a negative error code in the case of error.
485  */
486 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
487 			      struct ubifs_zbranch *zbr, void *node)
488 {
489 	int ret;
490 
491 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
492 
493 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
494 			    zbr->offs);
495 	if (ret == 1) {
496 		union ubifs_key node_key;
497 		struct ubifs_dent_node *dent = node;
498 
499 		/* All nodes have key in the same place */
500 		key_read(c, &dent->key, &node_key);
501 		if (keys_cmp(c, key, &node_key) != 0)
502 			ret = 0;
503 	}
504 	if (ret == 0 && c->replaying)
505 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
506 			zbr->lnum, zbr->offs, zbr->len);
507 	return ret;
508 }
509 
510 /**
511  * matches_name - determine if a direntry or xattr entry matches a given name.
512  * @c: UBIFS file-system description object
513  * @zbr: zbranch of dent
514  * @nm: name to match
515  *
516  * This function checks if xentry/direntry referred by zbranch @zbr matches name
517  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
518  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
519  * of failure, a negative error code is returned.
520  */
521 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
522 			const struct fscrypt_name *nm)
523 {
524 	struct ubifs_dent_node *dent;
525 	int nlen, err;
526 
527 	/* If possible, match against the dent in the leaf node cache */
528 	if (!zbr->leaf) {
529 		dent = kmalloc(zbr->len, GFP_NOFS);
530 		if (!dent)
531 			return -ENOMEM;
532 
533 		err = ubifs_tnc_read_node(c, zbr, dent);
534 		if (err)
535 			goto out_free;
536 
537 		/* Add the node to the leaf node cache */
538 		err = lnc_add_directly(c, zbr, dent);
539 		if (err)
540 			goto out_free;
541 	} else
542 		dent = zbr->leaf;
543 
544 	nlen = le16_to_cpu(dent->nlen);
545 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
546 	if (err == 0) {
547 		if (nlen == fname_len(nm))
548 			return NAME_MATCHES;
549 		else if (nlen < fname_len(nm))
550 			return NAME_LESS;
551 		else
552 			return NAME_GREATER;
553 	} else if (err < 0)
554 		return NAME_LESS;
555 	else
556 		return NAME_GREATER;
557 
558 out_free:
559 	kfree(dent);
560 	return err;
561 }
562 
563 /**
564  * get_znode - get a TNC znode that may not be loaded yet.
565  * @c: UBIFS file-system description object
566  * @znode: parent znode
567  * @n: znode branch slot number
568  *
569  * This function returns the znode or a negative error code.
570  */
571 static struct ubifs_znode *get_znode(struct ubifs_info *c,
572 				     struct ubifs_znode *znode, int n)
573 {
574 	struct ubifs_zbranch *zbr;
575 
576 	zbr = &znode->zbranch[n];
577 	if (zbr->znode)
578 		znode = zbr->znode;
579 	else
580 		znode = ubifs_load_znode(c, zbr, znode, n);
581 	return znode;
582 }
583 
584 /**
585  * tnc_next - find next TNC entry.
586  * @c: UBIFS file-system description object
587  * @zn: znode is passed and returned here
588  * @n: znode branch slot number is passed and returned here
589  *
590  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
591  * no next entry, or a negative error code otherwise.
592  */
593 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
594 {
595 	struct ubifs_znode *znode = *zn;
596 	int nn = *n;
597 
598 	nn += 1;
599 	if (nn < znode->child_cnt) {
600 		*n = nn;
601 		return 0;
602 	}
603 	while (1) {
604 		struct ubifs_znode *zp;
605 
606 		zp = znode->parent;
607 		if (!zp)
608 			return -ENOENT;
609 		nn = znode->iip + 1;
610 		znode = zp;
611 		if (nn < znode->child_cnt) {
612 			znode = get_znode(c, znode, nn);
613 			if (IS_ERR(znode))
614 				return PTR_ERR(znode);
615 			while (znode->level != 0) {
616 				znode = get_znode(c, znode, 0);
617 				if (IS_ERR(znode))
618 					return PTR_ERR(znode);
619 			}
620 			nn = 0;
621 			break;
622 		}
623 	}
624 	*zn = znode;
625 	*n = nn;
626 	return 0;
627 }
628 
629 /**
630  * tnc_prev - find previous TNC entry.
631  * @c: UBIFS file-system description object
632  * @zn: znode is returned here
633  * @n: znode branch slot number is passed and returned here
634  *
635  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
636  * there is no next entry, or a negative error code otherwise.
637  */
638 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
639 {
640 	struct ubifs_znode *znode = *zn;
641 	int nn = *n;
642 
643 	if (nn > 0) {
644 		*n = nn - 1;
645 		return 0;
646 	}
647 	while (1) {
648 		struct ubifs_znode *zp;
649 
650 		zp = znode->parent;
651 		if (!zp)
652 			return -ENOENT;
653 		nn = znode->iip - 1;
654 		znode = zp;
655 		if (nn >= 0) {
656 			znode = get_znode(c, znode, nn);
657 			if (IS_ERR(znode))
658 				return PTR_ERR(znode);
659 			while (znode->level != 0) {
660 				nn = znode->child_cnt - 1;
661 				znode = get_znode(c, znode, nn);
662 				if (IS_ERR(znode))
663 					return PTR_ERR(znode);
664 			}
665 			nn = znode->child_cnt - 1;
666 			break;
667 		}
668 	}
669 	*zn = znode;
670 	*n = nn;
671 	return 0;
672 }
673 
674 /**
675  * resolve_collision - resolve a collision.
676  * @c: UBIFS file-system description object
677  * @key: key of a directory or extended attribute entry
678  * @zn: znode is returned here
679  * @n: zbranch number is passed and returned here
680  * @nm: name of the entry
681  *
682  * This function is called for "hashed" keys to make sure that the found key
683  * really corresponds to the looked up node (directory or extended attribute
684  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
685  * %0 is returned if @nm is not found and @zn and @n are set to the previous
686  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
687  * This means that @n may be set to %-1 if the leftmost key in @zn is the
688  * previous one. A negative error code is returned on failures.
689  */
690 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
691 			     struct ubifs_znode **zn, int *n,
692 			     const struct fscrypt_name *nm)
693 {
694 	int err;
695 
696 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
697 	if (unlikely(err < 0))
698 		return err;
699 	if (err == NAME_MATCHES)
700 		return 1;
701 
702 	if (err == NAME_GREATER) {
703 		/* Look left */
704 		while (1) {
705 			err = tnc_prev(c, zn, n);
706 			if (err == -ENOENT) {
707 				ubifs_assert(*n == 0);
708 				*n = -1;
709 				return 0;
710 			}
711 			if (err < 0)
712 				return err;
713 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
714 				/*
715 				 * We have found the branch after which we would
716 				 * like to insert, but inserting in this znode
717 				 * may still be wrong. Consider the following 3
718 				 * znodes, in the case where we are resolving a
719 				 * collision with Key2.
720 				 *
721 				 *                  znode zp
722 				 *            ----------------------
723 				 * level 1     |  Key0  |  Key1  |
724 				 *            -----------------------
725 				 *                 |            |
726 				 *       znode za  |            |  znode zb
727 				 *          ------------      ------------
728 				 * level 0  |  Key0  |        |  Key2  |
729 				 *          ------------      ------------
730 				 *
731 				 * The lookup finds Key2 in znode zb. Lets say
732 				 * there is no match and the name is greater so
733 				 * we look left. When we find Key0, we end up
734 				 * here. If we return now, we will insert into
735 				 * znode za at slot n = 1.  But that is invalid
736 				 * according to the parent's keys.  Key2 must
737 				 * be inserted into znode zb.
738 				 *
739 				 * Note, this problem is not relevant for the
740 				 * case when we go right, because
741 				 * 'tnc_insert()' would correct the parent key.
742 				 */
743 				if (*n == (*zn)->child_cnt - 1) {
744 					err = tnc_next(c, zn, n);
745 					if (err) {
746 						/* Should be impossible */
747 						ubifs_assert(0);
748 						if (err == -ENOENT)
749 							err = -EINVAL;
750 						return err;
751 					}
752 					ubifs_assert(*n == 0);
753 					*n = -1;
754 				}
755 				return 0;
756 			}
757 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
758 			if (err < 0)
759 				return err;
760 			if (err == NAME_LESS)
761 				return 0;
762 			if (err == NAME_MATCHES)
763 				return 1;
764 			ubifs_assert(err == NAME_GREATER);
765 		}
766 	} else {
767 		int nn = *n;
768 		struct ubifs_znode *znode = *zn;
769 
770 		/* Look right */
771 		while (1) {
772 			err = tnc_next(c, &znode, &nn);
773 			if (err == -ENOENT)
774 				return 0;
775 			if (err < 0)
776 				return err;
777 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
778 				return 0;
779 			err = matches_name(c, &znode->zbranch[nn], nm);
780 			if (err < 0)
781 				return err;
782 			if (err == NAME_GREATER)
783 				return 0;
784 			*zn = znode;
785 			*n = nn;
786 			if (err == NAME_MATCHES)
787 				return 1;
788 			ubifs_assert(err == NAME_LESS);
789 		}
790 	}
791 }
792 
793 /**
794  * fallible_matches_name - determine if a dent matches a given name.
795  * @c: UBIFS file-system description object
796  * @zbr: zbranch of dent
797  * @nm: name to match
798  *
799  * This is a "fallible" version of 'matches_name()' function which does not
800  * panic if the direntry/xentry referred by @zbr does not exist on the media.
801  *
802  * This function checks if xentry/direntry referred by zbranch @zbr matches name
803  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
804  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
805  * if xentry/direntry referred by @zbr does not exist on the media. A negative
806  * error code is returned in case of failure.
807  */
808 static int fallible_matches_name(struct ubifs_info *c,
809 				 struct ubifs_zbranch *zbr,
810 				 const struct fscrypt_name *nm)
811 {
812 	struct ubifs_dent_node *dent;
813 	int nlen, err;
814 
815 	/* If possible, match against the dent in the leaf node cache */
816 	if (!zbr->leaf) {
817 		dent = kmalloc(zbr->len, GFP_NOFS);
818 		if (!dent)
819 			return -ENOMEM;
820 
821 		err = fallible_read_node(c, &zbr->key, zbr, dent);
822 		if (err < 0)
823 			goto out_free;
824 		if (err == 0) {
825 			/* The node was not present */
826 			err = NOT_ON_MEDIA;
827 			goto out_free;
828 		}
829 		ubifs_assert(err == 1);
830 
831 		err = lnc_add_directly(c, zbr, dent);
832 		if (err)
833 			goto out_free;
834 	} else
835 		dent = zbr->leaf;
836 
837 	nlen = le16_to_cpu(dent->nlen);
838 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
839 	if (err == 0) {
840 		if (nlen == fname_len(nm))
841 			return NAME_MATCHES;
842 		else if (nlen < fname_len(nm))
843 			return NAME_LESS;
844 		else
845 			return NAME_GREATER;
846 	} else if (err < 0)
847 		return NAME_LESS;
848 	else
849 		return NAME_GREATER;
850 
851 out_free:
852 	kfree(dent);
853 	return err;
854 }
855 
856 /**
857  * fallible_resolve_collision - resolve a collision even if nodes are missing.
858  * @c: UBIFS file-system description object
859  * @key: key
860  * @zn: znode is returned here
861  * @n: branch number is passed and returned here
862  * @nm: name of directory entry
863  * @adding: indicates caller is adding a key to the TNC
864  *
865  * This is a "fallible" version of the 'resolve_collision()' function which
866  * does not panic if one of the nodes referred to by TNC does not exist on the
867  * media. This may happen when replaying the journal if a deleted node was
868  * Garbage-collected and the commit was not done. A branch that refers to a node
869  * that is not present is called a dangling branch. The following are the return
870  * codes for this function:
871  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
872  *    branch;
873  *  o if we are @adding and @nm was not found, %0 is returned;
874  *  o if we are not @adding and @nm was not found, but a dangling branch was
875  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
876  *  o a negative error code is returned in case of failure.
877  */
878 static int fallible_resolve_collision(struct ubifs_info *c,
879 				      const union ubifs_key *key,
880 				      struct ubifs_znode **zn, int *n,
881 				      const struct fscrypt_name *nm,
882 				      int adding)
883 {
884 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
885 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
886 
887 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
888 	if (unlikely(cmp < 0))
889 		return cmp;
890 	if (cmp == NAME_MATCHES)
891 		return 1;
892 	if (cmp == NOT_ON_MEDIA) {
893 		o_znode = znode;
894 		o_n = nn;
895 		/*
896 		 * We are unlucky and hit a dangling branch straight away.
897 		 * Now we do not really know where to go to find the needed
898 		 * branch - to the left or to the right. Well, let's try left.
899 		 */
900 		unsure = 1;
901 	} else if (!adding)
902 		unsure = 1; /* Remove a dangling branch wherever it is */
903 
904 	if (cmp == NAME_GREATER || unsure) {
905 		/* Look left */
906 		while (1) {
907 			err = tnc_prev(c, zn, n);
908 			if (err == -ENOENT) {
909 				ubifs_assert(*n == 0);
910 				*n = -1;
911 				break;
912 			}
913 			if (err < 0)
914 				return err;
915 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
916 				/* See comments in 'resolve_collision()' */
917 				if (*n == (*zn)->child_cnt - 1) {
918 					err = tnc_next(c, zn, n);
919 					if (err) {
920 						/* Should be impossible */
921 						ubifs_assert(0);
922 						if (err == -ENOENT)
923 							err = -EINVAL;
924 						return err;
925 					}
926 					ubifs_assert(*n == 0);
927 					*n = -1;
928 				}
929 				break;
930 			}
931 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
932 			if (err < 0)
933 				return err;
934 			if (err == NAME_MATCHES)
935 				return 1;
936 			if (err == NOT_ON_MEDIA) {
937 				o_znode = *zn;
938 				o_n = *n;
939 				continue;
940 			}
941 			if (!adding)
942 				continue;
943 			if (err == NAME_LESS)
944 				break;
945 			else
946 				unsure = 0;
947 		}
948 	}
949 
950 	if (cmp == NAME_LESS || unsure) {
951 		/* Look right */
952 		*zn = znode;
953 		*n = nn;
954 		while (1) {
955 			err = tnc_next(c, &znode, &nn);
956 			if (err == -ENOENT)
957 				break;
958 			if (err < 0)
959 				return err;
960 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
961 				break;
962 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
963 			if (err < 0)
964 				return err;
965 			if (err == NAME_GREATER)
966 				break;
967 			*zn = znode;
968 			*n = nn;
969 			if (err == NAME_MATCHES)
970 				return 1;
971 			if (err == NOT_ON_MEDIA) {
972 				o_znode = znode;
973 				o_n = nn;
974 			}
975 		}
976 	}
977 
978 	/* Never match a dangling branch when adding */
979 	if (adding || !o_znode)
980 		return 0;
981 
982 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
983 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
984 		o_znode->zbranch[o_n].len);
985 	*zn = o_znode;
986 	*n = o_n;
987 	return 1;
988 }
989 
990 /**
991  * matches_position - determine if a zbranch matches a given position.
992  * @zbr: zbranch of dent
993  * @lnum: LEB number of dent to match
994  * @offs: offset of dent to match
995  *
996  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
997  */
998 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
999 {
1000 	if (zbr->lnum == lnum && zbr->offs == offs)
1001 		return 1;
1002 	else
1003 		return 0;
1004 }
1005 
1006 /**
1007  * resolve_collision_directly - resolve a collision directly.
1008  * @c: UBIFS file-system description object
1009  * @key: key of directory entry
1010  * @zn: znode is passed and returned here
1011  * @n: zbranch number is passed and returned here
1012  * @lnum: LEB number of dent node to match
1013  * @offs: offset of dent node to match
1014  *
1015  * This function is used for "hashed" keys to make sure the found directory or
1016  * extended attribute entry node is what was looked for. It is used when the
1017  * flash address of the right node is known (@lnum:@offs) which makes it much
1018  * easier to resolve collisions (no need to read entries and match full
1019  * names). This function returns %1 and sets @zn and @n if the collision is
1020  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1021  * previous directory entry. Otherwise a negative error code is returned.
1022  */
1023 static int resolve_collision_directly(struct ubifs_info *c,
1024 				      const union ubifs_key *key,
1025 				      struct ubifs_znode **zn, int *n,
1026 				      int lnum, int offs)
1027 {
1028 	struct ubifs_znode *znode;
1029 	int nn, err;
1030 
1031 	znode = *zn;
1032 	nn = *n;
1033 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1034 		return 1;
1035 
1036 	/* Look left */
1037 	while (1) {
1038 		err = tnc_prev(c, &znode, &nn);
1039 		if (err == -ENOENT)
1040 			break;
1041 		if (err < 0)
1042 			return err;
1043 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1044 			break;
1045 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1046 			*zn = znode;
1047 			*n = nn;
1048 			return 1;
1049 		}
1050 	}
1051 
1052 	/* Look right */
1053 	znode = *zn;
1054 	nn = *n;
1055 	while (1) {
1056 		err = tnc_next(c, &znode, &nn);
1057 		if (err == -ENOENT)
1058 			return 0;
1059 		if (err < 0)
1060 			return err;
1061 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1062 			return 0;
1063 		*zn = znode;
1064 		*n = nn;
1065 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1066 			return 1;
1067 	}
1068 }
1069 
1070 /**
1071  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1072  * @c: UBIFS file-system description object
1073  * @znode: znode to dirty
1074  *
1075  * If we do not have a unique key that resides in a znode, then we cannot
1076  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1077  * This function records the path back to the last dirty ancestor, and then
1078  * dirties the znodes on that path.
1079  */
1080 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1081 					       struct ubifs_znode *znode)
1082 {
1083 	struct ubifs_znode *zp;
1084 	int *path = c->bottom_up_buf, p = 0;
1085 
1086 	ubifs_assert(c->zroot.znode);
1087 	ubifs_assert(znode);
1088 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1089 		kfree(c->bottom_up_buf);
1090 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1091 					   GFP_NOFS);
1092 		if (!c->bottom_up_buf)
1093 			return ERR_PTR(-ENOMEM);
1094 		path = c->bottom_up_buf;
1095 	}
1096 	if (c->zroot.znode->level) {
1097 		/* Go up until parent is dirty */
1098 		while (1) {
1099 			int n;
1100 
1101 			zp = znode->parent;
1102 			if (!zp)
1103 				break;
1104 			n = znode->iip;
1105 			ubifs_assert(p < c->zroot.znode->level);
1106 			path[p++] = n;
1107 			if (!zp->cnext && ubifs_zn_dirty(znode))
1108 				break;
1109 			znode = zp;
1110 		}
1111 	}
1112 
1113 	/* Come back down, dirtying as we go */
1114 	while (1) {
1115 		struct ubifs_zbranch *zbr;
1116 
1117 		zp = znode->parent;
1118 		if (zp) {
1119 			ubifs_assert(path[p - 1] >= 0);
1120 			ubifs_assert(path[p - 1] < zp->child_cnt);
1121 			zbr = &zp->zbranch[path[--p]];
1122 			znode = dirty_cow_znode(c, zbr);
1123 		} else {
1124 			ubifs_assert(znode == c->zroot.znode);
1125 			znode = dirty_cow_znode(c, &c->zroot);
1126 		}
1127 		if (IS_ERR(znode) || !p)
1128 			break;
1129 		ubifs_assert(path[p - 1] >= 0);
1130 		ubifs_assert(path[p - 1] < znode->child_cnt);
1131 		znode = znode->zbranch[path[p - 1]].znode;
1132 	}
1133 
1134 	return znode;
1135 }
1136 
1137 /**
1138  * ubifs_lookup_level0 - search for zero-level znode.
1139  * @c: UBIFS file-system description object
1140  * @key:  key to lookup
1141  * @zn: znode is returned here
1142  * @n: znode branch slot number is returned here
1143  *
1144  * This function looks up the TNC tree and search for zero-level znode which
1145  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1146  * cases:
1147  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1148  *     is returned and slot number of the matched branch is stored in @n;
1149  *   o not exact match, which means that zero-level znode does not contain
1150  *     @key, then %0 is returned and slot number of the closest branch is stored
1151  *     in @n;
1152  *   o @key is so small that it is even less than the lowest key of the
1153  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1154  *
1155  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1156  * function reads corresponding indexing nodes and inserts them to TNC. In
1157  * case of failure, a negative error code is returned.
1158  */
1159 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1160 			struct ubifs_znode **zn, int *n)
1161 {
1162 	int err, exact;
1163 	struct ubifs_znode *znode;
1164 	unsigned long time = get_seconds();
1165 
1166 	dbg_tnck(key, "search key ");
1167 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1168 
1169 	znode = c->zroot.znode;
1170 	if (unlikely(!znode)) {
1171 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1172 		if (IS_ERR(znode))
1173 			return PTR_ERR(znode);
1174 	}
1175 
1176 	znode->time = time;
1177 
1178 	while (1) {
1179 		struct ubifs_zbranch *zbr;
1180 
1181 		exact = ubifs_search_zbranch(c, znode, key, n);
1182 
1183 		if (znode->level == 0)
1184 			break;
1185 
1186 		if (*n < 0)
1187 			*n = 0;
1188 		zbr = &znode->zbranch[*n];
1189 
1190 		if (zbr->znode) {
1191 			znode->time = time;
1192 			znode = zbr->znode;
1193 			continue;
1194 		}
1195 
1196 		/* znode is not in TNC cache, load it from the media */
1197 		znode = ubifs_load_znode(c, zbr, znode, *n);
1198 		if (IS_ERR(znode))
1199 			return PTR_ERR(znode);
1200 	}
1201 
1202 	*zn = znode;
1203 	if (exact || !is_hash_key(c, key) || *n != -1) {
1204 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1205 		return exact;
1206 	}
1207 
1208 	/*
1209 	 * Here is a tricky place. We have not found the key and this is a
1210 	 * "hashed" key, which may collide. The rest of the code deals with
1211 	 * situations like this:
1212 	 *
1213 	 *                  | 3 | 5 |
1214 	 *                  /       \
1215 	 *          | 3 | 5 |      | 6 | 7 | (x)
1216 	 *
1217 	 * Or more a complex example:
1218 	 *
1219 	 *                | 1 | 5 |
1220 	 *                /       \
1221 	 *       | 1 | 3 |         | 5 | 8 |
1222 	 *              \           /
1223 	 *          | 5 | 5 |   | 6 | 7 | (x)
1224 	 *
1225 	 * In the examples, if we are looking for key "5", we may reach nodes
1226 	 * marked with "(x)". In this case what we have do is to look at the
1227 	 * left and see if there is "5" key there. If there is, we have to
1228 	 * return it.
1229 	 *
1230 	 * Note, this whole situation is possible because we allow to have
1231 	 * elements which are equivalent to the next key in the parent in the
1232 	 * children of current znode. For example, this happens if we split a
1233 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1234 	 * like this:
1235 	 *                      | 3 | 5 |
1236 	 *                       /     \
1237 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1238 	 *                              ^
1239 	 * And this becomes what is at the first "picture" after key "5" marked
1240 	 * with "^" is removed. What could be done is we could prohibit
1241 	 * splitting in the middle of the colliding sequence. Also, when
1242 	 * removing the leftmost key, we would have to correct the key of the
1243 	 * parent node, which would introduce additional complications. Namely,
1244 	 * if we changed the leftmost key of the parent znode, the garbage
1245 	 * collector would be unable to find it (GC is doing this when GC'ing
1246 	 * indexing LEBs). Although we already have an additional RB-tree where
1247 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1248 	 * after the commit. But anyway, this does not look easy to implement
1249 	 * so we did not try this.
1250 	 */
1251 	err = tnc_prev(c, &znode, n);
1252 	if (err == -ENOENT) {
1253 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1254 		*n = -1;
1255 		return 0;
1256 	}
1257 	if (unlikely(err < 0))
1258 		return err;
1259 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1260 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261 		*n = -1;
1262 		return 0;
1263 	}
1264 
1265 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1266 	*zn = znode;
1267 	return 1;
1268 }
1269 
1270 /**
1271  * lookup_level0_dirty - search for zero-level znode dirtying.
1272  * @c: UBIFS file-system description object
1273  * @key:  key to lookup
1274  * @zn: znode is returned here
1275  * @n: znode branch slot number is returned here
1276  *
1277  * This function looks up the TNC tree and search for zero-level znode which
1278  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1279  * cases:
1280  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1281  *     is returned and slot number of the matched branch is stored in @n;
1282  *   o not exact match, which means that zero-level znode does not contain @key
1283  *     then %0 is returned and slot number of the closed branch is stored in
1284  *     @n;
1285  *   o @key is so small that it is even less than the lowest key of the
1286  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1287  *
1288  * Additionally all znodes in the path from the root to the located zero-level
1289  * znode are marked as dirty.
1290  *
1291  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1292  * function reads corresponding indexing nodes and inserts them to TNC. In
1293  * case of failure, a negative error code is returned.
1294  */
1295 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1296 			       struct ubifs_znode **zn, int *n)
1297 {
1298 	int err, exact;
1299 	struct ubifs_znode *znode;
1300 	unsigned long time = get_seconds();
1301 
1302 	dbg_tnck(key, "search and dirty key ");
1303 
1304 	znode = c->zroot.znode;
1305 	if (unlikely(!znode)) {
1306 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1307 		if (IS_ERR(znode))
1308 			return PTR_ERR(znode);
1309 	}
1310 
1311 	znode = dirty_cow_znode(c, &c->zroot);
1312 	if (IS_ERR(znode))
1313 		return PTR_ERR(znode);
1314 
1315 	znode->time = time;
1316 
1317 	while (1) {
1318 		struct ubifs_zbranch *zbr;
1319 
1320 		exact = ubifs_search_zbranch(c, znode, key, n);
1321 
1322 		if (znode->level == 0)
1323 			break;
1324 
1325 		if (*n < 0)
1326 			*n = 0;
1327 		zbr = &znode->zbranch[*n];
1328 
1329 		if (zbr->znode) {
1330 			znode->time = time;
1331 			znode = dirty_cow_znode(c, zbr);
1332 			if (IS_ERR(znode))
1333 				return PTR_ERR(znode);
1334 			continue;
1335 		}
1336 
1337 		/* znode is not in TNC cache, load it from the media */
1338 		znode = ubifs_load_znode(c, zbr, znode, *n);
1339 		if (IS_ERR(znode))
1340 			return PTR_ERR(znode);
1341 		znode = dirty_cow_znode(c, zbr);
1342 		if (IS_ERR(znode))
1343 			return PTR_ERR(znode);
1344 	}
1345 
1346 	*zn = znode;
1347 	if (exact || !is_hash_key(c, key) || *n != -1) {
1348 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1349 		return exact;
1350 	}
1351 
1352 	/*
1353 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1354 	 * code.
1355 	 */
1356 	err = tnc_prev(c, &znode, n);
1357 	if (err == -ENOENT) {
1358 		*n = -1;
1359 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1360 		return 0;
1361 	}
1362 	if (unlikely(err < 0))
1363 		return err;
1364 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1365 		*n = -1;
1366 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367 		return 0;
1368 	}
1369 
1370 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1371 		znode = dirty_cow_bottom_up(c, znode);
1372 		if (IS_ERR(znode))
1373 			return PTR_ERR(znode);
1374 	}
1375 
1376 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1377 	*zn = znode;
1378 	return 1;
1379 }
1380 
1381 /**
1382  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1383  * @c: UBIFS file-system description object
1384  * @lnum: LEB number
1385  * @gc_seq1: garbage collection sequence number
1386  *
1387  * This function determines if @lnum may have been garbage collected since
1388  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1389  * %0 is returned.
1390  */
1391 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1392 {
1393 	int gc_seq2, gced_lnum;
1394 
1395 	gced_lnum = c->gced_lnum;
1396 	smp_rmb();
1397 	gc_seq2 = c->gc_seq;
1398 	/* Same seq means no GC */
1399 	if (gc_seq1 == gc_seq2)
1400 		return 0;
1401 	/* Different by more than 1 means we don't know */
1402 	if (gc_seq1 + 1 != gc_seq2)
1403 		return 1;
1404 	/*
1405 	 * We have seen the sequence number has increased by 1. Now we need to
1406 	 * be sure we read the right LEB number, so read it again.
1407 	 */
1408 	smp_rmb();
1409 	if (gced_lnum != c->gced_lnum)
1410 		return 1;
1411 	/* Finally we can check lnum */
1412 	if (gced_lnum == lnum)
1413 		return 1;
1414 	return 0;
1415 }
1416 
1417 /**
1418  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419  * @c: UBIFS file-system description object
1420  * @key: node key to lookup
1421  * @node: the node is returned here
1422  * @lnum: LEB number is returned here
1423  * @offs: offset is returned here
1424  *
1425  * This function looks up and reads node with key @key. The caller has to make
1426  * sure the @node buffer is large enough to fit the node. Returns zero in case
1427  * of success, %-ENOENT if the node was not found, and a negative error code in
1428  * case of failure. The node location can be returned in @lnum and @offs.
1429  */
1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431 		     void *node, int *lnum, int *offs)
1432 {
1433 	int found, n, err, safely = 0, gc_seq1;
1434 	struct ubifs_znode *znode;
1435 	struct ubifs_zbranch zbr, *zt;
1436 
1437 again:
1438 	mutex_lock(&c->tnc_mutex);
1439 	found = ubifs_lookup_level0(c, key, &znode, &n);
1440 	if (!found) {
1441 		err = -ENOENT;
1442 		goto out;
1443 	} else if (found < 0) {
1444 		err = found;
1445 		goto out;
1446 	}
1447 	zt = &znode->zbranch[n];
1448 	if (lnum) {
1449 		*lnum = zt->lnum;
1450 		*offs = zt->offs;
1451 	}
1452 	if (is_hash_key(c, key)) {
1453 		/*
1454 		 * In this case the leaf node cache gets used, so we pass the
1455 		 * address of the zbranch and keep the mutex locked
1456 		 */
1457 		err = tnc_read_hashed_node(c, zt, node);
1458 		goto out;
1459 	}
1460 	if (safely) {
1461 		err = ubifs_tnc_read_node(c, zt, node);
1462 		goto out;
1463 	}
1464 	/* Drop the TNC mutex prematurely and race with garbage collection */
1465 	zbr = znode->zbranch[n];
1466 	gc_seq1 = c->gc_seq;
1467 	mutex_unlock(&c->tnc_mutex);
1468 
1469 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1470 		/* We do not GC journal heads */
1471 		err = ubifs_tnc_read_node(c, &zbr, node);
1472 		return err;
1473 	}
1474 
1475 	err = fallible_read_node(c, key, &zbr, node);
1476 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477 		/*
1478 		 * The node may have been GC'ed out from under us so try again
1479 		 * while keeping the TNC mutex locked.
1480 		 */
1481 		safely = 1;
1482 		goto again;
1483 	}
1484 	return 0;
1485 
1486 out:
1487 	mutex_unlock(&c->tnc_mutex);
1488 	return err;
1489 }
1490 
1491 /**
1492  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493  * @c: UBIFS file-system description object
1494  * @bu: bulk-read parameters and results
1495  *
1496  * Lookup consecutive data node keys for the same inode that reside
1497  * consecutively in the same LEB. This function returns zero in case of success
1498  * and a negative error code in case of failure.
1499  *
1500  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502  * maximum possible amount of nodes for bulk-read.
1503  */
1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505 {
1506 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1507 	int uninitialized_var(len);
1508 	unsigned int block = key_block(c, &bu->key);
1509 	struct ubifs_znode *znode;
1510 
1511 	bu->cnt = 0;
1512 	bu->blk_cnt = 0;
1513 	bu->eof = 0;
1514 
1515 	mutex_lock(&c->tnc_mutex);
1516 	/* Find first key */
1517 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518 	if (err < 0)
1519 		goto out;
1520 	if (err) {
1521 		/* Key found */
1522 		len = znode->zbranch[n].len;
1523 		/* The buffer must be big enough for at least 1 node */
1524 		if (len > bu->buf_len) {
1525 			err = -EINVAL;
1526 			goto out;
1527 		}
1528 		/* Add this key */
1529 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530 		bu->blk_cnt += 1;
1531 		lnum = znode->zbranch[n].lnum;
1532 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533 	}
1534 	while (1) {
1535 		struct ubifs_zbranch *zbr;
1536 		union ubifs_key *key;
1537 		unsigned int next_block;
1538 
1539 		/* Find next key */
1540 		err = tnc_next(c, &znode, &n);
1541 		if (err)
1542 			goto out;
1543 		zbr = &znode->zbranch[n];
1544 		key = &zbr->key;
1545 		/* See if there is another data key for this file */
1546 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547 		    key_type(c, key) != UBIFS_DATA_KEY) {
1548 			err = -ENOENT;
1549 			goto out;
1550 		}
1551 		if (lnum < 0) {
1552 			/* First key found */
1553 			lnum = zbr->lnum;
1554 			offs = ALIGN(zbr->offs + zbr->len, 8);
1555 			len = zbr->len;
1556 			if (len > bu->buf_len) {
1557 				err = -EINVAL;
1558 				goto out;
1559 			}
1560 		} else {
1561 			/*
1562 			 * The data nodes must be in consecutive positions in
1563 			 * the same LEB.
1564 			 */
1565 			if (zbr->lnum != lnum || zbr->offs != offs)
1566 				goto out;
1567 			offs += ALIGN(zbr->len, 8);
1568 			len = ALIGN(len, 8) + zbr->len;
1569 			/* Must not exceed buffer length */
1570 			if (len > bu->buf_len)
1571 				goto out;
1572 		}
1573 		/* Allow for holes */
1574 		next_block = key_block(c, key);
1575 		bu->blk_cnt += (next_block - block - 1);
1576 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577 			goto out;
1578 		block = next_block;
1579 		/* Add this key */
1580 		bu->zbranch[bu->cnt++] = *zbr;
1581 		bu->blk_cnt += 1;
1582 		/* See if we have room for more */
1583 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584 			goto out;
1585 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586 			goto out;
1587 	}
1588 out:
1589 	if (err == -ENOENT) {
1590 		bu->eof = 1;
1591 		err = 0;
1592 	}
1593 	bu->gc_seq = c->gc_seq;
1594 	mutex_unlock(&c->tnc_mutex);
1595 	if (err)
1596 		return err;
1597 	/*
1598 	 * An enormous hole could cause bulk-read to encompass too many
1599 	 * page cache pages, so limit the number here.
1600 	 */
1601 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603 	/*
1604 	 * Ensure that bulk-read covers a whole number of page cache
1605 	 * pages.
1606 	 */
1607 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609 		return 0;
1610 	if (bu->eof) {
1611 		/* At the end of file we can round up */
1612 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613 		return 0;
1614 	}
1615 	/* Exclude data nodes that do not make up a whole page cache page */
1616 	block = key_block(c, &bu->key) + bu->blk_cnt;
1617 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618 	while (bu->cnt) {
1619 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620 			break;
1621 		bu->cnt -= 1;
1622 	}
1623 	return 0;
1624 }
1625 
1626 /**
1627  * read_wbuf - bulk-read from a LEB with a wbuf.
1628  * @wbuf: wbuf that may overlap the read
1629  * @buf: buffer into which to read
1630  * @len: read length
1631  * @lnum: LEB number from which to read
1632  * @offs: offset from which to read
1633  *
1634  * This functions returns %0 on success or a negative error code on failure.
1635  */
1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637 		     int offs)
1638 {
1639 	const struct ubifs_info *c = wbuf->c;
1640 	int rlen, overlap;
1641 
1642 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645 	ubifs_assert(offs + len <= c->leb_size);
1646 
1647 	spin_lock(&wbuf->lock);
1648 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649 	if (!overlap) {
1650 		/* We may safely unlock the write-buffer and read the data */
1651 		spin_unlock(&wbuf->lock);
1652 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653 	}
1654 
1655 	/* Don't read under wbuf */
1656 	rlen = wbuf->offs - offs;
1657 	if (rlen < 0)
1658 		rlen = 0;
1659 
1660 	/* Copy the rest from the write-buffer */
1661 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662 	spin_unlock(&wbuf->lock);
1663 
1664 	if (rlen > 0)
1665 		/* Read everything that goes before write-buffer */
1666 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * validate_data_node - validate data nodes for bulk-read.
1673  * @c: UBIFS file-system description object
1674  * @buf: buffer containing data node to validate
1675  * @zbr: zbranch of data node to validate
1676  *
1677  * This functions returns %0 on success or a negative error code on failure.
1678  */
1679 static int validate_data_node(struct ubifs_info *c, void *buf,
1680 			      struct ubifs_zbranch *zbr)
1681 {
1682 	union ubifs_key key1;
1683 	struct ubifs_ch *ch = buf;
1684 	int err, len;
1685 
1686 	if (ch->node_type != UBIFS_DATA_NODE) {
1687 		ubifs_err(c, "bad node type (%d but expected %d)",
1688 			  ch->node_type, UBIFS_DATA_NODE);
1689 		goto out_err;
1690 	}
1691 
1692 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693 	if (err) {
1694 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1695 		goto out;
1696 	}
1697 
1698 	len = le32_to_cpu(ch->len);
1699 	if (len != zbr->len) {
1700 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1701 		goto out_err;
1702 	}
1703 
1704 	/* Make sure the key of the read node is correct */
1705 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706 	if (!keys_eq(c, &zbr->key, &key1)) {
1707 		ubifs_err(c, "bad key in node at LEB %d:%d",
1708 			  zbr->lnum, zbr->offs);
1709 		dbg_tnck(&zbr->key, "looked for key ");
1710 		dbg_tnck(&key1, "found node's key ");
1711 		goto out_err;
1712 	}
1713 
1714 	return 0;
1715 
1716 out_err:
1717 	err = -EINVAL;
1718 out:
1719 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720 	ubifs_dump_node(c, buf);
1721 	dump_stack();
1722 	return err;
1723 }
1724 
1725 /**
1726  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727  * @c: UBIFS file-system description object
1728  * @bu: bulk-read parameters and results
1729  *
1730  * This functions reads and validates the data nodes that were identified by the
1731  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732  * -EAGAIN to indicate a race with GC, or another negative error code on
1733  * failure.
1734  */
1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736 {
1737 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738 	struct ubifs_wbuf *wbuf;
1739 	void *buf;
1740 
1741 	len = bu->zbranch[bu->cnt - 1].offs;
1742 	len += bu->zbranch[bu->cnt - 1].len - offs;
1743 	if (len > bu->buf_len) {
1744 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1745 		return -EINVAL;
1746 	}
1747 
1748 	/* Do the read */
1749 	wbuf = ubifs_get_wbuf(c, lnum);
1750 	if (wbuf)
1751 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752 	else
1753 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754 
1755 	/* Check for a race with GC */
1756 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757 		return -EAGAIN;
1758 
1759 	if (err && err != -EBADMSG) {
1760 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1761 			  lnum, offs, err);
1762 		dump_stack();
1763 		dbg_tnck(&bu->key, "key ");
1764 		return err;
1765 	}
1766 
1767 	/* Validate the nodes read */
1768 	buf = bu->buf;
1769 	for (i = 0; i < bu->cnt; i++) {
1770 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1771 		if (err)
1772 			return err;
1773 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * do_lookup_nm- look up a "hashed" node.
1781  * @c: UBIFS file-system description object
1782  * @key: node key to lookup
1783  * @node: the node is returned here
1784  * @nm: node name
1785  *
1786  * This function looks up and reads a node which contains name hash in the key.
1787  * Since the hash may have collisions, there may be many nodes with the same
1788  * key, so we have to sequentially look to all of them until the needed one is
1789  * found. This function returns zero in case of success, %-ENOENT if the node
1790  * was not found, and a negative error code in case of failure.
1791  */
1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793 			void *node, const struct fscrypt_name *nm)
1794 {
1795 	int found, n, err;
1796 	struct ubifs_znode *znode;
1797 
1798 	//dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799 	mutex_lock(&c->tnc_mutex);
1800 	found = ubifs_lookup_level0(c, key, &znode, &n);
1801 	if (!found) {
1802 		err = -ENOENT;
1803 		goto out_unlock;
1804 	} else if (found < 0) {
1805 		err = found;
1806 		goto out_unlock;
1807 	}
1808 
1809 	ubifs_assert(n >= 0);
1810 
1811 	err = resolve_collision(c, key, &znode, &n, nm);
1812 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813 	if (unlikely(err < 0))
1814 		goto out_unlock;
1815 	if (err == 0) {
1816 		err = -ENOENT;
1817 		goto out_unlock;
1818 	}
1819 
1820 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1821 
1822 out_unlock:
1823 	mutex_unlock(&c->tnc_mutex);
1824 	return err;
1825 }
1826 
1827 /**
1828  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829  * @c: UBIFS file-system description object
1830  * @key: node key to lookup
1831  * @node: the node is returned here
1832  * @nm: node name
1833  *
1834  * This function looks up and reads a node which contains name hash in the key.
1835  * Since the hash may have collisions, there may be many nodes with the same
1836  * key, so we have to sequentially look to all of them until the needed one is
1837  * found. This function returns zero in case of success, %-ENOENT if the node
1838  * was not found, and a negative error code in case of failure.
1839  */
1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841 			void *node, const struct fscrypt_name *nm)
1842 {
1843 	int err, len;
1844 	const struct ubifs_dent_node *dent = node;
1845 
1846 	/*
1847 	 * We assume that in most of the cases there are no name collisions and
1848 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849 	 */
1850 	err = ubifs_tnc_lookup(c, key, node);
1851 	if (err)
1852 		return err;
1853 
1854 	len = le16_to_cpu(dent->nlen);
1855 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1856 		return 0;
1857 
1858 	/*
1859 	 * Unluckily, there are hash collisions and we have to iterate over
1860 	 * them look at each direntry with colliding name hash sequentially.
1861 	 */
1862 
1863 	return do_lookup_nm(c, key, node, nm);
1864 }
1865 
1866 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1867 			struct ubifs_dent_node *dent, uint32_t cookie)
1868 {
1869 	int n, err, type = key_type(c, key);
1870 	struct ubifs_znode *znode;
1871 	struct ubifs_zbranch *zbr;
1872 	union ubifs_key *dkey, start_key;
1873 
1874 	ubifs_assert(is_hash_key(c, key));
1875 
1876 	lowest_dent_key(c, &start_key, key_inum(c, key));
1877 
1878 	mutex_lock(&c->tnc_mutex);
1879 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1880 	if (unlikely(err < 0))
1881 		goto out_unlock;
1882 
1883 	for (;;) {
1884 		if (!err) {
1885 			err = tnc_next(c, &znode, &n);
1886 			if (err)
1887 				goto out_unlock;
1888 		}
1889 
1890 		zbr = &znode->zbranch[n];
1891 		dkey = &zbr->key;
1892 
1893 		if (key_inum(c, dkey) != key_inum(c, key) ||
1894 		    key_type(c, dkey) != type) {
1895 			err = -ENOENT;
1896 			goto out_unlock;
1897 		}
1898 
1899 		err = tnc_read_hashed_node(c, zbr, dent);
1900 		if (err)
1901 			goto out_unlock;
1902 
1903 		if (key_hash(c, key) == key_hash(c, dkey) &&
1904 		    le32_to_cpu(dent->cookie) == cookie)
1905 			goto out_unlock;
1906 	}
1907 
1908 out_unlock:
1909 	mutex_unlock(&c->tnc_mutex);
1910 	return err;
1911 }
1912 
1913 /**
1914  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1915  * @c: UBIFS file-system description object
1916  * @key: node key to lookup
1917  * @node: the node is returned here
1918  * @cookie: node cookie for collision resolution
1919  *
1920  * This function looks up and reads a node which contains name hash in the key.
1921  * Since the hash may have collisions, there may be many nodes with the same
1922  * key, so we have to sequentially look to all of them until the needed one
1923  * with the same cookie value is found.
1924  * This function returns zero in case of success, %-ENOENT if the node
1925  * was not found, and a negative error code in case of failure.
1926  */
1927 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1928 			void *node, uint32_t cookie)
1929 {
1930 	int err;
1931 	const struct ubifs_dent_node *dent = node;
1932 
1933 	if (!c->double_hash)
1934 		return -EOPNOTSUPP;
1935 
1936 	/*
1937 	 * We assume that in most of the cases there are no name collisions and
1938 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1939 	 */
1940 	err = ubifs_tnc_lookup(c, key, node);
1941 	if (err)
1942 		return err;
1943 
1944 	if (le32_to_cpu(dent->cookie) == cookie)
1945 		return 0;
1946 
1947 	/*
1948 	 * Unluckily, there are hash collisions and we have to iterate over
1949 	 * them look at each direntry with colliding name hash sequentially.
1950 	 */
1951 	return do_lookup_dh(c, key, node, cookie);
1952 }
1953 
1954 /**
1955  * correct_parent_keys - correct parent znodes' keys.
1956  * @c: UBIFS file-system description object
1957  * @znode: znode to correct parent znodes for
1958  *
1959  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1960  * zbranch changes, keys of parent znodes have to be corrected. This helper
1961  * function is called in such situations and corrects the keys if needed.
1962  */
1963 static void correct_parent_keys(const struct ubifs_info *c,
1964 				struct ubifs_znode *znode)
1965 {
1966 	union ubifs_key *key, *key1;
1967 
1968 	ubifs_assert(znode->parent);
1969 	ubifs_assert(znode->iip == 0);
1970 
1971 	key = &znode->zbranch[0].key;
1972 	key1 = &znode->parent->zbranch[0].key;
1973 
1974 	while (keys_cmp(c, key, key1) < 0) {
1975 		key_copy(c, key, key1);
1976 		znode = znode->parent;
1977 		znode->alt = 1;
1978 		if (!znode->parent || znode->iip)
1979 			break;
1980 		key1 = &znode->parent->zbranch[0].key;
1981 	}
1982 }
1983 
1984 /**
1985  * insert_zbranch - insert a zbranch into a znode.
1986  * @znode: znode into which to insert
1987  * @zbr: zbranch to insert
1988  * @n: slot number to insert to
1989  *
1990  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1991  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1992  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1993  * slot, zbranches starting from @n have to be moved right.
1994  */
1995 static void insert_zbranch(struct ubifs_znode *znode,
1996 			   const struct ubifs_zbranch *zbr, int n)
1997 {
1998 	int i;
1999 
2000 	ubifs_assert(ubifs_zn_dirty(znode));
2001 
2002 	if (znode->level) {
2003 		for (i = znode->child_cnt; i > n; i--) {
2004 			znode->zbranch[i] = znode->zbranch[i - 1];
2005 			if (znode->zbranch[i].znode)
2006 				znode->zbranch[i].znode->iip = i;
2007 		}
2008 		if (zbr->znode)
2009 			zbr->znode->iip = n;
2010 	} else
2011 		for (i = znode->child_cnt; i > n; i--)
2012 			znode->zbranch[i] = znode->zbranch[i - 1];
2013 
2014 	znode->zbranch[n] = *zbr;
2015 	znode->child_cnt += 1;
2016 
2017 	/*
2018 	 * After inserting at slot zero, the lower bound of the key range of
2019 	 * this znode may have changed. If this znode is subsequently split
2020 	 * then the upper bound of the key range may change, and furthermore
2021 	 * it could change to be lower than the original lower bound. If that
2022 	 * happens, then it will no longer be possible to find this znode in the
2023 	 * TNC using the key from the index node on flash. That is bad because
2024 	 * if it is not found, we will assume it is obsolete and may overwrite
2025 	 * it. Then if there is an unclean unmount, we will start using the
2026 	 * old index which will be broken.
2027 	 *
2028 	 * So we first mark znodes that have insertions at slot zero, and then
2029 	 * if they are split we add their lnum/offs to the old_idx tree.
2030 	 */
2031 	if (n == 0)
2032 		znode->alt = 1;
2033 }
2034 
2035 /**
2036  * tnc_insert - insert a node into TNC.
2037  * @c: UBIFS file-system description object
2038  * @znode: znode to insert into
2039  * @zbr: branch to insert
2040  * @n: slot number to insert new zbranch to
2041  *
2042  * This function inserts a new node described by @zbr into znode @znode. If
2043  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2044  * are splat as well if needed. Returns zero in case of success or a negative
2045  * error code in case of failure.
2046  */
2047 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2048 		      struct ubifs_zbranch *zbr, int n)
2049 {
2050 	struct ubifs_znode *zn, *zi, *zp;
2051 	int i, keep, move, appending = 0;
2052 	union ubifs_key *key = &zbr->key, *key1;
2053 
2054 	ubifs_assert(n >= 0 && n <= c->fanout);
2055 
2056 	/* Implement naive insert for now */
2057 again:
2058 	zp = znode->parent;
2059 	if (znode->child_cnt < c->fanout) {
2060 		ubifs_assert(n != c->fanout);
2061 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2062 
2063 		insert_zbranch(znode, zbr, n);
2064 
2065 		/* Ensure parent's key is correct */
2066 		if (n == 0 && zp && znode->iip == 0)
2067 			correct_parent_keys(c, znode);
2068 
2069 		return 0;
2070 	}
2071 
2072 	/*
2073 	 * Unfortunately, @znode does not have more empty slots and we have to
2074 	 * split it.
2075 	 */
2076 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2077 
2078 	if (znode->alt)
2079 		/*
2080 		 * We can no longer be sure of finding this znode by key, so we
2081 		 * record it in the old_idx tree.
2082 		 */
2083 		ins_clr_old_idx_znode(c, znode);
2084 
2085 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2086 	if (!zn)
2087 		return -ENOMEM;
2088 	zn->parent = zp;
2089 	zn->level = znode->level;
2090 
2091 	/* Decide where to split */
2092 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2093 		/* Try not to split consecutive data keys */
2094 		if (n == c->fanout) {
2095 			key1 = &znode->zbranch[n - 1].key;
2096 			if (key_inum(c, key1) == key_inum(c, key) &&
2097 			    key_type(c, key1) == UBIFS_DATA_KEY)
2098 				appending = 1;
2099 		} else
2100 			goto check_split;
2101 	} else if (appending && n != c->fanout) {
2102 		/* Try not to split consecutive data keys */
2103 		appending = 0;
2104 check_split:
2105 		if (n >= (c->fanout + 1) / 2) {
2106 			key1 = &znode->zbranch[0].key;
2107 			if (key_inum(c, key1) == key_inum(c, key) &&
2108 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2109 				key1 = &znode->zbranch[n].key;
2110 				if (key_inum(c, key1) != key_inum(c, key) ||
2111 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2112 					keep = n;
2113 					move = c->fanout - keep;
2114 					zi = znode;
2115 					goto do_split;
2116 				}
2117 			}
2118 		}
2119 	}
2120 
2121 	if (appending) {
2122 		keep = c->fanout;
2123 		move = 0;
2124 	} else {
2125 		keep = (c->fanout + 1) / 2;
2126 		move = c->fanout - keep;
2127 	}
2128 
2129 	/*
2130 	 * Although we don't at present, we could look at the neighbors and see
2131 	 * if we can move some zbranches there.
2132 	 */
2133 
2134 	if (n < keep) {
2135 		/* Insert into existing znode */
2136 		zi = znode;
2137 		move += 1;
2138 		keep -= 1;
2139 	} else {
2140 		/* Insert into new znode */
2141 		zi = zn;
2142 		n -= keep;
2143 		/* Re-parent */
2144 		if (zn->level != 0)
2145 			zbr->znode->parent = zn;
2146 	}
2147 
2148 do_split:
2149 
2150 	__set_bit(DIRTY_ZNODE, &zn->flags);
2151 	atomic_long_inc(&c->dirty_zn_cnt);
2152 
2153 	zn->child_cnt = move;
2154 	znode->child_cnt = keep;
2155 
2156 	dbg_tnc("moving %d, keeping %d", move, keep);
2157 
2158 	/* Move zbranch */
2159 	for (i = 0; i < move; i++) {
2160 		zn->zbranch[i] = znode->zbranch[keep + i];
2161 		/* Re-parent */
2162 		if (zn->level != 0)
2163 			if (zn->zbranch[i].znode) {
2164 				zn->zbranch[i].znode->parent = zn;
2165 				zn->zbranch[i].znode->iip = i;
2166 			}
2167 	}
2168 
2169 	/* Insert new key and branch */
2170 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2171 
2172 	insert_zbranch(zi, zbr, n);
2173 
2174 	/* Insert new znode (produced by spitting) into the parent */
2175 	if (zp) {
2176 		if (n == 0 && zi == znode && znode->iip == 0)
2177 			correct_parent_keys(c, znode);
2178 
2179 		/* Locate insertion point */
2180 		n = znode->iip + 1;
2181 
2182 		/* Tail recursion */
2183 		zbr->key = zn->zbranch[0].key;
2184 		zbr->znode = zn;
2185 		zbr->lnum = 0;
2186 		zbr->offs = 0;
2187 		zbr->len = 0;
2188 		znode = zp;
2189 
2190 		goto again;
2191 	}
2192 
2193 	/* We have to split root znode */
2194 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2195 
2196 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2197 	if (!zi)
2198 		return -ENOMEM;
2199 
2200 	zi->child_cnt = 2;
2201 	zi->level = znode->level + 1;
2202 
2203 	__set_bit(DIRTY_ZNODE, &zi->flags);
2204 	atomic_long_inc(&c->dirty_zn_cnt);
2205 
2206 	zi->zbranch[0].key = znode->zbranch[0].key;
2207 	zi->zbranch[0].znode = znode;
2208 	zi->zbranch[0].lnum = c->zroot.lnum;
2209 	zi->zbranch[0].offs = c->zroot.offs;
2210 	zi->zbranch[0].len = c->zroot.len;
2211 	zi->zbranch[1].key = zn->zbranch[0].key;
2212 	zi->zbranch[1].znode = zn;
2213 
2214 	c->zroot.lnum = 0;
2215 	c->zroot.offs = 0;
2216 	c->zroot.len = 0;
2217 	c->zroot.znode = zi;
2218 
2219 	zn->parent = zi;
2220 	zn->iip = 1;
2221 	znode->parent = zi;
2222 	znode->iip = 0;
2223 
2224 	return 0;
2225 }
2226 
2227 /**
2228  * ubifs_tnc_add - add a node to TNC.
2229  * @c: UBIFS file-system description object
2230  * @key: key to add
2231  * @lnum: LEB number of node
2232  * @offs: node offset
2233  * @len: node length
2234  *
2235  * This function adds a node with key @key to TNC. The node may be new or it may
2236  * obsolete some existing one. Returns %0 on success or negative error code on
2237  * failure.
2238  */
2239 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2240 		  int offs, int len)
2241 {
2242 	int found, n, err = 0;
2243 	struct ubifs_znode *znode;
2244 
2245 	mutex_lock(&c->tnc_mutex);
2246 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2247 	found = lookup_level0_dirty(c, key, &znode, &n);
2248 	if (!found) {
2249 		struct ubifs_zbranch zbr;
2250 
2251 		zbr.znode = NULL;
2252 		zbr.lnum = lnum;
2253 		zbr.offs = offs;
2254 		zbr.len = len;
2255 		key_copy(c, key, &zbr.key);
2256 		err = tnc_insert(c, znode, &zbr, n + 1);
2257 	} else if (found == 1) {
2258 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2259 
2260 		lnc_free(zbr);
2261 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2262 		zbr->lnum = lnum;
2263 		zbr->offs = offs;
2264 		zbr->len = len;
2265 	} else
2266 		err = found;
2267 	if (!err)
2268 		err = dbg_check_tnc(c, 0);
2269 	mutex_unlock(&c->tnc_mutex);
2270 
2271 	return err;
2272 }
2273 
2274 /**
2275  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2276  * @c: UBIFS file-system description object
2277  * @key: key to add
2278  * @old_lnum: LEB number of old node
2279  * @old_offs: old node offset
2280  * @lnum: LEB number of node
2281  * @offs: node offset
2282  * @len: node length
2283  *
2284  * This function replaces a node with key @key in the TNC only if the old node
2285  * is found.  This function is called by garbage collection when node are moved.
2286  * Returns %0 on success or negative error code on failure.
2287  */
2288 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2289 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2290 {
2291 	int found, n, err = 0;
2292 	struct ubifs_znode *znode;
2293 
2294 	mutex_lock(&c->tnc_mutex);
2295 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2296 		 old_offs, lnum, offs, len);
2297 	found = lookup_level0_dirty(c, key, &znode, &n);
2298 	if (found < 0) {
2299 		err = found;
2300 		goto out_unlock;
2301 	}
2302 
2303 	if (found == 1) {
2304 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2305 
2306 		found = 0;
2307 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2308 			lnc_free(zbr);
2309 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2310 			if (err)
2311 				goto out_unlock;
2312 			zbr->lnum = lnum;
2313 			zbr->offs = offs;
2314 			zbr->len = len;
2315 			found = 1;
2316 		} else if (is_hash_key(c, key)) {
2317 			found = resolve_collision_directly(c, key, &znode, &n,
2318 							   old_lnum, old_offs);
2319 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2320 				found, znode, n, old_lnum, old_offs);
2321 			if (found < 0) {
2322 				err = found;
2323 				goto out_unlock;
2324 			}
2325 
2326 			if (found) {
2327 				/* Ensure the znode is dirtied */
2328 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2329 					znode = dirty_cow_bottom_up(c, znode);
2330 					if (IS_ERR(znode)) {
2331 						err = PTR_ERR(znode);
2332 						goto out_unlock;
2333 					}
2334 				}
2335 				zbr = &znode->zbranch[n];
2336 				lnc_free(zbr);
2337 				err = ubifs_add_dirt(c, zbr->lnum,
2338 						     zbr->len);
2339 				if (err)
2340 					goto out_unlock;
2341 				zbr->lnum = lnum;
2342 				zbr->offs = offs;
2343 				zbr->len = len;
2344 			}
2345 		}
2346 	}
2347 
2348 	if (!found)
2349 		err = ubifs_add_dirt(c, lnum, len);
2350 
2351 	if (!err)
2352 		err = dbg_check_tnc(c, 0);
2353 
2354 out_unlock:
2355 	mutex_unlock(&c->tnc_mutex);
2356 	return err;
2357 }
2358 
2359 /**
2360  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2361  * @c: UBIFS file-system description object
2362  * @key: key to add
2363  * @lnum: LEB number of node
2364  * @offs: node offset
2365  * @len: node length
2366  * @nm: node name
2367  *
2368  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2369  * may have collisions, like directory entry keys.
2370  */
2371 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2372 		     int lnum, int offs, int len,
2373 		     const struct fscrypt_name *nm)
2374 {
2375 	int found, n, err = 0;
2376 	struct ubifs_znode *znode;
2377 
2378 	mutex_lock(&c->tnc_mutex);
2379 	//dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2380 	//	 lnum, offs, nm->len, nm->name);
2381 	found = lookup_level0_dirty(c, key, &znode, &n);
2382 	if (found < 0) {
2383 		err = found;
2384 		goto out_unlock;
2385 	}
2386 
2387 	if (found == 1) {
2388 		if (c->replaying)
2389 			found = fallible_resolve_collision(c, key, &znode, &n,
2390 							   nm, 1);
2391 		else
2392 			found = resolve_collision(c, key, &znode, &n, nm);
2393 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2394 		if (found < 0) {
2395 			err = found;
2396 			goto out_unlock;
2397 		}
2398 
2399 		/* Ensure the znode is dirtied */
2400 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2401 			znode = dirty_cow_bottom_up(c, znode);
2402 			if (IS_ERR(znode)) {
2403 				err = PTR_ERR(znode);
2404 				goto out_unlock;
2405 			}
2406 		}
2407 
2408 		if (found == 1) {
2409 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2410 
2411 			lnc_free(zbr);
2412 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2413 			zbr->lnum = lnum;
2414 			zbr->offs = offs;
2415 			zbr->len = len;
2416 			goto out_unlock;
2417 		}
2418 	}
2419 
2420 	if (!found) {
2421 		struct ubifs_zbranch zbr;
2422 
2423 		zbr.znode = NULL;
2424 		zbr.lnum = lnum;
2425 		zbr.offs = offs;
2426 		zbr.len = len;
2427 		key_copy(c, key, &zbr.key);
2428 		err = tnc_insert(c, znode, &zbr, n + 1);
2429 		if (err)
2430 			goto out_unlock;
2431 		if (c->replaying) {
2432 			/*
2433 			 * We did not find it in the index so there may be a
2434 			 * dangling branch still in the index. So we remove it
2435 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2436 			 * an unmatchable name.
2437 			 */
2438 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2439 
2440 			err = dbg_check_tnc(c, 0);
2441 			mutex_unlock(&c->tnc_mutex);
2442 			if (err)
2443 				return err;
2444 			return ubifs_tnc_remove_nm(c, key, &noname);
2445 		}
2446 	}
2447 
2448 out_unlock:
2449 	if (!err)
2450 		err = dbg_check_tnc(c, 0);
2451 	mutex_unlock(&c->tnc_mutex);
2452 	return err;
2453 }
2454 
2455 /**
2456  * tnc_delete - delete a znode form TNC.
2457  * @c: UBIFS file-system description object
2458  * @znode: znode to delete from
2459  * @n: zbranch slot number to delete
2460  *
2461  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2462  * case of success and a negative error code in case of failure.
2463  */
2464 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2465 {
2466 	struct ubifs_zbranch *zbr;
2467 	struct ubifs_znode *zp;
2468 	int i, err;
2469 
2470 	/* Delete without merge for now */
2471 	ubifs_assert(znode->level == 0);
2472 	ubifs_assert(n >= 0 && n < c->fanout);
2473 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2474 
2475 	zbr = &znode->zbranch[n];
2476 	lnc_free(zbr);
2477 
2478 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2479 	if (err) {
2480 		ubifs_dump_znode(c, znode);
2481 		return err;
2482 	}
2483 
2484 	/* We do not "gap" zbranch slots */
2485 	for (i = n; i < znode->child_cnt - 1; i++)
2486 		znode->zbranch[i] = znode->zbranch[i + 1];
2487 	znode->child_cnt -= 1;
2488 
2489 	if (znode->child_cnt > 0)
2490 		return 0;
2491 
2492 	/*
2493 	 * This was the last zbranch, we have to delete this znode from the
2494 	 * parent.
2495 	 */
2496 
2497 	do {
2498 		ubifs_assert(!ubifs_zn_obsolete(znode));
2499 		ubifs_assert(ubifs_zn_dirty(znode));
2500 
2501 		zp = znode->parent;
2502 		n = znode->iip;
2503 
2504 		atomic_long_dec(&c->dirty_zn_cnt);
2505 
2506 		err = insert_old_idx_znode(c, znode);
2507 		if (err)
2508 			return err;
2509 
2510 		if (znode->cnext) {
2511 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2512 			atomic_long_inc(&c->clean_zn_cnt);
2513 			atomic_long_inc(&ubifs_clean_zn_cnt);
2514 		} else
2515 			kfree(znode);
2516 		znode = zp;
2517 	} while (znode->child_cnt == 1); /* while removing last child */
2518 
2519 	/* Remove from znode, entry n - 1 */
2520 	znode->child_cnt -= 1;
2521 	ubifs_assert(znode->level != 0);
2522 	for (i = n; i < znode->child_cnt; i++) {
2523 		znode->zbranch[i] = znode->zbranch[i + 1];
2524 		if (znode->zbranch[i].znode)
2525 			znode->zbranch[i].znode->iip = i;
2526 	}
2527 
2528 	/*
2529 	 * If this is the root and it has only 1 child then
2530 	 * collapse the tree.
2531 	 */
2532 	if (!znode->parent) {
2533 		while (znode->child_cnt == 1 && znode->level != 0) {
2534 			zp = znode;
2535 			zbr = &znode->zbranch[0];
2536 			znode = get_znode(c, znode, 0);
2537 			if (IS_ERR(znode))
2538 				return PTR_ERR(znode);
2539 			znode = dirty_cow_znode(c, zbr);
2540 			if (IS_ERR(znode))
2541 				return PTR_ERR(znode);
2542 			znode->parent = NULL;
2543 			znode->iip = 0;
2544 			if (c->zroot.len) {
2545 				err = insert_old_idx(c, c->zroot.lnum,
2546 						     c->zroot.offs);
2547 				if (err)
2548 					return err;
2549 			}
2550 			c->zroot.lnum = zbr->lnum;
2551 			c->zroot.offs = zbr->offs;
2552 			c->zroot.len = zbr->len;
2553 			c->zroot.znode = znode;
2554 			ubifs_assert(!ubifs_zn_obsolete(zp));
2555 			ubifs_assert(ubifs_zn_dirty(zp));
2556 			atomic_long_dec(&c->dirty_zn_cnt);
2557 
2558 			if (zp->cnext) {
2559 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2560 				atomic_long_inc(&c->clean_zn_cnt);
2561 				atomic_long_inc(&ubifs_clean_zn_cnt);
2562 			} else
2563 				kfree(zp);
2564 		}
2565 	}
2566 
2567 	return 0;
2568 }
2569 
2570 /**
2571  * ubifs_tnc_remove - remove an index entry of a node.
2572  * @c: UBIFS file-system description object
2573  * @key: key of node
2574  *
2575  * Returns %0 on success or negative error code on failure.
2576  */
2577 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2578 {
2579 	int found, n, err = 0;
2580 	struct ubifs_znode *znode;
2581 
2582 	mutex_lock(&c->tnc_mutex);
2583 	dbg_tnck(key, "key ");
2584 	found = lookup_level0_dirty(c, key, &znode, &n);
2585 	if (found < 0) {
2586 		err = found;
2587 		goto out_unlock;
2588 	}
2589 	if (found == 1)
2590 		err = tnc_delete(c, znode, n);
2591 	if (!err)
2592 		err = dbg_check_tnc(c, 0);
2593 
2594 out_unlock:
2595 	mutex_unlock(&c->tnc_mutex);
2596 	return err;
2597 }
2598 
2599 /**
2600  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2601  * @c: UBIFS file-system description object
2602  * @key: key of node
2603  * @nm: directory entry name
2604  *
2605  * Returns %0 on success or negative error code on failure.
2606  */
2607 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2608 			const struct fscrypt_name *nm)
2609 {
2610 	int n, err;
2611 	struct ubifs_znode *znode;
2612 
2613 	mutex_lock(&c->tnc_mutex);
2614 	//dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2615 	err = lookup_level0_dirty(c, key, &znode, &n);
2616 	if (err < 0)
2617 		goto out_unlock;
2618 
2619 	if (err) {
2620 		if (c->replaying)
2621 			err = fallible_resolve_collision(c, key, &znode, &n,
2622 							 nm, 0);
2623 		else
2624 			err = resolve_collision(c, key, &znode, &n, nm);
2625 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2626 		if (err < 0)
2627 			goto out_unlock;
2628 		if (err) {
2629 			/* Ensure the znode is dirtied */
2630 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2631 				znode = dirty_cow_bottom_up(c, znode);
2632 				if (IS_ERR(znode)) {
2633 					err = PTR_ERR(znode);
2634 					goto out_unlock;
2635 				}
2636 			}
2637 			err = tnc_delete(c, znode, n);
2638 		}
2639 	}
2640 
2641 out_unlock:
2642 	if (!err)
2643 		err = dbg_check_tnc(c, 0);
2644 	mutex_unlock(&c->tnc_mutex);
2645 	return err;
2646 }
2647 
2648 /**
2649  * key_in_range - determine if a key falls within a range of keys.
2650  * @c: UBIFS file-system description object
2651  * @key: key to check
2652  * @from_key: lowest key in range
2653  * @to_key: highest key in range
2654  *
2655  * This function returns %1 if the key is in range and %0 otherwise.
2656  */
2657 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2658 			union ubifs_key *from_key, union ubifs_key *to_key)
2659 {
2660 	if (keys_cmp(c, key, from_key) < 0)
2661 		return 0;
2662 	if (keys_cmp(c, key, to_key) > 0)
2663 		return 0;
2664 	return 1;
2665 }
2666 
2667 /**
2668  * ubifs_tnc_remove_range - remove index entries in range.
2669  * @c: UBIFS file-system description object
2670  * @from_key: lowest key to remove
2671  * @to_key: highest key to remove
2672  *
2673  * This function removes index entries starting at @from_key and ending at
2674  * @to_key.  This function returns zero in case of success and a negative error
2675  * code in case of failure.
2676  */
2677 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2678 			   union ubifs_key *to_key)
2679 {
2680 	int i, n, k, err = 0;
2681 	struct ubifs_znode *znode;
2682 	union ubifs_key *key;
2683 
2684 	mutex_lock(&c->tnc_mutex);
2685 	while (1) {
2686 		/* Find first level 0 znode that contains keys to remove */
2687 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2688 		if (err < 0)
2689 			goto out_unlock;
2690 
2691 		if (err)
2692 			key = from_key;
2693 		else {
2694 			err = tnc_next(c, &znode, &n);
2695 			if (err == -ENOENT) {
2696 				err = 0;
2697 				goto out_unlock;
2698 			}
2699 			if (err < 0)
2700 				goto out_unlock;
2701 			key = &znode->zbranch[n].key;
2702 			if (!key_in_range(c, key, from_key, to_key)) {
2703 				err = 0;
2704 				goto out_unlock;
2705 			}
2706 		}
2707 
2708 		/* Ensure the znode is dirtied */
2709 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2710 			znode = dirty_cow_bottom_up(c, znode);
2711 			if (IS_ERR(znode)) {
2712 				err = PTR_ERR(znode);
2713 				goto out_unlock;
2714 			}
2715 		}
2716 
2717 		/* Remove all keys in range except the first */
2718 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2719 			key = &znode->zbranch[i].key;
2720 			if (!key_in_range(c, key, from_key, to_key))
2721 				break;
2722 			lnc_free(&znode->zbranch[i]);
2723 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2724 					     znode->zbranch[i].len);
2725 			if (err) {
2726 				ubifs_dump_znode(c, znode);
2727 				goto out_unlock;
2728 			}
2729 			dbg_tnck(key, "removing key ");
2730 		}
2731 		if (k) {
2732 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2733 				znode->zbranch[i - k] = znode->zbranch[i];
2734 			znode->child_cnt -= k;
2735 		}
2736 
2737 		/* Now delete the first */
2738 		err = tnc_delete(c, znode, n);
2739 		if (err)
2740 			goto out_unlock;
2741 	}
2742 
2743 out_unlock:
2744 	if (!err)
2745 		err = dbg_check_tnc(c, 0);
2746 	mutex_unlock(&c->tnc_mutex);
2747 	return err;
2748 }
2749 
2750 /**
2751  * ubifs_tnc_remove_ino - remove an inode from TNC.
2752  * @c: UBIFS file-system description object
2753  * @inum: inode number to remove
2754  *
2755  * This function remove inode @inum and all the extended attributes associated
2756  * with the anode from TNC and returns zero in case of success or a negative
2757  * error code in case of failure.
2758  */
2759 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2760 {
2761 	union ubifs_key key1, key2;
2762 	struct ubifs_dent_node *xent, *pxent = NULL;
2763 	struct fscrypt_name nm = {0};
2764 
2765 	dbg_tnc("ino %lu", (unsigned long)inum);
2766 
2767 	/*
2768 	 * Walk all extended attribute entries and remove them together with
2769 	 * corresponding extended attribute inodes.
2770 	 */
2771 	lowest_xent_key(c, &key1, inum);
2772 	while (1) {
2773 		ino_t xattr_inum;
2774 		int err;
2775 
2776 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2777 		if (IS_ERR(xent)) {
2778 			err = PTR_ERR(xent);
2779 			if (err == -ENOENT)
2780 				break;
2781 			return err;
2782 		}
2783 
2784 		xattr_inum = le64_to_cpu(xent->inum);
2785 		dbg_tnc("xent '%s', ino %lu", xent->name,
2786 			(unsigned long)xattr_inum);
2787 
2788 		fname_name(&nm) = xent->name;
2789 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2790 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2791 		if (err) {
2792 			kfree(xent);
2793 			return err;
2794 		}
2795 
2796 		lowest_ino_key(c, &key1, xattr_inum);
2797 		highest_ino_key(c, &key2, xattr_inum);
2798 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2799 		if (err) {
2800 			kfree(xent);
2801 			return err;
2802 		}
2803 
2804 		kfree(pxent);
2805 		pxent = xent;
2806 		key_read(c, &xent->key, &key1);
2807 	}
2808 
2809 	kfree(pxent);
2810 	lowest_ino_key(c, &key1, inum);
2811 	highest_ino_key(c, &key2, inum);
2812 
2813 	return ubifs_tnc_remove_range(c, &key1, &key2);
2814 }
2815 
2816 /**
2817  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2818  * @c: UBIFS file-system description object
2819  * @key: key of last entry
2820  * @nm: name of last entry found or %NULL
2821  *
2822  * This function finds and reads the next directory or extended attribute entry
2823  * after the given key (@key) if there is one. @nm is used to resolve
2824  * collisions.
2825  *
2826  * If the name of the current entry is not known and only the key is known,
2827  * @nm->name has to be %NULL. In this case the semantics of this function is a
2828  * little bit different and it returns the entry corresponding to this key, not
2829  * the next one. If the key was not found, the closest "right" entry is
2830  * returned.
2831  *
2832  * If the fist entry has to be found, @key has to contain the lowest possible
2833  * key value for this inode and @name has to be %NULL.
2834  *
2835  * This function returns the found directory or extended attribute entry node
2836  * in case of success, %-ENOENT is returned if no entry was found, and a
2837  * negative error code is returned in case of failure.
2838  */
2839 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2840 					   union ubifs_key *key,
2841 					   const struct fscrypt_name *nm)
2842 {
2843 	int n, err, type = key_type(c, key);
2844 	struct ubifs_znode *znode;
2845 	struct ubifs_dent_node *dent;
2846 	struct ubifs_zbranch *zbr;
2847 	union ubifs_key *dkey;
2848 
2849 	//dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2850 	ubifs_assert(is_hash_key(c, key));
2851 
2852 	mutex_lock(&c->tnc_mutex);
2853 	err = ubifs_lookup_level0(c, key, &znode, &n);
2854 	if (unlikely(err < 0))
2855 		goto out_unlock;
2856 
2857 	if (fname_len(nm) > 0) {
2858 		if (err) {
2859 			/* Handle collisions */
2860 			err = resolve_collision(c, key, &znode, &n, nm);
2861 			dbg_tnc("rc returned %d, znode %p, n %d",
2862 				err, znode, n);
2863 			if (unlikely(err < 0))
2864 				goto out_unlock;
2865 		}
2866 
2867 		/* Now find next entry */
2868 		err = tnc_next(c, &znode, &n);
2869 		if (unlikely(err))
2870 			goto out_unlock;
2871 	} else {
2872 		/*
2873 		 * The full name of the entry was not given, in which case the
2874 		 * behavior of this function is a little different and it
2875 		 * returns current entry, not the next one.
2876 		 */
2877 		if (!err) {
2878 			/*
2879 			 * However, the given key does not exist in the TNC
2880 			 * tree and @znode/@n variables contain the closest
2881 			 * "preceding" element. Switch to the next one.
2882 			 */
2883 			err = tnc_next(c, &znode, &n);
2884 			if (err)
2885 				goto out_unlock;
2886 		}
2887 	}
2888 
2889 	zbr = &znode->zbranch[n];
2890 	dent = kmalloc(zbr->len, GFP_NOFS);
2891 	if (unlikely(!dent)) {
2892 		err = -ENOMEM;
2893 		goto out_unlock;
2894 	}
2895 
2896 	/*
2897 	 * The above 'tnc_next()' call could lead us to the next inode, check
2898 	 * this.
2899 	 */
2900 	dkey = &zbr->key;
2901 	if (key_inum(c, dkey) != key_inum(c, key) ||
2902 	    key_type(c, dkey) != type) {
2903 		err = -ENOENT;
2904 		goto out_free;
2905 	}
2906 
2907 	err = tnc_read_hashed_node(c, zbr, dent);
2908 	if (unlikely(err))
2909 		goto out_free;
2910 
2911 	mutex_unlock(&c->tnc_mutex);
2912 	return dent;
2913 
2914 out_free:
2915 	kfree(dent);
2916 out_unlock:
2917 	mutex_unlock(&c->tnc_mutex);
2918 	return ERR_PTR(err);
2919 }
2920 
2921 /**
2922  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2923  * @c: UBIFS file-system description object
2924  *
2925  * Destroy left-over obsolete znodes from a failed commit.
2926  */
2927 static void tnc_destroy_cnext(struct ubifs_info *c)
2928 {
2929 	struct ubifs_znode *cnext;
2930 
2931 	if (!c->cnext)
2932 		return;
2933 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2934 	cnext = c->cnext;
2935 	do {
2936 		struct ubifs_znode *znode = cnext;
2937 
2938 		cnext = cnext->cnext;
2939 		if (ubifs_zn_obsolete(znode))
2940 			kfree(znode);
2941 	} while (cnext && cnext != c->cnext);
2942 }
2943 
2944 /**
2945  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2946  * @c: UBIFS file-system description object
2947  */
2948 void ubifs_tnc_close(struct ubifs_info *c)
2949 {
2950 	tnc_destroy_cnext(c);
2951 	if (c->zroot.znode) {
2952 		long n, freed;
2953 
2954 		n = atomic_long_read(&c->clean_zn_cnt);
2955 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2956 		ubifs_assert(freed == n);
2957 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
2958 	}
2959 	kfree(c->gap_lebs);
2960 	kfree(c->ilebs);
2961 	destroy_old_idx(c);
2962 }
2963 
2964 /**
2965  * left_znode - get the znode to the left.
2966  * @c: UBIFS file-system description object
2967  * @znode: znode
2968  *
2969  * This function returns a pointer to the znode to the left of @znode or NULL if
2970  * there is not one. A negative error code is returned on failure.
2971  */
2972 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2973 				      struct ubifs_znode *znode)
2974 {
2975 	int level = znode->level;
2976 
2977 	while (1) {
2978 		int n = znode->iip - 1;
2979 
2980 		/* Go up until we can go left */
2981 		znode = znode->parent;
2982 		if (!znode)
2983 			return NULL;
2984 		if (n >= 0) {
2985 			/* Now go down the rightmost branch to 'level' */
2986 			znode = get_znode(c, znode, n);
2987 			if (IS_ERR(znode))
2988 				return znode;
2989 			while (znode->level != level) {
2990 				n = znode->child_cnt - 1;
2991 				znode = get_znode(c, znode, n);
2992 				if (IS_ERR(znode))
2993 					return znode;
2994 			}
2995 			break;
2996 		}
2997 	}
2998 	return znode;
2999 }
3000 
3001 /**
3002  * right_znode - get the znode to the right.
3003  * @c: UBIFS file-system description object
3004  * @znode: znode
3005  *
3006  * This function returns a pointer to the znode to the right of @znode or NULL
3007  * if there is not one. A negative error code is returned on failure.
3008  */
3009 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3010 				       struct ubifs_znode *znode)
3011 {
3012 	int level = znode->level;
3013 
3014 	while (1) {
3015 		int n = znode->iip + 1;
3016 
3017 		/* Go up until we can go right */
3018 		znode = znode->parent;
3019 		if (!znode)
3020 			return NULL;
3021 		if (n < znode->child_cnt) {
3022 			/* Now go down the leftmost branch to 'level' */
3023 			znode = get_znode(c, znode, n);
3024 			if (IS_ERR(znode))
3025 				return znode;
3026 			while (znode->level != level) {
3027 				znode = get_znode(c, znode, 0);
3028 				if (IS_ERR(znode))
3029 					return znode;
3030 			}
3031 			break;
3032 		}
3033 	}
3034 	return znode;
3035 }
3036 
3037 /**
3038  * lookup_znode - find a particular indexing node from TNC.
3039  * @c: UBIFS file-system description object
3040  * @key: index node key to lookup
3041  * @level: index node level
3042  * @lnum: index node LEB number
3043  * @offs: index node offset
3044  *
3045  * This function searches an indexing node by its first key @key and its
3046  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3047  * nodes it traverses to TNC. This function is called for indexing nodes which
3048  * were found on the media by scanning, for example when garbage-collecting or
3049  * when doing in-the-gaps commit. This means that the indexing node which is
3050  * looked for does not have to have exactly the same leftmost key @key, because
3051  * the leftmost key may have been changed, in which case TNC will contain a
3052  * dirty znode which still refers the same @lnum:@offs. This function is clever
3053  * enough to recognize such indexing nodes.
3054  *
3055  * Note, if a znode was deleted or changed too much, then this function will
3056  * not find it. For situations like this UBIFS has the old index RB-tree
3057  * (indexed by @lnum:@offs).
3058  *
3059  * This function returns a pointer to the znode found or %NULL if it is not
3060  * found. A negative error code is returned on failure.
3061  */
3062 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3063 					union ubifs_key *key, int level,
3064 					int lnum, int offs)
3065 {
3066 	struct ubifs_znode *znode, *zn;
3067 	int n, nn;
3068 
3069 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3070 
3071 	/*
3072 	 * The arguments have probably been read off flash, so don't assume
3073 	 * they are valid.
3074 	 */
3075 	if (level < 0)
3076 		return ERR_PTR(-EINVAL);
3077 
3078 	/* Get the root znode */
3079 	znode = c->zroot.znode;
3080 	if (!znode) {
3081 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3082 		if (IS_ERR(znode))
3083 			return znode;
3084 	}
3085 	/* Check if it is the one we are looking for */
3086 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3087 		return znode;
3088 	/* Descend to the parent level i.e. (level + 1) */
3089 	if (level >= znode->level)
3090 		return NULL;
3091 	while (1) {
3092 		ubifs_search_zbranch(c, znode, key, &n);
3093 		if (n < 0) {
3094 			/*
3095 			 * We reached a znode where the leftmost key is greater
3096 			 * than the key we are searching for. This is the same
3097 			 * situation as the one described in a huge comment at
3098 			 * the end of the 'ubifs_lookup_level0()' function. And
3099 			 * for exactly the same reasons we have to try to look
3100 			 * left before giving up.
3101 			 */
3102 			znode = left_znode(c, znode);
3103 			if (!znode)
3104 				return NULL;
3105 			if (IS_ERR(znode))
3106 				return znode;
3107 			ubifs_search_zbranch(c, znode, key, &n);
3108 			ubifs_assert(n >= 0);
3109 		}
3110 		if (znode->level == level + 1)
3111 			break;
3112 		znode = get_znode(c, znode, n);
3113 		if (IS_ERR(znode))
3114 			return znode;
3115 	}
3116 	/* Check if the child is the one we are looking for */
3117 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3118 		return get_znode(c, znode, n);
3119 	/* If the key is unique, there is nowhere else to look */
3120 	if (!is_hash_key(c, key))
3121 		return NULL;
3122 	/*
3123 	 * The key is not unique and so may be also in the znodes to either
3124 	 * side.
3125 	 */
3126 	zn = znode;
3127 	nn = n;
3128 	/* Look left */
3129 	while (1) {
3130 		/* Move one branch to the left */
3131 		if (n)
3132 			n -= 1;
3133 		else {
3134 			znode = left_znode(c, znode);
3135 			if (!znode)
3136 				break;
3137 			if (IS_ERR(znode))
3138 				return znode;
3139 			n = znode->child_cnt - 1;
3140 		}
3141 		/* Check it */
3142 		if (znode->zbranch[n].lnum == lnum &&
3143 		    znode->zbranch[n].offs == offs)
3144 			return get_znode(c, znode, n);
3145 		/* Stop if the key is less than the one we are looking for */
3146 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3147 			break;
3148 	}
3149 	/* Back to the middle */
3150 	znode = zn;
3151 	n = nn;
3152 	/* Look right */
3153 	while (1) {
3154 		/* Move one branch to the right */
3155 		if (++n >= znode->child_cnt) {
3156 			znode = right_znode(c, znode);
3157 			if (!znode)
3158 				break;
3159 			if (IS_ERR(znode))
3160 				return znode;
3161 			n = 0;
3162 		}
3163 		/* Check it */
3164 		if (znode->zbranch[n].lnum == lnum &&
3165 		    znode->zbranch[n].offs == offs)
3166 			return get_znode(c, znode, n);
3167 		/* Stop if the key is greater than the one we are looking for */
3168 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3169 			break;
3170 	}
3171 	return NULL;
3172 }
3173 
3174 /**
3175  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3176  * @c: UBIFS file-system description object
3177  * @key: key of index node
3178  * @level: index node level
3179  * @lnum: LEB number of index node
3180  * @offs: offset of index node
3181  *
3182  * This function returns %0 if the index node is not referred to in the TNC, %1
3183  * if the index node is referred to in the TNC and the corresponding znode is
3184  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3185  * znode is clean, and a negative error code in case of failure.
3186  *
3187  * Note, the @key argument has to be the key of the first child. Also note,
3188  * this function relies on the fact that 0:0 is never a valid LEB number and
3189  * offset for a main-area node.
3190  */
3191 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3192 		       int lnum, int offs)
3193 {
3194 	struct ubifs_znode *znode;
3195 
3196 	znode = lookup_znode(c, key, level, lnum, offs);
3197 	if (!znode)
3198 		return 0;
3199 	if (IS_ERR(znode))
3200 		return PTR_ERR(znode);
3201 
3202 	return ubifs_zn_dirty(znode) ? 1 : 2;
3203 }
3204 
3205 /**
3206  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3207  * @c: UBIFS file-system description object
3208  * @key: node key
3209  * @lnum: node LEB number
3210  * @offs: node offset
3211  *
3212  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3213  * not, and a negative error code in case of failure.
3214  *
3215  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3216  * and offset for a main-area node.
3217  */
3218 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3219 			       int lnum, int offs)
3220 {
3221 	struct ubifs_zbranch *zbr;
3222 	struct ubifs_znode *znode, *zn;
3223 	int n, found, err, nn;
3224 	const int unique = !is_hash_key(c, key);
3225 
3226 	found = ubifs_lookup_level0(c, key, &znode, &n);
3227 	if (found < 0)
3228 		return found; /* Error code */
3229 	if (!found)
3230 		return 0;
3231 	zbr = &znode->zbranch[n];
3232 	if (lnum == zbr->lnum && offs == zbr->offs)
3233 		return 1; /* Found it */
3234 	if (unique)
3235 		return 0;
3236 	/*
3237 	 * Because the key is not unique, we have to look left
3238 	 * and right as well
3239 	 */
3240 	zn = znode;
3241 	nn = n;
3242 	/* Look left */
3243 	while (1) {
3244 		err = tnc_prev(c, &znode, &n);
3245 		if (err == -ENOENT)
3246 			break;
3247 		if (err)
3248 			return err;
3249 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3250 			break;
3251 		zbr = &znode->zbranch[n];
3252 		if (lnum == zbr->lnum && offs == zbr->offs)
3253 			return 1; /* Found it */
3254 	}
3255 	/* Look right */
3256 	znode = zn;
3257 	n = nn;
3258 	while (1) {
3259 		err = tnc_next(c, &znode, &n);
3260 		if (err) {
3261 			if (err == -ENOENT)
3262 				return 0;
3263 			return err;
3264 		}
3265 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3266 			break;
3267 		zbr = &znode->zbranch[n];
3268 		if (lnum == zbr->lnum && offs == zbr->offs)
3269 			return 1; /* Found it */
3270 	}
3271 	return 0;
3272 }
3273 
3274 /**
3275  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3276  * @c: UBIFS file-system description object
3277  * @key: node key
3278  * @level: index node level (if it is an index node)
3279  * @lnum: node LEB number
3280  * @offs: node offset
3281  * @is_idx: non-zero if the node is an index node
3282  *
3283  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3284  * negative error code in case of failure. For index nodes, @key has to be the
3285  * key of the first child. An index node is considered to be in the TNC only if
3286  * the corresponding znode is clean or has not been loaded.
3287  */
3288 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3289 		       int lnum, int offs, int is_idx)
3290 {
3291 	int err;
3292 
3293 	mutex_lock(&c->tnc_mutex);
3294 	if (is_idx) {
3295 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3296 		if (err < 0)
3297 			goto out_unlock;
3298 		if (err == 1)
3299 			/* The index node was found but it was dirty */
3300 			err = 0;
3301 		else if (err == 2)
3302 			/* The index node was found and it was clean */
3303 			err = 1;
3304 		else
3305 			BUG_ON(err != 0);
3306 	} else
3307 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3308 
3309 out_unlock:
3310 	mutex_unlock(&c->tnc_mutex);
3311 	return err;
3312 }
3313 
3314 /**
3315  * ubifs_dirty_idx_node - dirty an index node.
3316  * @c: UBIFS file-system description object
3317  * @key: index node key
3318  * @level: index node level
3319  * @lnum: index node LEB number
3320  * @offs: index node offset
3321  *
3322  * This function loads and dirties an index node so that it can be garbage
3323  * collected. The @key argument has to be the key of the first child. This
3324  * function relies on the fact that 0:0 is never a valid LEB number and offset
3325  * for a main-area node. Returns %0 on success and a negative error code on
3326  * failure.
3327  */
3328 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3329 			 int lnum, int offs)
3330 {
3331 	struct ubifs_znode *znode;
3332 	int err = 0;
3333 
3334 	mutex_lock(&c->tnc_mutex);
3335 	znode = lookup_znode(c, key, level, lnum, offs);
3336 	if (!znode)
3337 		goto out_unlock;
3338 	if (IS_ERR(znode)) {
3339 		err = PTR_ERR(znode);
3340 		goto out_unlock;
3341 	}
3342 	znode = dirty_cow_bottom_up(c, znode);
3343 	if (IS_ERR(znode)) {
3344 		err = PTR_ERR(znode);
3345 		goto out_unlock;
3346 	}
3347 
3348 out_unlock:
3349 	mutex_unlock(&c->tnc_mutex);
3350 	return err;
3351 }
3352 
3353 /**
3354  * dbg_check_inode_size - check if inode size is correct.
3355  * @c: UBIFS file-system description object
3356  * @inum: inode number
3357  * @size: inode size
3358  *
3359  * This function makes sure that the inode size (@size) is correct and it does
3360  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3361  * if it has a data page beyond @size, and other negative error code in case of
3362  * other errors.
3363  */
3364 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3365 			 loff_t size)
3366 {
3367 	int err, n;
3368 	union ubifs_key from_key, to_key, *key;
3369 	struct ubifs_znode *znode;
3370 	unsigned int block;
3371 
3372 	if (!S_ISREG(inode->i_mode))
3373 		return 0;
3374 	if (!dbg_is_chk_gen(c))
3375 		return 0;
3376 
3377 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3378 	data_key_init(c, &from_key, inode->i_ino, block);
3379 	highest_data_key(c, &to_key, inode->i_ino);
3380 
3381 	mutex_lock(&c->tnc_mutex);
3382 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3383 	if (err < 0)
3384 		goto out_unlock;
3385 
3386 	if (err) {
3387 		key = &from_key;
3388 		goto out_dump;
3389 	}
3390 
3391 	err = tnc_next(c, &znode, &n);
3392 	if (err == -ENOENT) {
3393 		err = 0;
3394 		goto out_unlock;
3395 	}
3396 	if (err < 0)
3397 		goto out_unlock;
3398 
3399 	ubifs_assert(err == 0);
3400 	key = &znode->zbranch[n].key;
3401 	if (!key_in_range(c, key, &from_key, &to_key))
3402 		goto out_unlock;
3403 
3404 out_dump:
3405 	block = key_block(c, key);
3406 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3407 		  (unsigned long)inode->i_ino, size,
3408 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3409 	mutex_unlock(&c->tnc_mutex);
3410 	ubifs_dump_inode(c, inode);
3411 	dump_stack();
3412 	return -EINVAL;
3413 
3414 out_unlock:
3415 	mutex_unlock(&c->tnc_mutex);
3416 	return err;
3417 }
3418