xref: /openbmc/linux/fs/ubifs/tnc.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 			 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 			      struct ubifs_zbranch *zbr, void *node);
41 
42 /*
43  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44  * @NAME_LESS: name corresponding to the first argument is less than second
45  * @NAME_MATCHES: names match
46  * @NAME_GREATER: name corresponding to the second argument is greater than
47  *                first
48  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49  *
50  * These constants were introduce to improve readability.
51  */
52 enum {
53 	NAME_LESS    = 0,
54 	NAME_MATCHES = 1,
55 	NAME_GREATER = 2,
56 	NOT_ON_MEDIA = 3,
57 };
58 
59 /**
60  * insert_old_idx - record an index node obsoleted since the last commit start.
61  * @c: UBIFS file-system description object
62  * @lnum: LEB number of obsoleted index node
63  * @offs: offset of obsoleted index node
64  *
65  * Returns %0 on success, and a negative error code on failure.
66  *
67  * For recovery, there must always be a complete intact version of the index on
68  * flash at all times. That is called the "old index". It is the index as at the
69  * time of the last successful commit. Many of the index nodes in the old index
70  * may be dirty, but they must not be erased until the next successful commit
71  * (at which point that index becomes the old index).
72  *
73  * That means that the garbage collection and the in-the-gaps method of
74  * committing must be able to determine if an index node is in the old index.
75  * Most of the old index nodes can be found by looking up the TNC using the
76  * 'lookup_znode()' function. However, some of the old index nodes may have
77  * been deleted from the current index or may have been changed so much that
78  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79  * That is what this function does. The RB-tree is ordered by LEB number and
80  * offset because they uniquely identify the old index node.
81  */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 	struct ubifs_old_idx *old_idx, *o;
85 	struct rb_node **p, *parent = NULL;
86 
87 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 	if (unlikely(!old_idx))
89 		return -ENOMEM;
90 	old_idx->lnum = lnum;
91 	old_idx->offs = offs;
92 
93 	p = &c->old_idx.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		o = rb_entry(parent, struct ubifs_old_idx, rb);
97 		if (lnum < o->lnum)
98 			p = &(*p)->rb_left;
99 		else if (lnum > o->lnum)
100 			p = &(*p)->rb_right;
101 		else if (offs < o->offs)
102 			p = &(*p)->rb_left;
103 		else if (offs > o->offs)
104 			p = &(*p)->rb_right;
105 		else {
106 			ubifs_err(c, "old idx added twice!");
107 			kfree(old_idx);
108 			return 0;
109 		}
110 	}
111 	rb_link_node(&old_idx->rb, parent, p);
112 	rb_insert_color(&old_idx->rb, &c->old_idx);
113 	return 0;
114 }
115 
116 /**
117  * insert_old_idx_znode - record a znode obsoleted since last commit start.
118  * @c: UBIFS file-system description object
119  * @znode: znode of obsoleted index node
120  *
121  * Returns %0 on success, and a negative error code on failure.
122  */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 	if (znode->parent) {
126 		struct ubifs_zbranch *zbr;
127 
128 		zbr = &znode->parent->zbranch[znode->iip];
129 		if (zbr->len)
130 			return insert_old_idx(c, zbr->lnum, zbr->offs);
131 	} else
132 		if (c->zroot.len)
133 			return insert_old_idx(c, c->zroot.lnum,
134 					      c->zroot.offs);
135 	return 0;
136 }
137 
138 /**
139  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140  * @c: UBIFS file-system description object
141  * @znode: znode of obsoleted index node
142  *
143  * Returns %0 on success, and a negative error code on failure.
144  */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 				 struct ubifs_znode *znode)
147 {
148 	int err;
149 
150 	if (znode->parent) {
151 		struct ubifs_zbranch *zbr;
152 
153 		zbr = &znode->parent->zbranch[znode->iip];
154 		if (zbr->len) {
155 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 			if (err)
157 				return err;
158 			zbr->lnum = 0;
159 			zbr->offs = 0;
160 			zbr->len = 0;
161 		}
162 	} else
163 		if (c->zroot.len) {
164 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 			if (err)
166 				return err;
167 			c->zroot.lnum = 0;
168 			c->zroot.offs = 0;
169 			c->zroot.len = 0;
170 		}
171 	return 0;
172 }
173 
174 /**
175  * destroy_old_idx - destroy the old_idx RB-tree.
176  * @c: UBIFS file-system description object
177  *
178  * During start commit, the old_idx RB-tree is used to avoid overwriting index
179  * nodes that were in the index last commit but have since been deleted.  This
180  * is necessary for recovery i.e. the old index must be kept intact until the
181  * new index is successfully written.  The old-idx RB-tree is used for the
182  * in-the-gaps method of writing index nodes and is destroyed every commit.
183  */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 	struct ubifs_old_idx *old_idx, *n;
187 
188 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 		kfree(old_idx);
190 
191 	c->old_idx = RB_ROOT;
192 }
193 
194 /**
195  * copy_znode - copy a dirty znode.
196  * @c: UBIFS file-system description object
197  * @znode: znode to copy
198  *
199  * A dirty znode being committed may not be changed, so it is copied.
200  */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 				      struct ubifs_znode *znode)
203 {
204 	struct ubifs_znode *zn;
205 
206 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 	if (unlikely(!zn))
208 		return ERR_PTR(-ENOMEM);
209 
210 	zn->cnext = NULL;
211 	__set_bit(DIRTY_ZNODE, &zn->flags);
212 	__clear_bit(COW_ZNODE, &zn->flags);
213 
214 	ubifs_assert(!ubifs_zn_obsolete(znode));
215 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
216 
217 	if (znode->level != 0) {
218 		int i;
219 		const int n = zn->child_cnt;
220 
221 		/* The children now have new parent */
222 		for (i = 0; i < n; i++) {
223 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
224 
225 			if (zbr->znode)
226 				zbr->znode->parent = zn;
227 		}
228 	}
229 
230 	atomic_long_inc(&c->dirty_zn_cnt);
231 	return zn;
232 }
233 
234 /**
235  * add_idx_dirt - add dirt due to a dirty znode.
236  * @c: UBIFS file-system description object
237  * @lnum: LEB number of index node
238  * @dirt: size of index node
239  *
240  * This function updates lprops dirty space and the new size of the index.
241  */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 	c->calc_idx_sz -= ALIGN(dirt, 8);
245 	return ubifs_add_dirt(c, lnum, dirt);
246 }
247 
248 /**
249  * dirty_cow_znode - ensure a znode is not being committed.
250  * @c: UBIFS file-system description object
251  * @zbr: branch of znode to check
252  *
253  * Returns dirtied znode on success or negative error code on failure.
254  */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 					   struct ubifs_zbranch *zbr)
257 {
258 	struct ubifs_znode *znode = zbr->znode;
259 	struct ubifs_znode *zn;
260 	int err;
261 
262 	if (!ubifs_zn_cow(znode)) {
263 		/* znode is not being committed */
264 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 			atomic_long_inc(&c->dirty_zn_cnt);
266 			atomic_long_dec(&c->clean_zn_cnt);
267 			atomic_long_dec(&ubifs_clean_zn_cnt);
268 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 			if (unlikely(err))
270 				return ERR_PTR(err);
271 		}
272 		return znode;
273 	}
274 
275 	zn = copy_znode(c, znode);
276 	if (IS_ERR(zn))
277 		return zn;
278 
279 	if (zbr->len) {
280 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 		if (unlikely(err))
282 			return ERR_PTR(err);
283 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 	} else
285 		err = 0;
286 
287 	zbr->znode = zn;
288 	zbr->lnum = 0;
289 	zbr->offs = 0;
290 	zbr->len = 0;
291 
292 	if (unlikely(err))
293 		return ERR_PTR(err);
294 	return zn;
295 }
296 
297 /**
298  * lnc_add - add a leaf node to the leaf node cache.
299  * @c: UBIFS file-system description object
300  * @zbr: zbranch of leaf node
301  * @node: leaf node
302  *
303  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304  * purpose of the leaf node cache is to save re-reading the same leaf node over
305  * and over again. Most things are cached by VFS, however the file system must
306  * cache directory entries for readdir and for resolving hash collisions. The
307  * present implementation of the leaf node cache is extremely simple, and
308  * allows for error returns that are not used but that may be needed if a more
309  * complex implementation is created.
310  *
311  * Note, this function does not add the @node object to LNC directly, but
312  * allocates a copy of the object and adds the copy to LNC. The reason for this
313  * is that @node has been allocated outside of the TNC subsystem and will be
314  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315  * may be changed at any time, e.g. freed by the shrinker.
316  */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 		   const void *node)
319 {
320 	int err;
321 	void *lnc_node;
322 	const struct ubifs_dent_node *dent = node;
323 
324 	ubifs_assert(!zbr->leaf);
325 	ubifs_assert(zbr->len != 0);
326 	ubifs_assert(is_hash_key(c, &zbr->key));
327 
328 	err = ubifs_validate_entry(c, dent);
329 	if (err) {
330 		dump_stack();
331 		ubifs_dump_node(c, dent);
332 		return err;
333 	}
334 
335 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 	if (!lnc_node)
337 		/* We don't have to have the cache, so no error */
338 		return 0;
339 
340 	zbr->leaf = lnc_node;
341 	return 0;
342 }
343 
344  /**
345  * lnc_add_directly - add a leaf node to the leaf-node-cache.
346  * @c: UBIFS file-system description object
347  * @zbr: zbranch of leaf node
348  * @node: leaf node
349  *
350  * This function is similar to 'lnc_add()', but it does not create a copy of
351  * @node but inserts @node to TNC directly.
352  */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 			    void *node)
355 {
356 	int err;
357 
358 	ubifs_assert(!zbr->leaf);
359 	ubifs_assert(zbr->len != 0);
360 
361 	err = ubifs_validate_entry(c, node);
362 	if (err) {
363 		dump_stack();
364 		ubifs_dump_node(c, node);
365 		return err;
366 	}
367 
368 	zbr->leaf = node;
369 	return 0;
370 }
371 
372 /**
373  * lnc_free - remove a leaf node from the leaf node cache.
374  * @zbr: zbranch of leaf node
375  * @node: leaf node
376  */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 	if (!zbr->leaf)
380 		return;
381 	kfree(zbr->leaf);
382 	zbr->leaf = NULL;
383 }
384 
385 /**
386  * tnc_read_hashed_node - read a "hashed" leaf node.
387  * @c: UBIFS file-system description object
388  * @zbr: key and position of the node
389  * @node: node is returned here
390  *
391  * This function reads a "hashed" node defined by @zbr from the leaf node cache
392  * (in it is there) or from the hash media, in which case the node is also
393  * added to LNC. Returns zero in case of success or a negative negative error
394  * code in case of failure.
395  */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 				void *node)
398 {
399 	int err;
400 
401 	ubifs_assert(is_hash_key(c, &zbr->key));
402 
403 	if (zbr->leaf) {
404 		/* Read from the leaf node cache */
405 		ubifs_assert(zbr->len != 0);
406 		memcpy(node, zbr->leaf, zbr->len);
407 		return 0;
408 	}
409 
410 	if (c->replaying) {
411 		err = fallible_read_node(c, &zbr->key, zbr, node);
412 		/*
413 		 * When the node was not found, return -ENOENT, 0 otherwise.
414 		 * Negative return codes stay as-is.
415 		 */
416 		if (err == 0)
417 			err = -ENOENT;
418 		else if (err == 1)
419 			err = 0;
420 	} else {
421 		err = ubifs_tnc_read_node(c, zbr, node);
422 	}
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  *
447  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448  * is true (it is controlled by corresponding mount option). However, if
449  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451  * because during mounting or re-mounting from R/O mode to R/W mode we may read
452  * journal nodes (when replying the journal or doing the recovery) and the
453  * journal nodes may potentially be corrupted, so checking is required.
454  */
455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 			 int len, int lnum, int offs)
457 {
458 	int err, node_len;
459 	struct ubifs_ch *ch = buf;
460 	uint32_t crc, node_crc;
461 
462 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463 
464 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 	if (err) {
466 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
467 			  type, lnum, offs, err);
468 		return err;
469 	}
470 
471 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 		return 0;
473 
474 	if (ch->node_type != type)
475 		return 0;
476 
477 	node_len = le32_to_cpu(ch->len);
478 	if (node_len != len)
479 		return 0;
480 
481 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 	    !c->remounting_rw)
483 		return 1;
484 
485 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 	node_crc = le32_to_cpu(ch->crc);
487 	if (crc != node_crc)
488 		return 0;
489 
490 	return 1;
491 }
492 
493 /**
494  * fallible_read_node - try to read a leaf node.
495  * @c: UBIFS file-system description object
496  * @key:  key of node to read
497  * @zbr:  position of node
498  * @node: node returned
499  *
500  * This function tries to read a node and returns %1 if the node is read, %0
501  * if the node is not present, and a negative error code in the case of error.
502  */
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 			      struct ubifs_zbranch *zbr, void *node)
505 {
506 	int ret;
507 
508 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509 
510 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 			    zbr->offs);
512 	if (ret == 1) {
513 		union ubifs_key node_key;
514 		struct ubifs_dent_node *dent = node;
515 
516 		/* All nodes have key in the same place */
517 		key_read(c, &dent->key, &node_key);
518 		if (keys_cmp(c, key, &node_key) != 0)
519 			ret = 0;
520 	}
521 	if (ret == 0 && c->replaying)
522 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 			zbr->lnum, zbr->offs, zbr->len);
524 	return ret;
525 }
526 
527 /**
528  * matches_name - determine if a direntry or xattr entry matches a given name.
529  * @c: UBIFS file-system description object
530  * @zbr: zbranch of dent
531  * @nm: name to match
532  *
533  * This function checks if xentry/direntry referred by zbranch @zbr matches name
534  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536  * of failure, a negative error code is returned.
537  */
538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 			const struct fscrypt_name *nm)
540 {
541 	struct ubifs_dent_node *dent;
542 	int nlen, err;
543 
544 	/* If possible, match against the dent in the leaf node cache */
545 	if (!zbr->leaf) {
546 		dent = kmalloc(zbr->len, GFP_NOFS);
547 		if (!dent)
548 			return -ENOMEM;
549 
550 		err = ubifs_tnc_read_node(c, zbr, dent);
551 		if (err)
552 			goto out_free;
553 
554 		/* Add the node to the leaf node cache */
555 		err = lnc_add_directly(c, zbr, dent);
556 		if (err)
557 			goto out_free;
558 	} else
559 		dent = zbr->leaf;
560 
561 	nlen = le16_to_cpu(dent->nlen);
562 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 	if (err == 0) {
564 		if (nlen == fname_len(nm))
565 			return NAME_MATCHES;
566 		else if (nlen < fname_len(nm))
567 			return NAME_LESS;
568 		else
569 			return NAME_GREATER;
570 	} else if (err < 0)
571 		return NAME_LESS;
572 	else
573 		return NAME_GREATER;
574 
575 out_free:
576 	kfree(dent);
577 	return err;
578 }
579 
580 /**
581  * get_znode - get a TNC znode that may not be loaded yet.
582  * @c: UBIFS file-system description object
583  * @znode: parent znode
584  * @n: znode branch slot number
585  *
586  * This function returns the znode or a negative error code.
587  */
588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 				     struct ubifs_znode *znode, int n)
590 {
591 	struct ubifs_zbranch *zbr;
592 
593 	zbr = &znode->zbranch[n];
594 	if (zbr->znode)
595 		znode = zbr->znode;
596 	else
597 		znode = ubifs_load_znode(c, zbr, znode, n);
598 	return znode;
599 }
600 
601 /**
602  * tnc_next - find next TNC entry.
603  * @c: UBIFS file-system description object
604  * @zn: znode is passed and returned here
605  * @n: znode branch slot number is passed and returned here
606  *
607  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608  * no next entry, or a negative error code otherwise.
609  */
610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 {
612 	struct ubifs_znode *znode = *zn;
613 	int nn = *n;
614 
615 	nn += 1;
616 	if (nn < znode->child_cnt) {
617 		*n = nn;
618 		return 0;
619 	}
620 	while (1) {
621 		struct ubifs_znode *zp;
622 
623 		zp = znode->parent;
624 		if (!zp)
625 			return -ENOENT;
626 		nn = znode->iip + 1;
627 		znode = zp;
628 		if (nn < znode->child_cnt) {
629 			znode = get_znode(c, znode, nn);
630 			if (IS_ERR(znode))
631 				return PTR_ERR(znode);
632 			while (znode->level != 0) {
633 				znode = get_znode(c, znode, 0);
634 				if (IS_ERR(znode))
635 					return PTR_ERR(znode);
636 			}
637 			nn = 0;
638 			break;
639 		}
640 	}
641 	*zn = znode;
642 	*n = nn;
643 	return 0;
644 }
645 
646 /**
647  * tnc_prev - find previous TNC entry.
648  * @c: UBIFS file-system description object
649  * @zn: znode is returned here
650  * @n: znode branch slot number is passed and returned here
651  *
652  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653  * there is no next entry, or a negative error code otherwise.
654  */
655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 {
657 	struct ubifs_znode *znode = *zn;
658 	int nn = *n;
659 
660 	if (nn > 0) {
661 		*n = nn - 1;
662 		return 0;
663 	}
664 	while (1) {
665 		struct ubifs_znode *zp;
666 
667 		zp = znode->parent;
668 		if (!zp)
669 			return -ENOENT;
670 		nn = znode->iip - 1;
671 		znode = zp;
672 		if (nn >= 0) {
673 			znode = get_znode(c, znode, nn);
674 			if (IS_ERR(znode))
675 				return PTR_ERR(znode);
676 			while (znode->level != 0) {
677 				nn = znode->child_cnt - 1;
678 				znode = get_znode(c, znode, nn);
679 				if (IS_ERR(znode))
680 					return PTR_ERR(znode);
681 			}
682 			nn = znode->child_cnt - 1;
683 			break;
684 		}
685 	}
686 	*zn = znode;
687 	*n = nn;
688 	return 0;
689 }
690 
691 /**
692  * resolve_collision - resolve a collision.
693  * @c: UBIFS file-system description object
694  * @key: key of a directory or extended attribute entry
695  * @zn: znode is returned here
696  * @n: zbranch number is passed and returned here
697  * @nm: name of the entry
698  *
699  * This function is called for "hashed" keys to make sure that the found key
700  * really corresponds to the looked up node (directory or extended attribute
701  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702  * %0 is returned if @nm is not found and @zn and @n are set to the previous
703  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704  * This means that @n may be set to %-1 if the leftmost key in @zn is the
705  * previous one. A negative error code is returned on failures.
706  */
707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 			     struct ubifs_znode **zn, int *n,
709 			     const struct fscrypt_name *nm)
710 {
711 	int err;
712 
713 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 	if (unlikely(err < 0))
715 		return err;
716 	if (err == NAME_MATCHES)
717 		return 1;
718 
719 	if (err == NAME_GREATER) {
720 		/* Look left */
721 		while (1) {
722 			err = tnc_prev(c, zn, n);
723 			if (err == -ENOENT) {
724 				ubifs_assert(*n == 0);
725 				*n = -1;
726 				return 0;
727 			}
728 			if (err < 0)
729 				return err;
730 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 				/*
732 				 * We have found the branch after which we would
733 				 * like to insert, but inserting in this znode
734 				 * may still be wrong. Consider the following 3
735 				 * znodes, in the case where we are resolving a
736 				 * collision with Key2.
737 				 *
738 				 *                  znode zp
739 				 *            ----------------------
740 				 * level 1     |  Key0  |  Key1  |
741 				 *            -----------------------
742 				 *                 |            |
743 				 *       znode za  |            |  znode zb
744 				 *          ------------      ------------
745 				 * level 0  |  Key0  |        |  Key2  |
746 				 *          ------------      ------------
747 				 *
748 				 * The lookup finds Key2 in znode zb. Lets say
749 				 * there is no match and the name is greater so
750 				 * we look left. When we find Key0, we end up
751 				 * here. If we return now, we will insert into
752 				 * znode za at slot n = 1.  But that is invalid
753 				 * according to the parent's keys.  Key2 must
754 				 * be inserted into znode zb.
755 				 *
756 				 * Note, this problem is not relevant for the
757 				 * case when we go right, because
758 				 * 'tnc_insert()' would correct the parent key.
759 				 */
760 				if (*n == (*zn)->child_cnt - 1) {
761 					err = tnc_next(c, zn, n);
762 					if (err) {
763 						/* Should be impossible */
764 						ubifs_assert(0);
765 						if (err == -ENOENT)
766 							err = -EINVAL;
767 						return err;
768 					}
769 					ubifs_assert(*n == 0);
770 					*n = -1;
771 				}
772 				return 0;
773 			}
774 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 			if (err < 0)
776 				return err;
777 			if (err == NAME_LESS)
778 				return 0;
779 			if (err == NAME_MATCHES)
780 				return 1;
781 			ubifs_assert(err == NAME_GREATER);
782 		}
783 	} else {
784 		int nn = *n;
785 		struct ubifs_znode *znode = *zn;
786 
787 		/* Look right */
788 		while (1) {
789 			err = tnc_next(c, &znode, &nn);
790 			if (err == -ENOENT)
791 				return 0;
792 			if (err < 0)
793 				return err;
794 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 				return 0;
796 			err = matches_name(c, &znode->zbranch[nn], nm);
797 			if (err < 0)
798 				return err;
799 			if (err == NAME_GREATER)
800 				return 0;
801 			*zn = znode;
802 			*n = nn;
803 			if (err == NAME_MATCHES)
804 				return 1;
805 			ubifs_assert(err == NAME_LESS);
806 		}
807 	}
808 }
809 
810 /**
811  * fallible_matches_name - determine if a dent matches a given name.
812  * @c: UBIFS file-system description object
813  * @zbr: zbranch of dent
814  * @nm: name to match
815  *
816  * This is a "fallible" version of 'matches_name()' function which does not
817  * panic if the direntry/xentry referred by @zbr does not exist on the media.
818  *
819  * This function checks if xentry/direntry referred by zbranch @zbr matches name
820  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822  * if xentry/direntry referred by @zbr does not exist on the media. A negative
823  * error code is returned in case of failure.
824  */
825 static int fallible_matches_name(struct ubifs_info *c,
826 				 struct ubifs_zbranch *zbr,
827 				 const struct fscrypt_name *nm)
828 {
829 	struct ubifs_dent_node *dent;
830 	int nlen, err;
831 
832 	/* If possible, match against the dent in the leaf node cache */
833 	if (!zbr->leaf) {
834 		dent = kmalloc(zbr->len, GFP_NOFS);
835 		if (!dent)
836 			return -ENOMEM;
837 
838 		err = fallible_read_node(c, &zbr->key, zbr, dent);
839 		if (err < 0)
840 			goto out_free;
841 		if (err == 0) {
842 			/* The node was not present */
843 			err = NOT_ON_MEDIA;
844 			goto out_free;
845 		}
846 		ubifs_assert(err == 1);
847 
848 		err = lnc_add_directly(c, zbr, dent);
849 		if (err)
850 			goto out_free;
851 	} else
852 		dent = zbr->leaf;
853 
854 	nlen = le16_to_cpu(dent->nlen);
855 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 	if (err == 0) {
857 		if (nlen == fname_len(nm))
858 			return NAME_MATCHES;
859 		else if (nlen < fname_len(nm))
860 			return NAME_LESS;
861 		else
862 			return NAME_GREATER;
863 	} else if (err < 0)
864 		return NAME_LESS;
865 	else
866 		return NAME_GREATER;
867 
868 out_free:
869 	kfree(dent);
870 	return err;
871 }
872 
873 /**
874  * fallible_resolve_collision - resolve a collision even if nodes are missing.
875  * @c: UBIFS file-system description object
876  * @key: key
877  * @zn: znode is returned here
878  * @n: branch number is passed and returned here
879  * @nm: name of directory entry
880  * @adding: indicates caller is adding a key to the TNC
881  *
882  * This is a "fallible" version of the 'resolve_collision()' function which
883  * does not panic if one of the nodes referred to by TNC does not exist on the
884  * media. This may happen when replaying the journal if a deleted node was
885  * Garbage-collected and the commit was not done. A branch that refers to a node
886  * that is not present is called a dangling branch. The following are the return
887  * codes for this function:
888  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
889  *    branch;
890  *  o if we are @adding and @nm was not found, %0 is returned;
891  *  o if we are not @adding and @nm was not found, but a dangling branch was
892  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
893  *  o a negative error code is returned in case of failure.
894  */
895 static int fallible_resolve_collision(struct ubifs_info *c,
896 				      const union ubifs_key *key,
897 				      struct ubifs_znode **zn, int *n,
898 				      const struct fscrypt_name *nm,
899 				      int adding)
900 {
901 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903 
904 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 	if (unlikely(cmp < 0))
906 		return cmp;
907 	if (cmp == NAME_MATCHES)
908 		return 1;
909 	if (cmp == NOT_ON_MEDIA) {
910 		o_znode = znode;
911 		o_n = nn;
912 		/*
913 		 * We are unlucky and hit a dangling branch straight away.
914 		 * Now we do not really know where to go to find the needed
915 		 * branch - to the left or to the right. Well, let's try left.
916 		 */
917 		unsure = 1;
918 	} else if (!adding)
919 		unsure = 1; /* Remove a dangling branch wherever it is */
920 
921 	if (cmp == NAME_GREATER || unsure) {
922 		/* Look left */
923 		while (1) {
924 			err = tnc_prev(c, zn, n);
925 			if (err == -ENOENT) {
926 				ubifs_assert(*n == 0);
927 				*n = -1;
928 				break;
929 			}
930 			if (err < 0)
931 				return err;
932 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 				/* See comments in 'resolve_collision()' */
934 				if (*n == (*zn)->child_cnt - 1) {
935 					err = tnc_next(c, zn, n);
936 					if (err) {
937 						/* Should be impossible */
938 						ubifs_assert(0);
939 						if (err == -ENOENT)
940 							err = -EINVAL;
941 						return err;
942 					}
943 					ubifs_assert(*n == 0);
944 					*n = -1;
945 				}
946 				break;
947 			}
948 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 			if (err < 0)
950 				return err;
951 			if (err == NAME_MATCHES)
952 				return 1;
953 			if (err == NOT_ON_MEDIA) {
954 				o_znode = *zn;
955 				o_n = *n;
956 				continue;
957 			}
958 			if (!adding)
959 				continue;
960 			if (err == NAME_LESS)
961 				break;
962 			else
963 				unsure = 0;
964 		}
965 	}
966 
967 	if (cmp == NAME_LESS || unsure) {
968 		/* Look right */
969 		*zn = znode;
970 		*n = nn;
971 		while (1) {
972 			err = tnc_next(c, &znode, &nn);
973 			if (err == -ENOENT)
974 				break;
975 			if (err < 0)
976 				return err;
977 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 				break;
979 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 			if (err < 0)
981 				return err;
982 			if (err == NAME_GREATER)
983 				break;
984 			*zn = znode;
985 			*n = nn;
986 			if (err == NAME_MATCHES)
987 				return 1;
988 			if (err == NOT_ON_MEDIA) {
989 				o_znode = znode;
990 				o_n = nn;
991 			}
992 		}
993 	}
994 
995 	/* Never match a dangling branch when adding */
996 	if (adding || !o_znode)
997 		return 0;
998 
999 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1000 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 		o_znode->zbranch[o_n].len);
1002 	*zn = o_znode;
1003 	*n = o_n;
1004 	return 1;
1005 }
1006 
1007 /**
1008  * matches_position - determine if a zbranch matches a given position.
1009  * @zbr: zbranch of dent
1010  * @lnum: LEB number of dent to match
1011  * @offs: offset of dent to match
1012  *
1013  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014  */
1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 {
1017 	if (zbr->lnum == lnum && zbr->offs == offs)
1018 		return 1;
1019 	else
1020 		return 0;
1021 }
1022 
1023 /**
1024  * resolve_collision_directly - resolve a collision directly.
1025  * @c: UBIFS file-system description object
1026  * @key: key of directory entry
1027  * @zn: znode is passed and returned here
1028  * @n: zbranch number is passed and returned here
1029  * @lnum: LEB number of dent node to match
1030  * @offs: offset of dent node to match
1031  *
1032  * This function is used for "hashed" keys to make sure the found directory or
1033  * extended attribute entry node is what was looked for. It is used when the
1034  * flash address of the right node is known (@lnum:@offs) which makes it much
1035  * easier to resolve collisions (no need to read entries and match full
1036  * names). This function returns %1 and sets @zn and @n if the collision is
1037  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038  * previous directory entry. Otherwise a negative error code is returned.
1039  */
1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 				      const union ubifs_key *key,
1042 				      struct ubifs_znode **zn, int *n,
1043 				      int lnum, int offs)
1044 {
1045 	struct ubifs_znode *znode;
1046 	int nn, err;
1047 
1048 	znode = *zn;
1049 	nn = *n;
1050 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 		return 1;
1052 
1053 	/* Look left */
1054 	while (1) {
1055 		err = tnc_prev(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			break;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			break;
1062 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 			*zn = znode;
1064 			*n = nn;
1065 			return 1;
1066 		}
1067 	}
1068 
1069 	/* Look right */
1070 	znode = *zn;
1071 	nn = *n;
1072 	while (1) {
1073 		err = tnc_next(c, &znode, &nn);
1074 		if (err == -ENOENT)
1075 			return 0;
1076 		if (err < 0)
1077 			return err;
1078 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 			return 0;
1080 		*zn = znode;
1081 		*n = nn;
1082 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 			return 1;
1084 	}
1085 }
1086 
1087 /**
1088  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089  * @c: UBIFS file-system description object
1090  * @znode: znode to dirty
1091  *
1092  * If we do not have a unique key that resides in a znode, then we cannot
1093  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094  * This function records the path back to the last dirty ancestor, and then
1095  * dirties the znodes on that path.
1096  */
1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 					       struct ubifs_znode *znode)
1099 {
1100 	struct ubifs_znode *zp;
1101 	int *path = c->bottom_up_buf, p = 0;
1102 
1103 	ubifs_assert(c->zroot.znode);
1104 	ubifs_assert(znode);
1105 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 		kfree(c->bottom_up_buf);
1107 		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1108 						 sizeof(int),
1109 						 GFP_NOFS);
1110 		if (!c->bottom_up_buf)
1111 			return ERR_PTR(-ENOMEM);
1112 		path = c->bottom_up_buf;
1113 	}
1114 	if (c->zroot.znode->level) {
1115 		/* Go up until parent is dirty */
1116 		while (1) {
1117 			int n;
1118 
1119 			zp = znode->parent;
1120 			if (!zp)
1121 				break;
1122 			n = znode->iip;
1123 			ubifs_assert(p < c->zroot.znode->level);
1124 			path[p++] = n;
1125 			if (!zp->cnext && ubifs_zn_dirty(znode))
1126 				break;
1127 			znode = zp;
1128 		}
1129 	}
1130 
1131 	/* Come back down, dirtying as we go */
1132 	while (1) {
1133 		struct ubifs_zbranch *zbr;
1134 
1135 		zp = znode->parent;
1136 		if (zp) {
1137 			ubifs_assert(path[p - 1] >= 0);
1138 			ubifs_assert(path[p - 1] < zp->child_cnt);
1139 			zbr = &zp->zbranch[path[--p]];
1140 			znode = dirty_cow_znode(c, zbr);
1141 		} else {
1142 			ubifs_assert(znode == c->zroot.znode);
1143 			znode = dirty_cow_znode(c, &c->zroot);
1144 		}
1145 		if (IS_ERR(znode) || !p)
1146 			break;
1147 		ubifs_assert(path[p - 1] >= 0);
1148 		ubifs_assert(path[p - 1] < znode->child_cnt);
1149 		znode = znode->zbranch[path[p - 1]].znode;
1150 	}
1151 
1152 	return znode;
1153 }
1154 
1155 /**
1156  * ubifs_lookup_level0 - search for zero-level znode.
1157  * @c: UBIFS file-system description object
1158  * @key:  key to lookup
1159  * @zn: znode is returned here
1160  * @n: znode branch slot number is returned here
1161  *
1162  * This function looks up the TNC tree and search for zero-level znode which
1163  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1164  * cases:
1165  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1166  *     is returned and slot number of the matched branch is stored in @n;
1167  *   o not exact match, which means that zero-level znode does not contain
1168  *     @key, then %0 is returned and slot number of the closest branch is stored
1169  *     in @n;
1170  *   o @key is so small that it is even less than the lowest key of the
1171  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172  *
1173  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1174  * function reads corresponding indexing nodes and inserts them to TNC. In
1175  * case of failure, a negative error code is returned.
1176  */
1177 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1178 			struct ubifs_znode **zn, int *n)
1179 {
1180 	int err, exact;
1181 	struct ubifs_znode *znode;
1182 	unsigned long time = get_seconds();
1183 
1184 	dbg_tnck(key, "search key ");
1185 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1186 
1187 	znode = c->zroot.znode;
1188 	if (unlikely(!znode)) {
1189 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1190 		if (IS_ERR(znode))
1191 			return PTR_ERR(znode);
1192 	}
1193 
1194 	znode->time = time;
1195 
1196 	while (1) {
1197 		struct ubifs_zbranch *zbr;
1198 
1199 		exact = ubifs_search_zbranch(c, znode, key, n);
1200 
1201 		if (znode->level == 0)
1202 			break;
1203 
1204 		if (*n < 0)
1205 			*n = 0;
1206 		zbr = &znode->zbranch[*n];
1207 
1208 		if (zbr->znode) {
1209 			znode->time = time;
1210 			znode = zbr->znode;
1211 			continue;
1212 		}
1213 
1214 		/* znode is not in TNC cache, load it from the media */
1215 		znode = ubifs_load_znode(c, zbr, znode, *n);
1216 		if (IS_ERR(znode))
1217 			return PTR_ERR(znode);
1218 	}
1219 
1220 	*zn = znode;
1221 	if (exact || !is_hash_key(c, key) || *n != -1) {
1222 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1223 		return exact;
1224 	}
1225 
1226 	/*
1227 	 * Here is a tricky place. We have not found the key and this is a
1228 	 * "hashed" key, which may collide. The rest of the code deals with
1229 	 * situations like this:
1230 	 *
1231 	 *                  | 3 | 5 |
1232 	 *                  /       \
1233 	 *          | 3 | 5 |      | 6 | 7 | (x)
1234 	 *
1235 	 * Or more a complex example:
1236 	 *
1237 	 *                | 1 | 5 |
1238 	 *                /       \
1239 	 *       | 1 | 3 |         | 5 | 8 |
1240 	 *              \           /
1241 	 *          | 5 | 5 |   | 6 | 7 | (x)
1242 	 *
1243 	 * In the examples, if we are looking for key "5", we may reach nodes
1244 	 * marked with "(x)". In this case what we have do is to look at the
1245 	 * left and see if there is "5" key there. If there is, we have to
1246 	 * return it.
1247 	 *
1248 	 * Note, this whole situation is possible because we allow to have
1249 	 * elements which are equivalent to the next key in the parent in the
1250 	 * children of current znode. For example, this happens if we split a
1251 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1252 	 * like this:
1253 	 *                      | 3 | 5 |
1254 	 *                       /     \
1255 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1256 	 *                              ^
1257 	 * And this becomes what is at the first "picture" after key "5" marked
1258 	 * with "^" is removed. What could be done is we could prohibit
1259 	 * splitting in the middle of the colliding sequence. Also, when
1260 	 * removing the leftmost key, we would have to correct the key of the
1261 	 * parent node, which would introduce additional complications. Namely,
1262 	 * if we changed the leftmost key of the parent znode, the garbage
1263 	 * collector would be unable to find it (GC is doing this when GC'ing
1264 	 * indexing LEBs). Although we already have an additional RB-tree where
1265 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1266 	 * after the commit. But anyway, this does not look easy to implement
1267 	 * so we did not try this.
1268 	 */
1269 	err = tnc_prev(c, &znode, n);
1270 	if (err == -ENOENT) {
1271 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272 		*n = -1;
1273 		return 0;
1274 	}
1275 	if (unlikely(err < 0))
1276 		return err;
1277 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1278 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1279 		*n = -1;
1280 		return 0;
1281 	}
1282 
1283 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1284 	*zn = znode;
1285 	return 1;
1286 }
1287 
1288 /**
1289  * lookup_level0_dirty - search for zero-level znode dirtying.
1290  * @c: UBIFS file-system description object
1291  * @key:  key to lookup
1292  * @zn: znode is returned here
1293  * @n: znode branch slot number is returned here
1294  *
1295  * This function looks up the TNC tree and search for zero-level znode which
1296  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1297  * cases:
1298  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1299  *     is returned and slot number of the matched branch is stored in @n;
1300  *   o not exact match, which means that zero-level znode does not contain @key
1301  *     then %0 is returned and slot number of the closed branch is stored in
1302  *     @n;
1303  *   o @key is so small that it is even less than the lowest key of the
1304  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305  *
1306  * Additionally all znodes in the path from the root to the located zero-level
1307  * znode are marked as dirty.
1308  *
1309  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1310  * function reads corresponding indexing nodes and inserts them to TNC. In
1311  * case of failure, a negative error code is returned.
1312  */
1313 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1314 			       struct ubifs_znode **zn, int *n)
1315 {
1316 	int err, exact;
1317 	struct ubifs_znode *znode;
1318 	unsigned long time = get_seconds();
1319 
1320 	dbg_tnck(key, "search and dirty key ");
1321 
1322 	znode = c->zroot.znode;
1323 	if (unlikely(!znode)) {
1324 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1325 		if (IS_ERR(znode))
1326 			return PTR_ERR(znode);
1327 	}
1328 
1329 	znode = dirty_cow_znode(c, &c->zroot);
1330 	if (IS_ERR(znode))
1331 		return PTR_ERR(znode);
1332 
1333 	znode->time = time;
1334 
1335 	while (1) {
1336 		struct ubifs_zbranch *zbr;
1337 
1338 		exact = ubifs_search_zbranch(c, znode, key, n);
1339 
1340 		if (znode->level == 0)
1341 			break;
1342 
1343 		if (*n < 0)
1344 			*n = 0;
1345 		zbr = &znode->zbranch[*n];
1346 
1347 		if (zbr->znode) {
1348 			znode->time = time;
1349 			znode = dirty_cow_znode(c, zbr);
1350 			if (IS_ERR(znode))
1351 				return PTR_ERR(znode);
1352 			continue;
1353 		}
1354 
1355 		/* znode is not in TNC cache, load it from the media */
1356 		znode = ubifs_load_znode(c, zbr, znode, *n);
1357 		if (IS_ERR(znode))
1358 			return PTR_ERR(znode);
1359 		znode = dirty_cow_znode(c, zbr);
1360 		if (IS_ERR(znode))
1361 			return PTR_ERR(znode);
1362 	}
1363 
1364 	*zn = znode;
1365 	if (exact || !is_hash_key(c, key) || *n != -1) {
1366 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1367 		return exact;
1368 	}
1369 
1370 	/*
1371 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1372 	 * code.
1373 	 */
1374 	err = tnc_prev(c, &znode, n);
1375 	if (err == -ENOENT) {
1376 		*n = -1;
1377 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378 		return 0;
1379 	}
1380 	if (unlikely(err < 0))
1381 		return err;
1382 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1383 		*n = -1;
1384 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1385 		return 0;
1386 	}
1387 
1388 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1389 		znode = dirty_cow_bottom_up(c, znode);
1390 		if (IS_ERR(znode))
1391 			return PTR_ERR(znode);
1392 	}
1393 
1394 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1395 	*zn = znode;
1396 	return 1;
1397 }
1398 
1399 /**
1400  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1401  * @c: UBIFS file-system description object
1402  * @lnum: LEB number
1403  * @gc_seq1: garbage collection sequence number
1404  *
1405  * This function determines if @lnum may have been garbage collected since
1406  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1407  * %0 is returned.
1408  */
1409 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1410 {
1411 	int gc_seq2, gced_lnum;
1412 
1413 	gced_lnum = c->gced_lnum;
1414 	smp_rmb();
1415 	gc_seq2 = c->gc_seq;
1416 	/* Same seq means no GC */
1417 	if (gc_seq1 == gc_seq2)
1418 		return 0;
1419 	/* Different by more than 1 means we don't know */
1420 	if (gc_seq1 + 1 != gc_seq2)
1421 		return 1;
1422 	/*
1423 	 * We have seen the sequence number has increased by 1. Now we need to
1424 	 * be sure we read the right LEB number, so read it again.
1425 	 */
1426 	smp_rmb();
1427 	if (gced_lnum != c->gced_lnum)
1428 		return 1;
1429 	/* Finally we can check lnum */
1430 	if (gced_lnum == lnum)
1431 		return 1;
1432 	return 0;
1433 }
1434 
1435 /**
1436  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1437  * @c: UBIFS file-system description object
1438  * @key: node key to lookup
1439  * @node: the node is returned here
1440  * @lnum: LEB number is returned here
1441  * @offs: offset is returned here
1442  *
1443  * This function looks up and reads node with key @key. The caller has to make
1444  * sure the @node buffer is large enough to fit the node. Returns zero in case
1445  * of success, %-ENOENT if the node was not found, and a negative error code in
1446  * case of failure. The node location can be returned in @lnum and @offs.
1447  */
1448 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1449 		     void *node, int *lnum, int *offs)
1450 {
1451 	int found, n, err, safely = 0, gc_seq1;
1452 	struct ubifs_znode *znode;
1453 	struct ubifs_zbranch zbr, *zt;
1454 
1455 again:
1456 	mutex_lock(&c->tnc_mutex);
1457 	found = ubifs_lookup_level0(c, key, &znode, &n);
1458 	if (!found) {
1459 		err = -ENOENT;
1460 		goto out;
1461 	} else if (found < 0) {
1462 		err = found;
1463 		goto out;
1464 	}
1465 	zt = &znode->zbranch[n];
1466 	if (lnum) {
1467 		*lnum = zt->lnum;
1468 		*offs = zt->offs;
1469 	}
1470 	if (is_hash_key(c, key)) {
1471 		/*
1472 		 * In this case the leaf node cache gets used, so we pass the
1473 		 * address of the zbranch and keep the mutex locked
1474 		 */
1475 		err = tnc_read_hashed_node(c, zt, node);
1476 		goto out;
1477 	}
1478 	if (safely) {
1479 		err = ubifs_tnc_read_node(c, zt, node);
1480 		goto out;
1481 	}
1482 	/* Drop the TNC mutex prematurely and race with garbage collection */
1483 	zbr = znode->zbranch[n];
1484 	gc_seq1 = c->gc_seq;
1485 	mutex_unlock(&c->tnc_mutex);
1486 
1487 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1488 		/* We do not GC journal heads */
1489 		err = ubifs_tnc_read_node(c, &zbr, node);
1490 		return err;
1491 	}
1492 
1493 	err = fallible_read_node(c, key, &zbr, node);
1494 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1495 		/*
1496 		 * The node may have been GC'ed out from under us so try again
1497 		 * while keeping the TNC mutex locked.
1498 		 */
1499 		safely = 1;
1500 		goto again;
1501 	}
1502 	return 0;
1503 
1504 out:
1505 	mutex_unlock(&c->tnc_mutex);
1506 	return err;
1507 }
1508 
1509 /**
1510  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1511  * @c: UBIFS file-system description object
1512  * @bu: bulk-read parameters and results
1513  *
1514  * Lookup consecutive data node keys for the same inode that reside
1515  * consecutively in the same LEB. This function returns zero in case of success
1516  * and a negative error code in case of failure.
1517  *
1518  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1519  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1520  * maximum possible amount of nodes for bulk-read.
1521  */
1522 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1523 {
1524 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1525 	int uninitialized_var(len);
1526 	unsigned int block = key_block(c, &bu->key);
1527 	struct ubifs_znode *znode;
1528 
1529 	bu->cnt = 0;
1530 	bu->blk_cnt = 0;
1531 	bu->eof = 0;
1532 
1533 	mutex_lock(&c->tnc_mutex);
1534 	/* Find first key */
1535 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1536 	if (err < 0)
1537 		goto out;
1538 	if (err) {
1539 		/* Key found */
1540 		len = znode->zbranch[n].len;
1541 		/* The buffer must be big enough for at least 1 node */
1542 		if (len > bu->buf_len) {
1543 			err = -EINVAL;
1544 			goto out;
1545 		}
1546 		/* Add this key */
1547 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1548 		bu->blk_cnt += 1;
1549 		lnum = znode->zbranch[n].lnum;
1550 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1551 	}
1552 	while (1) {
1553 		struct ubifs_zbranch *zbr;
1554 		union ubifs_key *key;
1555 		unsigned int next_block;
1556 
1557 		/* Find next key */
1558 		err = tnc_next(c, &znode, &n);
1559 		if (err)
1560 			goto out;
1561 		zbr = &znode->zbranch[n];
1562 		key = &zbr->key;
1563 		/* See if there is another data key for this file */
1564 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1565 		    key_type(c, key) != UBIFS_DATA_KEY) {
1566 			err = -ENOENT;
1567 			goto out;
1568 		}
1569 		if (lnum < 0) {
1570 			/* First key found */
1571 			lnum = zbr->lnum;
1572 			offs = ALIGN(zbr->offs + zbr->len, 8);
1573 			len = zbr->len;
1574 			if (len > bu->buf_len) {
1575 				err = -EINVAL;
1576 				goto out;
1577 			}
1578 		} else {
1579 			/*
1580 			 * The data nodes must be in consecutive positions in
1581 			 * the same LEB.
1582 			 */
1583 			if (zbr->lnum != lnum || zbr->offs != offs)
1584 				goto out;
1585 			offs += ALIGN(zbr->len, 8);
1586 			len = ALIGN(len, 8) + zbr->len;
1587 			/* Must not exceed buffer length */
1588 			if (len > bu->buf_len)
1589 				goto out;
1590 		}
1591 		/* Allow for holes */
1592 		next_block = key_block(c, key);
1593 		bu->blk_cnt += (next_block - block - 1);
1594 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1595 			goto out;
1596 		block = next_block;
1597 		/* Add this key */
1598 		bu->zbranch[bu->cnt++] = *zbr;
1599 		bu->blk_cnt += 1;
1600 		/* See if we have room for more */
1601 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1602 			goto out;
1603 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1604 			goto out;
1605 	}
1606 out:
1607 	if (err == -ENOENT) {
1608 		bu->eof = 1;
1609 		err = 0;
1610 	}
1611 	bu->gc_seq = c->gc_seq;
1612 	mutex_unlock(&c->tnc_mutex);
1613 	if (err)
1614 		return err;
1615 	/*
1616 	 * An enormous hole could cause bulk-read to encompass too many
1617 	 * page cache pages, so limit the number here.
1618 	 */
1619 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1620 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1621 	/*
1622 	 * Ensure that bulk-read covers a whole number of page cache
1623 	 * pages.
1624 	 */
1625 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1626 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1627 		return 0;
1628 	if (bu->eof) {
1629 		/* At the end of file we can round up */
1630 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1631 		return 0;
1632 	}
1633 	/* Exclude data nodes that do not make up a whole page cache page */
1634 	block = key_block(c, &bu->key) + bu->blk_cnt;
1635 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1636 	while (bu->cnt) {
1637 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1638 			break;
1639 		bu->cnt -= 1;
1640 	}
1641 	return 0;
1642 }
1643 
1644 /**
1645  * read_wbuf - bulk-read from a LEB with a wbuf.
1646  * @wbuf: wbuf that may overlap the read
1647  * @buf: buffer into which to read
1648  * @len: read length
1649  * @lnum: LEB number from which to read
1650  * @offs: offset from which to read
1651  *
1652  * This functions returns %0 on success or a negative error code on failure.
1653  */
1654 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1655 		     int offs)
1656 {
1657 	const struct ubifs_info *c = wbuf->c;
1658 	int rlen, overlap;
1659 
1660 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1661 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1662 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1663 	ubifs_assert(offs + len <= c->leb_size);
1664 
1665 	spin_lock(&wbuf->lock);
1666 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1667 	if (!overlap) {
1668 		/* We may safely unlock the write-buffer and read the data */
1669 		spin_unlock(&wbuf->lock);
1670 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1671 	}
1672 
1673 	/* Don't read under wbuf */
1674 	rlen = wbuf->offs - offs;
1675 	if (rlen < 0)
1676 		rlen = 0;
1677 
1678 	/* Copy the rest from the write-buffer */
1679 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1680 	spin_unlock(&wbuf->lock);
1681 
1682 	if (rlen > 0)
1683 		/* Read everything that goes before write-buffer */
1684 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * validate_data_node - validate data nodes for bulk-read.
1691  * @c: UBIFS file-system description object
1692  * @buf: buffer containing data node to validate
1693  * @zbr: zbranch of data node to validate
1694  *
1695  * This functions returns %0 on success or a negative error code on failure.
1696  */
1697 static int validate_data_node(struct ubifs_info *c, void *buf,
1698 			      struct ubifs_zbranch *zbr)
1699 {
1700 	union ubifs_key key1;
1701 	struct ubifs_ch *ch = buf;
1702 	int err, len;
1703 
1704 	if (ch->node_type != UBIFS_DATA_NODE) {
1705 		ubifs_err(c, "bad node type (%d but expected %d)",
1706 			  ch->node_type, UBIFS_DATA_NODE);
1707 		goto out_err;
1708 	}
1709 
1710 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1711 	if (err) {
1712 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1713 		goto out;
1714 	}
1715 
1716 	len = le32_to_cpu(ch->len);
1717 	if (len != zbr->len) {
1718 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1719 		goto out_err;
1720 	}
1721 
1722 	/* Make sure the key of the read node is correct */
1723 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1724 	if (!keys_eq(c, &zbr->key, &key1)) {
1725 		ubifs_err(c, "bad key in node at LEB %d:%d",
1726 			  zbr->lnum, zbr->offs);
1727 		dbg_tnck(&zbr->key, "looked for key ");
1728 		dbg_tnck(&key1, "found node's key ");
1729 		goto out_err;
1730 	}
1731 
1732 	return 0;
1733 
1734 out_err:
1735 	err = -EINVAL;
1736 out:
1737 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1738 	ubifs_dump_node(c, buf);
1739 	dump_stack();
1740 	return err;
1741 }
1742 
1743 /**
1744  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1745  * @c: UBIFS file-system description object
1746  * @bu: bulk-read parameters and results
1747  *
1748  * This functions reads and validates the data nodes that were identified by the
1749  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1750  * -EAGAIN to indicate a race with GC, or another negative error code on
1751  * failure.
1752  */
1753 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1754 {
1755 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1756 	struct ubifs_wbuf *wbuf;
1757 	void *buf;
1758 
1759 	len = bu->zbranch[bu->cnt - 1].offs;
1760 	len += bu->zbranch[bu->cnt - 1].len - offs;
1761 	if (len > bu->buf_len) {
1762 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1763 		return -EINVAL;
1764 	}
1765 
1766 	/* Do the read */
1767 	wbuf = ubifs_get_wbuf(c, lnum);
1768 	if (wbuf)
1769 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1770 	else
1771 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1772 
1773 	/* Check for a race with GC */
1774 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1775 		return -EAGAIN;
1776 
1777 	if (err && err != -EBADMSG) {
1778 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1779 			  lnum, offs, err);
1780 		dump_stack();
1781 		dbg_tnck(&bu->key, "key ");
1782 		return err;
1783 	}
1784 
1785 	/* Validate the nodes read */
1786 	buf = bu->buf;
1787 	for (i = 0; i < bu->cnt; i++) {
1788 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1789 		if (err)
1790 			return err;
1791 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  * do_lookup_nm- look up a "hashed" node.
1799  * @c: UBIFS file-system description object
1800  * @key: node key to lookup
1801  * @node: the node is returned here
1802  * @nm: node name
1803  *
1804  * This function looks up and reads a node which contains name hash in the key.
1805  * Since the hash may have collisions, there may be many nodes with the same
1806  * key, so we have to sequentially look to all of them until the needed one is
1807  * found. This function returns zero in case of success, %-ENOENT if the node
1808  * was not found, and a negative error code in case of failure.
1809  */
1810 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1811 			void *node, const struct fscrypt_name *nm)
1812 {
1813 	int found, n, err;
1814 	struct ubifs_znode *znode;
1815 
1816 	dbg_tnck(key, "key ");
1817 	mutex_lock(&c->tnc_mutex);
1818 	found = ubifs_lookup_level0(c, key, &znode, &n);
1819 	if (!found) {
1820 		err = -ENOENT;
1821 		goto out_unlock;
1822 	} else if (found < 0) {
1823 		err = found;
1824 		goto out_unlock;
1825 	}
1826 
1827 	ubifs_assert(n >= 0);
1828 
1829 	err = resolve_collision(c, key, &znode, &n, nm);
1830 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1831 	if (unlikely(err < 0))
1832 		goto out_unlock;
1833 	if (err == 0) {
1834 		err = -ENOENT;
1835 		goto out_unlock;
1836 	}
1837 
1838 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1839 
1840 out_unlock:
1841 	mutex_unlock(&c->tnc_mutex);
1842 	return err;
1843 }
1844 
1845 /**
1846  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1847  * @c: UBIFS file-system description object
1848  * @key: node key to lookup
1849  * @node: the node is returned here
1850  * @nm: node name
1851  *
1852  * This function looks up and reads a node which contains name hash in the key.
1853  * Since the hash may have collisions, there may be many nodes with the same
1854  * key, so we have to sequentially look to all of them until the needed one is
1855  * found. This function returns zero in case of success, %-ENOENT if the node
1856  * was not found, and a negative error code in case of failure.
1857  */
1858 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1859 			void *node, const struct fscrypt_name *nm)
1860 {
1861 	int err, len;
1862 	const struct ubifs_dent_node *dent = node;
1863 
1864 	/*
1865 	 * We assume that in most of the cases there are no name collisions and
1866 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 	 */
1868 	err = ubifs_tnc_lookup(c, key, node);
1869 	if (err)
1870 		return err;
1871 
1872 	len = le16_to_cpu(dent->nlen);
1873 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1874 		return 0;
1875 
1876 	/*
1877 	 * Unluckily, there are hash collisions and we have to iterate over
1878 	 * them look at each direntry with colliding name hash sequentially.
1879 	 */
1880 
1881 	return do_lookup_nm(c, key, node, nm);
1882 }
1883 
1884 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1885 			    struct ubifs_dent_node *dent, uint32_t cookie,
1886 			    struct ubifs_znode **zn, int *n)
1887 {
1888 	int err;
1889 	struct ubifs_znode *znode = *zn;
1890 	struct ubifs_zbranch *zbr;
1891 	union ubifs_key *dkey;
1892 
1893 	for (;;) {
1894 		zbr = &znode->zbranch[*n];
1895 		dkey = &zbr->key;
1896 
1897 		if (key_inum(c, dkey) != key_inum(c, key) ||
1898 		    key_type(c, dkey) != key_type(c, key)) {
1899 			return -ENOENT;
1900 		}
1901 
1902 		err = tnc_read_hashed_node(c, zbr, dent);
1903 		if (err)
1904 			return err;
1905 
1906 		if (key_hash(c, key) == key_hash(c, dkey) &&
1907 		    le32_to_cpu(dent->cookie) == cookie) {
1908 			*zn = znode;
1909 			return 0;
1910 		}
1911 
1912 		err = tnc_next(c, &znode, n);
1913 		if (err)
1914 			return err;
1915 	}
1916 }
1917 
1918 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1919 			struct ubifs_dent_node *dent, uint32_t cookie)
1920 {
1921 	int n, err;
1922 	struct ubifs_znode *znode;
1923 	union ubifs_key start_key;
1924 
1925 	ubifs_assert(is_hash_key(c, key));
1926 
1927 	lowest_dent_key(c, &start_key, key_inum(c, key));
1928 
1929 	mutex_lock(&c->tnc_mutex);
1930 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1931 	if (unlikely(err < 0))
1932 		goto out_unlock;
1933 
1934 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1935 
1936 out_unlock:
1937 	mutex_unlock(&c->tnc_mutex);
1938 	return err;
1939 }
1940 
1941 /**
1942  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1943  * @c: UBIFS file-system description object
1944  * @key: node key to lookup
1945  * @node: the node is returned here
1946  * @cookie: node cookie for collision resolution
1947  *
1948  * This function looks up and reads a node which contains name hash in the key.
1949  * Since the hash may have collisions, there may be many nodes with the same
1950  * key, so we have to sequentially look to all of them until the needed one
1951  * with the same cookie value is found.
1952  * This function returns zero in case of success, %-ENOENT if the node
1953  * was not found, and a negative error code in case of failure.
1954  */
1955 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1956 			void *node, uint32_t cookie)
1957 {
1958 	int err;
1959 	const struct ubifs_dent_node *dent = node;
1960 
1961 	if (!c->double_hash)
1962 		return -EOPNOTSUPP;
1963 
1964 	/*
1965 	 * We assume that in most of the cases there are no name collisions and
1966 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1967 	 */
1968 	err = ubifs_tnc_lookup(c, key, node);
1969 	if (err)
1970 		return err;
1971 
1972 	if (le32_to_cpu(dent->cookie) == cookie)
1973 		return 0;
1974 
1975 	/*
1976 	 * Unluckily, there are hash collisions and we have to iterate over
1977 	 * them look at each direntry with colliding name hash sequentially.
1978 	 */
1979 	return do_lookup_dh(c, key, node, cookie);
1980 }
1981 
1982 /**
1983  * correct_parent_keys - correct parent znodes' keys.
1984  * @c: UBIFS file-system description object
1985  * @znode: znode to correct parent znodes for
1986  *
1987  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1988  * zbranch changes, keys of parent znodes have to be corrected. This helper
1989  * function is called in such situations and corrects the keys if needed.
1990  */
1991 static void correct_parent_keys(const struct ubifs_info *c,
1992 				struct ubifs_znode *znode)
1993 {
1994 	union ubifs_key *key, *key1;
1995 
1996 	ubifs_assert(znode->parent);
1997 	ubifs_assert(znode->iip == 0);
1998 
1999 	key = &znode->zbranch[0].key;
2000 	key1 = &znode->parent->zbranch[0].key;
2001 
2002 	while (keys_cmp(c, key, key1) < 0) {
2003 		key_copy(c, key, key1);
2004 		znode = znode->parent;
2005 		znode->alt = 1;
2006 		if (!znode->parent || znode->iip)
2007 			break;
2008 		key1 = &znode->parent->zbranch[0].key;
2009 	}
2010 }
2011 
2012 /**
2013  * insert_zbranch - insert a zbranch into a znode.
2014  * @znode: znode into which to insert
2015  * @zbr: zbranch to insert
2016  * @n: slot number to insert to
2017  *
2018  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2019  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2020  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2021  * slot, zbranches starting from @n have to be moved right.
2022  */
2023 static void insert_zbranch(struct ubifs_znode *znode,
2024 			   const struct ubifs_zbranch *zbr, int n)
2025 {
2026 	int i;
2027 
2028 	ubifs_assert(ubifs_zn_dirty(znode));
2029 
2030 	if (znode->level) {
2031 		for (i = znode->child_cnt; i > n; i--) {
2032 			znode->zbranch[i] = znode->zbranch[i - 1];
2033 			if (znode->zbranch[i].znode)
2034 				znode->zbranch[i].znode->iip = i;
2035 		}
2036 		if (zbr->znode)
2037 			zbr->znode->iip = n;
2038 	} else
2039 		for (i = znode->child_cnt; i > n; i--)
2040 			znode->zbranch[i] = znode->zbranch[i - 1];
2041 
2042 	znode->zbranch[n] = *zbr;
2043 	znode->child_cnt += 1;
2044 
2045 	/*
2046 	 * After inserting at slot zero, the lower bound of the key range of
2047 	 * this znode may have changed. If this znode is subsequently split
2048 	 * then the upper bound of the key range may change, and furthermore
2049 	 * it could change to be lower than the original lower bound. If that
2050 	 * happens, then it will no longer be possible to find this znode in the
2051 	 * TNC using the key from the index node on flash. That is bad because
2052 	 * if it is not found, we will assume it is obsolete and may overwrite
2053 	 * it. Then if there is an unclean unmount, we will start using the
2054 	 * old index which will be broken.
2055 	 *
2056 	 * So we first mark znodes that have insertions at slot zero, and then
2057 	 * if they are split we add their lnum/offs to the old_idx tree.
2058 	 */
2059 	if (n == 0)
2060 		znode->alt = 1;
2061 }
2062 
2063 /**
2064  * tnc_insert - insert a node into TNC.
2065  * @c: UBIFS file-system description object
2066  * @znode: znode to insert into
2067  * @zbr: branch to insert
2068  * @n: slot number to insert new zbranch to
2069  *
2070  * This function inserts a new node described by @zbr into znode @znode. If
2071  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2072  * are splat as well if needed. Returns zero in case of success or a negative
2073  * error code in case of failure.
2074  */
2075 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2076 		      struct ubifs_zbranch *zbr, int n)
2077 {
2078 	struct ubifs_znode *zn, *zi, *zp;
2079 	int i, keep, move, appending = 0;
2080 	union ubifs_key *key = &zbr->key, *key1;
2081 
2082 	ubifs_assert(n >= 0 && n <= c->fanout);
2083 
2084 	/* Implement naive insert for now */
2085 again:
2086 	zp = znode->parent;
2087 	if (znode->child_cnt < c->fanout) {
2088 		ubifs_assert(n != c->fanout);
2089 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2090 
2091 		insert_zbranch(znode, zbr, n);
2092 
2093 		/* Ensure parent's key is correct */
2094 		if (n == 0 && zp && znode->iip == 0)
2095 			correct_parent_keys(c, znode);
2096 
2097 		return 0;
2098 	}
2099 
2100 	/*
2101 	 * Unfortunately, @znode does not have more empty slots and we have to
2102 	 * split it.
2103 	 */
2104 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2105 
2106 	if (znode->alt)
2107 		/*
2108 		 * We can no longer be sure of finding this znode by key, so we
2109 		 * record it in the old_idx tree.
2110 		 */
2111 		ins_clr_old_idx_znode(c, znode);
2112 
2113 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2114 	if (!zn)
2115 		return -ENOMEM;
2116 	zn->parent = zp;
2117 	zn->level = znode->level;
2118 
2119 	/* Decide where to split */
2120 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2121 		/* Try not to split consecutive data keys */
2122 		if (n == c->fanout) {
2123 			key1 = &znode->zbranch[n - 1].key;
2124 			if (key_inum(c, key1) == key_inum(c, key) &&
2125 			    key_type(c, key1) == UBIFS_DATA_KEY)
2126 				appending = 1;
2127 		} else
2128 			goto check_split;
2129 	} else if (appending && n != c->fanout) {
2130 		/* Try not to split consecutive data keys */
2131 		appending = 0;
2132 check_split:
2133 		if (n >= (c->fanout + 1) / 2) {
2134 			key1 = &znode->zbranch[0].key;
2135 			if (key_inum(c, key1) == key_inum(c, key) &&
2136 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2137 				key1 = &znode->zbranch[n].key;
2138 				if (key_inum(c, key1) != key_inum(c, key) ||
2139 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2140 					keep = n;
2141 					move = c->fanout - keep;
2142 					zi = znode;
2143 					goto do_split;
2144 				}
2145 			}
2146 		}
2147 	}
2148 
2149 	if (appending) {
2150 		keep = c->fanout;
2151 		move = 0;
2152 	} else {
2153 		keep = (c->fanout + 1) / 2;
2154 		move = c->fanout - keep;
2155 	}
2156 
2157 	/*
2158 	 * Although we don't at present, we could look at the neighbors and see
2159 	 * if we can move some zbranches there.
2160 	 */
2161 
2162 	if (n < keep) {
2163 		/* Insert into existing znode */
2164 		zi = znode;
2165 		move += 1;
2166 		keep -= 1;
2167 	} else {
2168 		/* Insert into new znode */
2169 		zi = zn;
2170 		n -= keep;
2171 		/* Re-parent */
2172 		if (zn->level != 0)
2173 			zbr->znode->parent = zn;
2174 	}
2175 
2176 do_split:
2177 
2178 	__set_bit(DIRTY_ZNODE, &zn->flags);
2179 	atomic_long_inc(&c->dirty_zn_cnt);
2180 
2181 	zn->child_cnt = move;
2182 	znode->child_cnt = keep;
2183 
2184 	dbg_tnc("moving %d, keeping %d", move, keep);
2185 
2186 	/* Move zbranch */
2187 	for (i = 0; i < move; i++) {
2188 		zn->zbranch[i] = znode->zbranch[keep + i];
2189 		/* Re-parent */
2190 		if (zn->level != 0)
2191 			if (zn->zbranch[i].znode) {
2192 				zn->zbranch[i].znode->parent = zn;
2193 				zn->zbranch[i].znode->iip = i;
2194 			}
2195 	}
2196 
2197 	/* Insert new key and branch */
2198 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2199 
2200 	insert_zbranch(zi, zbr, n);
2201 
2202 	/* Insert new znode (produced by spitting) into the parent */
2203 	if (zp) {
2204 		if (n == 0 && zi == znode && znode->iip == 0)
2205 			correct_parent_keys(c, znode);
2206 
2207 		/* Locate insertion point */
2208 		n = znode->iip + 1;
2209 
2210 		/* Tail recursion */
2211 		zbr->key = zn->zbranch[0].key;
2212 		zbr->znode = zn;
2213 		zbr->lnum = 0;
2214 		zbr->offs = 0;
2215 		zbr->len = 0;
2216 		znode = zp;
2217 
2218 		goto again;
2219 	}
2220 
2221 	/* We have to split root znode */
2222 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2223 
2224 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2225 	if (!zi)
2226 		return -ENOMEM;
2227 
2228 	zi->child_cnt = 2;
2229 	zi->level = znode->level + 1;
2230 
2231 	__set_bit(DIRTY_ZNODE, &zi->flags);
2232 	atomic_long_inc(&c->dirty_zn_cnt);
2233 
2234 	zi->zbranch[0].key = znode->zbranch[0].key;
2235 	zi->zbranch[0].znode = znode;
2236 	zi->zbranch[0].lnum = c->zroot.lnum;
2237 	zi->zbranch[0].offs = c->zroot.offs;
2238 	zi->zbranch[0].len = c->zroot.len;
2239 	zi->zbranch[1].key = zn->zbranch[0].key;
2240 	zi->zbranch[1].znode = zn;
2241 
2242 	c->zroot.lnum = 0;
2243 	c->zroot.offs = 0;
2244 	c->zroot.len = 0;
2245 	c->zroot.znode = zi;
2246 
2247 	zn->parent = zi;
2248 	zn->iip = 1;
2249 	znode->parent = zi;
2250 	znode->iip = 0;
2251 
2252 	return 0;
2253 }
2254 
2255 /**
2256  * ubifs_tnc_add - add a node to TNC.
2257  * @c: UBIFS file-system description object
2258  * @key: key to add
2259  * @lnum: LEB number of node
2260  * @offs: node offset
2261  * @len: node length
2262  *
2263  * This function adds a node with key @key to TNC. The node may be new or it may
2264  * obsolete some existing one. Returns %0 on success or negative error code on
2265  * failure.
2266  */
2267 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2268 		  int offs, int len)
2269 {
2270 	int found, n, err = 0;
2271 	struct ubifs_znode *znode;
2272 
2273 	mutex_lock(&c->tnc_mutex);
2274 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2275 	found = lookup_level0_dirty(c, key, &znode, &n);
2276 	if (!found) {
2277 		struct ubifs_zbranch zbr;
2278 
2279 		zbr.znode = NULL;
2280 		zbr.lnum = lnum;
2281 		zbr.offs = offs;
2282 		zbr.len = len;
2283 		key_copy(c, key, &zbr.key);
2284 		err = tnc_insert(c, znode, &zbr, n + 1);
2285 	} else if (found == 1) {
2286 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2287 
2288 		lnc_free(zbr);
2289 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2290 		zbr->lnum = lnum;
2291 		zbr->offs = offs;
2292 		zbr->len = len;
2293 	} else
2294 		err = found;
2295 	if (!err)
2296 		err = dbg_check_tnc(c, 0);
2297 	mutex_unlock(&c->tnc_mutex);
2298 
2299 	return err;
2300 }
2301 
2302 /**
2303  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2304  * @c: UBIFS file-system description object
2305  * @key: key to add
2306  * @old_lnum: LEB number of old node
2307  * @old_offs: old node offset
2308  * @lnum: LEB number of node
2309  * @offs: node offset
2310  * @len: node length
2311  *
2312  * This function replaces a node with key @key in the TNC only if the old node
2313  * is found.  This function is called by garbage collection when node are moved.
2314  * Returns %0 on success or negative error code on failure.
2315  */
2316 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2317 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2318 {
2319 	int found, n, err = 0;
2320 	struct ubifs_znode *znode;
2321 
2322 	mutex_lock(&c->tnc_mutex);
2323 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2324 		 old_offs, lnum, offs, len);
2325 	found = lookup_level0_dirty(c, key, &znode, &n);
2326 	if (found < 0) {
2327 		err = found;
2328 		goto out_unlock;
2329 	}
2330 
2331 	if (found == 1) {
2332 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2333 
2334 		found = 0;
2335 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2336 			lnc_free(zbr);
2337 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2338 			if (err)
2339 				goto out_unlock;
2340 			zbr->lnum = lnum;
2341 			zbr->offs = offs;
2342 			zbr->len = len;
2343 			found = 1;
2344 		} else if (is_hash_key(c, key)) {
2345 			found = resolve_collision_directly(c, key, &znode, &n,
2346 							   old_lnum, old_offs);
2347 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2348 				found, znode, n, old_lnum, old_offs);
2349 			if (found < 0) {
2350 				err = found;
2351 				goto out_unlock;
2352 			}
2353 
2354 			if (found) {
2355 				/* Ensure the znode is dirtied */
2356 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2357 					znode = dirty_cow_bottom_up(c, znode);
2358 					if (IS_ERR(znode)) {
2359 						err = PTR_ERR(znode);
2360 						goto out_unlock;
2361 					}
2362 				}
2363 				zbr = &znode->zbranch[n];
2364 				lnc_free(zbr);
2365 				err = ubifs_add_dirt(c, zbr->lnum,
2366 						     zbr->len);
2367 				if (err)
2368 					goto out_unlock;
2369 				zbr->lnum = lnum;
2370 				zbr->offs = offs;
2371 				zbr->len = len;
2372 			}
2373 		}
2374 	}
2375 
2376 	if (!found)
2377 		err = ubifs_add_dirt(c, lnum, len);
2378 
2379 	if (!err)
2380 		err = dbg_check_tnc(c, 0);
2381 
2382 out_unlock:
2383 	mutex_unlock(&c->tnc_mutex);
2384 	return err;
2385 }
2386 
2387 /**
2388  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2389  * @c: UBIFS file-system description object
2390  * @key: key to add
2391  * @lnum: LEB number of node
2392  * @offs: node offset
2393  * @len: node length
2394  * @nm: node name
2395  *
2396  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2397  * may have collisions, like directory entry keys.
2398  */
2399 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2400 		     int lnum, int offs, int len,
2401 		     const struct fscrypt_name *nm)
2402 {
2403 	int found, n, err = 0;
2404 	struct ubifs_znode *znode;
2405 
2406 	mutex_lock(&c->tnc_mutex);
2407 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2408 	found = lookup_level0_dirty(c, key, &znode, &n);
2409 	if (found < 0) {
2410 		err = found;
2411 		goto out_unlock;
2412 	}
2413 
2414 	if (found == 1) {
2415 		if (c->replaying)
2416 			found = fallible_resolve_collision(c, key, &znode, &n,
2417 							   nm, 1);
2418 		else
2419 			found = resolve_collision(c, key, &znode, &n, nm);
2420 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2421 		if (found < 0) {
2422 			err = found;
2423 			goto out_unlock;
2424 		}
2425 
2426 		/* Ensure the znode is dirtied */
2427 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2428 			znode = dirty_cow_bottom_up(c, znode);
2429 			if (IS_ERR(znode)) {
2430 				err = PTR_ERR(znode);
2431 				goto out_unlock;
2432 			}
2433 		}
2434 
2435 		if (found == 1) {
2436 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2437 
2438 			lnc_free(zbr);
2439 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2440 			zbr->lnum = lnum;
2441 			zbr->offs = offs;
2442 			zbr->len = len;
2443 			goto out_unlock;
2444 		}
2445 	}
2446 
2447 	if (!found) {
2448 		struct ubifs_zbranch zbr;
2449 
2450 		zbr.znode = NULL;
2451 		zbr.lnum = lnum;
2452 		zbr.offs = offs;
2453 		zbr.len = len;
2454 		key_copy(c, key, &zbr.key);
2455 		err = tnc_insert(c, znode, &zbr, n + 1);
2456 		if (err)
2457 			goto out_unlock;
2458 		if (c->replaying) {
2459 			/*
2460 			 * We did not find it in the index so there may be a
2461 			 * dangling branch still in the index. So we remove it
2462 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2463 			 * an unmatchable name.
2464 			 */
2465 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2466 
2467 			err = dbg_check_tnc(c, 0);
2468 			mutex_unlock(&c->tnc_mutex);
2469 			if (err)
2470 				return err;
2471 			return ubifs_tnc_remove_nm(c, key, &noname);
2472 		}
2473 	}
2474 
2475 out_unlock:
2476 	if (!err)
2477 		err = dbg_check_tnc(c, 0);
2478 	mutex_unlock(&c->tnc_mutex);
2479 	return err;
2480 }
2481 
2482 /**
2483  * tnc_delete - delete a znode form TNC.
2484  * @c: UBIFS file-system description object
2485  * @znode: znode to delete from
2486  * @n: zbranch slot number to delete
2487  *
2488  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2489  * case of success and a negative error code in case of failure.
2490  */
2491 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2492 {
2493 	struct ubifs_zbranch *zbr;
2494 	struct ubifs_znode *zp;
2495 	int i, err;
2496 
2497 	/* Delete without merge for now */
2498 	ubifs_assert(znode->level == 0);
2499 	ubifs_assert(n >= 0 && n < c->fanout);
2500 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2501 
2502 	zbr = &znode->zbranch[n];
2503 	lnc_free(zbr);
2504 
2505 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2506 	if (err) {
2507 		ubifs_dump_znode(c, znode);
2508 		return err;
2509 	}
2510 
2511 	/* We do not "gap" zbranch slots */
2512 	for (i = n; i < znode->child_cnt - 1; i++)
2513 		znode->zbranch[i] = znode->zbranch[i + 1];
2514 	znode->child_cnt -= 1;
2515 
2516 	if (znode->child_cnt > 0)
2517 		return 0;
2518 
2519 	/*
2520 	 * This was the last zbranch, we have to delete this znode from the
2521 	 * parent.
2522 	 */
2523 
2524 	do {
2525 		ubifs_assert(!ubifs_zn_obsolete(znode));
2526 		ubifs_assert(ubifs_zn_dirty(znode));
2527 
2528 		zp = znode->parent;
2529 		n = znode->iip;
2530 
2531 		atomic_long_dec(&c->dirty_zn_cnt);
2532 
2533 		err = insert_old_idx_znode(c, znode);
2534 		if (err)
2535 			return err;
2536 
2537 		if (znode->cnext) {
2538 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2539 			atomic_long_inc(&c->clean_zn_cnt);
2540 			atomic_long_inc(&ubifs_clean_zn_cnt);
2541 		} else
2542 			kfree(znode);
2543 		znode = zp;
2544 	} while (znode->child_cnt == 1); /* while removing last child */
2545 
2546 	/* Remove from znode, entry n - 1 */
2547 	znode->child_cnt -= 1;
2548 	ubifs_assert(znode->level != 0);
2549 	for (i = n; i < znode->child_cnt; i++) {
2550 		znode->zbranch[i] = znode->zbranch[i + 1];
2551 		if (znode->zbranch[i].znode)
2552 			znode->zbranch[i].znode->iip = i;
2553 	}
2554 
2555 	/*
2556 	 * If this is the root and it has only 1 child then
2557 	 * collapse the tree.
2558 	 */
2559 	if (!znode->parent) {
2560 		while (znode->child_cnt == 1 && znode->level != 0) {
2561 			zp = znode;
2562 			zbr = &znode->zbranch[0];
2563 			znode = get_znode(c, znode, 0);
2564 			if (IS_ERR(znode))
2565 				return PTR_ERR(znode);
2566 			znode = dirty_cow_znode(c, zbr);
2567 			if (IS_ERR(znode))
2568 				return PTR_ERR(znode);
2569 			znode->parent = NULL;
2570 			znode->iip = 0;
2571 			if (c->zroot.len) {
2572 				err = insert_old_idx(c, c->zroot.lnum,
2573 						     c->zroot.offs);
2574 				if (err)
2575 					return err;
2576 			}
2577 			c->zroot.lnum = zbr->lnum;
2578 			c->zroot.offs = zbr->offs;
2579 			c->zroot.len = zbr->len;
2580 			c->zroot.znode = znode;
2581 			ubifs_assert(!ubifs_zn_obsolete(zp));
2582 			ubifs_assert(ubifs_zn_dirty(zp));
2583 			atomic_long_dec(&c->dirty_zn_cnt);
2584 
2585 			if (zp->cnext) {
2586 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2587 				atomic_long_inc(&c->clean_zn_cnt);
2588 				atomic_long_inc(&ubifs_clean_zn_cnt);
2589 			} else
2590 				kfree(zp);
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 /**
2598  * ubifs_tnc_remove - remove an index entry of a node.
2599  * @c: UBIFS file-system description object
2600  * @key: key of node
2601  *
2602  * Returns %0 on success or negative error code on failure.
2603  */
2604 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2605 {
2606 	int found, n, err = 0;
2607 	struct ubifs_znode *znode;
2608 
2609 	mutex_lock(&c->tnc_mutex);
2610 	dbg_tnck(key, "key ");
2611 	found = lookup_level0_dirty(c, key, &znode, &n);
2612 	if (found < 0) {
2613 		err = found;
2614 		goto out_unlock;
2615 	}
2616 	if (found == 1)
2617 		err = tnc_delete(c, znode, n);
2618 	if (!err)
2619 		err = dbg_check_tnc(c, 0);
2620 
2621 out_unlock:
2622 	mutex_unlock(&c->tnc_mutex);
2623 	return err;
2624 }
2625 
2626 /**
2627  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2628  * @c: UBIFS file-system description object
2629  * @key: key of node
2630  * @nm: directory entry name
2631  *
2632  * Returns %0 on success or negative error code on failure.
2633  */
2634 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2635 			const struct fscrypt_name *nm)
2636 {
2637 	int n, err;
2638 	struct ubifs_znode *znode;
2639 
2640 	mutex_lock(&c->tnc_mutex);
2641 	dbg_tnck(key, "key ");
2642 	err = lookup_level0_dirty(c, key, &znode, &n);
2643 	if (err < 0)
2644 		goto out_unlock;
2645 
2646 	if (err) {
2647 		if (c->replaying)
2648 			err = fallible_resolve_collision(c, key, &znode, &n,
2649 							 nm, 0);
2650 		else
2651 			err = resolve_collision(c, key, &znode, &n, nm);
2652 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2653 		if (err < 0)
2654 			goto out_unlock;
2655 		if (err) {
2656 			/* Ensure the znode is dirtied */
2657 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2658 				znode = dirty_cow_bottom_up(c, znode);
2659 				if (IS_ERR(znode)) {
2660 					err = PTR_ERR(znode);
2661 					goto out_unlock;
2662 				}
2663 			}
2664 			err = tnc_delete(c, znode, n);
2665 		}
2666 	}
2667 
2668 out_unlock:
2669 	if (!err)
2670 		err = dbg_check_tnc(c, 0);
2671 	mutex_unlock(&c->tnc_mutex);
2672 	return err;
2673 }
2674 
2675 /**
2676  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2677  * @c: UBIFS file-system description object
2678  * @key: key of node
2679  * @cookie: node cookie for collision resolution
2680  *
2681  * Returns %0 on success or negative error code on failure.
2682  */
2683 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2684 			uint32_t cookie)
2685 {
2686 	int n, err;
2687 	struct ubifs_znode *znode;
2688 	struct ubifs_dent_node *dent;
2689 	struct ubifs_zbranch *zbr;
2690 
2691 	if (!c->double_hash)
2692 		return -EOPNOTSUPP;
2693 
2694 	mutex_lock(&c->tnc_mutex);
2695 	err = lookup_level0_dirty(c, key, &znode, &n);
2696 	if (err <= 0)
2697 		goto out_unlock;
2698 
2699 	zbr = &znode->zbranch[n];
2700 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2701 	if (!dent) {
2702 		err = -ENOMEM;
2703 		goto out_unlock;
2704 	}
2705 
2706 	err = tnc_read_hashed_node(c, zbr, dent);
2707 	if (err)
2708 		goto out_free;
2709 
2710 	/* If the cookie does not match, we're facing a hash collision. */
2711 	if (le32_to_cpu(dent->cookie) != cookie) {
2712 		union ubifs_key start_key;
2713 
2714 		lowest_dent_key(c, &start_key, key_inum(c, key));
2715 
2716 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2717 		if (unlikely(err < 0))
2718 			goto out_free;
2719 
2720 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2721 		if (err)
2722 			goto out_free;
2723 	}
2724 
2725 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2726 		znode = dirty_cow_bottom_up(c, znode);
2727 		if (IS_ERR(znode)) {
2728 			err = PTR_ERR(znode);
2729 			goto out_free;
2730 		}
2731 	}
2732 	err = tnc_delete(c, znode, n);
2733 
2734 out_free:
2735 	kfree(dent);
2736 out_unlock:
2737 	if (!err)
2738 		err = dbg_check_tnc(c, 0);
2739 	mutex_unlock(&c->tnc_mutex);
2740 	return err;
2741 }
2742 
2743 /**
2744  * key_in_range - determine if a key falls within a range of keys.
2745  * @c: UBIFS file-system description object
2746  * @key: key to check
2747  * @from_key: lowest key in range
2748  * @to_key: highest key in range
2749  *
2750  * This function returns %1 if the key is in range and %0 otherwise.
2751  */
2752 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2753 			union ubifs_key *from_key, union ubifs_key *to_key)
2754 {
2755 	if (keys_cmp(c, key, from_key) < 0)
2756 		return 0;
2757 	if (keys_cmp(c, key, to_key) > 0)
2758 		return 0;
2759 	return 1;
2760 }
2761 
2762 /**
2763  * ubifs_tnc_remove_range - remove index entries in range.
2764  * @c: UBIFS file-system description object
2765  * @from_key: lowest key to remove
2766  * @to_key: highest key to remove
2767  *
2768  * This function removes index entries starting at @from_key and ending at
2769  * @to_key.  This function returns zero in case of success and a negative error
2770  * code in case of failure.
2771  */
2772 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2773 			   union ubifs_key *to_key)
2774 {
2775 	int i, n, k, err = 0;
2776 	struct ubifs_znode *znode;
2777 	union ubifs_key *key;
2778 
2779 	mutex_lock(&c->tnc_mutex);
2780 	while (1) {
2781 		/* Find first level 0 znode that contains keys to remove */
2782 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2783 		if (err < 0)
2784 			goto out_unlock;
2785 
2786 		if (err)
2787 			key = from_key;
2788 		else {
2789 			err = tnc_next(c, &znode, &n);
2790 			if (err == -ENOENT) {
2791 				err = 0;
2792 				goto out_unlock;
2793 			}
2794 			if (err < 0)
2795 				goto out_unlock;
2796 			key = &znode->zbranch[n].key;
2797 			if (!key_in_range(c, key, from_key, to_key)) {
2798 				err = 0;
2799 				goto out_unlock;
2800 			}
2801 		}
2802 
2803 		/* Ensure the znode is dirtied */
2804 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2805 			znode = dirty_cow_bottom_up(c, znode);
2806 			if (IS_ERR(znode)) {
2807 				err = PTR_ERR(znode);
2808 				goto out_unlock;
2809 			}
2810 		}
2811 
2812 		/* Remove all keys in range except the first */
2813 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2814 			key = &znode->zbranch[i].key;
2815 			if (!key_in_range(c, key, from_key, to_key))
2816 				break;
2817 			lnc_free(&znode->zbranch[i]);
2818 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2819 					     znode->zbranch[i].len);
2820 			if (err) {
2821 				ubifs_dump_znode(c, znode);
2822 				goto out_unlock;
2823 			}
2824 			dbg_tnck(key, "removing key ");
2825 		}
2826 		if (k) {
2827 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2828 				znode->zbranch[i - k] = znode->zbranch[i];
2829 			znode->child_cnt -= k;
2830 		}
2831 
2832 		/* Now delete the first */
2833 		err = tnc_delete(c, znode, n);
2834 		if (err)
2835 			goto out_unlock;
2836 	}
2837 
2838 out_unlock:
2839 	if (!err)
2840 		err = dbg_check_tnc(c, 0);
2841 	mutex_unlock(&c->tnc_mutex);
2842 	return err;
2843 }
2844 
2845 /**
2846  * ubifs_tnc_remove_ino - remove an inode from TNC.
2847  * @c: UBIFS file-system description object
2848  * @inum: inode number to remove
2849  *
2850  * This function remove inode @inum and all the extended attributes associated
2851  * with the anode from TNC and returns zero in case of success or a negative
2852  * error code in case of failure.
2853  */
2854 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2855 {
2856 	union ubifs_key key1, key2;
2857 	struct ubifs_dent_node *xent, *pxent = NULL;
2858 	struct fscrypt_name nm = {0};
2859 
2860 	dbg_tnc("ino %lu", (unsigned long)inum);
2861 
2862 	/*
2863 	 * Walk all extended attribute entries and remove them together with
2864 	 * corresponding extended attribute inodes.
2865 	 */
2866 	lowest_xent_key(c, &key1, inum);
2867 	while (1) {
2868 		ino_t xattr_inum;
2869 		int err;
2870 
2871 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2872 		if (IS_ERR(xent)) {
2873 			err = PTR_ERR(xent);
2874 			if (err == -ENOENT)
2875 				break;
2876 			return err;
2877 		}
2878 
2879 		xattr_inum = le64_to_cpu(xent->inum);
2880 		dbg_tnc("xent '%s', ino %lu", xent->name,
2881 			(unsigned long)xattr_inum);
2882 
2883 		ubifs_evict_xattr_inode(c, xattr_inum);
2884 
2885 		fname_name(&nm) = xent->name;
2886 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2887 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2888 		if (err) {
2889 			kfree(xent);
2890 			return err;
2891 		}
2892 
2893 		lowest_ino_key(c, &key1, xattr_inum);
2894 		highest_ino_key(c, &key2, xattr_inum);
2895 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2896 		if (err) {
2897 			kfree(xent);
2898 			return err;
2899 		}
2900 
2901 		kfree(pxent);
2902 		pxent = xent;
2903 		key_read(c, &xent->key, &key1);
2904 	}
2905 
2906 	kfree(pxent);
2907 	lowest_ino_key(c, &key1, inum);
2908 	highest_ino_key(c, &key2, inum);
2909 
2910 	return ubifs_tnc_remove_range(c, &key1, &key2);
2911 }
2912 
2913 /**
2914  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2915  * @c: UBIFS file-system description object
2916  * @key: key of last entry
2917  * @nm: name of last entry found or %NULL
2918  *
2919  * This function finds and reads the next directory or extended attribute entry
2920  * after the given key (@key) if there is one. @nm is used to resolve
2921  * collisions.
2922  *
2923  * If the name of the current entry is not known and only the key is known,
2924  * @nm->name has to be %NULL. In this case the semantics of this function is a
2925  * little bit different and it returns the entry corresponding to this key, not
2926  * the next one. If the key was not found, the closest "right" entry is
2927  * returned.
2928  *
2929  * If the fist entry has to be found, @key has to contain the lowest possible
2930  * key value for this inode and @name has to be %NULL.
2931  *
2932  * This function returns the found directory or extended attribute entry node
2933  * in case of success, %-ENOENT is returned if no entry was found, and a
2934  * negative error code is returned in case of failure.
2935  */
2936 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2937 					   union ubifs_key *key,
2938 					   const struct fscrypt_name *nm)
2939 {
2940 	int n, err, type = key_type(c, key);
2941 	struct ubifs_znode *znode;
2942 	struct ubifs_dent_node *dent;
2943 	struct ubifs_zbranch *zbr;
2944 	union ubifs_key *dkey;
2945 
2946 	dbg_tnck(key, "key ");
2947 	ubifs_assert(is_hash_key(c, key));
2948 
2949 	mutex_lock(&c->tnc_mutex);
2950 	err = ubifs_lookup_level0(c, key, &znode, &n);
2951 	if (unlikely(err < 0))
2952 		goto out_unlock;
2953 
2954 	if (fname_len(nm) > 0) {
2955 		if (err) {
2956 			/* Handle collisions */
2957 			if (c->replaying)
2958 				err = fallible_resolve_collision(c, key, &znode, &n,
2959 							 nm, 0);
2960 			else
2961 				err = resolve_collision(c, key, &znode, &n, nm);
2962 			dbg_tnc("rc returned %d, znode %p, n %d",
2963 				err, znode, n);
2964 			if (unlikely(err < 0))
2965 				goto out_unlock;
2966 		}
2967 
2968 		/* Now find next entry */
2969 		err = tnc_next(c, &znode, &n);
2970 		if (unlikely(err))
2971 			goto out_unlock;
2972 	} else {
2973 		/*
2974 		 * The full name of the entry was not given, in which case the
2975 		 * behavior of this function is a little different and it
2976 		 * returns current entry, not the next one.
2977 		 */
2978 		if (!err) {
2979 			/*
2980 			 * However, the given key does not exist in the TNC
2981 			 * tree and @znode/@n variables contain the closest
2982 			 * "preceding" element. Switch to the next one.
2983 			 */
2984 			err = tnc_next(c, &znode, &n);
2985 			if (err)
2986 				goto out_unlock;
2987 		}
2988 	}
2989 
2990 	zbr = &znode->zbranch[n];
2991 	dent = kmalloc(zbr->len, GFP_NOFS);
2992 	if (unlikely(!dent)) {
2993 		err = -ENOMEM;
2994 		goto out_unlock;
2995 	}
2996 
2997 	/*
2998 	 * The above 'tnc_next()' call could lead us to the next inode, check
2999 	 * this.
3000 	 */
3001 	dkey = &zbr->key;
3002 	if (key_inum(c, dkey) != key_inum(c, key) ||
3003 	    key_type(c, dkey) != type) {
3004 		err = -ENOENT;
3005 		goto out_free;
3006 	}
3007 
3008 	err = tnc_read_hashed_node(c, zbr, dent);
3009 	if (unlikely(err))
3010 		goto out_free;
3011 
3012 	mutex_unlock(&c->tnc_mutex);
3013 	return dent;
3014 
3015 out_free:
3016 	kfree(dent);
3017 out_unlock:
3018 	mutex_unlock(&c->tnc_mutex);
3019 	return ERR_PTR(err);
3020 }
3021 
3022 /**
3023  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3024  * @c: UBIFS file-system description object
3025  *
3026  * Destroy left-over obsolete znodes from a failed commit.
3027  */
3028 static void tnc_destroy_cnext(struct ubifs_info *c)
3029 {
3030 	struct ubifs_znode *cnext;
3031 
3032 	if (!c->cnext)
3033 		return;
3034 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
3035 	cnext = c->cnext;
3036 	do {
3037 		struct ubifs_znode *znode = cnext;
3038 
3039 		cnext = cnext->cnext;
3040 		if (ubifs_zn_obsolete(znode))
3041 			kfree(znode);
3042 	} while (cnext && cnext != c->cnext);
3043 }
3044 
3045 /**
3046  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3047  * @c: UBIFS file-system description object
3048  */
3049 void ubifs_tnc_close(struct ubifs_info *c)
3050 {
3051 	tnc_destroy_cnext(c);
3052 	if (c->zroot.znode) {
3053 		long n, freed;
3054 
3055 		n = atomic_long_read(&c->clean_zn_cnt);
3056 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
3057 		ubifs_assert(freed == n);
3058 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3059 	}
3060 	kfree(c->gap_lebs);
3061 	kfree(c->ilebs);
3062 	destroy_old_idx(c);
3063 }
3064 
3065 /**
3066  * left_znode - get the znode to the left.
3067  * @c: UBIFS file-system description object
3068  * @znode: znode
3069  *
3070  * This function returns a pointer to the znode to the left of @znode or NULL if
3071  * there is not one. A negative error code is returned on failure.
3072  */
3073 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3074 				      struct ubifs_znode *znode)
3075 {
3076 	int level = znode->level;
3077 
3078 	while (1) {
3079 		int n = znode->iip - 1;
3080 
3081 		/* Go up until we can go left */
3082 		znode = znode->parent;
3083 		if (!znode)
3084 			return NULL;
3085 		if (n >= 0) {
3086 			/* Now go down the rightmost branch to 'level' */
3087 			znode = get_znode(c, znode, n);
3088 			if (IS_ERR(znode))
3089 				return znode;
3090 			while (znode->level != level) {
3091 				n = znode->child_cnt - 1;
3092 				znode = get_znode(c, znode, n);
3093 				if (IS_ERR(znode))
3094 					return znode;
3095 			}
3096 			break;
3097 		}
3098 	}
3099 	return znode;
3100 }
3101 
3102 /**
3103  * right_znode - get the znode to the right.
3104  * @c: UBIFS file-system description object
3105  * @znode: znode
3106  *
3107  * This function returns a pointer to the znode to the right of @znode or NULL
3108  * if there is not one. A negative error code is returned on failure.
3109  */
3110 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3111 				       struct ubifs_znode *znode)
3112 {
3113 	int level = znode->level;
3114 
3115 	while (1) {
3116 		int n = znode->iip + 1;
3117 
3118 		/* Go up until we can go right */
3119 		znode = znode->parent;
3120 		if (!znode)
3121 			return NULL;
3122 		if (n < znode->child_cnt) {
3123 			/* Now go down the leftmost branch to 'level' */
3124 			znode = get_znode(c, znode, n);
3125 			if (IS_ERR(znode))
3126 				return znode;
3127 			while (znode->level != level) {
3128 				znode = get_znode(c, znode, 0);
3129 				if (IS_ERR(znode))
3130 					return znode;
3131 			}
3132 			break;
3133 		}
3134 	}
3135 	return znode;
3136 }
3137 
3138 /**
3139  * lookup_znode - find a particular indexing node from TNC.
3140  * @c: UBIFS file-system description object
3141  * @key: index node key to lookup
3142  * @level: index node level
3143  * @lnum: index node LEB number
3144  * @offs: index node offset
3145  *
3146  * This function searches an indexing node by its first key @key and its
3147  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3148  * nodes it traverses to TNC. This function is called for indexing nodes which
3149  * were found on the media by scanning, for example when garbage-collecting or
3150  * when doing in-the-gaps commit. This means that the indexing node which is
3151  * looked for does not have to have exactly the same leftmost key @key, because
3152  * the leftmost key may have been changed, in which case TNC will contain a
3153  * dirty znode which still refers the same @lnum:@offs. This function is clever
3154  * enough to recognize such indexing nodes.
3155  *
3156  * Note, if a znode was deleted or changed too much, then this function will
3157  * not find it. For situations like this UBIFS has the old index RB-tree
3158  * (indexed by @lnum:@offs).
3159  *
3160  * This function returns a pointer to the znode found or %NULL if it is not
3161  * found. A negative error code is returned on failure.
3162  */
3163 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3164 					union ubifs_key *key, int level,
3165 					int lnum, int offs)
3166 {
3167 	struct ubifs_znode *znode, *zn;
3168 	int n, nn;
3169 
3170 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3171 
3172 	/*
3173 	 * The arguments have probably been read off flash, so don't assume
3174 	 * they are valid.
3175 	 */
3176 	if (level < 0)
3177 		return ERR_PTR(-EINVAL);
3178 
3179 	/* Get the root znode */
3180 	znode = c->zroot.znode;
3181 	if (!znode) {
3182 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3183 		if (IS_ERR(znode))
3184 			return znode;
3185 	}
3186 	/* Check if it is the one we are looking for */
3187 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3188 		return znode;
3189 	/* Descend to the parent level i.e. (level + 1) */
3190 	if (level >= znode->level)
3191 		return NULL;
3192 	while (1) {
3193 		ubifs_search_zbranch(c, znode, key, &n);
3194 		if (n < 0) {
3195 			/*
3196 			 * We reached a znode where the leftmost key is greater
3197 			 * than the key we are searching for. This is the same
3198 			 * situation as the one described in a huge comment at
3199 			 * the end of the 'ubifs_lookup_level0()' function. And
3200 			 * for exactly the same reasons we have to try to look
3201 			 * left before giving up.
3202 			 */
3203 			znode = left_znode(c, znode);
3204 			if (!znode)
3205 				return NULL;
3206 			if (IS_ERR(znode))
3207 				return znode;
3208 			ubifs_search_zbranch(c, znode, key, &n);
3209 			ubifs_assert(n >= 0);
3210 		}
3211 		if (znode->level == level + 1)
3212 			break;
3213 		znode = get_znode(c, znode, n);
3214 		if (IS_ERR(znode))
3215 			return znode;
3216 	}
3217 	/* Check if the child is the one we are looking for */
3218 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3219 		return get_znode(c, znode, n);
3220 	/* If the key is unique, there is nowhere else to look */
3221 	if (!is_hash_key(c, key))
3222 		return NULL;
3223 	/*
3224 	 * The key is not unique and so may be also in the znodes to either
3225 	 * side.
3226 	 */
3227 	zn = znode;
3228 	nn = n;
3229 	/* Look left */
3230 	while (1) {
3231 		/* Move one branch to the left */
3232 		if (n)
3233 			n -= 1;
3234 		else {
3235 			znode = left_znode(c, znode);
3236 			if (!znode)
3237 				break;
3238 			if (IS_ERR(znode))
3239 				return znode;
3240 			n = znode->child_cnt - 1;
3241 		}
3242 		/* Check it */
3243 		if (znode->zbranch[n].lnum == lnum &&
3244 		    znode->zbranch[n].offs == offs)
3245 			return get_znode(c, znode, n);
3246 		/* Stop if the key is less than the one we are looking for */
3247 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3248 			break;
3249 	}
3250 	/* Back to the middle */
3251 	znode = zn;
3252 	n = nn;
3253 	/* Look right */
3254 	while (1) {
3255 		/* Move one branch to the right */
3256 		if (++n >= znode->child_cnt) {
3257 			znode = right_znode(c, znode);
3258 			if (!znode)
3259 				break;
3260 			if (IS_ERR(znode))
3261 				return znode;
3262 			n = 0;
3263 		}
3264 		/* Check it */
3265 		if (znode->zbranch[n].lnum == lnum &&
3266 		    znode->zbranch[n].offs == offs)
3267 			return get_znode(c, znode, n);
3268 		/* Stop if the key is greater than the one we are looking for */
3269 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3270 			break;
3271 	}
3272 	return NULL;
3273 }
3274 
3275 /**
3276  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3277  * @c: UBIFS file-system description object
3278  * @key: key of index node
3279  * @level: index node level
3280  * @lnum: LEB number of index node
3281  * @offs: offset of index node
3282  *
3283  * This function returns %0 if the index node is not referred to in the TNC, %1
3284  * if the index node is referred to in the TNC and the corresponding znode is
3285  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3286  * znode is clean, and a negative error code in case of failure.
3287  *
3288  * Note, the @key argument has to be the key of the first child. Also note,
3289  * this function relies on the fact that 0:0 is never a valid LEB number and
3290  * offset for a main-area node.
3291  */
3292 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3293 		       int lnum, int offs)
3294 {
3295 	struct ubifs_znode *znode;
3296 
3297 	znode = lookup_znode(c, key, level, lnum, offs);
3298 	if (!znode)
3299 		return 0;
3300 	if (IS_ERR(znode))
3301 		return PTR_ERR(znode);
3302 
3303 	return ubifs_zn_dirty(znode) ? 1 : 2;
3304 }
3305 
3306 /**
3307  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3308  * @c: UBIFS file-system description object
3309  * @key: node key
3310  * @lnum: node LEB number
3311  * @offs: node offset
3312  *
3313  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3314  * not, and a negative error code in case of failure.
3315  *
3316  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3317  * and offset for a main-area node.
3318  */
3319 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3320 			       int lnum, int offs)
3321 {
3322 	struct ubifs_zbranch *zbr;
3323 	struct ubifs_znode *znode, *zn;
3324 	int n, found, err, nn;
3325 	const int unique = !is_hash_key(c, key);
3326 
3327 	found = ubifs_lookup_level0(c, key, &znode, &n);
3328 	if (found < 0)
3329 		return found; /* Error code */
3330 	if (!found)
3331 		return 0;
3332 	zbr = &znode->zbranch[n];
3333 	if (lnum == zbr->lnum && offs == zbr->offs)
3334 		return 1; /* Found it */
3335 	if (unique)
3336 		return 0;
3337 	/*
3338 	 * Because the key is not unique, we have to look left
3339 	 * and right as well
3340 	 */
3341 	zn = znode;
3342 	nn = n;
3343 	/* Look left */
3344 	while (1) {
3345 		err = tnc_prev(c, &znode, &n);
3346 		if (err == -ENOENT)
3347 			break;
3348 		if (err)
3349 			return err;
3350 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3351 			break;
3352 		zbr = &znode->zbranch[n];
3353 		if (lnum == zbr->lnum && offs == zbr->offs)
3354 			return 1; /* Found it */
3355 	}
3356 	/* Look right */
3357 	znode = zn;
3358 	n = nn;
3359 	while (1) {
3360 		err = tnc_next(c, &znode, &n);
3361 		if (err) {
3362 			if (err == -ENOENT)
3363 				return 0;
3364 			return err;
3365 		}
3366 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3367 			break;
3368 		zbr = &znode->zbranch[n];
3369 		if (lnum == zbr->lnum && offs == zbr->offs)
3370 			return 1; /* Found it */
3371 	}
3372 	return 0;
3373 }
3374 
3375 /**
3376  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3377  * @c: UBIFS file-system description object
3378  * @key: node key
3379  * @level: index node level (if it is an index node)
3380  * @lnum: node LEB number
3381  * @offs: node offset
3382  * @is_idx: non-zero if the node is an index node
3383  *
3384  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3385  * negative error code in case of failure. For index nodes, @key has to be the
3386  * key of the first child. An index node is considered to be in the TNC only if
3387  * the corresponding znode is clean or has not been loaded.
3388  */
3389 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3390 		       int lnum, int offs, int is_idx)
3391 {
3392 	int err;
3393 
3394 	mutex_lock(&c->tnc_mutex);
3395 	if (is_idx) {
3396 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3397 		if (err < 0)
3398 			goto out_unlock;
3399 		if (err == 1)
3400 			/* The index node was found but it was dirty */
3401 			err = 0;
3402 		else if (err == 2)
3403 			/* The index node was found and it was clean */
3404 			err = 1;
3405 		else
3406 			BUG_ON(err != 0);
3407 	} else
3408 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3409 
3410 out_unlock:
3411 	mutex_unlock(&c->tnc_mutex);
3412 	return err;
3413 }
3414 
3415 /**
3416  * ubifs_dirty_idx_node - dirty an index node.
3417  * @c: UBIFS file-system description object
3418  * @key: index node key
3419  * @level: index node level
3420  * @lnum: index node LEB number
3421  * @offs: index node offset
3422  *
3423  * This function loads and dirties an index node so that it can be garbage
3424  * collected. The @key argument has to be the key of the first child. This
3425  * function relies on the fact that 0:0 is never a valid LEB number and offset
3426  * for a main-area node. Returns %0 on success and a negative error code on
3427  * failure.
3428  */
3429 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3430 			 int lnum, int offs)
3431 {
3432 	struct ubifs_znode *znode;
3433 	int err = 0;
3434 
3435 	mutex_lock(&c->tnc_mutex);
3436 	znode = lookup_znode(c, key, level, lnum, offs);
3437 	if (!znode)
3438 		goto out_unlock;
3439 	if (IS_ERR(znode)) {
3440 		err = PTR_ERR(znode);
3441 		goto out_unlock;
3442 	}
3443 	znode = dirty_cow_bottom_up(c, znode);
3444 	if (IS_ERR(znode)) {
3445 		err = PTR_ERR(znode);
3446 		goto out_unlock;
3447 	}
3448 
3449 out_unlock:
3450 	mutex_unlock(&c->tnc_mutex);
3451 	return err;
3452 }
3453 
3454 /**
3455  * dbg_check_inode_size - check if inode size is correct.
3456  * @c: UBIFS file-system description object
3457  * @inum: inode number
3458  * @size: inode size
3459  *
3460  * This function makes sure that the inode size (@size) is correct and it does
3461  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3462  * if it has a data page beyond @size, and other negative error code in case of
3463  * other errors.
3464  */
3465 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3466 			 loff_t size)
3467 {
3468 	int err, n;
3469 	union ubifs_key from_key, to_key, *key;
3470 	struct ubifs_znode *znode;
3471 	unsigned int block;
3472 
3473 	if (!S_ISREG(inode->i_mode))
3474 		return 0;
3475 	if (!dbg_is_chk_gen(c))
3476 		return 0;
3477 
3478 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3479 	data_key_init(c, &from_key, inode->i_ino, block);
3480 	highest_data_key(c, &to_key, inode->i_ino);
3481 
3482 	mutex_lock(&c->tnc_mutex);
3483 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3484 	if (err < 0)
3485 		goto out_unlock;
3486 
3487 	if (err) {
3488 		key = &from_key;
3489 		goto out_dump;
3490 	}
3491 
3492 	err = tnc_next(c, &znode, &n);
3493 	if (err == -ENOENT) {
3494 		err = 0;
3495 		goto out_unlock;
3496 	}
3497 	if (err < 0)
3498 		goto out_unlock;
3499 
3500 	ubifs_assert(err == 0);
3501 	key = &znode->zbranch[n].key;
3502 	if (!key_in_range(c, key, &from_key, &to_key))
3503 		goto out_unlock;
3504 
3505 out_dump:
3506 	block = key_block(c, key);
3507 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3508 		  (unsigned long)inode->i_ino, size,
3509 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3510 	mutex_unlock(&c->tnc_mutex);
3511 	ubifs_dump_inode(c, inode);
3512 	dump_stack();
3513 	return -EINVAL;
3514 
3515 out_unlock:
3516 	mutex_unlock(&c->tnc_mutex);
3517 	return err;
3518 }
3519