1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /* 38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 39 * @NAME_LESS: name corresponding to the first argument is less than second 40 * @NAME_MATCHES: names match 41 * @NAME_GREATER: name corresponding to the second argument is greater than 42 * first 43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 44 * 45 * These constants were introduce to improve readability. 46 */ 47 enum { 48 NAME_LESS = 0, 49 NAME_MATCHES = 1, 50 NAME_GREATER = 2, 51 NOT_ON_MEDIA = 3, 52 }; 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err("old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct ubifs_old_idx *old_idx, *n; 182 183 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 184 kfree(old_idx); 185 186 c->old_idx = RB_ROOT; 187 } 188 189 /** 190 * copy_znode - copy a dirty znode. 191 * @c: UBIFS file-system description object 192 * @znode: znode to copy 193 * 194 * A dirty znode being committed may not be changed, so it is copied. 195 */ 196 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 197 struct ubifs_znode *znode) 198 { 199 struct ubifs_znode *zn; 200 201 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 202 if (unlikely(!zn)) 203 return ERR_PTR(-ENOMEM); 204 205 memcpy(zn, znode, c->max_znode_sz); 206 zn->cnext = NULL; 207 __set_bit(DIRTY_ZNODE, &zn->flags); 208 __clear_bit(COW_ZNODE, &zn->flags); 209 210 ubifs_assert(!ubifs_zn_obsolete(znode)); 211 __set_bit(OBSOLETE_ZNODE, &znode->flags); 212 213 if (znode->level != 0) { 214 int i; 215 const int n = zn->child_cnt; 216 217 /* The children now have new parent */ 218 for (i = 0; i < n; i++) { 219 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 220 221 if (zbr->znode) 222 zbr->znode->parent = zn; 223 } 224 } 225 226 atomic_long_inc(&c->dirty_zn_cnt); 227 return zn; 228 } 229 230 /** 231 * add_idx_dirt - add dirt due to a dirty znode. 232 * @c: UBIFS file-system description object 233 * @lnum: LEB number of index node 234 * @dirt: size of index node 235 * 236 * This function updates lprops dirty space and the new size of the index. 237 */ 238 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 239 { 240 c->calc_idx_sz -= ALIGN(dirt, 8); 241 return ubifs_add_dirt(c, lnum, dirt); 242 } 243 244 /** 245 * dirty_cow_znode - ensure a znode is not being committed. 246 * @c: UBIFS file-system description object 247 * @zbr: branch of znode to check 248 * 249 * Returns dirtied znode on success or negative error code on failure. 250 */ 251 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 252 struct ubifs_zbranch *zbr) 253 { 254 struct ubifs_znode *znode = zbr->znode; 255 struct ubifs_znode *zn; 256 int err; 257 258 if (!ubifs_zn_cow(znode)) { 259 /* znode is not being committed */ 260 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 261 atomic_long_inc(&c->dirty_zn_cnt); 262 atomic_long_dec(&c->clean_zn_cnt); 263 atomic_long_dec(&ubifs_clean_zn_cnt); 264 err = add_idx_dirt(c, zbr->lnum, zbr->len); 265 if (unlikely(err)) 266 return ERR_PTR(err); 267 } 268 return znode; 269 } 270 271 zn = copy_znode(c, znode); 272 if (IS_ERR(zn)) 273 return zn; 274 275 if (zbr->len) { 276 err = insert_old_idx(c, zbr->lnum, zbr->offs); 277 if (unlikely(err)) 278 return ERR_PTR(err); 279 err = add_idx_dirt(c, zbr->lnum, zbr->len); 280 } else 281 err = 0; 282 283 zbr->znode = zn; 284 zbr->lnum = 0; 285 zbr->offs = 0; 286 zbr->len = 0; 287 288 if (unlikely(err)) 289 return ERR_PTR(err); 290 return zn; 291 } 292 293 /** 294 * lnc_add - add a leaf node to the leaf node cache. 295 * @c: UBIFS file-system description object 296 * @zbr: zbranch of leaf node 297 * @node: leaf node 298 * 299 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 300 * purpose of the leaf node cache is to save re-reading the same leaf node over 301 * and over again. Most things are cached by VFS, however the file system must 302 * cache directory entries for readdir and for resolving hash collisions. The 303 * present implementation of the leaf node cache is extremely simple, and 304 * allows for error returns that are not used but that may be needed if a more 305 * complex implementation is created. 306 * 307 * Note, this function does not add the @node object to LNC directly, but 308 * allocates a copy of the object and adds the copy to LNC. The reason for this 309 * is that @node has been allocated outside of the TNC subsystem and will be 310 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 311 * may be changed at any time, e.g. freed by the shrinker. 312 */ 313 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 314 const void *node) 315 { 316 int err; 317 void *lnc_node; 318 const struct ubifs_dent_node *dent = node; 319 320 ubifs_assert(!zbr->leaf); 321 ubifs_assert(zbr->len != 0); 322 ubifs_assert(is_hash_key(c, &zbr->key)); 323 324 err = ubifs_validate_entry(c, dent); 325 if (err) { 326 dump_stack(); 327 ubifs_dump_node(c, dent); 328 return err; 329 } 330 331 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 332 if (!lnc_node) 333 /* We don't have to have the cache, so no error */ 334 return 0; 335 336 zbr->leaf = lnc_node; 337 return 0; 338 } 339 340 /** 341 * lnc_add_directly - add a leaf node to the leaf-node-cache. 342 * @c: UBIFS file-system description object 343 * @zbr: zbranch of leaf node 344 * @node: leaf node 345 * 346 * This function is similar to 'lnc_add()', but it does not create a copy of 347 * @node but inserts @node to TNC directly. 348 */ 349 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 350 void *node) 351 { 352 int err; 353 354 ubifs_assert(!zbr->leaf); 355 ubifs_assert(zbr->len != 0); 356 357 err = ubifs_validate_entry(c, node); 358 if (err) { 359 dump_stack(); 360 ubifs_dump_node(c, node); 361 return err; 362 } 363 364 zbr->leaf = node; 365 return 0; 366 } 367 368 /** 369 * lnc_free - remove a leaf node from the leaf node cache. 370 * @zbr: zbranch of leaf node 371 * @node: leaf node 372 */ 373 static void lnc_free(struct ubifs_zbranch *zbr) 374 { 375 if (!zbr->leaf) 376 return; 377 kfree(zbr->leaf); 378 zbr->leaf = NULL; 379 } 380 381 /** 382 * tnc_read_node_nm - read a "hashed" leaf node. 383 * @c: UBIFS file-system description object 384 * @zbr: key and position of the node 385 * @node: node is returned here 386 * 387 * This function reads a "hashed" node defined by @zbr from the leaf node cache 388 * (in it is there) or from the hash media, in which case the node is also 389 * added to LNC. Returns zero in case of success or a negative negative error 390 * code in case of failure. 391 */ 392 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 393 void *node) 394 { 395 int err; 396 397 ubifs_assert(is_hash_key(c, &zbr->key)); 398 399 if (zbr->leaf) { 400 /* Read from the leaf node cache */ 401 ubifs_assert(zbr->len != 0); 402 memcpy(node, zbr->leaf, zbr->len); 403 return 0; 404 } 405 406 err = ubifs_tnc_read_node(c, zbr, node); 407 if (err) 408 return err; 409 410 /* Add the node to the leaf node cache */ 411 err = lnc_add(c, zbr, node); 412 return err; 413 } 414 415 /** 416 * try_read_node - read a node if it is a node. 417 * @c: UBIFS file-system description object 418 * @buf: buffer to read to 419 * @type: node type 420 * @len: node length (not aligned) 421 * @lnum: LEB number of node to read 422 * @offs: offset of node to read 423 * 424 * This function tries to read a node of known type and length, checks it and 425 * stores it in @buf. This function returns %1 if a node is present and %0 if 426 * a node is not present. A negative error code is returned for I/O errors. 427 * This function performs that same function as ubifs_read_node except that 428 * it does not require that there is actually a node present and instead 429 * the return code indicates if a node was read. 430 * 431 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 432 * is true (it is controlled by corresponding mount option). However, if 433 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 434 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 435 * because during mounting or re-mounting from R/O mode to R/W mode we may read 436 * journal nodes (when replying the journal or doing the recovery) and the 437 * journal nodes may potentially be corrupted, so checking is required. 438 */ 439 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 440 int len, int lnum, int offs) 441 { 442 int err, node_len; 443 struct ubifs_ch *ch = buf; 444 uint32_t crc, node_crc; 445 446 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 447 448 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 449 if (err) { 450 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 451 type, lnum, offs, err); 452 return err; 453 } 454 455 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 456 return 0; 457 458 if (ch->node_type != type) 459 return 0; 460 461 node_len = le32_to_cpu(ch->len); 462 if (node_len != len) 463 return 0; 464 465 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 466 !c->remounting_rw) 467 return 1; 468 469 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 470 node_crc = le32_to_cpu(ch->crc); 471 if (crc != node_crc) 472 return 0; 473 474 return 1; 475 } 476 477 /** 478 * fallible_read_node - try to read a leaf node. 479 * @c: UBIFS file-system description object 480 * @key: key of node to read 481 * @zbr: position of node 482 * @node: node returned 483 * 484 * This function tries to read a node and returns %1 if the node is read, %0 485 * if the node is not present, and a negative error code in the case of error. 486 */ 487 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 488 struct ubifs_zbranch *zbr, void *node) 489 { 490 int ret; 491 492 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 493 494 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 495 zbr->offs); 496 if (ret == 1) { 497 union ubifs_key node_key; 498 struct ubifs_dent_node *dent = node; 499 500 /* All nodes have key in the same place */ 501 key_read(c, &dent->key, &node_key); 502 if (keys_cmp(c, key, &node_key) != 0) 503 ret = 0; 504 } 505 if (ret == 0 && c->replaying) 506 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 507 zbr->lnum, zbr->offs, zbr->len); 508 return ret; 509 } 510 511 /** 512 * matches_name - determine if a direntry or xattr entry matches a given name. 513 * @c: UBIFS file-system description object 514 * @zbr: zbranch of dent 515 * @nm: name to match 516 * 517 * This function checks if xentry/direntry referred by zbranch @zbr matches name 518 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 519 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 520 * of failure, a negative error code is returned. 521 */ 522 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 523 const struct qstr *nm) 524 { 525 struct ubifs_dent_node *dent; 526 int nlen, err; 527 528 /* If possible, match against the dent in the leaf node cache */ 529 if (!zbr->leaf) { 530 dent = kmalloc(zbr->len, GFP_NOFS); 531 if (!dent) 532 return -ENOMEM; 533 534 err = ubifs_tnc_read_node(c, zbr, dent); 535 if (err) 536 goto out_free; 537 538 /* Add the node to the leaf node cache */ 539 err = lnc_add_directly(c, zbr, dent); 540 if (err) 541 goto out_free; 542 } else 543 dent = zbr->leaf; 544 545 nlen = le16_to_cpu(dent->nlen); 546 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 547 if (err == 0) { 548 if (nlen == nm->len) 549 return NAME_MATCHES; 550 else if (nlen < nm->len) 551 return NAME_LESS; 552 else 553 return NAME_GREATER; 554 } else if (err < 0) 555 return NAME_LESS; 556 else 557 return NAME_GREATER; 558 559 out_free: 560 kfree(dent); 561 return err; 562 } 563 564 /** 565 * get_znode - get a TNC znode that may not be loaded yet. 566 * @c: UBIFS file-system description object 567 * @znode: parent znode 568 * @n: znode branch slot number 569 * 570 * This function returns the znode or a negative error code. 571 */ 572 static struct ubifs_znode *get_znode(struct ubifs_info *c, 573 struct ubifs_znode *znode, int n) 574 { 575 struct ubifs_zbranch *zbr; 576 577 zbr = &znode->zbranch[n]; 578 if (zbr->znode) 579 znode = zbr->znode; 580 else 581 znode = ubifs_load_znode(c, zbr, znode, n); 582 return znode; 583 } 584 585 /** 586 * tnc_next - find next TNC entry. 587 * @c: UBIFS file-system description object 588 * @zn: znode is passed and returned here 589 * @n: znode branch slot number is passed and returned here 590 * 591 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 592 * no next entry, or a negative error code otherwise. 593 */ 594 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 595 { 596 struct ubifs_znode *znode = *zn; 597 int nn = *n; 598 599 nn += 1; 600 if (nn < znode->child_cnt) { 601 *n = nn; 602 return 0; 603 } 604 while (1) { 605 struct ubifs_znode *zp; 606 607 zp = znode->parent; 608 if (!zp) 609 return -ENOENT; 610 nn = znode->iip + 1; 611 znode = zp; 612 if (nn < znode->child_cnt) { 613 znode = get_znode(c, znode, nn); 614 if (IS_ERR(znode)) 615 return PTR_ERR(znode); 616 while (znode->level != 0) { 617 znode = get_znode(c, znode, 0); 618 if (IS_ERR(znode)) 619 return PTR_ERR(znode); 620 } 621 nn = 0; 622 break; 623 } 624 } 625 *zn = znode; 626 *n = nn; 627 return 0; 628 } 629 630 /** 631 * tnc_prev - find previous TNC entry. 632 * @c: UBIFS file-system description object 633 * @zn: znode is returned here 634 * @n: znode branch slot number is passed and returned here 635 * 636 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 637 * there is no next entry, or a negative error code otherwise. 638 */ 639 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 640 { 641 struct ubifs_znode *znode = *zn; 642 int nn = *n; 643 644 if (nn > 0) { 645 *n = nn - 1; 646 return 0; 647 } 648 while (1) { 649 struct ubifs_znode *zp; 650 651 zp = znode->parent; 652 if (!zp) 653 return -ENOENT; 654 nn = znode->iip - 1; 655 znode = zp; 656 if (nn >= 0) { 657 znode = get_znode(c, znode, nn); 658 if (IS_ERR(znode)) 659 return PTR_ERR(znode); 660 while (znode->level != 0) { 661 nn = znode->child_cnt - 1; 662 znode = get_znode(c, znode, nn); 663 if (IS_ERR(znode)) 664 return PTR_ERR(znode); 665 } 666 nn = znode->child_cnt - 1; 667 break; 668 } 669 } 670 *zn = znode; 671 *n = nn; 672 return 0; 673 } 674 675 /** 676 * resolve_collision - resolve a collision. 677 * @c: UBIFS file-system description object 678 * @key: key of a directory or extended attribute entry 679 * @zn: znode is returned here 680 * @n: zbranch number is passed and returned here 681 * @nm: name of the entry 682 * 683 * This function is called for "hashed" keys to make sure that the found key 684 * really corresponds to the looked up node (directory or extended attribute 685 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 686 * %0 is returned if @nm is not found and @zn and @n are set to the previous 687 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 688 * This means that @n may be set to %-1 if the leftmost key in @zn is the 689 * previous one. A negative error code is returned on failures. 690 */ 691 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 692 struct ubifs_znode **zn, int *n, 693 const struct qstr *nm) 694 { 695 int err; 696 697 err = matches_name(c, &(*zn)->zbranch[*n], nm); 698 if (unlikely(err < 0)) 699 return err; 700 if (err == NAME_MATCHES) 701 return 1; 702 703 if (err == NAME_GREATER) { 704 /* Look left */ 705 while (1) { 706 err = tnc_prev(c, zn, n); 707 if (err == -ENOENT) { 708 ubifs_assert(*n == 0); 709 *n = -1; 710 return 0; 711 } 712 if (err < 0) 713 return err; 714 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 715 /* 716 * We have found the branch after which we would 717 * like to insert, but inserting in this znode 718 * may still be wrong. Consider the following 3 719 * znodes, in the case where we are resolving a 720 * collision with Key2. 721 * 722 * znode zp 723 * ---------------------- 724 * level 1 | Key0 | Key1 | 725 * ----------------------- 726 * | | 727 * znode za | | znode zb 728 * ------------ ------------ 729 * level 0 | Key0 | | Key2 | 730 * ------------ ------------ 731 * 732 * The lookup finds Key2 in znode zb. Lets say 733 * there is no match and the name is greater so 734 * we look left. When we find Key0, we end up 735 * here. If we return now, we will insert into 736 * znode za at slot n = 1. But that is invalid 737 * according to the parent's keys. Key2 must 738 * be inserted into znode zb. 739 * 740 * Note, this problem is not relevant for the 741 * case when we go right, because 742 * 'tnc_insert()' would correct the parent key. 743 */ 744 if (*n == (*zn)->child_cnt - 1) { 745 err = tnc_next(c, zn, n); 746 if (err) { 747 /* Should be impossible */ 748 ubifs_assert(0); 749 if (err == -ENOENT) 750 err = -EINVAL; 751 return err; 752 } 753 ubifs_assert(*n == 0); 754 *n = -1; 755 } 756 return 0; 757 } 758 err = matches_name(c, &(*zn)->zbranch[*n], nm); 759 if (err < 0) 760 return err; 761 if (err == NAME_LESS) 762 return 0; 763 if (err == NAME_MATCHES) 764 return 1; 765 ubifs_assert(err == NAME_GREATER); 766 } 767 } else { 768 int nn = *n; 769 struct ubifs_znode *znode = *zn; 770 771 /* Look right */ 772 while (1) { 773 err = tnc_next(c, &znode, &nn); 774 if (err == -ENOENT) 775 return 0; 776 if (err < 0) 777 return err; 778 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 779 return 0; 780 err = matches_name(c, &znode->zbranch[nn], nm); 781 if (err < 0) 782 return err; 783 if (err == NAME_GREATER) 784 return 0; 785 *zn = znode; 786 *n = nn; 787 if (err == NAME_MATCHES) 788 return 1; 789 ubifs_assert(err == NAME_LESS); 790 } 791 } 792 } 793 794 /** 795 * fallible_matches_name - determine if a dent matches a given name. 796 * @c: UBIFS file-system description object 797 * @zbr: zbranch of dent 798 * @nm: name to match 799 * 800 * This is a "fallible" version of 'matches_name()' function which does not 801 * panic if the direntry/xentry referred by @zbr does not exist on the media. 802 * 803 * This function checks if xentry/direntry referred by zbranch @zbr matches name 804 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 805 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 806 * if xentry/direntry referred by @zbr does not exist on the media. A negative 807 * error code is returned in case of failure. 808 */ 809 static int fallible_matches_name(struct ubifs_info *c, 810 struct ubifs_zbranch *zbr, 811 const struct qstr *nm) 812 { 813 struct ubifs_dent_node *dent; 814 int nlen, err; 815 816 /* If possible, match against the dent in the leaf node cache */ 817 if (!zbr->leaf) { 818 dent = kmalloc(zbr->len, GFP_NOFS); 819 if (!dent) 820 return -ENOMEM; 821 822 err = fallible_read_node(c, &zbr->key, zbr, dent); 823 if (err < 0) 824 goto out_free; 825 if (err == 0) { 826 /* The node was not present */ 827 err = NOT_ON_MEDIA; 828 goto out_free; 829 } 830 ubifs_assert(err == 1); 831 832 err = lnc_add_directly(c, zbr, dent); 833 if (err) 834 goto out_free; 835 } else 836 dent = zbr->leaf; 837 838 nlen = le16_to_cpu(dent->nlen); 839 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 840 if (err == 0) { 841 if (nlen == nm->len) 842 return NAME_MATCHES; 843 else if (nlen < nm->len) 844 return NAME_LESS; 845 else 846 return NAME_GREATER; 847 } else if (err < 0) 848 return NAME_LESS; 849 else 850 return NAME_GREATER; 851 852 out_free: 853 kfree(dent); 854 return err; 855 } 856 857 /** 858 * fallible_resolve_collision - resolve a collision even if nodes are missing. 859 * @c: UBIFS file-system description object 860 * @key: key 861 * @zn: znode is returned here 862 * @n: branch number is passed and returned here 863 * @nm: name of directory entry 864 * @adding: indicates caller is adding a key to the TNC 865 * 866 * This is a "fallible" version of the 'resolve_collision()' function which 867 * does not panic if one of the nodes referred to by TNC does not exist on the 868 * media. This may happen when replaying the journal if a deleted node was 869 * Garbage-collected and the commit was not done. A branch that refers to a node 870 * that is not present is called a dangling branch. The following are the return 871 * codes for this function: 872 * o if @nm was found, %1 is returned and @zn and @n are set to the found 873 * branch; 874 * o if we are @adding and @nm was not found, %0 is returned; 875 * o if we are not @adding and @nm was not found, but a dangling branch was 876 * found, then %1 is returned and @zn and @n are set to the dangling branch; 877 * o a negative error code is returned in case of failure. 878 */ 879 static int fallible_resolve_collision(struct ubifs_info *c, 880 const union ubifs_key *key, 881 struct ubifs_znode **zn, int *n, 882 const struct qstr *nm, int adding) 883 { 884 struct ubifs_znode *o_znode = NULL, *znode = *zn; 885 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 886 887 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 888 if (unlikely(cmp < 0)) 889 return cmp; 890 if (cmp == NAME_MATCHES) 891 return 1; 892 if (cmp == NOT_ON_MEDIA) { 893 o_znode = znode; 894 o_n = nn; 895 /* 896 * We are unlucky and hit a dangling branch straight away. 897 * Now we do not really know where to go to find the needed 898 * branch - to the left or to the right. Well, let's try left. 899 */ 900 unsure = 1; 901 } else if (!adding) 902 unsure = 1; /* Remove a dangling branch wherever it is */ 903 904 if (cmp == NAME_GREATER || unsure) { 905 /* Look left */ 906 while (1) { 907 err = tnc_prev(c, zn, n); 908 if (err == -ENOENT) { 909 ubifs_assert(*n == 0); 910 *n = -1; 911 break; 912 } 913 if (err < 0) 914 return err; 915 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 916 /* See comments in 'resolve_collision()' */ 917 if (*n == (*zn)->child_cnt - 1) { 918 err = tnc_next(c, zn, n); 919 if (err) { 920 /* Should be impossible */ 921 ubifs_assert(0); 922 if (err == -ENOENT) 923 err = -EINVAL; 924 return err; 925 } 926 ubifs_assert(*n == 0); 927 *n = -1; 928 } 929 break; 930 } 931 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 932 if (err < 0) 933 return err; 934 if (err == NAME_MATCHES) 935 return 1; 936 if (err == NOT_ON_MEDIA) { 937 o_znode = *zn; 938 o_n = *n; 939 continue; 940 } 941 if (!adding) 942 continue; 943 if (err == NAME_LESS) 944 break; 945 else 946 unsure = 0; 947 } 948 } 949 950 if (cmp == NAME_LESS || unsure) { 951 /* Look right */ 952 *zn = znode; 953 *n = nn; 954 while (1) { 955 err = tnc_next(c, &znode, &nn); 956 if (err == -ENOENT) 957 break; 958 if (err < 0) 959 return err; 960 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 961 break; 962 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 963 if (err < 0) 964 return err; 965 if (err == NAME_GREATER) 966 break; 967 *zn = znode; 968 *n = nn; 969 if (err == NAME_MATCHES) 970 return 1; 971 if (err == NOT_ON_MEDIA) { 972 o_znode = znode; 973 o_n = nn; 974 } 975 } 976 } 977 978 /* Never match a dangling branch when adding */ 979 if (adding || !o_znode) 980 return 0; 981 982 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 983 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 984 o_znode->zbranch[o_n].len); 985 *zn = o_znode; 986 *n = o_n; 987 return 1; 988 } 989 990 /** 991 * matches_position - determine if a zbranch matches a given position. 992 * @zbr: zbranch of dent 993 * @lnum: LEB number of dent to match 994 * @offs: offset of dent to match 995 * 996 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 997 */ 998 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 999 { 1000 if (zbr->lnum == lnum && zbr->offs == offs) 1001 return 1; 1002 else 1003 return 0; 1004 } 1005 1006 /** 1007 * resolve_collision_directly - resolve a collision directly. 1008 * @c: UBIFS file-system description object 1009 * @key: key of directory entry 1010 * @zn: znode is passed and returned here 1011 * @n: zbranch number is passed and returned here 1012 * @lnum: LEB number of dent node to match 1013 * @offs: offset of dent node to match 1014 * 1015 * This function is used for "hashed" keys to make sure the found directory or 1016 * extended attribute entry node is what was looked for. It is used when the 1017 * flash address of the right node is known (@lnum:@offs) which makes it much 1018 * easier to resolve collisions (no need to read entries and match full 1019 * names). This function returns %1 and sets @zn and @n if the collision is 1020 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1021 * previous directory entry. Otherwise a negative error code is returned. 1022 */ 1023 static int resolve_collision_directly(struct ubifs_info *c, 1024 const union ubifs_key *key, 1025 struct ubifs_znode **zn, int *n, 1026 int lnum, int offs) 1027 { 1028 struct ubifs_znode *znode; 1029 int nn, err; 1030 1031 znode = *zn; 1032 nn = *n; 1033 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1034 return 1; 1035 1036 /* Look left */ 1037 while (1) { 1038 err = tnc_prev(c, &znode, &nn); 1039 if (err == -ENOENT) 1040 break; 1041 if (err < 0) 1042 return err; 1043 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1044 break; 1045 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1046 *zn = znode; 1047 *n = nn; 1048 return 1; 1049 } 1050 } 1051 1052 /* Look right */ 1053 znode = *zn; 1054 nn = *n; 1055 while (1) { 1056 err = tnc_next(c, &znode, &nn); 1057 if (err == -ENOENT) 1058 return 0; 1059 if (err < 0) 1060 return err; 1061 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1062 return 0; 1063 *zn = znode; 1064 *n = nn; 1065 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1066 return 1; 1067 } 1068 } 1069 1070 /** 1071 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1072 * @c: UBIFS file-system description object 1073 * @znode: znode to dirty 1074 * 1075 * If we do not have a unique key that resides in a znode, then we cannot 1076 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1077 * This function records the path back to the last dirty ancestor, and then 1078 * dirties the znodes on that path. 1079 */ 1080 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1081 struct ubifs_znode *znode) 1082 { 1083 struct ubifs_znode *zp; 1084 int *path = c->bottom_up_buf, p = 0; 1085 1086 ubifs_assert(c->zroot.znode); 1087 ubifs_assert(znode); 1088 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1089 kfree(c->bottom_up_buf); 1090 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1091 GFP_NOFS); 1092 if (!c->bottom_up_buf) 1093 return ERR_PTR(-ENOMEM); 1094 path = c->bottom_up_buf; 1095 } 1096 if (c->zroot.znode->level) { 1097 /* Go up until parent is dirty */ 1098 while (1) { 1099 int n; 1100 1101 zp = znode->parent; 1102 if (!zp) 1103 break; 1104 n = znode->iip; 1105 ubifs_assert(p < c->zroot.znode->level); 1106 path[p++] = n; 1107 if (!zp->cnext && ubifs_zn_dirty(znode)) 1108 break; 1109 znode = zp; 1110 } 1111 } 1112 1113 /* Come back down, dirtying as we go */ 1114 while (1) { 1115 struct ubifs_zbranch *zbr; 1116 1117 zp = znode->parent; 1118 if (zp) { 1119 ubifs_assert(path[p - 1] >= 0); 1120 ubifs_assert(path[p - 1] < zp->child_cnt); 1121 zbr = &zp->zbranch[path[--p]]; 1122 znode = dirty_cow_znode(c, zbr); 1123 } else { 1124 ubifs_assert(znode == c->zroot.znode); 1125 znode = dirty_cow_znode(c, &c->zroot); 1126 } 1127 if (IS_ERR(znode) || !p) 1128 break; 1129 ubifs_assert(path[p - 1] >= 0); 1130 ubifs_assert(path[p - 1] < znode->child_cnt); 1131 znode = znode->zbranch[path[p - 1]].znode; 1132 } 1133 1134 return znode; 1135 } 1136 1137 /** 1138 * ubifs_lookup_level0 - search for zero-level znode. 1139 * @c: UBIFS file-system description object 1140 * @key: key to lookup 1141 * @zn: znode is returned here 1142 * @n: znode branch slot number is returned here 1143 * 1144 * This function looks up the TNC tree and search for zero-level znode which 1145 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1146 * cases: 1147 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1148 * is returned and slot number of the matched branch is stored in @n; 1149 * o not exact match, which means that zero-level znode does not contain 1150 * @key, then %0 is returned and slot number of the closest branch is stored 1151 * in @n; 1152 * o @key is so small that it is even less than the lowest key of the 1153 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1154 * 1155 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1156 * function reads corresponding indexing nodes and inserts them to TNC. In 1157 * case of failure, a negative error code is returned. 1158 */ 1159 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1160 struct ubifs_znode **zn, int *n) 1161 { 1162 int err, exact; 1163 struct ubifs_znode *znode; 1164 unsigned long time = get_seconds(); 1165 1166 dbg_tnck(key, "search key "); 1167 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1168 1169 znode = c->zroot.znode; 1170 if (unlikely(!znode)) { 1171 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1172 if (IS_ERR(znode)) 1173 return PTR_ERR(znode); 1174 } 1175 1176 znode->time = time; 1177 1178 while (1) { 1179 struct ubifs_zbranch *zbr; 1180 1181 exact = ubifs_search_zbranch(c, znode, key, n); 1182 1183 if (znode->level == 0) 1184 break; 1185 1186 if (*n < 0) 1187 *n = 0; 1188 zbr = &znode->zbranch[*n]; 1189 1190 if (zbr->znode) { 1191 znode->time = time; 1192 znode = zbr->znode; 1193 continue; 1194 } 1195 1196 /* znode is not in TNC cache, load it from the media */ 1197 znode = ubifs_load_znode(c, zbr, znode, *n); 1198 if (IS_ERR(znode)) 1199 return PTR_ERR(znode); 1200 } 1201 1202 *zn = znode; 1203 if (exact || !is_hash_key(c, key) || *n != -1) { 1204 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1205 return exact; 1206 } 1207 1208 /* 1209 * Here is a tricky place. We have not found the key and this is a 1210 * "hashed" key, which may collide. The rest of the code deals with 1211 * situations like this: 1212 * 1213 * | 3 | 5 | 1214 * / \ 1215 * | 3 | 5 | | 6 | 7 | (x) 1216 * 1217 * Or more a complex example: 1218 * 1219 * | 1 | 5 | 1220 * / \ 1221 * | 1 | 3 | | 5 | 8 | 1222 * \ / 1223 * | 5 | 5 | | 6 | 7 | (x) 1224 * 1225 * In the examples, if we are looking for key "5", we may reach nodes 1226 * marked with "(x)". In this case what we have do is to look at the 1227 * left and see if there is "5" key there. If there is, we have to 1228 * return it. 1229 * 1230 * Note, this whole situation is possible because we allow to have 1231 * elements which are equivalent to the next key in the parent in the 1232 * children of current znode. For example, this happens if we split a 1233 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1234 * like this: 1235 * | 3 | 5 | 1236 * / \ 1237 * | 3 | 5 | | 5 | 6 | 7 | 1238 * ^ 1239 * And this becomes what is at the first "picture" after key "5" marked 1240 * with "^" is removed. What could be done is we could prohibit 1241 * splitting in the middle of the colliding sequence. Also, when 1242 * removing the leftmost key, we would have to correct the key of the 1243 * parent node, which would introduce additional complications. Namely, 1244 * if we changed the leftmost key of the parent znode, the garbage 1245 * collector would be unable to find it (GC is doing this when GC'ing 1246 * indexing LEBs). Although we already have an additional RB-tree where 1247 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1248 * after the commit. But anyway, this does not look easy to implement 1249 * so we did not try this. 1250 */ 1251 err = tnc_prev(c, &znode, n); 1252 if (err == -ENOENT) { 1253 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1254 *n = -1; 1255 return 0; 1256 } 1257 if (unlikely(err < 0)) 1258 return err; 1259 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1260 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1261 *n = -1; 1262 return 0; 1263 } 1264 1265 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1266 *zn = znode; 1267 return 1; 1268 } 1269 1270 /** 1271 * lookup_level0_dirty - search for zero-level znode dirtying. 1272 * @c: UBIFS file-system description object 1273 * @key: key to lookup 1274 * @zn: znode is returned here 1275 * @n: znode branch slot number is returned here 1276 * 1277 * This function looks up the TNC tree and search for zero-level znode which 1278 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1279 * cases: 1280 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1281 * is returned and slot number of the matched branch is stored in @n; 1282 * o not exact match, which means that zero-level znode does not contain @key 1283 * then %0 is returned and slot number of the closed branch is stored in 1284 * @n; 1285 * o @key is so small that it is even less than the lowest key of the 1286 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1287 * 1288 * Additionally all znodes in the path from the root to the located zero-level 1289 * znode are marked as dirty. 1290 * 1291 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1292 * function reads corresponding indexing nodes and inserts them to TNC. In 1293 * case of failure, a negative error code is returned. 1294 */ 1295 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1296 struct ubifs_znode **zn, int *n) 1297 { 1298 int err, exact; 1299 struct ubifs_znode *znode; 1300 unsigned long time = get_seconds(); 1301 1302 dbg_tnck(key, "search and dirty key "); 1303 1304 znode = c->zroot.znode; 1305 if (unlikely(!znode)) { 1306 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1307 if (IS_ERR(znode)) 1308 return PTR_ERR(znode); 1309 } 1310 1311 znode = dirty_cow_znode(c, &c->zroot); 1312 if (IS_ERR(znode)) 1313 return PTR_ERR(znode); 1314 1315 znode->time = time; 1316 1317 while (1) { 1318 struct ubifs_zbranch *zbr; 1319 1320 exact = ubifs_search_zbranch(c, znode, key, n); 1321 1322 if (znode->level == 0) 1323 break; 1324 1325 if (*n < 0) 1326 *n = 0; 1327 zbr = &znode->zbranch[*n]; 1328 1329 if (zbr->znode) { 1330 znode->time = time; 1331 znode = dirty_cow_znode(c, zbr); 1332 if (IS_ERR(znode)) 1333 return PTR_ERR(znode); 1334 continue; 1335 } 1336 1337 /* znode is not in TNC cache, load it from the media */ 1338 znode = ubifs_load_znode(c, zbr, znode, *n); 1339 if (IS_ERR(znode)) 1340 return PTR_ERR(znode); 1341 znode = dirty_cow_znode(c, zbr); 1342 if (IS_ERR(znode)) 1343 return PTR_ERR(znode); 1344 } 1345 1346 *zn = znode; 1347 if (exact || !is_hash_key(c, key) || *n != -1) { 1348 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1349 return exact; 1350 } 1351 1352 /* 1353 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1354 * code. 1355 */ 1356 err = tnc_prev(c, &znode, n); 1357 if (err == -ENOENT) { 1358 *n = -1; 1359 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1360 return 0; 1361 } 1362 if (unlikely(err < 0)) 1363 return err; 1364 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1365 *n = -1; 1366 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1367 return 0; 1368 } 1369 1370 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1371 znode = dirty_cow_bottom_up(c, znode); 1372 if (IS_ERR(znode)) 1373 return PTR_ERR(znode); 1374 } 1375 1376 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1377 *zn = znode; 1378 return 1; 1379 } 1380 1381 /** 1382 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1383 * @c: UBIFS file-system description object 1384 * @lnum: LEB number 1385 * @gc_seq1: garbage collection sequence number 1386 * 1387 * This function determines if @lnum may have been garbage collected since 1388 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1389 * %0 is returned. 1390 */ 1391 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1392 { 1393 int gc_seq2, gced_lnum; 1394 1395 gced_lnum = c->gced_lnum; 1396 smp_rmb(); 1397 gc_seq2 = c->gc_seq; 1398 /* Same seq means no GC */ 1399 if (gc_seq1 == gc_seq2) 1400 return 0; 1401 /* Different by more than 1 means we don't know */ 1402 if (gc_seq1 + 1 != gc_seq2) 1403 return 1; 1404 /* 1405 * We have seen the sequence number has increased by 1. Now we need to 1406 * be sure we read the right LEB number, so read it again. 1407 */ 1408 smp_rmb(); 1409 if (gced_lnum != c->gced_lnum) 1410 return 1; 1411 /* Finally we can check lnum */ 1412 if (gced_lnum == lnum) 1413 return 1; 1414 return 0; 1415 } 1416 1417 /** 1418 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1419 * @c: UBIFS file-system description object 1420 * @key: node key to lookup 1421 * @node: the node is returned here 1422 * @lnum: LEB number is returned here 1423 * @offs: offset is returned here 1424 * 1425 * This function looks up and reads node with key @key. The caller has to make 1426 * sure the @node buffer is large enough to fit the node. Returns zero in case 1427 * of success, %-ENOENT if the node was not found, and a negative error code in 1428 * case of failure. The node location can be returned in @lnum and @offs. 1429 */ 1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1431 void *node, int *lnum, int *offs) 1432 { 1433 int found, n, err, safely = 0, gc_seq1; 1434 struct ubifs_znode *znode; 1435 struct ubifs_zbranch zbr, *zt; 1436 1437 again: 1438 mutex_lock(&c->tnc_mutex); 1439 found = ubifs_lookup_level0(c, key, &znode, &n); 1440 if (!found) { 1441 err = -ENOENT; 1442 goto out; 1443 } else if (found < 0) { 1444 err = found; 1445 goto out; 1446 } 1447 zt = &znode->zbranch[n]; 1448 if (lnum) { 1449 *lnum = zt->lnum; 1450 *offs = zt->offs; 1451 } 1452 if (is_hash_key(c, key)) { 1453 /* 1454 * In this case the leaf node cache gets used, so we pass the 1455 * address of the zbranch and keep the mutex locked 1456 */ 1457 err = tnc_read_node_nm(c, zt, node); 1458 goto out; 1459 } 1460 if (safely) { 1461 err = ubifs_tnc_read_node(c, zt, node); 1462 goto out; 1463 } 1464 /* Drop the TNC mutex prematurely and race with garbage collection */ 1465 zbr = znode->zbranch[n]; 1466 gc_seq1 = c->gc_seq; 1467 mutex_unlock(&c->tnc_mutex); 1468 1469 if (ubifs_get_wbuf(c, zbr.lnum)) { 1470 /* We do not GC journal heads */ 1471 err = ubifs_tnc_read_node(c, &zbr, node); 1472 return err; 1473 } 1474 1475 err = fallible_read_node(c, key, &zbr, node); 1476 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1477 /* 1478 * The node may have been GC'ed out from under us so try again 1479 * while keeping the TNC mutex locked. 1480 */ 1481 safely = 1; 1482 goto again; 1483 } 1484 return 0; 1485 1486 out: 1487 mutex_unlock(&c->tnc_mutex); 1488 return err; 1489 } 1490 1491 /** 1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1493 * @c: UBIFS file-system description object 1494 * @bu: bulk-read parameters and results 1495 * 1496 * Lookup consecutive data node keys for the same inode that reside 1497 * consecutively in the same LEB. This function returns zero in case of success 1498 * and a negative error code in case of failure. 1499 * 1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1502 * maximum possible amount of nodes for bulk-read. 1503 */ 1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1505 { 1506 int n, err = 0, lnum = -1, uninitialized_var(offs); 1507 int uninitialized_var(len); 1508 unsigned int block = key_block(c, &bu->key); 1509 struct ubifs_znode *znode; 1510 1511 bu->cnt = 0; 1512 bu->blk_cnt = 0; 1513 bu->eof = 0; 1514 1515 mutex_lock(&c->tnc_mutex); 1516 /* Find first key */ 1517 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1518 if (err < 0) 1519 goto out; 1520 if (err) { 1521 /* Key found */ 1522 len = znode->zbranch[n].len; 1523 /* The buffer must be big enough for at least 1 node */ 1524 if (len > bu->buf_len) { 1525 err = -EINVAL; 1526 goto out; 1527 } 1528 /* Add this key */ 1529 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1530 bu->blk_cnt += 1; 1531 lnum = znode->zbranch[n].lnum; 1532 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1533 } 1534 while (1) { 1535 struct ubifs_zbranch *zbr; 1536 union ubifs_key *key; 1537 unsigned int next_block; 1538 1539 /* Find next key */ 1540 err = tnc_next(c, &znode, &n); 1541 if (err) 1542 goto out; 1543 zbr = &znode->zbranch[n]; 1544 key = &zbr->key; 1545 /* See if there is another data key for this file */ 1546 if (key_inum(c, key) != key_inum(c, &bu->key) || 1547 key_type(c, key) != UBIFS_DATA_KEY) { 1548 err = -ENOENT; 1549 goto out; 1550 } 1551 if (lnum < 0) { 1552 /* First key found */ 1553 lnum = zbr->lnum; 1554 offs = ALIGN(zbr->offs + zbr->len, 8); 1555 len = zbr->len; 1556 if (len > bu->buf_len) { 1557 err = -EINVAL; 1558 goto out; 1559 } 1560 } else { 1561 /* 1562 * The data nodes must be in consecutive positions in 1563 * the same LEB. 1564 */ 1565 if (zbr->lnum != lnum || zbr->offs != offs) 1566 goto out; 1567 offs += ALIGN(zbr->len, 8); 1568 len = ALIGN(len, 8) + zbr->len; 1569 /* Must not exceed buffer length */ 1570 if (len > bu->buf_len) 1571 goto out; 1572 } 1573 /* Allow for holes */ 1574 next_block = key_block(c, key); 1575 bu->blk_cnt += (next_block - block - 1); 1576 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1577 goto out; 1578 block = next_block; 1579 /* Add this key */ 1580 bu->zbranch[bu->cnt++] = *zbr; 1581 bu->blk_cnt += 1; 1582 /* See if we have room for more */ 1583 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1584 goto out; 1585 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1586 goto out; 1587 } 1588 out: 1589 if (err == -ENOENT) { 1590 bu->eof = 1; 1591 err = 0; 1592 } 1593 bu->gc_seq = c->gc_seq; 1594 mutex_unlock(&c->tnc_mutex); 1595 if (err) 1596 return err; 1597 /* 1598 * An enormous hole could cause bulk-read to encompass too many 1599 * page cache pages, so limit the number here. 1600 */ 1601 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1602 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1603 /* 1604 * Ensure that bulk-read covers a whole number of page cache 1605 * pages. 1606 */ 1607 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1608 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1609 return 0; 1610 if (bu->eof) { 1611 /* At the end of file we can round up */ 1612 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1613 return 0; 1614 } 1615 /* Exclude data nodes that do not make up a whole page cache page */ 1616 block = key_block(c, &bu->key) + bu->blk_cnt; 1617 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1618 while (bu->cnt) { 1619 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1620 break; 1621 bu->cnt -= 1; 1622 } 1623 return 0; 1624 } 1625 1626 /** 1627 * read_wbuf - bulk-read from a LEB with a wbuf. 1628 * @wbuf: wbuf that may overlap the read 1629 * @buf: buffer into which to read 1630 * @len: read length 1631 * @lnum: LEB number from which to read 1632 * @offs: offset from which to read 1633 * 1634 * This functions returns %0 on success or a negative error code on failure. 1635 */ 1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1637 int offs) 1638 { 1639 const struct ubifs_info *c = wbuf->c; 1640 int rlen, overlap; 1641 1642 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1643 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1644 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1645 ubifs_assert(offs + len <= c->leb_size); 1646 1647 spin_lock(&wbuf->lock); 1648 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1649 if (!overlap) { 1650 /* We may safely unlock the write-buffer and read the data */ 1651 spin_unlock(&wbuf->lock); 1652 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1653 } 1654 1655 /* Don't read under wbuf */ 1656 rlen = wbuf->offs - offs; 1657 if (rlen < 0) 1658 rlen = 0; 1659 1660 /* Copy the rest from the write-buffer */ 1661 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1662 spin_unlock(&wbuf->lock); 1663 1664 if (rlen > 0) 1665 /* Read everything that goes before write-buffer */ 1666 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * validate_data_node - validate data nodes for bulk-read. 1673 * @c: UBIFS file-system description object 1674 * @buf: buffer containing data node to validate 1675 * @zbr: zbranch of data node to validate 1676 * 1677 * This functions returns %0 on success or a negative error code on failure. 1678 */ 1679 static int validate_data_node(struct ubifs_info *c, void *buf, 1680 struct ubifs_zbranch *zbr) 1681 { 1682 union ubifs_key key1; 1683 struct ubifs_ch *ch = buf; 1684 int err, len; 1685 1686 if (ch->node_type != UBIFS_DATA_NODE) { 1687 ubifs_err("bad node type (%d but expected %d)", 1688 ch->node_type, UBIFS_DATA_NODE); 1689 goto out_err; 1690 } 1691 1692 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1693 if (err) { 1694 ubifs_err("expected node type %d", UBIFS_DATA_NODE); 1695 goto out; 1696 } 1697 1698 len = le32_to_cpu(ch->len); 1699 if (len != zbr->len) { 1700 ubifs_err("bad node length %d, expected %d", len, zbr->len); 1701 goto out_err; 1702 } 1703 1704 /* Make sure the key of the read node is correct */ 1705 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1706 if (!keys_eq(c, &zbr->key, &key1)) { 1707 ubifs_err("bad key in node at LEB %d:%d", 1708 zbr->lnum, zbr->offs); 1709 dbg_tnck(&zbr->key, "looked for key "); 1710 dbg_tnck(&key1, "found node's key "); 1711 goto out_err; 1712 } 1713 1714 return 0; 1715 1716 out_err: 1717 err = -EINVAL; 1718 out: 1719 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1720 ubifs_dump_node(c, buf); 1721 dump_stack(); 1722 return err; 1723 } 1724 1725 /** 1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1727 * @c: UBIFS file-system description object 1728 * @bu: bulk-read parameters and results 1729 * 1730 * This functions reads and validates the data nodes that were identified by the 1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1732 * -EAGAIN to indicate a race with GC, or another negative error code on 1733 * failure. 1734 */ 1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1736 { 1737 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1738 struct ubifs_wbuf *wbuf; 1739 void *buf; 1740 1741 len = bu->zbranch[bu->cnt - 1].offs; 1742 len += bu->zbranch[bu->cnt - 1].len - offs; 1743 if (len > bu->buf_len) { 1744 ubifs_err("buffer too small %d vs %d", bu->buf_len, len); 1745 return -EINVAL; 1746 } 1747 1748 /* Do the read */ 1749 wbuf = ubifs_get_wbuf(c, lnum); 1750 if (wbuf) 1751 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1752 else 1753 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1754 1755 /* Check for a race with GC */ 1756 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1757 return -EAGAIN; 1758 1759 if (err && err != -EBADMSG) { 1760 ubifs_err("failed to read from LEB %d:%d, error %d", 1761 lnum, offs, err); 1762 dump_stack(); 1763 dbg_tnck(&bu->key, "key "); 1764 return err; 1765 } 1766 1767 /* Validate the nodes read */ 1768 buf = bu->buf; 1769 for (i = 0; i < bu->cnt; i++) { 1770 err = validate_data_node(c, buf, &bu->zbranch[i]); 1771 if (err) 1772 return err; 1773 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1774 } 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * do_lookup_nm- look up a "hashed" node. 1781 * @c: UBIFS file-system description object 1782 * @key: node key to lookup 1783 * @node: the node is returned here 1784 * @nm: node name 1785 * 1786 * This function look up and reads a node which contains name hash in the key. 1787 * Since the hash may have collisions, there may be many nodes with the same 1788 * key, so we have to sequentially look to all of them until the needed one is 1789 * found. This function returns zero in case of success, %-ENOENT if the node 1790 * was not found, and a negative error code in case of failure. 1791 */ 1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1793 void *node, const struct qstr *nm) 1794 { 1795 int found, n, err; 1796 struct ubifs_znode *znode; 1797 1798 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); 1799 mutex_lock(&c->tnc_mutex); 1800 found = ubifs_lookup_level0(c, key, &znode, &n); 1801 if (!found) { 1802 err = -ENOENT; 1803 goto out_unlock; 1804 } else if (found < 0) { 1805 err = found; 1806 goto out_unlock; 1807 } 1808 1809 ubifs_assert(n >= 0); 1810 1811 err = resolve_collision(c, key, &znode, &n, nm); 1812 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1813 if (unlikely(err < 0)) 1814 goto out_unlock; 1815 if (err == 0) { 1816 err = -ENOENT; 1817 goto out_unlock; 1818 } 1819 1820 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1821 1822 out_unlock: 1823 mutex_unlock(&c->tnc_mutex); 1824 return err; 1825 } 1826 1827 /** 1828 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1829 * @c: UBIFS file-system description object 1830 * @key: node key to lookup 1831 * @node: the node is returned here 1832 * @nm: node name 1833 * 1834 * This function look up and reads a node which contains name hash in the key. 1835 * Since the hash may have collisions, there may be many nodes with the same 1836 * key, so we have to sequentially look to all of them until the needed one is 1837 * found. This function returns zero in case of success, %-ENOENT if the node 1838 * was not found, and a negative error code in case of failure. 1839 */ 1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1841 void *node, const struct qstr *nm) 1842 { 1843 int err, len; 1844 const struct ubifs_dent_node *dent = node; 1845 1846 /* 1847 * We assume that in most of the cases there are no name collisions and 1848 * 'ubifs_tnc_lookup()' returns us the right direntry. 1849 */ 1850 err = ubifs_tnc_lookup(c, key, node); 1851 if (err) 1852 return err; 1853 1854 len = le16_to_cpu(dent->nlen); 1855 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1856 return 0; 1857 1858 /* 1859 * Unluckily, there are hash collisions and we have to iterate over 1860 * them look at each direntry with colliding name hash sequentially. 1861 */ 1862 return do_lookup_nm(c, key, node, nm); 1863 } 1864 1865 /** 1866 * correct_parent_keys - correct parent znodes' keys. 1867 * @c: UBIFS file-system description object 1868 * @znode: znode to correct parent znodes for 1869 * 1870 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1871 * zbranch changes, keys of parent znodes have to be corrected. This helper 1872 * function is called in such situations and corrects the keys if needed. 1873 */ 1874 static void correct_parent_keys(const struct ubifs_info *c, 1875 struct ubifs_znode *znode) 1876 { 1877 union ubifs_key *key, *key1; 1878 1879 ubifs_assert(znode->parent); 1880 ubifs_assert(znode->iip == 0); 1881 1882 key = &znode->zbranch[0].key; 1883 key1 = &znode->parent->zbranch[0].key; 1884 1885 while (keys_cmp(c, key, key1) < 0) { 1886 key_copy(c, key, key1); 1887 znode = znode->parent; 1888 znode->alt = 1; 1889 if (!znode->parent || znode->iip) 1890 break; 1891 key1 = &znode->parent->zbranch[0].key; 1892 } 1893 } 1894 1895 /** 1896 * insert_zbranch - insert a zbranch into a znode. 1897 * @znode: znode into which to insert 1898 * @zbr: zbranch to insert 1899 * @n: slot number to insert to 1900 * 1901 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1902 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1903 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1904 * slot, zbranches starting from @n have to be moved right. 1905 */ 1906 static void insert_zbranch(struct ubifs_znode *znode, 1907 const struct ubifs_zbranch *zbr, int n) 1908 { 1909 int i; 1910 1911 ubifs_assert(ubifs_zn_dirty(znode)); 1912 1913 if (znode->level) { 1914 for (i = znode->child_cnt; i > n; i--) { 1915 znode->zbranch[i] = znode->zbranch[i - 1]; 1916 if (znode->zbranch[i].znode) 1917 znode->zbranch[i].znode->iip = i; 1918 } 1919 if (zbr->znode) 1920 zbr->znode->iip = n; 1921 } else 1922 for (i = znode->child_cnt; i > n; i--) 1923 znode->zbranch[i] = znode->zbranch[i - 1]; 1924 1925 znode->zbranch[n] = *zbr; 1926 znode->child_cnt += 1; 1927 1928 /* 1929 * After inserting at slot zero, the lower bound of the key range of 1930 * this znode may have changed. If this znode is subsequently split 1931 * then the upper bound of the key range may change, and furthermore 1932 * it could change to be lower than the original lower bound. If that 1933 * happens, then it will no longer be possible to find this znode in the 1934 * TNC using the key from the index node on flash. That is bad because 1935 * if it is not found, we will assume it is obsolete and may overwrite 1936 * it. Then if there is an unclean unmount, we will start using the 1937 * old index which will be broken. 1938 * 1939 * So we first mark znodes that have insertions at slot zero, and then 1940 * if they are split we add their lnum/offs to the old_idx tree. 1941 */ 1942 if (n == 0) 1943 znode->alt = 1; 1944 } 1945 1946 /** 1947 * tnc_insert - insert a node into TNC. 1948 * @c: UBIFS file-system description object 1949 * @znode: znode to insert into 1950 * @zbr: branch to insert 1951 * @n: slot number to insert new zbranch to 1952 * 1953 * This function inserts a new node described by @zbr into znode @znode. If 1954 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1955 * are splat as well if needed. Returns zero in case of success or a negative 1956 * error code in case of failure. 1957 */ 1958 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1959 struct ubifs_zbranch *zbr, int n) 1960 { 1961 struct ubifs_znode *zn, *zi, *zp; 1962 int i, keep, move, appending = 0; 1963 union ubifs_key *key = &zbr->key, *key1; 1964 1965 ubifs_assert(n >= 0 && n <= c->fanout); 1966 1967 /* Implement naive insert for now */ 1968 again: 1969 zp = znode->parent; 1970 if (znode->child_cnt < c->fanout) { 1971 ubifs_assert(n != c->fanout); 1972 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 1973 1974 insert_zbranch(znode, zbr, n); 1975 1976 /* Ensure parent's key is correct */ 1977 if (n == 0 && zp && znode->iip == 0) 1978 correct_parent_keys(c, znode); 1979 1980 return 0; 1981 } 1982 1983 /* 1984 * Unfortunately, @znode does not have more empty slots and we have to 1985 * split it. 1986 */ 1987 dbg_tnck(key, "splitting level %d, key ", znode->level); 1988 1989 if (znode->alt) 1990 /* 1991 * We can no longer be sure of finding this znode by key, so we 1992 * record it in the old_idx tree. 1993 */ 1994 ins_clr_old_idx_znode(c, znode); 1995 1996 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 1997 if (!zn) 1998 return -ENOMEM; 1999 zn->parent = zp; 2000 zn->level = znode->level; 2001 2002 /* Decide where to split */ 2003 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2004 /* Try not to split consecutive data keys */ 2005 if (n == c->fanout) { 2006 key1 = &znode->zbranch[n - 1].key; 2007 if (key_inum(c, key1) == key_inum(c, key) && 2008 key_type(c, key1) == UBIFS_DATA_KEY) 2009 appending = 1; 2010 } else 2011 goto check_split; 2012 } else if (appending && n != c->fanout) { 2013 /* Try not to split consecutive data keys */ 2014 appending = 0; 2015 check_split: 2016 if (n >= (c->fanout + 1) / 2) { 2017 key1 = &znode->zbranch[0].key; 2018 if (key_inum(c, key1) == key_inum(c, key) && 2019 key_type(c, key1) == UBIFS_DATA_KEY) { 2020 key1 = &znode->zbranch[n].key; 2021 if (key_inum(c, key1) != key_inum(c, key) || 2022 key_type(c, key1) != UBIFS_DATA_KEY) { 2023 keep = n; 2024 move = c->fanout - keep; 2025 zi = znode; 2026 goto do_split; 2027 } 2028 } 2029 } 2030 } 2031 2032 if (appending) { 2033 keep = c->fanout; 2034 move = 0; 2035 } else { 2036 keep = (c->fanout + 1) / 2; 2037 move = c->fanout - keep; 2038 } 2039 2040 /* 2041 * Although we don't at present, we could look at the neighbors and see 2042 * if we can move some zbranches there. 2043 */ 2044 2045 if (n < keep) { 2046 /* Insert into existing znode */ 2047 zi = znode; 2048 move += 1; 2049 keep -= 1; 2050 } else { 2051 /* Insert into new znode */ 2052 zi = zn; 2053 n -= keep; 2054 /* Re-parent */ 2055 if (zn->level != 0) 2056 zbr->znode->parent = zn; 2057 } 2058 2059 do_split: 2060 2061 __set_bit(DIRTY_ZNODE, &zn->flags); 2062 atomic_long_inc(&c->dirty_zn_cnt); 2063 2064 zn->child_cnt = move; 2065 znode->child_cnt = keep; 2066 2067 dbg_tnc("moving %d, keeping %d", move, keep); 2068 2069 /* Move zbranch */ 2070 for (i = 0; i < move; i++) { 2071 zn->zbranch[i] = znode->zbranch[keep + i]; 2072 /* Re-parent */ 2073 if (zn->level != 0) 2074 if (zn->zbranch[i].znode) { 2075 zn->zbranch[i].znode->parent = zn; 2076 zn->zbranch[i].znode->iip = i; 2077 } 2078 } 2079 2080 /* Insert new key and branch */ 2081 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2082 2083 insert_zbranch(zi, zbr, n); 2084 2085 /* Insert new znode (produced by spitting) into the parent */ 2086 if (zp) { 2087 if (n == 0 && zi == znode && znode->iip == 0) 2088 correct_parent_keys(c, znode); 2089 2090 /* Locate insertion point */ 2091 n = znode->iip + 1; 2092 2093 /* Tail recursion */ 2094 zbr->key = zn->zbranch[0].key; 2095 zbr->znode = zn; 2096 zbr->lnum = 0; 2097 zbr->offs = 0; 2098 zbr->len = 0; 2099 znode = zp; 2100 2101 goto again; 2102 } 2103 2104 /* We have to split root znode */ 2105 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2106 2107 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2108 if (!zi) 2109 return -ENOMEM; 2110 2111 zi->child_cnt = 2; 2112 zi->level = znode->level + 1; 2113 2114 __set_bit(DIRTY_ZNODE, &zi->flags); 2115 atomic_long_inc(&c->dirty_zn_cnt); 2116 2117 zi->zbranch[0].key = znode->zbranch[0].key; 2118 zi->zbranch[0].znode = znode; 2119 zi->zbranch[0].lnum = c->zroot.lnum; 2120 zi->zbranch[0].offs = c->zroot.offs; 2121 zi->zbranch[0].len = c->zroot.len; 2122 zi->zbranch[1].key = zn->zbranch[0].key; 2123 zi->zbranch[1].znode = zn; 2124 2125 c->zroot.lnum = 0; 2126 c->zroot.offs = 0; 2127 c->zroot.len = 0; 2128 c->zroot.znode = zi; 2129 2130 zn->parent = zi; 2131 zn->iip = 1; 2132 znode->parent = zi; 2133 znode->iip = 0; 2134 2135 return 0; 2136 } 2137 2138 /** 2139 * ubifs_tnc_add - add a node to TNC. 2140 * @c: UBIFS file-system description object 2141 * @key: key to add 2142 * @lnum: LEB number of node 2143 * @offs: node offset 2144 * @len: node length 2145 * 2146 * This function adds a node with key @key to TNC. The node may be new or it may 2147 * obsolete some existing one. Returns %0 on success or negative error code on 2148 * failure. 2149 */ 2150 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2151 int offs, int len) 2152 { 2153 int found, n, err = 0; 2154 struct ubifs_znode *znode; 2155 2156 mutex_lock(&c->tnc_mutex); 2157 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2158 found = lookup_level0_dirty(c, key, &znode, &n); 2159 if (!found) { 2160 struct ubifs_zbranch zbr; 2161 2162 zbr.znode = NULL; 2163 zbr.lnum = lnum; 2164 zbr.offs = offs; 2165 zbr.len = len; 2166 key_copy(c, key, &zbr.key); 2167 err = tnc_insert(c, znode, &zbr, n + 1); 2168 } else if (found == 1) { 2169 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2170 2171 lnc_free(zbr); 2172 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2173 zbr->lnum = lnum; 2174 zbr->offs = offs; 2175 zbr->len = len; 2176 } else 2177 err = found; 2178 if (!err) 2179 err = dbg_check_tnc(c, 0); 2180 mutex_unlock(&c->tnc_mutex); 2181 2182 return err; 2183 } 2184 2185 /** 2186 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2187 * @c: UBIFS file-system description object 2188 * @key: key to add 2189 * @old_lnum: LEB number of old node 2190 * @old_offs: old node offset 2191 * @lnum: LEB number of node 2192 * @offs: node offset 2193 * @len: node length 2194 * 2195 * This function replaces a node with key @key in the TNC only if the old node 2196 * is found. This function is called by garbage collection when node are moved. 2197 * Returns %0 on success or negative error code on failure. 2198 */ 2199 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2200 int old_lnum, int old_offs, int lnum, int offs, int len) 2201 { 2202 int found, n, err = 0; 2203 struct ubifs_znode *znode; 2204 2205 mutex_lock(&c->tnc_mutex); 2206 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2207 old_offs, lnum, offs, len); 2208 found = lookup_level0_dirty(c, key, &znode, &n); 2209 if (found < 0) { 2210 err = found; 2211 goto out_unlock; 2212 } 2213 2214 if (found == 1) { 2215 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2216 2217 found = 0; 2218 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2219 lnc_free(zbr); 2220 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2221 if (err) 2222 goto out_unlock; 2223 zbr->lnum = lnum; 2224 zbr->offs = offs; 2225 zbr->len = len; 2226 found = 1; 2227 } else if (is_hash_key(c, key)) { 2228 found = resolve_collision_directly(c, key, &znode, &n, 2229 old_lnum, old_offs); 2230 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2231 found, znode, n, old_lnum, old_offs); 2232 if (found < 0) { 2233 err = found; 2234 goto out_unlock; 2235 } 2236 2237 if (found) { 2238 /* Ensure the znode is dirtied */ 2239 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2240 znode = dirty_cow_bottom_up(c, znode); 2241 if (IS_ERR(znode)) { 2242 err = PTR_ERR(znode); 2243 goto out_unlock; 2244 } 2245 } 2246 zbr = &znode->zbranch[n]; 2247 lnc_free(zbr); 2248 err = ubifs_add_dirt(c, zbr->lnum, 2249 zbr->len); 2250 if (err) 2251 goto out_unlock; 2252 zbr->lnum = lnum; 2253 zbr->offs = offs; 2254 zbr->len = len; 2255 } 2256 } 2257 } 2258 2259 if (!found) 2260 err = ubifs_add_dirt(c, lnum, len); 2261 2262 if (!err) 2263 err = dbg_check_tnc(c, 0); 2264 2265 out_unlock: 2266 mutex_unlock(&c->tnc_mutex); 2267 return err; 2268 } 2269 2270 /** 2271 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2272 * @c: UBIFS file-system description object 2273 * @key: key to add 2274 * @lnum: LEB number of node 2275 * @offs: node offset 2276 * @len: node length 2277 * @nm: node name 2278 * 2279 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2280 * may have collisions, like directory entry keys. 2281 */ 2282 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2283 int lnum, int offs, int len, const struct qstr *nm) 2284 { 2285 int found, n, err = 0; 2286 struct ubifs_znode *znode; 2287 2288 mutex_lock(&c->tnc_mutex); 2289 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", 2290 lnum, offs, nm->len, nm->name); 2291 found = lookup_level0_dirty(c, key, &znode, &n); 2292 if (found < 0) { 2293 err = found; 2294 goto out_unlock; 2295 } 2296 2297 if (found == 1) { 2298 if (c->replaying) 2299 found = fallible_resolve_collision(c, key, &znode, &n, 2300 nm, 1); 2301 else 2302 found = resolve_collision(c, key, &znode, &n, nm); 2303 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2304 if (found < 0) { 2305 err = found; 2306 goto out_unlock; 2307 } 2308 2309 /* Ensure the znode is dirtied */ 2310 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2311 znode = dirty_cow_bottom_up(c, znode); 2312 if (IS_ERR(znode)) { 2313 err = PTR_ERR(znode); 2314 goto out_unlock; 2315 } 2316 } 2317 2318 if (found == 1) { 2319 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2320 2321 lnc_free(zbr); 2322 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2323 zbr->lnum = lnum; 2324 zbr->offs = offs; 2325 zbr->len = len; 2326 goto out_unlock; 2327 } 2328 } 2329 2330 if (!found) { 2331 struct ubifs_zbranch zbr; 2332 2333 zbr.znode = NULL; 2334 zbr.lnum = lnum; 2335 zbr.offs = offs; 2336 zbr.len = len; 2337 key_copy(c, key, &zbr.key); 2338 err = tnc_insert(c, znode, &zbr, n + 1); 2339 if (err) 2340 goto out_unlock; 2341 if (c->replaying) { 2342 /* 2343 * We did not find it in the index so there may be a 2344 * dangling branch still in the index. So we remove it 2345 * by passing 'ubifs_tnc_remove_nm()' the same key but 2346 * an unmatchable name. 2347 */ 2348 struct qstr noname = { .name = "" }; 2349 2350 err = dbg_check_tnc(c, 0); 2351 mutex_unlock(&c->tnc_mutex); 2352 if (err) 2353 return err; 2354 return ubifs_tnc_remove_nm(c, key, &noname); 2355 } 2356 } 2357 2358 out_unlock: 2359 if (!err) 2360 err = dbg_check_tnc(c, 0); 2361 mutex_unlock(&c->tnc_mutex); 2362 return err; 2363 } 2364 2365 /** 2366 * tnc_delete - delete a znode form TNC. 2367 * @c: UBIFS file-system description object 2368 * @znode: znode to delete from 2369 * @n: zbranch slot number to delete 2370 * 2371 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2372 * case of success and a negative error code in case of failure. 2373 */ 2374 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2375 { 2376 struct ubifs_zbranch *zbr; 2377 struct ubifs_znode *zp; 2378 int i, err; 2379 2380 /* Delete without merge for now */ 2381 ubifs_assert(znode->level == 0); 2382 ubifs_assert(n >= 0 && n < c->fanout); 2383 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2384 2385 zbr = &znode->zbranch[n]; 2386 lnc_free(zbr); 2387 2388 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2389 if (err) { 2390 ubifs_dump_znode(c, znode); 2391 return err; 2392 } 2393 2394 /* We do not "gap" zbranch slots */ 2395 for (i = n; i < znode->child_cnt - 1; i++) 2396 znode->zbranch[i] = znode->zbranch[i + 1]; 2397 znode->child_cnt -= 1; 2398 2399 if (znode->child_cnt > 0) 2400 return 0; 2401 2402 /* 2403 * This was the last zbranch, we have to delete this znode from the 2404 * parent. 2405 */ 2406 2407 do { 2408 ubifs_assert(!ubifs_zn_obsolete(znode)); 2409 ubifs_assert(ubifs_zn_dirty(znode)); 2410 2411 zp = znode->parent; 2412 n = znode->iip; 2413 2414 atomic_long_dec(&c->dirty_zn_cnt); 2415 2416 err = insert_old_idx_znode(c, znode); 2417 if (err) 2418 return err; 2419 2420 if (znode->cnext) { 2421 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2422 atomic_long_inc(&c->clean_zn_cnt); 2423 atomic_long_inc(&ubifs_clean_zn_cnt); 2424 } else 2425 kfree(znode); 2426 znode = zp; 2427 } while (znode->child_cnt == 1); /* while removing last child */ 2428 2429 /* Remove from znode, entry n - 1 */ 2430 znode->child_cnt -= 1; 2431 ubifs_assert(znode->level != 0); 2432 for (i = n; i < znode->child_cnt; i++) { 2433 znode->zbranch[i] = znode->zbranch[i + 1]; 2434 if (znode->zbranch[i].znode) 2435 znode->zbranch[i].znode->iip = i; 2436 } 2437 2438 /* 2439 * If this is the root and it has only 1 child then 2440 * collapse the tree. 2441 */ 2442 if (!znode->parent) { 2443 while (znode->child_cnt == 1 && znode->level != 0) { 2444 zp = znode; 2445 zbr = &znode->zbranch[0]; 2446 znode = get_znode(c, znode, 0); 2447 if (IS_ERR(znode)) 2448 return PTR_ERR(znode); 2449 znode = dirty_cow_znode(c, zbr); 2450 if (IS_ERR(znode)) 2451 return PTR_ERR(znode); 2452 znode->parent = NULL; 2453 znode->iip = 0; 2454 if (c->zroot.len) { 2455 err = insert_old_idx(c, c->zroot.lnum, 2456 c->zroot.offs); 2457 if (err) 2458 return err; 2459 } 2460 c->zroot.lnum = zbr->lnum; 2461 c->zroot.offs = zbr->offs; 2462 c->zroot.len = zbr->len; 2463 c->zroot.znode = znode; 2464 ubifs_assert(!ubifs_zn_obsolete(zp)); 2465 ubifs_assert(ubifs_zn_dirty(zp)); 2466 atomic_long_dec(&c->dirty_zn_cnt); 2467 2468 if (zp->cnext) { 2469 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2470 atomic_long_inc(&c->clean_zn_cnt); 2471 atomic_long_inc(&ubifs_clean_zn_cnt); 2472 } else 2473 kfree(zp); 2474 } 2475 } 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * ubifs_tnc_remove - remove an index entry of a node. 2482 * @c: UBIFS file-system description object 2483 * @key: key of node 2484 * 2485 * Returns %0 on success or negative error code on failure. 2486 */ 2487 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2488 { 2489 int found, n, err = 0; 2490 struct ubifs_znode *znode; 2491 2492 mutex_lock(&c->tnc_mutex); 2493 dbg_tnck(key, "key "); 2494 found = lookup_level0_dirty(c, key, &znode, &n); 2495 if (found < 0) { 2496 err = found; 2497 goto out_unlock; 2498 } 2499 if (found == 1) 2500 err = tnc_delete(c, znode, n); 2501 if (!err) 2502 err = dbg_check_tnc(c, 0); 2503 2504 out_unlock: 2505 mutex_unlock(&c->tnc_mutex); 2506 return err; 2507 } 2508 2509 /** 2510 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2511 * @c: UBIFS file-system description object 2512 * @key: key of node 2513 * @nm: directory entry name 2514 * 2515 * Returns %0 on success or negative error code on failure. 2516 */ 2517 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2518 const struct qstr *nm) 2519 { 2520 int n, err; 2521 struct ubifs_znode *znode; 2522 2523 mutex_lock(&c->tnc_mutex); 2524 dbg_tnck(key, "%.*s, key ", nm->len, nm->name); 2525 err = lookup_level0_dirty(c, key, &znode, &n); 2526 if (err < 0) 2527 goto out_unlock; 2528 2529 if (err) { 2530 if (c->replaying) 2531 err = fallible_resolve_collision(c, key, &znode, &n, 2532 nm, 0); 2533 else 2534 err = resolve_collision(c, key, &znode, &n, nm); 2535 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2536 if (err < 0) 2537 goto out_unlock; 2538 if (err) { 2539 /* Ensure the znode is dirtied */ 2540 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2541 znode = dirty_cow_bottom_up(c, znode); 2542 if (IS_ERR(znode)) { 2543 err = PTR_ERR(znode); 2544 goto out_unlock; 2545 } 2546 } 2547 err = tnc_delete(c, znode, n); 2548 } 2549 } 2550 2551 out_unlock: 2552 if (!err) 2553 err = dbg_check_tnc(c, 0); 2554 mutex_unlock(&c->tnc_mutex); 2555 return err; 2556 } 2557 2558 /** 2559 * key_in_range - determine if a key falls within a range of keys. 2560 * @c: UBIFS file-system description object 2561 * @key: key to check 2562 * @from_key: lowest key in range 2563 * @to_key: highest key in range 2564 * 2565 * This function returns %1 if the key is in range and %0 otherwise. 2566 */ 2567 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2568 union ubifs_key *from_key, union ubifs_key *to_key) 2569 { 2570 if (keys_cmp(c, key, from_key) < 0) 2571 return 0; 2572 if (keys_cmp(c, key, to_key) > 0) 2573 return 0; 2574 return 1; 2575 } 2576 2577 /** 2578 * ubifs_tnc_remove_range - remove index entries in range. 2579 * @c: UBIFS file-system description object 2580 * @from_key: lowest key to remove 2581 * @to_key: highest key to remove 2582 * 2583 * This function removes index entries starting at @from_key and ending at 2584 * @to_key. This function returns zero in case of success and a negative error 2585 * code in case of failure. 2586 */ 2587 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2588 union ubifs_key *to_key) 2589 { 2590 int i, n, k, err = 0; 2591 struct ubifs_znode *znode; 2592 union ubifs_key *key; 2593 2594 mutex_lock(&c->tnc_mutex); 2595 while (1) { 2596 /* Find first level 0 znode that contains keys to remove */ 2597 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2598 if (err < 0) 2599 goto out_unlock; 2600 2601 if (err) 2602 key = from_key; 2603 else { 2604 err = tnc_next(c, &znode, &n); 2605 if (err == -ENOENT) { 2606 err = 0; 2607 goto out_unlock; 2608 } 2609 if (err < 0) 2610 goto out_unlock; 2611 key = &znode->zbranch[n].key; 2612 if (!key_in_range(c, key, from_key, to_key)) { 2613 err = 0; 2614 goto out_unlock; 2615 } 2616 } 2617 2618 /* Ensure the znode is dirtied */ 2619 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2620 znode = dirty_cow_bottom_up(c, znode); 2621 if (IS_ERR(znode)) { 2622 err = PTR_ERR(znode); 2623 goto out_unlock; 2624 } 2625 } 2626 2627 /* Remove all keys in range except the first */ 2628 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2629 key = &znode->zbranch[i].key; 2630 if (!key_in_range(c, key, from_key, to_key)) 2631 break; 2632 lnc_free(&znode->zbranch[i]); 2633 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2634 znode->zbranch[i].len); 2635 if (err) { 2636 ubifs_dump_znode(c, znode); 2637 goto out_unlock; 2638 } 2639 dbg_tnck(key, "removing key "); 2640 } 2641 if (k) { 2642 for (i = n + 1 + k; i < znode->child_cnt; i++) 2643 znode->zbranch[i - k] = znode->zbranch[i]; 2644 znode->child_cnt -= k; 2645 } 2646 2647 /* Now delete the first */ 2648 err = tnc_delete(c, znode, n); 2649 if (err) 2650 goto out_unlock; 2651 } 2652 2653 out_unlock: 2654 if (!err) 2655 err = dbg_check_tnc(c, 0); 2656 mutex_unlock(&c->tnc_mutex); 2657 return err; 2658 } 2659 2660 /** 2661 * ubifs_tnc_remove_ino - remove an inode from TNC. 2662 * @c: UBIFS file-system description object 2663 * @inum: inode number to remove 2664 * 2665 * This function remove inode @inum and all the extended attributes associated 2666 * with the anode from TNC and returns zero in case of success or a negative 2667 * error code in case of failure. 2668 */ 2669 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2670 { 2671 union ubifs_key key1, key2; 2672 struct ubifs_dent_node *xent, *pxent = NULL; 2673 struct qstr nm = { .name = NULL }; 2674 2675 dbg_tnc("ino %lu", (unsigned long)inum); 2676 2677 /* 2678 * Walk all extended attribute entries and remove them together with 2679 * corresponding extended attribute inodes. 2680 */ 2681 lowest_xent_key(c, &key1, inum); 2682 while (1) { 2683 ino_t xattr_inum; 2684 int err; 2685 2686 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2687 if (IS_ERR(xent)) { 2688 err = PTR_ERR(xent); 2689 if (err == -ENOENT) 2690 break; 2691 return err; 2692 } 2693 2694 xattr_inum = le64_to_cpu(xent->inum); 2695 dbg_tnc("xent '%s', ino %lu", xent->name, 2696 (unsigned long)xattr_inum); 2697 2698 nm.name = xent->name; 2699 nm.len = le16_to_cpu(xent->nlen); 2700 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2701 if (err) { 2702 kfree(xent); 2703 return err; 2704 } 2705 2706 lowest_ino_key(c, &key1, xattr_inum); 2707 highest_ino_key(c, &key2, xattr_inum); 2708 err = ubifs_tnc_remove_range(c, &key1, &key2); 2709 if (err) { 2710 kfree(xent); 2711 return err; 2712 } 2713 2714 kfree(pxent); 2715 pxent = xent; 2716 key_read(c, &xent->key, &key1); 2717 } 2718 2719 kfree(pxent); 2720 lowest_ino_key(c, &key1, inum); 2721 highest_ino_key(c, &key2, inum); 2722 2723 return ubifs_tnc_remove_range(c, &key1, &key2); 2724 } 2725 2726 /** 2727 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2728 * @c: UBIFS file-system description object 2729 * @key: key of last entry 2730 * @nm: name of last entry found or %NULL 2731 * 2732 * This function finds and reads the next directory or extended attribute entry 2733 * after the given key (@key) if there is one. @nm is used to resolve 2734 * collisions. 2735 * 2736 * If the name of the current entry is not known and only the key is known, 2737 * @nm->name has to be %NULL. In this case the semantics of this function is a 2738 * little bit different and it returns the entry corresponding to this key, not 2739 * the next one. If the key was not found, the closest "right" entry is 2740 * returned. 2741 * 2742 * If the fist entry has to be found, @key has to contain the lowest possible 2743 * key value for this inode and @name has to be %NULL. 2744 * 2745 * This function returns the found directory or extended attribute entry node 2746 * in case of success, %-ENOENT is returned if no entry was found, and a 2747 * negative error code is returned in case of failure. 2748 */ 2749 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2750 union ubifs_key *key, 2751 const struct qstr *nm) 2752 { 2753 int n, err, type = key_type(c, key); 2754 struct ubifs_znode *znode; 2755 struct ubifs_dent_node *dent; 2756 struct ubifs_zbranch *zbr; 2757 union ubifs_key *dkey; 2758 2759 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); 2760 ubifs_assert(is_hash_key(c, key)); 2761 2762 mutex_lock(&c->tnc_mutex); 2763 err = ubifs_lookup_level0(c, key, &znode, &n); 2764 if (unlikely(err < 0)) 2765 goto out_unlock; 2766 2767 if (nm->name) { 2768 if (err) { 2769 /* Handle collisions */ 2770 err = resolve_collision(c, key, &znode, &n, nm); 2771 dbg_tnc("rc returned %d, znode %p, n %d", 2772 err, znode, n); 2773 if (unlikely(err < 0)) 2774 goto out_unlock; 2775 } 2776 2777 /* Now find next entry */ 2778 err = tnc_next(c, &znode, &n); 2779 if (unlikely(err)) 2780 goto out_unlock; 2781 } else { 2782 /* 2783 * The full name of the entry was not given, in which case the 2784 * behavior of this function is a little different and it 2785 * returns current entry, not the next one. 2786 */ 2787 if (!err) { 2788 /* 2789 * However, the given key does not exist in the TNC 2790 * tree and @znode/@n variables contain the closest 2791 * "preceding" element. Switch to the next one. 2792 */ 2793 err = tnc_next(c, &znode, &n); 2794 if (err) 2795 goto out_unlock; 2796 } 2797 } 2798 2799 zbr = &znode->zbranch[n]; 2800 dent = kmalloc(zbr->len, GFP_NOFS); 2801 if (unlikely(!dent)) { 2802 err = -ENOMEM; 2803 goto out_unlock; 2804 } 2805 2806 /* 2807 * The above 'tnc_next()' call could lead us to the next inode, check 2808 * this. 2809 */ 2810 dkey = &zbr->key; 2811 if (key_inum(c, dkey) != key_inum(c, key) || 2812 key_type(c, dkey) != type) { 2813 err = -ENOENT; 2814 goto out_free; 2815 } 2816 2817 err = tnc_read_node_nm(c, zbr, dent); 2818 if (unlikely(err)) 2819 goto out_free; 2820 2821 mutex_unlock(&c->tnc_mutex); 2822 return dent; 2823 2824 out_free: 2825 kfree(dent); 2826 out_unlock: 2827 mutex_unlock(&c->tnc_mutex); 2828 return ERR_PTR(err); 2829 } 2830 2831 /** 2832 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2833 * @c: UBIFS file-system description object 2834 * 2835 * Destroy left-over obsolete znodes from a failed commit. 2836 */ 2837 static void tnc_destroy_cnext(struct ubifs_info *c) 2838 { 2839 struct ubifs_znode *cnext; 2840 2841 if (!c->cnext) 2842 return; 2843 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2844 cnext = c->cnext; 2845 do { 2846 struct ubifs_znode *znode = cnext; 2847 2848 cnext = cnext->cnext; 2849 if (ubifs_zn_obsolete(znode)) 2850 kfree(znode); 2851 } while (cnext && cnext != c->cnext); 2852 } 2853 2854 /** 2855 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2856 * @c: UBIFS file-system description object 2857 */ 2858 void ubifs_tnc_close(struct ubifs_info *c) 2859 { 2860 tnc_destroy_cnext(c); 2861 if (c->zroot.znode) { 2862 long n, freed; 2863 2864 n = atomic_long_read(&c->clean_zn_cnt); 2865 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2866 ubifs_assert(freed == n); 2867 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2868 } 2869 kfree(c->gap_lebs); 2870 kfree(c->ilebs); 2871 destroy_old_idx(c); 2872 } 2873 2874 /** 2875 * left_znode - get the znode to the left. 2876 * @c: UBIFS file-system description object 2877 * @znode: znode 2878 * 2879 * This function returns a pointer to the znode to the left of @znode or NULL if 2880 * there is not one. A negative error code is returned on failure. 2881 */ 2882 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2883 struct ubifs_znode *znode) 2884 { 2885 int level = znode->level; 2886 2887 while (1) { 2888 int n = znode->iip - 1; 2889 2890 /* Go up until we can go left */ 2891 znode = znode->parent; 2892 if (!znode) 2893 return NULL; 2894 if (n >= 0) { 2895 /* Now go down the rightmost branch to 'level' */ 2896 znode = get_znode(c, znode, n); 2897 if (IS_ERR(znode)) 2898 return znode; 2899 while (znode->level != level) { 2900 n = znode->child_cnt - 1; 2901 znode = get_znode(c, znode, n); 2902 if (IS_ERR(znode)) 2903 return znode; 2904 } 2905 break; 2906 } 2907 } 2908 return znode; 2909 } 2910 2911 /** 2912 * right_znode - get the znode to the right. 2913 * @c: UBIFS file-system description object 2914 * @znode: znode 2915 * 2916 * This function returns a pointer to the znode to the right of @znode or NULL 2917 * if there is not one. A negative error code is returned on failure. 2918 */ 2919 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2920 struct ubifs_znode *znode) 2921 { 2922 int level = znode->level; 2923 2924 while (1) { 2925 int n = znode->iip + 1; 2926 2927 /* Go up until we can go right */ 2928 znode = znode->parent; 2929 if (!znode) 2930 return NULL; 2931 if (n < znode->child_cnt) { 2932 /* Now go down the leftmost branch to 'level' */ 2933 znode = get_znode(c, znode, n); 2934 if (IS_ERR(znode)) 2935 return znode; 2936 while (znode->level != level) { 2937 znode = get_znode(c, znode, 0); 2938 if (IS_ERR(znode)) 2939 return znode; 2940 } 2941 break; 2942 } 2943 } 2944 return znode; 2945 } 2946 2947 /** 2948 * lookup_znode - find a particular indexing node from TNC. 2949 * @c: UBIFS file-system description object 2950 * @key: index node key to lookup 2951 * @level: index node level 2952 * @lnum: index node LEB number 2953 * @offs: index node offset 2954 * 2955 * This function searches an indexing node by its first key @key and its 2956 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2957 * nodes it traverses to TNC. This function is called for indexing nodes which 2958 * were found on the media by scanning, for example when garbage-collecting or 2959 * when doing in-the-gaps commit. This means that the indexing node which is 2960 * looked for does not have to have exactly the same leftmost key @key, because 2961 * the leftmost key may have been changed, in which case TNC will contain a 2962 * dirty znode which still refers the same @lnum:@offs. This function is clever 2963 * enough to recognize such indexing nodes. 2964 * 2965 * Note, if a znode was deleted or changed too much, then this function will 2966 * not find it. For situations like this UBIFS has the old index RB-tree 2967 * (indexed by @lnum:@offs). 2968 * 2969 * This function returns a pointer to the znode found or %NULL if it is not 2970 * found. A negative error code is returned on failure. 2971 */ 2972 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2973 union ubifs_key *key, int level, 2974 int lnum, int offs) 2975 { 2976 struct ubifs_znode *znode, *zn; 2977 int n, nn; 2978 2979 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2980 2981 /* 2982 * The arguments have probably been read off flash, so don't assume 2983 * they are valid. 2984 */ 2985 if (level < 0) 2986 return ERR_PTR(-EINVAL); 2987 2988 /* Get the root znode */ 2989 znode = c->zroot.znode; 2990 if (!znode) { 2991 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 2992 if (IS_ERR(znode)) 2993 return znode; 2994 } 2995 /* Check if it is the one we are looking for */ 2996 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 2997 return znode; 2998 /* Descend to the parent level i.e. (level + 1) */ 2999 if (level >= znode->level) 3000 return NULL; 3001 while (1) { 3002 ubifs_search_zbranch(c, znode, key, &n); 3003 if (n < 0) { 3004 /* 3005 * We reached a znode where the leftmost key is greater 3006 * than the key we are searching for. This is the same 3007 * situation as the one described in a huge comment at 3008 * the end of the 'ubifs_lookup_level0()' function. And 3009 * for exactly the same reasons we have to try to look 3010 * left before giving up. 3011 */ 3012 znode = left_znode(c, znode); 3013 if (!znode) 3014 return NULL; 3015 if (IS_ERR(znode)) 3016 return znode; 3017 ubifs_search_zbranch(c, znode, key, &n); 3018 ubifs_assert(n >= 0); 3019 } 3020 if (znode->level == level + 1) 3021 break; 3022 znode = get_znode(c, znode, n); 3023 if (IS_ERR(znode)) 3024 return znode; 3025 } 3026 /* Check if the child is the one we are looking for */ 3027 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3028 return get_znode(c, znode, n); 3029 /* If the key is unique, there is nowhere else to look */ 3030 if (!is_hash_key(c, key)) 3031 return NULL; 3032 /* 3033 * The key is not unique and so may be also in the znodes to either 3034 * side. 3035 */ 3036 zn = znode; 3037 nn = n; 3038 /* Look left */ 3039 while (1) { 3040 /* Move one branch to the left */ 3041 if (n) 3042 n -= 1; 3043 else { 3044 znode = left_znode(c, znode); 3045 if (!znode) 3046 break; 3047 if (IS_ERR(znode)) 3048 return znode; 3049 n = znode->child_cnt - 1; 3050 } 3051 /* Check it */ 3052 if (znode->zbranch[n].lnum == lnum && 3053 znode->zbranch[n].offs == offs) 3054 return get_znode(c, znode, n); 3055 /* Stop if the key is less than the one we are looking for */ 3056 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3057 break; 3058 } 3059 /* Back to the middle */ 3060 znode = zn; 3061 n = nn; 3062 /* Look right */ 3063 while (1) { 3064 /* Move one branch to the right */ 3065 if (++n >= znode->child_cnt) { 3066 znode = right_znode(c, znode); 3067 if (!znode) 3068 break; 3069 if (IS_ERR(znode)) 3070 return znode; 3071 n = 0; 3072 } 3073 /* Check it */ 3074 if (znode->zbranch[n].lnum == lnum && 3075 znode->zbranch[n].offs == offs) 3076 return get_znode(c, znode, n); 3077 /* Stop if the key is greater than the one we are looking for */ 3078 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3079 break; 3080 } 3081 return NULL; 3082 } 3083 3084 /** 3085 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3086 * @c: UBIFS file-system description object 3087 * @key: key of index node 3088 * @level: index node level 3089 * @lnum: LEB number of index node 3090 * @offs: offset of index node 3091 * 3092 * This function returns %0 if the index node is not referred to in the TNC, %1 3093 * if the index node is referred to in the TNC and the corresponding znode is 3094 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3095 * znode is clean, and a negative error code in case of failure. 3096 * 3097 * Note, the @key argument has to be the key of the first child. Also note, 3098 * this function relies on the fact that 0:0 is never a valid LEB number and 3099 * offset for a main-area node. 3100 */ 3101 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3102 int lnum, int offs) 3103 { 3104 struct ubifs_znode *znode; 3105 3106 znode = lookup_znode(c, key, level, lnum, offs); 3107 if (!znode) 3108 return 0; 3109 if (IS_ERR(znode)) 3110 return PTR_ERR(znode); 3111 3112 return ubifs_zn_dirty(znode) ? 1 : 2; 3113 } 3114 3115 /** 3116 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3117 * @c: UBIFS file-system description object 3118 * @key: node key 3119 * @lnum: node LEB number 3120 * @offs: node offset 3121 * 3122 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3123 * not, and a negative error code in case of failure. 3124 * 3125 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3126 * and offset for a main-area node. 3127 */ 3128 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3129 int lnum, int offs) 3130 { 3131 struct ubifs_zbranch *zbr; 3132 struct ubifs_znode *znode, *zn; 3133 int n, found, err, nn; 3134 const int unique = !is_hash_key(c, key); 3135 3136 found = ubifs_lookup_level0(c, key, &znode, &n); 3137 if (found < 0) 3138 return found; /* Error code */ 3139 if (!found) 3140 return 0; 3141 zbr = &znode->zbranch[n]; 3142 if (lnum == zbr->lnum && offs == zbr->offs) 3143 return 1; /* Found it */ 3144 if (unique) 3145 return 0; 3146 /* 3147 * Because the key is not unique, we have to look left 3148 * and right as well 3149 */ 3150 zn = znode; 3151 nn = n; 3152 /* Look left */ 3153 while (1) { 3154 err = tnc_prev(c, &znode, &n); 3155 if (err == -ENOENT) 3156 break; 3157 if (err) 3158 return err; 3159 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3160 break; 3161 zbr = &znode->zbranch[n]; 3162 if (lnum == zbr->lnum && offs == zbr->offs) 3163 return 1; /* Found it */ 3164 } 3165 /* Look right */ 3166 znode = zn; 3167 n = nn; 3168 while (1) { 3169 err = tnc_next(c, &znode, &n); 3170 if (err) { 3171 if (err == -ENOENT) 3172 return 0; 3173 return err; 3174 } 3175 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3176 break; 3177 zbr = &znode->zbranch[n]; 3178 if (lnum == zbr->lnum && offs == zbr->offs) 3179 return 1; /* Found it */ 3180 } 3181 return 0; 3182 } 3183 3184 /** 3185 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3186 * @c: UBIFS file-system description object 3187 * @key: node key 3188 * @level: index node level (if it is an index node) 3189 * @lnum: node LEB number 3190 * @offs: node offset 3191 * @is_idx: non-zero if the node is an index node 3192 * 3193 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3194 * negative error code in case of failure. For index nodes, @key has to be the 3195 * key of the first child. An index node is considered to be in the TNC only if 3196 * the corresponding znode is clean or has not been loaded. 3197 */ 3198 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3199 int lnum, int offs, int is_idx) 3200 { 3201 int err; 3202 3203 mutex_lock(&c->tnc_mutex); 3204 if (is_idx) { 3205 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3206 if (err < 0) 3207 goto out_unlock; 3208 if (err == 1) 3209 /* The index node was found but it was dirty */ 3210 err = 0; 3211 else if (err == 2) 3212 /* The index node was found and it was clean */ 3213 err = 1; 3214 else 3215 BUG_ON(err != 0); 3216 } else 3217 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3218 3219 out_unlock: 3220 mutex_unlock(&c->tnc_mutex); 3221 return err; 3222 } 3223 3224 /** 3225 * ubifs_dirty_idx_node - dirty an index node. 3226 * @c: UBIFS file-system description object 3227 * @key: index node key 3228 * @level: index node level 3229 * @lnum: index node LEB number 3230 * @offs: index node offset 3231 * 3232 * This function loads and dirties an index node so that it can be garbage 3233 * collected. The @key argument has to be the key of the first child. This 3234 * function relies on the fact that 0:0 is never a valid LEB number and offset 3235 * for a main-area node. Returns %0 on success and a negative error code on 3236 * failure. 3237 */ 3238 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3239 int lnum, int offs) 3240 { 3241 struct ubifs_znode *znode; 3242 int err = 0; 3243 3244 mutex_lock(&c->tnc_mutex); 3245 znode = lookup_znode(c, key, level, lnum, offs); 3246 if (!znode) 3247 goto out_unlock; 3248 if (IS_ERR(znode)) { 3249 err = PTR_ERR(znode); 3250 goto out_unlock; 3251 } 3252 znode = dirty_cow_bottom_up(c, znode); 3253 if (IS_ERR(znode)) { 3254 err = PTR_ERR(znode); 3255 goto out_unlock; 3256 } 3257 3258 out_unlock: 3259 mutex_unlock(&c->tnc_mutex); 3260 return err; 3261 } 3262 3263 /** 3264 * dbg_check_inode_size - check if inode size is correct. 3265 * @c: UBIFS file-system description object 3266 * @inum: inode number 3267 * @size: inode size 3268 * 3269 * This function makes sure that the inode size (@size) is correct and it does 3270 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3271 * if it has a data page beyond @size, and other negative error code in case of 3272 * other errors. 3273 */ 3274 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3275 loff_t size) 3276 { 3277 int err, n; 3278 union ubifs_key from_key, to_key, *key; 3279 struct ubifs_znode *znode; 3280 unsigned int block; 3281 3282 if (!S_ISREG(inode->i_mode)) 3283 return 0; 3284 if (!dbg_is_chk_gen(c)) 3285 return 0; 3286 3287 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3288 data_key_init(c, &from_key, inode->i_ino, block); 3289 highest_data_key(c, &to_key, inode->i_ino); 3290 3291 mutex_lock(&c->tnc_mutex); 3292 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3293 if (err < 0) 3294 goto out_unlock; 3295 3296 if (err) { 3297 key = &from_key; 3298 goto out_dump; 3299 } 3300 3301 err = tnc_next(c, &znode, &n); 3302 if (err == -ENOENT) { 3303 err = 0; 3304 goto out_unlock; 3305 } 3306 if (err < 0) 3307 goto out_unlock; 3308 3309 ubifs_assert(err == 0); 3310 key = &znode->zbranch[n].key; 3311 if (!key_in_range(c, key, &from_key, &to_key)) 3312 goto out_unlock; 3313 3314 out_dump: 3315 block = key_block(c, key); 3316 ubifs_err("inode %lu has size %lld, but there are data at offset %lld", 3317 (unsigned long)inode->i_ino, size, 3318 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3319 mutex_unlock(&c->tnc_mutex); 3320 ubifs_dump_inode(c, inode); 3321 dump_stack(); 3322 return -EINVAL; 3323 3324 out_unlock: 3325 mutex_unlock(&c->tnc_mutex); 3326 return err; 3327 } 3328