1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /* 38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 39 * @NAME_LESS: name corresponding to the first argument is less than second 40 * @NAME_MATCHES: names match 41 * @NAME_GREATER: name corresponding to the second argument is greater than 42 * first 43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 44 * 45 * These constants were introduce to improve readability. 46 */ 47 enum { 48 NAME_LESS = 0, 49 NAME_MATCHES = 1, 50 NAME_GREATER = 2, 51 NOT_ON_MEDIA = 3, 52 }; 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err("old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct rb_node *this = c->old_idx.rb_node; 182 struct ubifs_old_idx *old_idx; 183 184 while (this) { 185 if (this->rb_left) { 186 this = this->rb_left; 187 continue; 188 } else if (this->rb_right) { 189 this = this->rb_right; 190 continue; 191 } 192 old_idx = rb_entry(this, struct ubifs_old_idx, rb); 193 this = rb_parent(this); 194 if (this) { 195 if (this->rb_left == &old_idx->rb) 196 this->rb_left = NULL; 197 else 198 this->rb_right = NULL; 199 } 200 kfree(old_idx); 201 } 202 c->old_idx = RB_ROOT; 203 } 204 205 /** 206 * copy_znode - copy a dirty znode. 207 * @c: UBIFS file-system description object 208 * @znode: znode to copy 209 * 210 * A dirty znode being committed may not be changed, so it is copied. 211 */ 212 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 213 struct ubifs_znode *znode) 214 { 215 struct ubifs_znode *zn; 216 217 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 218 if (unlikely(!zn)) 219 return ERR_PTR(-ENOMEM); 220 221 memcpy(zn, znode, c->max_znode_sz); 222 zn->cnext = NULL; 223 __set_bit(DIRTY_ZNODE, &zn->flags); 224 __clear_bit(COW_ZNODE, &zn->flags); 225 226 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 227 __set_bit(OBSOLETE_ZNODE, &znode->flags); 228 229 if (znode->level != 0) { 230 int i; 231 const int n = zn->child_cnt; 232 233 /* The children now have new parent */ 234 for (i = 0; i < n; i++) { 235 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 236 237 if (zbr->znode) 238 zbr->znode->parent = zn; 239 } 240 } 241 242 atomic_long_inc(&c->dirty_zn_cnt); 243 return zn; 244 } 245 246 /** 247 * add_idx_dirt - add dirt due to a dirty znode. 248 * @c: UBIFS file-system description object 249 * @lnum: LEB number of index node 250 * @dirt: size of index node 251 * 252 * This function updates lprops dirty space and the new size of the index. 253 */ 254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 255 { 256 c->calc_idx_sz -= ALIGN(dirt, 8); 257 return ubifs_add_dirt(c, lnum, dirt); 258 } 259 260 /** 261 * dirty_cow_znode - ensure a znode is not being committed. 262 * @c: UBIFS file-system description object 263 * @zbr: branch of znode to check 264 * 265 * Returns dirtied znode on success or negative error code on failure. 266 */ 267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 268 struct ubifs_zbranch *zbr) 269 { 270 struct ubifs_znode *znode = zbr->znode; 271 struct ubifs_znode *zn; 272 int err; 273 274 if (!test_bit(COW_ZNODE, &znode->flags)) { 275 /* znode is not being committed */ 276 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 277 atomic_long_inc(&c->dirty_zn_cnt); 278 atomic_long_dec(&c->clean_zn_cnt); 279 atomic_long_dec(&ubifs_clean_zn_cnt); 280 err = add_idx_dirt(c, zbr->lnum, zbr->len); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 } 284 return znode; 285 } 286 287 zn = copy_znode(c, znode); 288 if (IS_ERR(zn)) 289 return zn; 290 291 if (zbr->len) { 292 err = insert_old_idx(c, zbr->lnum, zbr->offs); 293 if (unlikely(err)) 294 return ERR_PTR(err); 295 err = add_idx_dirt(c, zbr->lnum, zbr->len); 296 } else 297 err = 0; 298 299 zbr->znode = zn; 300 zbr->lnum = 0; 301 zbr->offs = 0; 302 zbr->len = 0; 303 304 if (unlikely(err)) 305 return ERR_PTR(err); 306 return zn; 307 } 308 309 /** 310 * lnc_add - add a leaf node to the leaf node cache. 311 * @c: UBIFS file-system description object 312 * @zbr: zbranch of leaf node 313 * @node: leaf node 314 * 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 316 * purpose of the leaf node cache is to save re-reading the same leaf node over 317 * and over again. Most things are cached by VFS, however the file system must 318 * cache directory entries for readdir and for resolving hash collisions. The 319 * present implementation of the leaf node cache is extremely simple, and 320 * allows for error returns that are not used but that may be needed if a more 321 * complex implementation is created. 322 * 323 * Note, this function does not add the @node object to LNC directly, but 324 * allocates a copy of the object and adds the copy to LNC. The reason for this 325 * is that @node has been allocated outside of the TNC subsystem and will be 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 327 * may be changed at any time, e.g. freed by the shrinker. 328 */ 329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 330 const void *node) 331 { 332 int err; 333 void *lnc_node; 334 const struct ubifs_dent_node *dent = node; 335 336 ubifs_assert(!zbr->leaf); 337 ubifs_assert(zbr->len != 0); 338 ubifs_assert(is_hash_key(c, &zbr->key)); 339 340 err = ubifs_validate_entry(c, dent); 341 if (err) { 342 dbg_dump_stack(); 343 dbg_dump_node(c, dent); 344 return err; 345 } 346 347 lnc_node = kmalloc(zbr->len, GFP_NOFS); 348 if (!lnc_node) 349 /* We don't have to have the cache, so no error */ 350 return 0; 351 352 memcpy(lnc_node, node, zbr->len); 353 zbr->leaf = lnc_node; 354 return 0; 355 } 356 357 /** 358 * lnc_add_directly - add a leaf node to the leaf-node-cache. 359 * @c: UBIFS file-system description object 360 * @zbr: zbranch of leaf node 361 * @node: leaf node 362 * 363 * This function is similar to 'lnc_add()', but it does not create a copy of 364 * @node but inserts @node to TNC directly. 365 */ 366 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 367 void *node) 368 { 369 int err; 370 371 ubifs_assert(!zbr->leaf); 372 ubifs_assert(zbr->len != 0); 373 374 err = ubifs_validate_entry(c, node); 375 if (err) { 376 dbg_dump_stack(); 377 dbg_dump_node(c, node); 378 return err; 379 } 380 381 zbr->leaf = node; 382 return 0; 383 } 384 385 /** 386 * lnc_free - remove a leaf node from the leaf node cache. 387 * @zbr: zbranch of leaf node 388 * @node: leaf node 389 */ 390 static void lnc_free(struct ubifs_zbranch *zbr) 391 { 392 if (!zbr->leaf) 393 return; 394 kfree(zbr->leaf); 395 zbr->leaf = NULL; 396 } 397 398 /** 399 * tnc_read_node_nm - read a "hashed" leaf node. 400 * @c: UBIFS file-system description object 401 * @zbr: key and position of the node 402 * @node: node is returned here 403 * 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache 405 * (in it is there) or from the hash media, in which case the node is also 406 * added to LNC. Returns zero in case of success or a negative negative error 407 * code in case of failure. 408 */ 409 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 410 void *node) 411 { 412 int err; 413 414 ubifs_assert(is_hash_key(c, &zbr->key)); 415 416 if (zbr->leaf) { 417 /* Read from the leaf node cache */ 418 ubifs_assert(zbr->len != 0); 419 memcpy(node, zbr->leaf, zbr->len); 420 return 0; 421 } 422 423 err = ubifs_tnc_read_node(c, zbr, node); 424 if (err) 425 return err; 426 427 /* Add the node to the leaf node cache */ 428 err = lnc_add(c, zbr, node); 429 return err; 430 } 431 432 /** 433 * try_read_node - read a node if it is a node. 434 * @c: UBIFS file-system description object 435 * @buf: buffer to read to 436 * @type: node type 437 * @len: node length (not aligned) 438 * @lnum: LEB number of node to read 439 * @offs: offset of node to read 440 * 441 * This function tries to read a node of known type and length, checks it and 442 * stores it in @buf. This function returns %1 if a node is present and %0 if 443 * a node is not present. A negative error code is returned for I/O errors. 444 * This function performs that same function as ubifs_read_node except that 445 * it does not require that there is actually a node present and instead 446 * the return code indicates if a node was read. 447 * 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 449 * is true (it is controlled by corresponding mount option). However, if 450 * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always 451 * checked. 452 */ 453 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 454 int len, int lnum, int offs) 455 { 456 int err, node_len; 457 struct ubifs_ch *ch = buf; 458 uint32_t crc, node_crc; 459 460 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 461 462 err = ubi_read(c->ubi, lnum, buf, offs, len); 463 if (err) { 464 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 465 type, lnum, offs, err); 466 return err; 467 } 468 469 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 470 return 0; 471 472 if (ch->node_type != type) 473 return 0; 474 475 node_len = le32_to_cpu(ch->len); 476 if (node_len != len) 477 return 0; 478 479 if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) 480 return 1; 481 482 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 483 node_crc = le32_to_cpu(ch->crc); 484 if (crc != node_crc) 485 return 0; 486 487 return 1; 488 } 489 490 /** 491 * fallible_read_node - try to read a leaf node. 492 * @c: UBIFS file-system description object 493 * @key: key of node to read 494 * @zbr: position of node 495 * @node: node returned 496 * 497 * This function tries to read a node and returns %1 if the node is read, %0 498 * if the node is not present, and a negative error code in the case of error. 499 */ 500 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 501 struct ubifs_zbranch *zbr, void *node) 502 { 503 int ret; 504 505 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); 506 507 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 508 zbr->offs); 509 if (ret == 1) { 510 union ubifs_key node_key; 511 struct ubifs_dent_node *dent = node; 512 513 /* All nodes have key in the same place */ 514 key_read(c, &dent->key, &node_key); 515 if (keys_cmp(c, key, &node_key) != 0) 516 ret = 0; 517 } 518 if (ret == 0 && c->replaying) 519 dbg_mnt("dangling branch LEB %d:%d len %d, key %s", 520 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); 521 return ret; 522 } 523 524 /** 525 * matches_name - determine if a direntry or xattr entry matches a given name. 526 * @c: UBIFS file-system description object 527 * @zbr: zbranch of dent 528 * @nm: name to match 529 * 530 * This function checks if xentry/direntry referred by zbranch @zbr matches name 531 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 532 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 533 * of failure, a negative error code is returned. 534 */ 535 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 536 const struct qstr *nm) 537 { 538 struct ubifs_dent_node *dent; 539 int nlen, err; 540 541 /* If possible, match against the dent in the leaf node cache */ 542 if (!zbr->leaf) { 543 dent = kmalloc(zbr->len, GFP_NOFS); 544 if (!dent) 545 return -ENOMEM; 546 547 err = ubifs_tnc_read_node(c, zbr, dent); 548 if (err) 549 goto out_free; 550 551 /* Add the node to the leaf node cache */ 552 err = lnc_add_directly(c, zbr, dent); 553 if (err) 554 goto out_free; 555 } else 556 dent = zbr->leaf; 557 558 nlen = le16_to_cpu(dent->nlen); 559 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 560 if (err == 0) { 561 if (nlen == nm->len) 562 return NAME_MATCHES; 563 else if (nlen < nm->len) 564 return NAME_LESS; 565 else 566 return NAME_GREATER; 567 } else if (err < 0) 568 return NAME_LESS; 569 else 570 return NAME_GREATER; 571 572 out_free: 573 kfree(dent); 574 return err; 575 } 576 577 /** 578 * get_znode - get a TNC znode that may not be loaded yet. 579 * @c: UBIFS file-system description object 580 * @znode: parent znode 581 * @n: znode branch slot number 582 * 583 * This function returns the znode or a negative error code. 584 */ 585 static struct ubifs_znode *get_znode(struct ubifs_info *c, 586 struct ubifs_znode *znode, int n) 587 { 588 struct ubifs_zbranch *zbr; 589 590 zbr = &znode->zbranch[n]; 591 if (zbr->znode) 592 znode = zbr->znode; 593 else 594 znode = ubifs_load_znode(c, zbr, znode, n); 595 return znode; 596 } 597 598 /** 599 * tnc_next - find next TNC entry. 600 * @c: UBIFS file-system description object 601 * @zn: znode is passed and returned here 602 * @n: znode branch slot number is passed and returned here 603 * 604 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 605 * no next entry, or a negative error code otherwise. 606 */ 607 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 608 { 609 struct ubifs_znode *znode = *zn; 610 int nn = *n; 611 612 nn += 1; 613 if (nn < znode->child_cnt) { 614 *n = nn; 615 return 0; 616 } 617 while (1) { 618 struct ubifs_znode *zp; 619 620 zp = znode->parent; 621 if (!zp) 622 return -ENOENT; 623 nn = znode->iip + 1; 624 znode = zp; 625 if (nn < znode->child_cnt) { 626 znode = get_znode(c, znode, nn); 627 if (IS_ERR(znode)) 628 return PTR_ERR(znode); 629 while (znode->level != 0) { 630 znode = get_znode(c, znode, 0); 631 if (IS_ERR(znode)) 632 return PTR_ERR(znode); 633 } 634 nn = 0; 635 break; 636 } 637 } 638 *zn = znode; 639 *n = nn; 640 return 0; 641 } 642 643 /** 644 * tnc_prev - find previous TNC entry. 645 * @c: UBIFS file-system description object 646 * @zn: znode is returned here 647 * @n: znode branch slot number is passed and returned here 648 * 649 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 650 * there is no next entry, or a negative error code otherwise. 651 */ 652 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 653 { 654 struct ubifs_znode *znode = *zn; 655 int nn = *n; 656 657 if (nn > 0) { 658 *n = nn - 1; 659 return 0; 660 } 661 while (1) { 662 struct ubifs_znode *zp; 663 664 zp = znode->parent; 665 if (!zp) 666 return -ENOENT; 667 nn = znode->iip - 1; 668 znode = zp; 669 if (nn >= 0) { 670 znode = get_znode(c, znode, nn); 671 if (IS_ERR(znode)) 672 return PTR_ERR(znode); 673 while (znode->level != 0) { 674 nn = znode->child_cnt - 1; 675 znode = get_znode(c, znode, nn); 676 if (IS_ERR(znode)) 677 return PTR_ERR(znode); 678 } 679 nn = znode->child_cnt - 1; 680 break; 681 } 682 } 683 *zn = znode; 684 *n = nn; 685 return 0; 686 } 687 688 /** 689 * resolve_collision - resolve a collision. 690 * @c: UBIFS file-system description object 691 * @key: key of a directory or extended attribute entry 692 * @zn: znode is returned here 693 * @n: zbranch number is passed and returned here 694 * @nm: name of the entry 695 * 696 * This function is called for "hashed" keys to make sure that the found key 697 * really corresponds to the looked up node (directory or extended attribute 698 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 699 * %0 is returned if @nm is not found and @zn and @n are set to the previous 700 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 701 * This means that @n may be set to %-1 if the leftmost key in @zn is the 702 * previous one. A negative error code is returned on failures. 703 */ 704 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 705 struct ubifs_znode **zn, int *n, 706 const struct qstr *nm) 707 { 708 int err; 709 710 err = matches_name(c, &(*zn)->zbranch[*n], nm); 711 if (unlikely(err < 0)) 712 return err; 713 if (err == NAME_MATCHES) 714 return 1; 715 716 if (err == NAME_GREATER) { 717 /* Look left */ 718 while (1) { 719 err = tnc_prev(c, zn, n); 720 if (err == -ENOENT) { 721 ubifs_assert(*n == 0); 722 *n = -1; 723 return 0; 724 } 725 if (err < 0) 726 return err; 727 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 728 /* 729 * We have found the branch after which we would 730 * like to insert, but inserting in this znode 731 * may still be wrong. Consider the following 3 732 * znodes, in the case where we are resolving a 733 * collision with Key2. 734 * 735 * znode zp 736 * ---------------------- 737 * level 1 | Key0 | Key1 | 738 * ----------------------- 739 * | | 740 * znode za | | znode zb 741 * ------------ ------------ 742 * level 0 | Key0 | | Key2 | 743 * ------------ ------------ 744 * 745 * The lookup finds Key2 in znode zb. Lets say 746 * there is no match and the name is greater so 747 * we look left. When we find Key0, we end up 748 * here. If we return now, we will insert into 749 * znode za at slot n = 1. But that is invalid 750 * according to the parent's keys. Key2 must 751 * be inserted into znode zb. 752 * 753 * Note, this problem is not relevant for the 754 * case when we go right, because 755 * 'tnc_insert()' would correct the parent key. 756 */ 757 if (*n == (*zn)->child_cnt - 1) { 758 err = tnc_next(c, zn, n); 759 if (err) { 760 /* Should be impossible */ 761 ubifs_assert(0); 762 if (err == -ENOENT) 763 err = -EINVAL; 764 return err; 765 } 766 ubifs_assert(*n == 0); 767 *n = -1; 768 } 769 return 0; 770 } 771 err = matches_name(c, &(*zn)->zbranch[*n], nm); 772 if (err < 0) 773 return err; 774 if (err == NAME_LESS) 775 return 0; 776 if (err == NAME_MATCHES) 777 return 1; 778 ubifs_assert(err == NAME_GREATER); 779 } 780 } else { 781 int nn = *n; 782 struct ubifs_znode *znode = *zn; 783 784 /* Look right */ 785 while (1) { 786 err = tnc_next(c, &znode, &nn); 787 if (err == -ENOENT) 788 return 0; 789 if (err < 0) 790 return err; 791 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 792 return 0; 793 err = matches_name(c, &znode->zbranch[nn], nm); 794 if (err < 0) 795 return err; 796 if (err == NAME_GREATER) 797 return 0; 798 *zn = znode; 799 *n = nn; 800 if (err == NAME_MATCHES) 801 return 1; 802 ubifs_assert(err == NAME_LESS); 803 } 804 } 805 } 806 807 /** 808 * fallible_matches_name - determine if a dent matches a given name. 809 * @c: UBIFS file-system description object 810 * @zbr: zbranch of dent 811 * @nm: name to match 812 * 813 * This is a "fallible" version of 'matches_name()' function which does not 814 * panic if the direntry/xentry referred by @zbr does not exist on the media. 815 * 816 * This function checks if xentry/direntry referred by zbranch @zbr matches name 817 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 818 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 819 * if xentry/direntry referred by @zbr does not exist on the media. A negative 820 * error code is returned in case of failure. 821 */ 822 static int fallible_matches_name(struct ubifs_info *c, 823 struct ubifs_zbranch *zbr, 824 const struct qstr *nm) 825 { 826 struct ubifs_dent_node *dent; 827 int nlen, err; 828 829 /* If possible, match against the dent in the leaf node cache */ 830 if (!zbr->leaf) { 831 dent = kmalloc(zbr->len, GFP_NOFS); 832 if (!dent) 833 return -ENOMEM; 834 835 err = fallible_read_node(c, &zbr->key, zbr, dent); 836 if (err < 0) 837 goto out_free; 838 if (err == 0) { 839 /* The node was not present */ 840 err = NOT_ON_MEDIA; 841 goto out_free; 842 } 843 ubifs_assert(err == 1); 844 845 err = lnc_add_directly(c, zbr, dent); 846 if (err) 847 goto out_free; 848 } else 849 dent = zbr->leaf; 850 851 nlen = le16_to_cpu(dent->nlen); 852 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 853 if (err == 0) { 854 if (nlen == nm->len) 855 return NAME_MATCHES; 856 else if (nlen < nm->len) 857 return NAME_LESS; 858 else 859 return NAME_GREATER; 860 } else if (err < 0) 861 return NAME_LESS; 862 else 863 return NAME_GREATER; 864 865 out_free: 866 kfree(dent); 867 return err; 868 } 869 870 /** 871 * fallible_resolve_collision - resolve a collision even if nodes are missing. 872 * @c: UBIFS file-system description object 873 * @key: key 874 * @zn: znode is returned here 875 * @n: branch number is passed and returned here 876 * @nm: name of directory entry 877 * @adding: indicates caller is adding a key to the TNC 878 * 879 * This is a "fallible" version of the 'resolve_collision()' function which 880 * does not panic if one of the nodes referred to by TNC does not exist on the 881 * media. This may happen when replaying the journal if a deleted node was 882 * Garbage-collected and the commit was not done. A branch that refers to a node 883 * that is not present is called a dangling branch. The following are the return 884 * codes for this function: 885 * o if @nm was found, %1 is returned and @zn and @n are set to the found 886 * branch; 887 * o if we are @adding and @nm was not found, %0 is returned; 888 * o if we are not @adding and @nm was not found, but a dangling branch was 889 * found, then %1 is returned and @zn and @n are set to the dangling branch; 890 * o a negative error code is returned in case of failure. 891 */ 892 static int fallible_resolve_collision(struct ubifs_info *c, 893 const union ubifs_key *key, 894 struct ubifs_znode **zn, int *n, 895 const struct qstr *nm, int adding) 896 { 897 struct ubifs_znode *o_znode = NULL, *znode = *zn; 898 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 899 900 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 901 if (unlikely(cmp < 0)) 902 return cmp; 903 if (cmp == NAME_MATCHES) 904 return 1; 905 if (cmp == NOT_ON_MEDIA) { 906 o_znode = znode; 907 o_n = nn; 908 /* 909 * We are unlucky and hit a dangling branch straight away. 910 * Now we do not really know where to go to find the needed 911 * branch - to the left or to the right. Well, let's try left. 912 */ 913 unsure = 1; 914 } else if (!adding) 915 unsure = 1; /* Remove a dangling branch wherever it is */ 916 917 if (cmp == NAME_GREATER || unsure) { 918 /* Look left */ 919 while (1) { 920 err = tnc_prev(c, zn, n); 921 if (err == -ENOENT) { 922 ubifs_assert(*n == 0); 923 *n = -1; 924 break; 925 } 926 if (err < 0) 927 return err; 928 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 929 /* See comments in 'resolve_collision()' */ 930 if (*n == (*zn)->child_cnt - 1) { 931 err = tnc_next(c, zn, n); 932 if (err) { 933 /* Should be impossible */ 934 ubifs_assert(0); 935 if (err == -ENOENT) 936 err = -EINVAL; 937 return err; 938 } 939 ubifs_assert(*n == 0); 940 *n = -1; 941 } 942 break; 943 } 944 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 945 if (err < 0) 946 return err; 947 if (err == NAME_MATCHES) 948 return 1; 949 if (err == NOT_ON_MEDIA) { 950 o_znode = *zn; 951 o_n = *n; 952 continue; 953 } 954 if (!adding) 955 continue; 956 if (err == NAME_LESS) 957 break; 958 else 959 unsure = 0; 960 } 961 } 962 963 if (cmp == NAME_LESS || unsure) { 964 /* Look right */ 965 *zn = znode; 966 *n = nn; 967 while (1) { 968 err = tnc_next(c, &znode, &nn); 969 if (err == -ENOENT) 970 break; 971 if (err < 0) 972 return err; 973 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 974 break; 975 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 976 if (err < 0) 977 return err; 978 if (err == NAME_GREATER) 979 break; 980 *zn = znode; 981 *n = nn; 982 if (err == NAME_MATCHES) 983 return 1; 984 if (err == NOT_ON_MEDIA) { 985 o_znode = znode; 986 o_n = nn; 987 } 988 } 989 } 990 991 /* Never match a dangling branch when adding */ 992 if (adding || !o_znode) 993 return 0; 994 995 dbg_mnt("dangling match LEB %d:%d len %d %s", 996 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 997 o_znode->zbranch[o_n].len, DBGKEY(key)); 998 *zn = o_znode; 999 *n = o_n; 1000 return 1; 1001 } 1002 1003 /** 1004 * matches_position - determine if a zbranch matches a given position. 1005 * @zbr: zbranch of dent 1006 * @lnum: LEB number of dent to match 1007 * @offs: offset of dent to match 1008 * 1009 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1010 */ 1011 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1012 { 1013 if (zbr->lnum == lnum && zbr->offs == offs) 1014 return 1; 1015 else 1016 return 0; 1017 } 1018 1019 /** 1020 * resolve_collision_directly - resolve a collision directly. 1021 * @c: UBIFS file-system description object 1022 * @key: key of directory entry 1023 * @zn: znode is passed and returned here 1024 * @n: zbranch number is passed and returned here 1025 * @lnum: LEB number of dent node to match 1026 * @offs: offset of dent node to match 1027 * 1028 * This function is used for "hashed" keys to make sure the found directory or 1029 * extended attribute entry node is what was looked for. It is used when the 1030 * flash address of the right node is known (@lnum:@offs) which makes it much 1031 * easier to resolve collisions (no need to read entries and match full 1032 * names). This function returns %1 and sets @zn and @n if the collision is 1033 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1034 * previous directory entry. Otherwise a negative error code is returned. 1035 */ 1036 static int resolve_collision_directly(struct ubifs_info *c, 1037 const union ubifs_key *key, 1038 struct ubifs_znode **zn, int *n, 1039 int lnum, int offs) 1040 { 1041 struct ubifs_znode *znode; 1042 int nn, err; 1043 1044 znode = *zn; 1045 nn = *n; 1046 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1047 return 1; 1048 1049 /* Look left */ 1050 while (1) { 1051 err = tnc_prev(c, &znode, &nn); 1052 if (err == -ENOENT) 1053 break; 1054 if (err < 0) 1055 return err; 1056 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1057 break; 1058 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1059 *zn = znode; 1060 *n = nn; 1061 return 1; 1062 } 1063 } 1064 1065 /* Look right */ 1066 znode = *zn; 1067 nn = *n; 1068 while (1) { 1069 err = tnc_next(c, &znode, &nn); 1070 if (err == -ENOENT) 1071 return 0; 1072 if (err < 0) 1073 return err; 1074 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1075 return 0; 1076 *zn = znode; 1077 *n = nn; 1078 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1079 return 1; 1080 } 1081 } 1082 1083 /** 1084 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1085 * @c: UBIFS file-system description object 1086 * @znode: znode to dirty 1087 * 1088 * If we do not have a unique key that resides in a znode, then we cannot 1089 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1090 * This function records the path back to the last dirty ancestor, and then 1091 * dirties the znodes on that path. 1092 */ 1093 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1094 struct ubifs_znode *znode) 1095 { 1096 struct ubifs_znode *zp; 1097 int *path = c->bottom_up_buf, p = 0; 1098 1099 ubifs_assert(c->zroot.znode); 1100 ubifs_assert(znode); 1101 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1102 kfree(c->bottom_up_buf); 1103 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1104 GFP_NOFS); 1105 if (!c->bottom_up_buf) 1106 return ERR_PTR(-ENOMEM); 1107 path = c->bottom_up_buf; 1108 } 1109 if (c->zroot.znode->level) { 1110 /* Go up until parent is dirty */ 1111 while (1) { 1112 int n; 1113 1114 zp = znode->parent; 1115 if (!zp) 1116 break; 1117 n = znode->iip; 1118 ubifs_assert(p < c->zroot.znode->level); 1119 path[p++] = n; 1120 if (!zp->cnext && ubifs_zn_dirty(znode)) 1121 break; 1122 znode = zp; 1123 } 1124 } 1125 1126 /* Come back down, dirtying as we go */ 1127 while (1) { 1128 struct ubifs_zbranch *zbr; 1129 1130 zp = znode->parent; 1131 if (zp) { 1132 ubifs_assert(path[p - 1] >= 0); 1133 ubifs_assert(path[p - 1] < zp->child_cnt); 1134 zbr = &zp->zbranch[path[--p]]; 1135 znode = dirty_cow_znode(c, zbr); 1136 } else { 1137 ubifs_assert(znode == c->zroot.znode); 1138 znode = dirty_cow_znode(c, &c->zroot); 1139 } 1140 if (IS_ERR(znode) || !p) 1141 break; 1142 ubifs_assert(path[p - 1] >= 0); 1143 ubifs_assert(path[p - 1] < znode->child_cnt); 1144 znode = znode->zbranch[path[p - 1]].znode; 1145 } 1146 1147 return znode; 1148 } 1149 1150 /** 1151 * ubifs_lookup_level0 - search for zero-level znode. 1152 * @c: UBIFS file-system description object 1153 * @key: key to lookup 1154 * @zn: znode is returned here 1155 * @n: znode branch slot number is returned here 1156 * 1157 * This function looks up the TNC tree and search for zero-level znode which 1158 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1159 * cases: 1160 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1161 * is returned and slot number of the matched branch is stored in @n; 1162 * o not exact match, which means that zero-level znode does not contain 1163 * @key, then %0 is returned and slot number of the closest branch is stored 1164 * in @n; 1165 * o @key is so small that it is even less than the lowest key of the 1166 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1167 * 1168 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1169 * function reads corresponding indexing nodes and inserts them to TNC. In 1170 * case of failure, a negative error code is returned. 1171 */ 1172 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1173 struct ubifs_znode **zn, int *n) 1174 { 1175 int err, exact; 1176 struct ubifs_znode *znode; 1177 unsigned long time = get_seconds(); 1178 1179 dbg_tnc("search key %s", DBGKEY(key)); 1180 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1181 1182 znode = c->zroot.znode; 1183 if (unlikely(!znode)) { 1184 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1185 if (IS_ERR(znode)) 1186 return PTR_ERR(znode); 1187 } 1188 1189 znode->time = time; 1190 1191 while (1) { 1192 struct ubifs_zbranch *zbr; 1193 1194 exact = ubifs_search_zbranch(c, znode, key, n); 1195 1196 if (znode->level == 0) 1197 break; 1198 1199 if (*n < 0) 1200 *n = 0; 1201 zbr = &znode->zbranch[*n]; 1202 1203 if (zbr->znode) { 1204 znode->time = time; 1205 znode = zbr->znode; 1206 continue; 1207 } 1208 1209 /* znode is not in TNC cache, load it from the media */ 1210 znode = ubifs_load_znode(c, zbr, znode, *n); 1211 if (IS_ERR(znode)) 1212 return PTR_ERR(znode); 1213 } 1214 1215 *zn = znode; 1216 if (exact || !is_hash_key(c, key) || *n != -1) { 1217 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1218 return exact; 1219 } 1220 1221 /* 1222 * Here is a tricky place. We have not found the key and this is a 1223 * "hashed" key, which may collide. The rest of the code deals with 1224 * situations like this: 1225 * 1226 * | 3 | 5 | 1227 * / \ 1228 * | 3 | 5 | | 6 | 7 | (x) 1229 * 1230 * Or more a complex example: 1231 * 1232 * | 1 | 5 | 1233 * / \ 1234 * | 1 | 3 | | 5 | 8 | 1235 * \ / 1236 * | 5 | 5 | | 6 | 7 | (x) 1237 * 1238 * In the examples, if we are looking for key "5", we may reach nodes 1239 * marked with "(x)". In this case what we have do is to look at the 1240 * left and see if there is "5" key there. If there is, we have to 1241 * return it. 1242 * 1243 * Note, this whole situation is possible because we allow to have 1244 * elements which are equivalent to the next key in the parent in the 1245 * children of current znode. For example, this happens if we split a 1246 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1247 * like this: 1248 * | 3 | 5 | 1249 * / \ 1250 * | 3 | 5 | | 5 | 6 | 7 | 1251 * ^ 1252 * And this becomes what is at the first "picture" after key "5" marked 1253 * with "^" is removed. What could be done is we could prohibit 1254 * splitting in the middle of the colliding sequence. Also, when 1255 * removing the leftmost key, we would have to correct the key of the 1256 * parent node, which would introduce additional complications. Namely, 1257 * if we changed the leftmost key of the parent znode, the garbage 1258 * collector would be unable to find it (GC is doing this when GC'ing 1259 * indexing LEBs). Although we already have an additional RB-tree where 1260 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1261 * after the commit. But anyway, this does not look easy to implement 1262 * so we did not try this. 1263 */ 1264 err = tnc_prev(c, &znode, n); 1265 if (err == -ENOENT) { 1266 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1267 *n = -1; 1268 return 0; 1269 } 1270 if (unlikely(err < 0)) 1271 return err; 1272 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1273 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1274 *n = -1; 1275 return 0; 1276 } 1277 1278 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1279 *zn = znode; 1280 return 1; 1281 } 1282 1283 /** 1284 * lookup_level0_dirty - search for zero-level znode dirtying. 1285 * @c: UBIFS file-system description object 1286 * @key: key to lookup 1287 * @zn: znode is returned here 1288 * @n: znode branch slot number is returned here 1289 * 1290 * This function looks up the TNC tree and search for zero-level znode which 1291 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1292 * cases: 1293 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1294 * is returned and slot number of the matched branch is stored in @n; 1295 * o not exact match, which means that zero-level znode does not contain @key 1296 * then %0 is returned and slot number of the closed branch is stored in 1297 * @n; 1298 * o @key is so small that it is even less than the lowest key of the 1299 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1300 * 1301 * Additionally all znodes in the path from the root to the located zero-level 1302 * znode are marked as dirty. 1303 * 1304 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1305 * function reads corresponding indexing nodes and inserts them to TNC. In 1306 * case of failure, a negative error code is returned. 1307 */ 1308 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1309 struct ubifs_znode **zn, int *n) 1310 { 1311 int err, exact; 1312 struct ubifs_znode *znode; 1313 unsigned long time = get_seconds(); 1314 1315 dbg_tnc("search and dirty key %s", DBGKEY(key)); 1316 1317 znode = c->zroot.znode; 1318 if (unlikely(!znode)) { 1319 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1320 if (IS_ERR(znode)) 1321 return PTR_ERR(znode); 1322 } 1323 1324 znode = dirty_cow_znode(c, &c->zroot); 1325 if (IS_ERR(znode)) 1326 return PTR_ERR(znode); 1327 1328 znode->time = time; 1329 1330 while (1) { 1331 struct ubifs_zbranch *zbr; 1332 1333 exact = ubifs_search_zbranch(c, znode, key, n); 1334 1335 if (znode->level == 0) 1336 break; 1337 1338 if (*n < 0) 1339 *n = 0; 1340 zbr = &znode->zbranch[*n]; 1341 1342 if (zbr->znode) { 1343 znode->time = time; 1344 znode = dirty_cow_znode(c, zbr); 1345 if (IS_ERR(znode)) 1346 return PTR_ERR(znode); 1347 continue; 1348 } 1349 1350 /* znode is not in TNC cache, load it from the media */ 1351 znode = ubifs_load_znode(c, zbr, znode, *n); 1352 if (IS_ERR(znode)) 1353 return PTR_ERR(znode); 1354 znode = dirty_cow_znode(c, zbr); 1355 if (IS_ERR(znode)) 1356 return PTR_ERR(znode); 1357 } 1358 1359 *zn = znode; 1360 if (exact || !is_hash_key(c, key) || *n != -1) { 1361 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1362 return exact; 1363 } 1364 1365 /* 1366 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1367 * code. 1368 */ 1369 err = tnc_prev(c, &znode, n); 1370 if (err == -ENOENT) { 1371 *n = -1; 1372 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1373 return 0; 1374 } 1375 if (unlikely(err < 0)) 1376 return err; 1377 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1378 *n = -1; 1379 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1380 return 0; 1381 } 1382 1383 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1384 znode = dirty_cow_bottom_up(c, znode); 1385 if (IS_ERR(znode)) 1386 return PTR_ERR(znode); 1387 } 1388 1389 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1390 *zn = znode; 1391 return 1; 1392 } 1393 1394 /** 1395 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1396 * @c: UBIFS file-system description object 1397 * @lnum: LEB number 1398 * @gc_seq1: garbage collection sequence number 1399 * 1400 * This function determines if @lnum may have been garbage collected since 1401 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1402 * %0 is returned. 1403 */ 1404 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1405 { 1406 int gc_seq2, gced_lnum; 1407 1408 gced_lnum = c->gced_lnum; 1409 smp_rmb(); 1410 gc_seq2 = c->gc_seq; 1411 /* Same seq means no GC */ 1412 if (gc_seq1 == gc_seq2) 1413 return 0; 1414 /* Different by more than 1 means we don't know */ 1415 if (gc_seq1 + 1 != gc_seq2) 1416 return 1; 1417 /* 1418 * We have seen the sequence number has increased by 1. Now we need to 1419 * be sure we read the right LEB number, so read it again. 1420 */ 1421 smp_rmb(); 1422 if (gced_lnum != c->gced_lnum) 1423 return 1; 1424 /* Finally we can check lnum */ 1425 if (gced_lnum == lnum) 1426 return 1; 1427 return 0; 1428 } 1429 1430 /** 1431 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1432 * @c: UBIFS file-system description object 1433 * @key: node key to lookup 1434 * @node: the node is returned here 1435 * @lnum: LEB number is returned here 1436 * @offs: offset is returned here 1437 * 1438 * This function looks up and reads node with key @key. The caller has to make 1439 * sure the @node buffer is large enough to fit the node. Returns zero in case 1440 * of success, %-ENOENT if the node was not found, and a negative error code in 1441 * case of failure. The node location can be returned in @lnum and @offs. 1442 */ 1443 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1444 void *node, int *lnum, int *offs) 1445 { 1446 int found, n, err, safely = 0, gc_seq1; 1447 struct ubifs_znode *znode; 1448 struct ubifs_zbranch zbr, *zt; 1449 1450 again: 1451 mutex_lock(&c->tnc_mutex); 1452 found = ubifs_lookup_level0(c, key, &znode, &n); 1453 if (!found) { 1454 err = -ENOENT; 1455 goto out; 1456 } else if (found < 0) { 1457 err = found; 1458 goto out; 1459 } 1460 zt = &znode->zbranch[n]; 1461 if (lnum) { 1462 *lnum = zt->lnum; 1463 *offs = zt->offs; 1464 } 1465 if (is_hash_key(c, key)) { 1466 /* 1467 * In this case the leaf node cache gets used, so we pass the 1468 * address of the zbranch and keep the mutex locked 1469 */ 1470 err = tnc_read_node_nm(c, zt, node); 1471 goto out; 1472 } 1473 if (safely) { 1474 err = ubifs_tnc_read_node(c, zt, node); 1475 goto out; 1476 } 1477 /* Drop the TNC mutex prematurely and race with garbage collection */ 1478 zbr = znode->zbranch[n]; 1479 gc_seq1 = c->gc_seq; 1480 mutex_unlock(&c->tnc_mutex); 1481 1482 if (ubifs_get_wbuf(c, zbr.lnum)) { 1483 /* We do not GC journal heads */ 1484 err = ubifs_tnc_read_node(c, &zbr, node); 1485 return err; 1486 } 1487 1488 err = fallible_read_node(c, key, &zbr, node); 1489 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1490 /* 1491 * The node may have been GC'ed out from under us so try again 1492 * while keeping the TNC mutex locked. 1493 */ 1494 safely = 1; 1495 goto again; 1496 } 1497 return 0; 1498 1499 out: 1500 mutex_unlock(&c->tnc_mutex); 1501 return err; 1502 } 1503 1504 /** 1505 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1506 * @c: UBIFS file-system description object 1507 * @bu: bulk-read parameters and results 1508 * 1509 * Lookup consecutive data node keys for the same inode that reside 1510 * consecutively in the same LEB. This function returns zero in case of success 1511 * and a negative error code in case of failure. 1512 * 1513 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1514 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1515 * maximum possible amount of nodes for bulk-read. 1516 */ 1517 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1518 { 1519 int n, err = 0, lnum = -1, uninitialized_var(offs); 1520 int uninitialized_var(len); 1521 unsigned int block = key_block(c, &bu->key); 1522 struct ubifs_znode *znode; 1523 1524 bu->cnt = 0; 1525 bu->blk_cnt = 0; 1526 bu->eof = 0; 1527 1528 mutex_lock(&c->tnc_mutex); 1529 /* Find first key */ 1530 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1531 if (err < 0) 1532 goto out; 1533 if (err) { 1534 /* Key found */ 1535 len = znode->zbranch[n].len; 1536 /* The buffer must be big enough for at least 1 node */ 1537 if (len > bu->buf_len) { 1538 err = -EINVAL; 1539 goto out; 1540 } 1541 /* Add this key */ 1542 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1543 bu->blk_cnt += 1; 1544 lnum = znode->zbranch[n].lnum; 1545 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1546 } 1547 while (1) { 1548 struct ubifs_zbranch *zbr; 1549 union ubifs_key *key; 1550 unsigned int next_block; 1551 1552 /* Find next key */ 1553 err = tnc_next(c, &znode, &n); 1554 if (err) 1555 goto out; 1556 zbr = &znode->zbranch[n]; 1557 key = &zbr->key; 1558 /* See if there is another data key for this file */ 1559 if (key_inum(c, key) != key_inum(c, &bu->key) || 1560 key_type(c, key) != UBIFS_DATA_KEY) { 1561 err = -ENOENT; 1562 goto out; 1563 } 1564 if (lnum < 0) { 1565 /* First key found */ 1566 lnum = zbr->lnum; 1567 offs = ALIGN(zbr->offs + zbr->len, 8); 1568 len = zbr->len; 1569 if (len > bu->buf_len) { 1570 err = -EINVAL; 1571 goto out; 1572 } 1573 } else { 1574 /* 1575 * The data nodes must be in consecutive positions in 1576 * the same LEB. 1577 */ 1578 if (zbr->lnum != lnum || zbr->offs != offs) 1579 goto out; 1580 offs += ALIGN(zbr->len, 8); 1581 len = ALIGN(len, 8) + zbr->len; 1582 /* Must not exceed buffer length */ 1583 if (len > bu->buf_len) 1584 goto out; 1585 } 1586 /* Allow for holes */ 1587 next_block = key_block(c, key); 1588 bu->blk_cnt += (next_block - block - 1); 1589 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1590 goto out; 1591 block = next_block; 1592 /* Add this key */ 1593 bu->zbranch[bu->cnt++] = *zbr; 1594 bu->blk_cnt += 1; 1595 /* See if we have room for more */ 1596 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1597 goto out; 1598 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1599 goto out; 1600 } 1601 out: 1602 if (err == -ENOENT) { 1603 bu->eof = 1; 1604 err = 0; 1605 } 1606 bu->gc_seq = c->gc_seq; 1607 mutex_unlock(&c->tnc_mutex); 1608 if (err) 1609 return err; 1610 /* 1611 * An enormous hole could cause bulk-read to encompass too many 1612 * page cache pages, so limit the number here. 1613 */ 1614 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1615 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1616 /* 1617 * Ensure that bulk-read covers a whole number of page cache 1618 * pages. 1619 */ 1620 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1621 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1622 return 0; 1623 if (bu->eof) { 1624 /* At the end of file we can round up */ 1625 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1626 return 0; 1627 } 1628 /* Exclude data nodes that do not make up a whole page cache page */ 1629 block = key_block(c, &bu->key) + bu->blk_cnt; 1630 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1631 while (bu->cnt) { 1632 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1633 break; 1634 bu->cnt -= 1; 1635 } 1636 return 0; 1637 } 1638 1639 /** 1640 * read_wbuf - bulk-read from a LEB with a wbuf. 1641 * @wbuf: wbuf that may overlap the read 1642 * @buf: buffer into which to read 1643 * @len: read length 1644 * @lnum: LEB number from which to read 1645 * @offs: offset from which to read 1646 * 1647 * This functions returns %0 on success or a negative error code on failure. 1648 */ 1649 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1650 int offs) 1651 { 1652 const struct ubifs_info *c = wbuf->c; 1653 int rlen, overlap; 1654 1655 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1656 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1657 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1658 ubifs_assert(offs + len <= c->leb_size); 1659 1660 spin_lock(&wbuf->lock); 1661 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1662 if (!overlap) { 1663 /* We may safely unlock the write-buffer and read the data */ 1664 spin_unlock(&wbuf->lock); 1665 return ubi_read(c->ubi, lnum, buf, offs, len); 1666 } 1667 1668 /* Don't read under wbuf */ 1669 rlen = wbuf->offs - offs; 1670 if (rlen < 0) 1671 rlen = 0; 1672 1673 /* Copy the rest from the write-buffer */ 1674 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1675 spin_unlock(&wbuf->lock); 1676 1677 if (rlen > 0) 1678 /* Read everything that goes before write-buffer */ 1679 return ubi_read(c->ubi, lnum, buf, offs, rlen); 1680 1681 return 0; 1682 } 1683 1684 /** 1685 * validate_data_node - validate data nodes for bulk-read. 1686 * @c: UBIFS file-system description object 1687 * @buf: buffer containing data node to validate 1688 * @zbr: zbranch of data node to validate 1689 * 1690 * This functions returns %0 on success or a negative error code on failure. 1691 */ 1692 static int validate_data_node(struct ubifs_info *c, void *buf, 1693 struct ubifs_zbranch *zbr) 1694 { 1695 union ubifs_key key1; 1696 struct ubifs_ch *ch = buf; 1697 int err, len; 1698 1699 if (ch->node_type != UBIFS_DATA_NODE) { 1700 ubifs_err("bad node type (%d but expected %d)", 1701 ch->node_type, UBIFS_DATA_NODE); 1702 goto out_err; 1703 } 1704 1705 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1706 if (err) { 1707 ubifs_err("expected node type %d", UBIFS_DATA_NODE); 1708 goto out; 1709 } 1710 1711 len = le32_to_cpu(ch->len); 1712 if (len != zbr->len) { 1713 ubifs_err("bad node length %d, expected %d", len, zbr->len); 1714 goto out_err; 1715 } 1716 1717 /* Make sure the key of the read node is correct */ 1718 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1719 if (!keys_eq(c, &zbr->key, &key1)) { 1720 ubifs_err("bad key in node at LEB %d:%d", 1721 zbr->lnum, zbr->offs); 1722 dbg_tnc("looked for key %s found node's key %s", 1723 DBGKEY(&zbr->key), DBGKEY1(&key1)); 1724 goto out_err; 1725 } 1726 1727 return 0; 1728 1729 out_err: 1730 err = -EINVAL; 1731 out: 1732 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1733 dbg_dump_node(c, buf); 1734 dbg_dump_stack(); 1735 return err; 1736 } 1737 1738 /** 1739 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1740 * @c: UBIFS file-system description object 1741 * @bu: bulk-read parameters and results 1742 * 1743 * This functions reads and validates the data nodes that were identified by the 1744 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1745 * -EAGAIN to indicate a race with GC, or another negative error code on 1746 * failure. 1747 */ 1748 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1749 { 1750 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1751 struct ubifs_wbuf *wbuf; 1752 void *buf; 1753 1754 len = bu->zbranch[bu->cnt - 1].offs; 1755 len += bu->zbranch[bu->cnt - 1].len - offs; 1756 if (len > bu->buf_len) { 1757 ubifs_err("buffer too small %d vs %d", bu->buf_len, len); 1758 return -EINVAL; 1759 } 1760 1761 /* Do the read */ 1762 wbuf = ubifs_get_wbuf(c, lnum); 1763 if (wbuf) 1764 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1765 else 1766 err = ubi_read(c->ubi, lnum, bu->buf, offs, len); 1767 1768 /* Check for a race with GC */ 1769 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1770 return -EAGAIN; 1771 1772 if (err && err != -EBADMSG) { 1773 ubifs_err("failed to read from LEB %d:%d, error %d", 1774 lnum, offs, err); 1775 dbg_dump_stack(); 1776 dbg_tnc("key %s", DBGKEY(&bu->key)); 1777 return err; 1778 } 1779 1780 /* Validate the nodes read */ 1781 buf = bu->buf; 1782 for (i = 0; i < bu->cnt; i++) { 1783 err = validate_data_node(c, buf, &bu->zbranch[i]); 1784 if (err) 1785 return err; 1786 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1787 } 1788 1789 return 0; 1790 } 1791 1792 /** 1793 * do_lookup_nm- look up a "hashed" node. 1794 * @c: UBIFS file-system description object 1795 * @key: node key to lookup 1796 * @node: the node is returned here 1797 * @nm: node name 1798 * 1799 * This function look up and reads a node which contains name hash in the key. 1800 * Since the hash may have collisions, there may be many nodes with the same 1801 * key, so we have to sequentially look to all of them until the needed one is 1802 * found. This function returns zero in case of success, %-ENOENT if the node 1803 * was not found, and a negative error code in case of failure. 1804 */ 1805 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1806 void *node, const struct qstr *nm) 1807 { 1808 int found, n, err; 1809 struct ubifs_znode *znode; 1810 1811 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); 1812 mutex_lock(&c->tnc_mutex); 1813 found = ubifs_lookup_level0(c, key, &znode, &n); 1814 if (!found) { 1815 err = -ENOENT; 1816 goto out_unlock; 1817 } else if (found < 0) { 1818 err = found; 1819 goto out_unlock; 1820 } 1821 1822 ubifs_assert(n >= 0); 1823 1824 err = resolve_collision(c, key, &znode, &n, nm); 1825 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1826 if (unlikely(err < 0)) 1827 goto out_unlock; 1828 if (err == 0) { 1829 err = -ENOENT; 1830 goto out_unlock; 1831 } 1832 1833 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1834 1835 out_unlock: 1836 mutex_unlock(&c->tnc_mutex); 1837 return err; 1838 } 1839 1840 /** 1841 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1842 * @c: UBIFS file-system description object 1843 * @key: node key to lookup 1844 * @node: the node is returned here 1845 * @nm: node name 1846 * 1847 * This function look up and reads a node which contains name hash in the key. 1848 * Since the hash may have collisions, there may be many nodes with the same 1849 * key, so we have to sequentially look to all of them until the needed one is 1850 * found. This function returns zero in case of success, %-ENOENT if the node 1851 * was not found, and a negative error code in case of failure. 1852 */ 1853 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1854 void *node, const struct qstr *nm) 1855 { 1856 int err, len; 1857 const struct ubifs_dent_node *dent = node; 1858 1859 /* 1860 * We assume that in most of the cases there are no name collisions and 1861 * 'ubifs_tnc_lookup()' returns us the right direntry. 1862 */ 1863 err = ubifs_tnc_lookup(c, key, node); 1864 if (err) 1865 return err; 1866 1867 len = le16_to_cpu(dent->nlen); 1868 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1869 return 0; 1870 1871 /* 1872 * Unluckily, there are hash collisions and we have to iterate over 1873 * them look at each direntry with colliding name hash sequentially. 1874 */ 1875 return do_lookup_nm(c, key, node, nm); 1876 } 1877 1878 /** 1879 * correct_parent_keys - correct parent znodes' keys. 1880 * @c: UBIFS file-system description object 1881 * @znode: znode to correct parent znodes for 1882 * 1883 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1884 * zbranch changes, keys of parent znodes have to be corrected. This helper 1885 * function is called in such situations and corrects the keys if needed. 1886 */ 1887 static void correct_parent_keys(const struct ubifs_info *c, 1888 struct ubifs_znode *znode) 1889 { 1890 union ubifs_key *key, *key1; 1891 1892 ubifs_assert(znode->parent); 1893 ubifs_assert(znode->iip == 0); 1894 1895 key = &znode->zbranch[0].key; 1896 key1 = &znode->parent->zbranch[0].key; 1897 1898 while (keys_cmp(c, key, key1) < 0) { 1899 key_copy(c, key, key1); 1900 znode = znode->parent; 1901 znode->alt = 1; 1902 if (!znode->parent || znode->iip) 1903 break; 1904 key1 = &znode->parent->zbranch[0].key; 1905 } 1906 } 1907 1908 /** 1909 * insert_zbranch - insert a zbranch into a znode. 1910 * @znode: znode into which to insert 1911 * @zbr: zbranch to insert 1912 * @n: slot number to insert to 1913 * 1914 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1915 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1916 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1917 * slot, zbranches starting from @n have to be moved right. 1918 */ 1919 static void insert_zbranch(struct ubifs_znode *znode, 1920 const struct ubifs_zbranch *zbr, int n) 1921 { 1922 int i; 1923 1924 ubifs_assert(ubifs_zn_dirty(znode)); 1925 1926 if (znode->level) { 1927 for (i = znode->child_cnt; i > n; i--) { 1928 znode->zbranch[i] = znode->zbranch[i - 1]; 1929 if (znode->zbranch[i].znode) 1930 znode->zbranch[i].znode->iip = i; 1931 } 1932 if (zbr->znode) 1933 zbr->znode->iip = n; 1934 } else 1935 for (i = znode->child_cnt; i > n; i--) 1936 znode->zbranch[i] = znode->zbranch[i - 1]; 1937 1938 znode->zbranch[n] = *zbr; 1939 znode->child_cnt += 1; 1940 1941 /* 1942 * After inserting at slot zero, the lower bound of the key range of 1943 * this znode may have changed. If this znode is subsequently split 1944 * then the upper bound of the key range may change, and furthermore 1945 * it could change to be lower than the original lower bound. If that 1946 * happens, then it will no longer be possible to find this znode in the 1947 * TNC using the key from the index node on flash. That is bad because 1948 * if it is not found, we will assume it is obsolete and may overwrite 1949 * it. Then if there is an unclean unmount, we will start using the 1950 * old index which will be broken. 1951 * 1952 * So we first mark znodes that have insertions at slot zero, and then 1953 * if they are split we add their lnum/offs to the old_idx tree. 1954 */ 1955 if (n == 0) 1956 znode->alt = 1; 1957 } 1958 1959 /** 1960 * tnc_insert - insert a node into TNC. 1961 * @c: UBIFS file-system description object 1962 * @znode: znode to insert into 1963 * @zbr: branch to insert 1964 * @n: slot number to insert new zbranch to 1965 * 1966 * This function inserts a new node described by @zbr into znode @znode. If 1967 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1968 * are splat as well if needed. Returns zero in case of success or a negative 1969 * error code in case of failure. 1970 */ 1971 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1972 struct ubifs_zbranch *zbr, int n) 1973 { 1974 struct ubifs_znode *zn, *zi, *zp; 1975 int i, keep, move, appending = 0; 1976 union ubifs_key *key = &zbr->key, *key1; 1977 1978 ubifs_assert(n >= 0 && n <= c->fanout); 1979 1980 /* Implement naive insert for now */ 1981 again: 1982 zp = znode->parent; 1983 if (znode->child_cnt < c->fanout) { 1984 ubifs_assert(n != c->fanout); 1985 dbg_tnc("inserted at %d level %d, key %s", n, znode->level, 1986 DBGKEY(key)); 1987 1988 insert_zbranch(znode, zbr, n); 1989 1990 /* Ensure parent's key is correct */ 1991 if (n == 0 && zp && znode->iip == 0) 1992 correct_parent_keys(c, znode); 1993 1994 return 0; 1995 } 1996 1997 /* 1998 * Unfortunately, @znode does not have more empty slots and we have to 1999 * split it. 2000 */ 2001 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); 2002 2003 if (znode->alt) 2004 /* 2005 * We can no longer be sure of finding this znode by key, so we 2006 * record it in the old_idx tree. 2007 */ 2008 ins_clr_old_idx_znode(c, znode); 2009 2010 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2011 if (!zn) 2012 return -ENOMEM; 2013 zn->parent = zp; 2014 zn->level = znode->level; 2015 2016 /* Decide where to split */ 2017 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2018 /* Try not to split consecutive data keys */ 2019 if (n == c->fanout) { 2020 key1 = &znode->zbranch[n - 1].key; 2021 if (key_inum(c, key1) == key_inum(c, key) && 2022 key_type(c, key1) == UBIFS_DATA_KEY) 2023 appending = 1; 2024 } else 2025 goto check_split; 2026 } else if (appending && n != c->fanout) { 2027 /* Try not to split consecutive data keys */ 2028 appending = 0; 2029 check_split: 2030 if (n >= (c->fanout + 1) / 2) { 2031 key1 = &znode->zbranch[0].key; 2032 if (key_inum(c, key1) == key_inum(c, key) && 2033 key_type(c, key1) == UBIFS_DATA_KEY) { 2034 key1 = &znode->zbranch[n].key; 2035 if (key_inum(c, key1) != key_inum(c, key) || 2036 key_type(c, key1) != UBIFS_DATA_KEY) { 2037 keep = n; 2038 move = c->fanout - keep; 2039 zi = znode; 2040 goto do_split; 2041 } 2042 } 2043 } 2044 } 2045 2046 if (appending) { 2047 keep = c->fanout; 2048 move = 0; 2049 } else { 2050 keep = (c->fanout + 1) / 2; 2051 move = c->fanout - keep; 2052 } 2053 2054 /* 2055 * Although we don't at present, we could look at the neighbors and see 2056 * if we can move some zbranches there. 2057 */ 2058 2059 if (n < keep) { 2060 /* Insert into existing znode */ 2061 zi = znode; 2062 move += 1; 2063 keep -= 1; 2064 } else { 2065 /* Insert into new znode */ 2066 zi = zn; 2067 n -= keep; 2068 /* Re-parent */ 2069 if (zn->level != 0) 2070 zbr->znode->parent = zn; 2071 } 2072 2073 do_split: 2074 2075 __set_bit(DIRTY_ZNODE, &zn->flags); 2076 atomic_long_inc(&c->dirty_zn_cnt); 2077 2078 zn->child_cnt = move; 2079 znode->child_cnt = keep; 2080 2081 dbg_tnc("moving %d, keeping %d", move, keep); 2082 2083 /* Move zbranch */ 2084 for (i = 0; i < move; i++) { 2085 zn->zbranch[i] = znode->zbranch[keep + i]; 2086 /* Re-parent */ 2087 if (zn->level != 0) 2088 if (zn->zbranch[i].znode) { 2089 zn->zbranch[i].znode->parent = zn; 2090 zn->zbranch[i].znode->iip = i; 2091 } 2092 } 2093 2094 /* Insert new key and branch */ 2095 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); 2096 2097 insert_zbranch(zi, zbr, n); 2098 2099 /* Insert new znode (produced by spitting) into the parent */ 2100 if (zp) { 2101 if (n == 0 && zi == znode && znode->iip == 0) 2102 correct_parent_keys(c, znode); 2103 2104 /* Locate insertion point */ 2105 n = znode->iip + 1; 2106 2107 /* Tail recursion */ 2108 zbr->key = zn->zbranch[0].key; 2109 zbr->znode = zn; 2110 zbr->lnum = 0; 2111 zbr->offs = 0; 2112 zbr->len = 0; 2113 znode = zp; 2114 2115 goto again; 2116 } 2117 2118 /* We have to split root znode */ 2119 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2120 2121 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2122 if (!zi) 2123 return -ENOMEM; 2124 2125 zi->child_cnt = 2; 2126 zi->level = znode->level + 1; 2127 2128 __set_bit(DIRTY_ZNODE, &zi->flags); 2129 atomic_long_inc(&c->dirty_zn_cnt); 2130 2131 zi->zbranch[0].key = znode->zbranch[0].key; 2132 zi->zbranch[0].znode = znode; 2133 zi->zbranch[0].lnum = c->zroot.lnum; 2134 zi->zbranch[0].offs = c->zroot.offs; 2135 zi->zbranch[0].len = c->zroot.len; 2136 zi->zbranch[1].key = zn->zbranch[0].key; 2137 zi->zbranch[1].znode = zn; 2138 2139 c->zroot.lnum = 0; 2140 c->zroot.offs = 0; 2141 c->zroot.len = 0; 2142 c->zroot.znode = zi; 2143 2144 zn->parent = zi; 2145 zn->iip = 1; 2146 znode->parent = zi; 2147 znode->iip = 0; 2148 2149 return 0; 2150 } 2151 2152 /** 2153 * ubifs_tnc_add - add a node to TNC. 2154 * @c: UBIFS file-system description object 2155 * @key: key to add 2156 * @lnum: LEB number of node 2157 * @offs: node offset 2158 * @len: node length 2159 * 2160 * This function adds a node with key @key to TNC. The node may be new or it may 2161 * obsolete some existing one. Returns %0 on success or negative error code on 2162 * failure. 2163 */ 2164 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2165 int offs, int len) 2166 { 2167 int found, n, err = 0; 2168 struct ubifs_znode *znode; 2169 2170 mutex_lock(&c->tnc_mutex); 2171 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); 2172 found = lookup_level0_dirty(c, key, &znode, &n); 2173 if (!found) { 2174 struct ubifs_zbranch zbr; 2175 2176 zbr.znode = NULL; 2177 zbr.lnum = lnum; 2178 zbr.offs = offs; 2179 zbr.len = len; 2180 key_copy(c, key, &zbr.key); 2181 err = tnc_insert(c, znode, &zbr, n + 1); 2182 } else if (found == 1) { 2183 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2184 2185 lnc_free(zbr); 2186 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2187 zbr->lnum = lnum; 2188 zbr->offs = offs; 2189 zbr->len = len; 2190 } else 2191 err = found; 2192 if (!err) 2193 err = dbg_check_tnc(c, 0); 2194 mutex_unlock(&c->tnc_mutex); 2195 2196 return err; 2197 } 2198 2199 /** 2200 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2201 * @c: UBIFS file-system description object 2202 * @key: key to add 2203 * @old_lnum: LEB number of old node 2204 * @old_offs: old node offset 2205 * @lnum: LEB number of node 2206 * @offs: node offset 2207 * @len: node length 2208 * 2209 * This function replaces a node with key @key in the TNC only if the old node 2210 * is found. This function is called by garbage collection when node are moved. 2211 * Returns %0 on success or negative error code on failure. 2212 */ 2213 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2214 int old_lnum, int old_offs, int lnum, int offs, int len) 2215 { 2216 int found, n, err = 0; 2217 struct ubifs_znode *znode; 2218 2219 mutex_lock(&c->tnc_mutex); 2220 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, 2221 old_offs, lnum, offs, len, DBGKEY(key)); 2222 found = lookup_level0_dirty(c, key, &znode, &n); 2223 if (found < 0) { 2224 err = found; 2225 goto out_unlock; 2226 } 2227 2228 if (found == 1) { 2229 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2230 2231 found = 0; 2232 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2233 lnc_free(zbr); 2234 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2235 if (err) 2236 goto out_unlock; 2237 zbr->lnum = lnum; 2238 zbr->offs = offs; 2239 zbr->len = len; 2240 found = 1; 2241 } else if (is_hash_key(c, key)) { 2242 found = resolve_collision_directly(c, key, &znode, &n, 2243 old_lnum, old_offs); 2244 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2245 found, znode, n, old_lnum, old_offs); 2246 if (found < 0) { 2247 err = found; 2248 goto out_unlock; 2249 } 2250 2251 if (found) { 2252 /* Ensure the znode is dirtied */ 2253 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2254 znode = dirty_cow_bottom_up(c, znode); 2255 if (IS_ERR(znode)) { 2256 err = PTR_ERR(znode); 2257 goto out_unlock; 2258 } 2259 } 2260 zbr = &znode->zbranch[n]; 2261 lnc_free(zbr); 2262 err = ubifs_add_dirt(c, zbr->lnum, 2263 zbr->len); 2264 if (err) 2265 goto out_unlock; 2266 zbr->lnum = lnum; 2267 zbr->offs = offs; 2268 zbr->len = len; 2269 } 2270 } 2271 } 2272 2273 if (!found) 2274 err = ubifs_add_dirt(c, lnum, len); 2275 2276 if (!err) 2277 err = dbg_check_tnc(c, 0); 2278 2279 out_unlock: 2280 mutex_unlock(&c->tnc_mutex); 2281 return err; 2282 } 2283 2284 /** 2285 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2286 * @c: UBIFS file-system description object 2287 * @key: key to add 2288 * @lnum: LEB number of node 2289 * @offs: node offset 2290 * @len: node length 2291 * @nm: node name 2292 * 2293 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2294 * may have collisions, like directory entry keys. 2295 */ 2296 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2297 int lnum, int offs, int len, const struct qstr *nm) 2298 { 2299 int found, n, err = 0; 2300 struct ubifs_znode *znode; 2301 2302 mutex_lock(&c->tnc_mutex); 2303 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, 2304 DBGKEY(key)); 2305 found = lookup_level0_dirty(c, key, &znode, &n); 2306 if (found < 0) { 2307 err = found; 2308 goto out_unlock; 2309 } 2310 2311 if (found == 1) { 2312 if (c->replaying) 2313 found = fallible_resolve_collision(c, key, &znode, &n, 2314 nm, 1); 2315 else 2316 found = resolve_collision(c, key, &znode, &n, nm); 2317 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2318 if (found < 0) { 2319 err = found; 2320 goto out_unlock; 2321 } 2322 2323 /* Ensure the znode is dirtied */ 2324 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2325 znode = dirty_cow_bottom_up(c, znode); 2326 if (IS_ERR(znode)) { 2327 err = PTR_ERR(znode); 2328 goto out_unlock; 2329 } 2330 } 2331 2332 if (found == 1) { 2333 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2334 2335 lnc_free(zbr); 2336 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2337 zbr->lnum = lnum; 2338 zbr->offs = offs; 2339 zbr->len = len; 2340 goto out_unlock; 2341 } 2342 } 2343 2344 if (!found) { 2345 struct ubifs_zbranch zbr; 2346 2347 zbr.znode = NULL; 2348 zbr.lnum = lnum; 2349 zbr.offs = offs; 2350 zbr.len = len; 2351 key_copy(c, key, &zbr.key); 2352 err = tnc_insert(c, znode, &zbr, n + 1); 2353 if (err) 2354 goto out_unlock; 2355 if (c->replaying) { 2356 /* 2357 * We did not find it in the index so there may be a 2358 * dangling branch still in the index. So we remove it 2359 * by passing 'ubifs_tnc_remove_nm()' the same key but 2360 * an unmatchable name. 2361 */ 2362 struct qstr noname = { .len = 0, .name = "" }; 2363 2364 err = dbg_check_tnc(c, 0); 2365 mutex_unlock(&c->tnc_mutex); 2366 if (err) 2367 return err; 2368 return ubifs_tnc_remove_nm(c, key, &noname); 2369 } 2370 } 2371 2372 out_unlock: 2373 if (!err) 2374 err = dbg_check_tnc(c, 0); 2375 mutex_unlock(&c->tnc_mutex); 2376 return err; 2377 } 2378 2379 /** 2380 * tnc_delete - delete a znode form TNC. 2381 * @c: UBIFS file-system description object 2382 * @znode: znode to delete from 2383 * @n: zbranch slot number to delete 2384 * 2385 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2386 * case of success and a negative error code in case of failure. 2387 */ 2388 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2389 { 2390 struct ubifs_zbranch *zbr; 2391 struct ubifs_znode *zp; 2392 int i, err; 2393 2394 /* Delete without merge for now */ 2395 ubifs_assert(znode->level == 0); 2396 ubifs_assert(n >= 0 && n < c->fanout); 2397 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); 2398 2399 zbr = &znode->zbranch[n]; 2400 lnc_free(zbr); 2401 2402 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2403 if (err) { 2404 dbg_dump_znode(c, znode); 2405 return err; 2406 } 2407 2408 /* We do not "gap" zbranch slots */ 2409 for (i = n; i < znode->child_cnt - 1; i++) 2410 znode->zbranch[i] = znode->zbranch[i + 1]; 2411 znode->child_cnt -= 1; 2412 2413 if (znode->child_cnt > 0) 2414 return 0; 2415 2416 /* 2417 * This was the last zbranch, we have to delete this znode from the 2418 * parent. 2419 */ 2420 2421 do { 2422 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 2423 ubifs_assert(ubifs_zn_dirty(znode)); 2424 2425 zp = znode->parent; 2426 n = znode->iip; 2427 2428 atomic_long_dec(&c->dirty_zn_cnt); 2429 2430 err = insert_old_idx_znode(c, znode); 2431 if (err) 2432 return err; 2433 2434 if (znode->cnext) { 2435 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2436 atomic_long_inc(&c->clean_zn_cnt); 2437 atomic_long_inc(&ubifs_clean_zn_cnt); 2438 } else 2439 kfree(znode); 2440 znode = zp; 2441 } while (znode->child_cnt == 1); /* while removing last child */ 2442 2443 /* Remove from znode, entry n - 1 */ 2444 znode->child_cnt -= 1; 2445 ubifs_assert(znode->level != 0); 2446 for (i = n; i < znode->child_cnt; i++) { 2447 znode->zbranch[i] = znode->zbranch[i + 1]; 2448 if (znode->zbranch[i].znode) 2449 znode->zbranch[i].znode->iip = i; 2450 } 2451 2452 /* 2453 * If this is the root and it has only 1 child then 2454 * collapse the tree. 2455 */ 2456 if (!znode->parent) { 2457 while (znode->child_cnt == 1 && znode->level != 0) { 2458 zp = znode; 2459 zbr = &znode->zbranch[0]; 2460 znode = get_znode(c, znode, 0); 2461 if (IS_ERR(znode)) 2462 return PTR_ERR(znode); 2463 znode = dirty_cow_znode(c, zbr); 2464 if (IS_ERR(znode)) 2465 return PTR_ERR(znode); 2466 znode->parent = NULL; 2467 znode->iip = 0; 2468 if (c->zroot.len) { 2469 err = insert_old_idx(c, c->zroot.lnum, 2470 c->zroot.offs); 2471 if (err) 2472 return err; 2473 } 2474 c->zroot.lnum = zbr->lnum; 2475 c->zroot.offs = zbr->offs; 2476 c->zroot.len = zbr->len; 2477 c->zroot.znode = znode; 2478 ubifs_assert(!test_bit(OBSOLETE_ZNODE, 2479 &zp->flags)); 2480 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); 2481 atomic_long_dec(&c->dirty_zn_cnt); 2482 2483 if (zp->cnext) { 2484 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2485 atomic_long_inc(&c->clean_zn_cnt); 2486 atomic_long_inc(&ubifs_clean_zn_cnt); 2487 } else 2488 kfree(zp); 2489 } 2490 } 2491 2492 return 0; 2493 } 2494 2495 /** 2496 * ubifs_tnc_remove - remove an index entry of a node. 2497 * @c: UBIFS file-system description object 2498 * @key: key of node 2499 * 2500 * Returns %0 on success or negative error code on failure. 2501 */ 2502 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2503 { 2504 int found, n, err = 0; 2505 struct ubifs_znode *znode; 2506 2507 mutex_lock(&c->tnc_mutex); 2508 dbg_tnc("key %s", DBGKEY(key)); 2509 found = lookup_level0_dirty(c, key, &znode, &n); 2510 if (found < 0) { 2511 err = found; 2512 goto out_unlock; 2513 } 2514 if (found == 1) 2515 err = tnc_delete(c, znode, n); 2516 if (!err) 2517 err = dbg_check_tnc(c, 0); 2518 2519 out_unlock: 2520 mutex_unlock(&c->tnc_mutex); 2521 return err; 2522 } 2523 2524 /** 2525 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2526 * @c: UBIFS file-system description object 2527 * @key: key of node 2528 * @nm: directory entry name 2529 * 2530 * Returns %0 on success or negative error code on failure. 2531 */ 2532 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2533 const struct qstr *nm) 2534 { 2535 int n, err; 2536 struct ubifs_znode *znode; 2537 2538 mutex_lock(&c->tnc_mutex); 2539 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); 2540 err = lookup_level0_dirty(c, key, &znode, &n); 2541 if (err < 0) 2542 goto out_unlock; 2543 2544 if (err) { 2545 if (c->replaying) 2546 err = fallible_resolve_collision(c, key, &znode, &n, 2547 nm, 0); 2548 else 2549 err = resolve_collision(c, key, &znode, &n, nm); 2550 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2551 if (err < 0) 2552 goto out_unlock; 2553 if (err) { 2554 /* Ensure the znode is dirtied */ 2555 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2556 znode = dirty_cow_bottom_up(c, znode); 2557 if (IS_ERR(znode)) { 2558 err = PTR_ERR(znode); 2559 goto out_unlock; 2560 } 2561 } 2562 err = tnc_delete(c, znode, n); 2563 } 2564 } 2565 2566 out_unlock: 2567 if (!err) 2568 err = dbg_check_tnc(c, 0); 2569 mutex_unlock(&c->tnc_mutex); 2570 return err; 2571 } 2572 2573 /** 2574 * key_in_range - determine if a key falls within a range of keys. 2575 * @c: UBIFS file-system description object 2576 * @key: key to check 2577 * @from_key: lowest key in range 2578 * @to_key: highest key in range 2579 * 2580 * This function returns %1 if the key is in range and %0 otherwise. 2581 */ 2582 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2583 union ubifs_key *from_key, union ubifs_key *to_key) 2584 { 2585 if (keys_cmp(c, key, from_key) < 0) 2586 return 0; 2587 if (keys_cmp(c, key, to_key) > 0) 2588 return 0; 2589 return 1; 2590 } 2591 2592 /** 2593 * ubifs_tnc_remove_range - remove index entries in range. 2594 * @c: UBIFS file-system description object 2595 * @from_key: lowest key to remove 2596 * @to_key: highest key to remove 2597 * 2598 * This function removes index entries starting at @from_key and ending at 2599 * @to_key. This function returns zero in case of success and a negative error 2600 * code in case of failure. 2601 */ 2602 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2603 union ubifs_key *to_key) 2604 { 2605 int i, n, k, err = 0; 2606 struct ubifs_znode *znode; 2607 union ubifs_key *key; 2608 2609 mutex_lock(&c->tnc_mutex); 2610 while (1) { 2611 /* Find first level 0 znode that contains keys to remove */ 2612 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2613 if (err < 0) 2614 goto out_unlock; 2615 2616 if (err) 2617 key = from_key; 2618 else { 2619 err = tnc_next(c, &znode, &n); 2620 if (err == -ENOENT) { 2621 err = 0; 2622 goto out_unlock; 2623 } 2624 if (err < 0) 2625 goto out_unlock; 2626 key = &znode->zbranch[n].key; 2627 if (!key_in_range(c, key, from_key, to_key)) { 2628 err = 0; 2629 goto out_unlock; 2630 } 2631 } 2632 2633 /* Ensure the znode is dirtied */ 2634 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2635 znode = dirty_cow_bottom_up(c, znode); 2636 if (IS_ERR(znode)) { 2637 err = PTR_ERR(znode); 2638 goto out_unlock; 2639 } 2640 } 2641 2642 /* Remove all keys in range except the first */ 2643 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2644 key = &znode->zbranch[i].key; 2645 if (!key_in_range(c, key, from_key, to_key)) 2646 break; 2647 lnc_free(&znode->zbranch[i]); 2648 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2649 znode->zbranch[i].len); 2650 if (err) { 2651 dbg_dump_znode(c, znode); 2652 goto out_unlock; 2653 } 2654 dbg_tnc("removing %s", DBGKEY(key)); 2655 } 2656 if (k) { 2657 for (i = n + 1 + k; i < znode->child_cnt; i++) 2658 znode->zbranch[i - k] = znode->zbranch[i]; 2659 znode->child_cnt -= k; 2660 } 2661 2662 /* Now delete the first */ 2663 err = tnc_delete(c, znode, n); 2664 if (err) 2665 goto out_unlock; 2666 } 2667 2668 out_unlock: 2669 if (!err) 2670 err = dbg_check_tnc(c, 0); 2671 mutex_unlock(&c->tnc_mutex); 2672 return err; 2673 } 2674 2675 /** 2676 * ubifs_tnc_remove_ino - remove an inode from TNC. 2677 * @c: UBIFS file-system description object 2678 * @inum: inode number to remove 2679 * 2680 * This function remove inode @inum and all the extended attributes associated 2681 * with the anode from TNC and returns zero in case of success or a negative 2682 * error code in case of failure. 2683 */ 2684 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2685 { 2686 union ubifs_key key1, key2; 2687 struct ubifs_dent_node *xent, *pxent = NULL; 2688 struct qstr nm = { .name = NULL }; 2689 2690 dbg_tnc("ino %lu", (unsigned long)inum); 2691 2692 /* 2693 * Walk all extended attribute entries and remove them together with 2694 * corresponding extended attribute inodes. 2695 */ 2696 lowest_xent_key(c, &key1, inum); 2697 while (1) { 2698 ino_t xattr_inum; 2699 int err; 2700 2701 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2702 if (IS_ERR(xent)) { 2703 err = PTR_ERR(xent); 2704 if (err == -ENOENT) 2705 break; 2706 return err; 2707 } 2708 2709 xattr_inum = le64_to_cpu(xent->inum); 2710 dbg_tnc("xent '%s', ino %lu", xent->name, 2711 (unsigned long)xattr_inum); 2712 2713 nm.name = xent->name; 2714 nm.len = le16_to_cpu(xent->nlen); 2715 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2716 if (err) { 2717 kfree(xent); 2718 return err; 2719 } 2720 2721 lowest_ino_key(c, &key1, xattr_inum); 2722 highest_ino_key(c, &key2, xattr_inum); 2723 err = ubifs_tnc_remove_range(c, &key1, &key2); 2724 if (err) { 2725 kfree(xent); 2726 return err; 2727 } 2728 2729 kfree(pxent); 2730 pxent = xent; 2731 key_read(c, &xent->key, &key1); 2732 } 2733 2734 kfree(pxent); 2735 lowest_ino_key(c, &key1, inum); 2736 highest_ino_key(c, &key2, inum); 2737 2738 return ubifs_tnc_remove_range(c, &key1, &key2); 2739 } 2740 2741 /** 2742 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2743 * @c: UBIFS file-system description object 2744 * @key: key of last entry 2745 * @nm: name of last entry found or %NULL 2746 * 2747 * This function finds and reads the next directory or extended attribute entry 2748 * after the given key (@key) if there is one. @nm is used to resolve 2749 * collisions. 2750 * 2751 * If the name of the current entry is not known and only the key is known, 2752 * @nm->name has to be %NULL. In this case the semantics of this function is a 2753 * little bit different and it returns the entry corresponding to this key, not 2754 * the next one. If the key was not found, the closest "right" entry is 2755 * returned. 2756 * 2757 * If the fist entry has to be found, @key has to contain the lowest possible 2758 * key value for this inode and @name has to be %NULL. 2759 * 2760 * This function returns the found directory or extended attribute entry node 2761 * in case of success, %-ENOENT is returned if no entry was found, and a 2762 * negative error code is returned in case of failure. 2763 */ 2764 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2765 union ubifs_key *key, 2766 const struct qstr *nm) 2767 { 2768 int n, err, type = key_type(c, key); 2769 struct ubifs_znode *znode; 2770 struct ubifs_dent_node *dent; 2771 struct ubifs_zbranch *zbr; 2772 union ubifs_key *dkey; 2773 2774 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); 2775 ubifs_assert(is_hash_key(c, key)); 2776 2777 mutex_lock(&c->tnc_mutex); 2778 err = ubifs_lookup_level0(c, key, &znode, &n); 2779 if (unlikely(err < 0)) 2780 goto out_unlock; 2781 2782 if (nm->name) { 2783 if (err) { 2784 /* Handle collisions */ 2785 err = resolve_collision(c, key, &znode, &n, nm); 2786 dbg_tnc("rc returned %d, znode %p, n %d", 2787 err, znode, n); 2788 if (unlikely(err < 0)) 2789 goto out_unlock; 2790 } 2791 2792 /* Now find next entry */ 2793 err = tnc_next(c, &znode, &n); 2794 if (unlikely(err)) 2795 goto out_unlock; 2796 } else { 2797 /* 2798 * The full name of the entry was not given, in which case the 2799 * behavior of this function is a little different and it 2800 * returns current entry, not the next one. 2801 */ 2802 if (!err) { 2803 /* 2804 * However, the given key does not exist in the TNC 2805 * tree and @znode/@n variables contain the closest 2806 * "preceding" element. Switch to the next one. 2807 */ 2808 err = tnc_next(c, &znode, &n); 2809 if (err) 2810 goto out_unlock; 2811 } 2812 } 2813 2814 zbr = &znode->zbranch[n]; 2815 dent = kmalloc(zbr->len, GFP_NOFS); 2816 if (unlikely(!dent)) { 2817 err = -ENOMEM; 2818 goto out_unlock; 2819 } 2820 2821 /* 2822 * The above 'tnc_next()' call could lead us to the next inode, check 2823 * this. 2824 */ 2825 dkey = &zbr->key; 2826 if (key_inum(c, dkey) != key_inum(c, key) || 2827 key_type(c, dkey) != type) { 2828 err = -ENOENT; 2829 goto out_free; 2830 } 2831 2832 err = tnc_read_node_nm(c, zbr, dent); 2833 if (unlikely(err)) 2834 goto out_free; 2835 2836 mutex_unlock(&c->tnc_mutex); 2837 return dent; 2838 2839 out_free: 2840 kfree(dent); 2841 out_unlock: 2842 mutex_unlock(&c->tnc_mutex); 2843 return ERR_PTR(err); 2844 } 2845 2846 /** 2847 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2848 * @c: UBIFS file-system description object 2849 * 2850 * Destroy left-over obsolete znodes from a failed commit. 2851 */ 2852 static void tnc_destroy_cnext(struct ubifs_info *c) 2853 { 2854 struct ubifs_znode *cnext; 2855 2856 if (!c->cnext) 2857 return; 2858 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2859 cnext = c->cnext; 2860 do { 2861 struct ubifs_znode *znode = cnext; 2862 2863 cnext = cnext->cnext; 2864 if (test_bit(OBSOLETE_ZNODE, &znode->flags)) 2865 kfree(znode); 2866 } while (cnext && cnext != c->cnext); 2867 } 2868 2869 /** 2870 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2871 * @c: UBIFS file-system description object 2872 */ 2873 void ubifs_tnc_close(struct ubifs_info *c) 2874 { 2875 long clean_freed; 2876 2877 tnc_destroy_cnext(c); 2878 if (c->zroot.znode) { 2879 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2880 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt); 2881 } 2882 kfree(c->gap_lebs); 2883 kfree(c->ilebs); 2884 destroy_old_idx(c); 2885 } 2886 2887 /** 2888 * left_znode - get the znode to the left. 2889 * @c: UBIFS file-system description object 2890 * @znode: znode 2891 * 2892 * This function returns a pointer to the znode to the left of @znode or NULL if 2893 * there is not one. A negative error code is returned on failure. 2894 */ 2895 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2896 struct ubifs_znode *znode) 2897 { 2898 int level = znode->level; 2899 2900 while (1) { 2901 int n = znode->iip - 1; 2902 2903 /* Go up until we can go left */ 2904 znode = znode->parent; 2905 if (!znode) 2906 return NULL; 2907 if (n >= 0) { 2908 /* Now go down the rightmost branch to 'level' */ 2909 znode = get_znode(c, znode, n); 2910 if (IS_ERR(znode)) 2911 return znode; 2912 while (znode->level != level) { 2913 n = znode->child_cnt - 1; 2914 znode = get_znode(c, znode, n); 2915 if (IS_ERR(znode)) 2916 return znode; 2917 } 2918 break; 2919 } 2920 } 2921 return znode; 2922 } 2923 2924 /** 2925 * right_znode - get the znode to the right. 2926 * @c: UBIFS file-system description object 2927 * @znode: znode 2928 * 2929 * This function returns a pointer to the znode to the right of @znode or NULL 2930 * if there is not one. A negative error code is returned on failure. 2931 */ 2932 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2933 struct ubifs_znode *znode) 2934 { 2935 int level = znode->level; 2936 2937 while (1) { 2938 int n = znode->iip + 1; 2939 2940 /* Go up until we can go right */ 2941 znode = znode->parent; 2942 if (!znode) 2943 return NULL; 2944 if (n < znode->child_cnt) { 2945 /* Now go down the leftmost branch to 'level' */ 2946 znode = get_znode(c, znode, n); 2947 if (IS_ERR(znode)) 2948 return znode; 2949 while (znode->level != level) { 2950 znode = get_znode(c, znode, 0); 2951 if (IS_ERR(znode)) 2952 return znode; 2953 } 2954 break; 2955 } 2956 } 2957 return znode; 2958 } 2959 2960 /** 2961 * lookup_znode - find a particular indexing node from TNC. 2962 * @c: UBIFS file-system description object 2963 * @key: index node key to lookup 2964 * @level: index node level 2965 * @lnum: index node LEB number 2966 * @offs: index node offset 2967 * 2968 * This function searches an indexing node by its first key @key and its 2969 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2970 * nodes it traverses to TNC. This function is called for indexing nodes which 2971 * were found on the media by scanning, for example when garbage-collecting or 2972 * when doing in-the-gaps commit. This means that the indexing node which is 2973 * looked for does not have to have exactly the same leftmost key @key, because 2974 * the leftmost key may have been changed, in which case TNC will contain a 2975 * dirty znode which still refers the same @lnum:@offs. This function is clever 2976 * enough to recognize such indexing nodes. 2977 * 2978 * Note, if a znode was deleted or changed too much, then this function will 2979 * not find it. For situations like this UBIFS has the old index RB-tree 2980 * (indexed by @lnum:@offs). 2981 * 2982 * This function returns a pointer to the znode found or %NULL if it is not 2983 * found. A negative error code is returned on failure. 2984 */ 2985 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2986 union ubifs_key *key, int level, 2987 int lnum, int offs) 2988 { 2989 struct ubifs_znode *znode, *zn; 2990 int n, nn; 2991 2992 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2993 2994 /* 2995 * The arguments have probably been read off flash, so don't assume 2996 * they are valid. 2997 */ 2998 if (level < 0) 2999 return ERR_PTR(-EINVAL); 3000 3001 /* Get the root znode */ 3002 znode = c->zroot.znode; 3003 if (!znode) { 3004 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3005 if (IS_ERR(znode)) 3006 return znode; 3007 } 3008 /* Check if it is the one we are looking for */ 3009 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3010 return znode; 3011 /* Descend to the parent level i.e. (level + 1) */ 3012 if (level >= znode->level) 3013 return NULL; 3014 while (1) { 3015 ubifs_search_zbranch(c, znode, key, &n); 3016 if (n < 0) { 3017 /* 3018 * We reached a znode where the leftmost key is greater 3019 * than the key we are searching for. This is the same 3020 * situation as the one described in a huge comment at 3021 * the end of the 'ubifs_lookup_level0()' function. And 3022 * for exactly the same reasons we have to try to look 3023 * left before giving up. 3024 */ 3025 znode = left_znode(c, znode); 3026 if (!znode) 3027 return NULL; 3028 if (IS_ERR(znode)) 3029 return znode; 3030 ubifs_search_zbranch(c, znode, key, &n); 3031 ubifs_assert(n >= 0); 3032 } 3033 if (znode->level == level + 1) 3034 break; 3035 znode = get_znode(c, znode, n); 3036 if (IS_ERR(znode)) 3037 return znode; 3038 } 3039 /* Check if the child is the one we are looking for */ 3040 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3041 return get_znode(c, znode, n); 3042 /* If the key is unique, there is nowhere else to look */ 3043 if (!is_hash_key(c, key)) 3044 return NULL; 3045 /* 3046 * The key is not unique and so may be also in the znodes to either 3047 * side. 3048 */ 3049 zn = znode; 3050 nn = n; 3051 /* Look left */ 3052 while (1) { 3053 /* Move one branch to the left */ 3054 if (n) 3055 n -= 1; 3056 else { 3057 znode = left_znode(c, znode); 3058 if (!znode) 3059 break; 3060 if (IS_ERR(znode)) 3061 return znode; 3062 n = znode->child_cnt - 1; 3063 } 3064 /* Check it */ 3065 if (znode->zbranch[n].lnum == lnum && 3066 znode->zbranch[n].offs == offs) 3067 return get_znode(c, znode, n); 3068 /* Stop if the key is less than the one we are looking for */ 3069 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3070 break; 3071 } 3072 /* Back to the middle */ 3073 znode = zn; 3074 n = nn; 3075 /* Look right */ 3076 while (1) { 3077 /* Move one branch to the right */ 3078 if (++n >= znode->child_cnt) { 3079 znode = right_znode(c, znode); 3080 if (!znode) 3081 break; 3082 if (IS_ERR(znode)) 3083 return znode; 3084 n = 0; 3085 } 3086 /* Check it */ 3087 if (znode->zbranch[n].lnum == lnum && 3088 znode->zbranch[n].offs == offs) 3089 return get_znode(c, znode, n); 3090 /* Stop if the key is greater than the one we are looking for */ 3091 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3092 break; 3093 } 3094 return NULL; 3095 } 3096 3097 /** 3098 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3099 * @c: UBIFS file-system description object 3100 * @key: key of index node 3101 * @level: index node level 3102 * @lnum: LEB number of index node 3103 * @offs: offset of index node 3104 * 3105 * This function returns %0 if the index node is not referred to in the TNC, %1 3106 * if the index node is referred to in the TNC and the corresponding znode is 3107 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3108 * znode is clean, and a negative error code in case of failure. 3109 * 3110 * Note, the @key argument has to be the key of the first child. Also note, 3111 * this function relies on the fact that 0:0 is never a valid LEB number and 3112 * offset for a main-area node. 3113 */ 3114 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3115 int lnum, int offs) 3116 { 3117 struct ubifs_znode *znode; 3118 3119 znode = lookup_znode(c, key, level, lnum, offs); 3120 if (!znode) 3121 return 0; 3122 if (IS_ERR(znode)) 3123 return PTR_ERR(znode); 3124 3125 return ubifs_zn_dirty(znode) ? 1 : 2; 3126 } 3127 3128 /** 3129 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3130 * @c: UBIFS file-system description object 3131 * @key: node key 3132 * @lnum: node LEB number 3133 * @offs: node offset 3134 * 3135 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3136 * not, and a negative error code in case of failure. 3137 * 3138 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3139 * and offset for a main-area node. 3140 */ 3141 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3142 int lnum, int offs) 3143 { 3144 struct ubifs_zbranch *zbr; 3145 struct ubifs_znode *znode, *zn; 3146 int n, found, err, nn; 3147 const int unique = !is_hash_key(c, key); 3148 3149 found = ubifs_lookup_level0(c, key, &znode, &n); 3150 if (found < 0) 3151 return found; /* Error code */ 3152 if (!found) 3153 return 0; 3154 zbr = &znode->zbranch[n]; 3155 if (lnum == zbr->lnum && offs == zbr->offs) 3156 return 1; /* Found it */ 3157 if (unique) 3158 return 0; 3159 /* 3160 * Because the key is not unique, we have to look left 3161 * and right as well 3162 */ 3163 zn = znode; 3164 nn = n; 3165 /* Look left */ 3166 while (1) { 3167 err = tnc_prev(c, &znode, &n); 3168 if (err == -ENOENT) 3169 break; 3170 if (err) 3171 return err; 3172 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3173 break; 3174 zbr = &znode->zbranch[n]; 3175 if (lnum == zbr->lnum && offs == zbr->offs) 3176 return 1; /* Found it */ 3177 } 3178 /* Look right */ 3179 znode = zn; 3180 n = nn; 3181 while (1) { 3182 err = tnc_next(c, &znode, &n); 3183 if (err) { 3184 if (err == -ENOENT) 3185 return 0; 3186 return err; 3187 } 3188 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3189 break; 3190 zbr = &znode->zbranch[n]; 3191 if (lnum == zbr->lnum && offs == zbr->offs) 3192 return 1; /* Found it */ 3193 } 3194 return 0; 3195 } 3196 3197 /** 3198 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3199 * @c: UBIFS file-system description object 3200 * @key: node key 3201 * @level: index node level (if it is an index node) 3202 * @lnum: node LEB number 3203 * @offs: node offset 3204 * @is_idx: non-zero if the node is an index node 3205 * 3206 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3207 * negative error code in case of failure. For index nodes, @key has to be the 3208 * key of the first child. An index node is considered to be in the TNC only if 3209 * the corresponding znode is clean or has not been loaded. 3210 */ 3211 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3212 int lnum, int offs, int is_idx) 3213 { 3214 int err; 3215 3216 mutex_lock(&c->tnc_mutex); 3217 if (is_idx) { 3218 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3219 if (err < 0) 3220 goto out_unlock; 3221 if (err == 1) 3222 /* The index node was found but it was dirty */ 3223 err = 0; 3224 else if (err == 2) 3225 /* The index node was found and it was clean */ 3226 err = 1; 3227 else 3228 BUG_ON(err != 0); 3229 } else 3230 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3231 3232 out_unlock: 3233 mutex_unlock(&c->tnc_mutex); 3234 return err; 3235 } 3236 3237 /** 3238 * ubifs_dirty_idx_node - dirty an index node. 3239 * @c: UBIFS file-system description object 3240 * @key: index node key 3241 * @level: index node level 3242 * @lnum: index node LEB number 3243 * @offs: index node offset 3244 * 3245 * This function loads and dirties an index node so that it can be garbage 3246 * collected. The @key argument has to be the key of the first child. This 3247 * function relies on the fact that 0:0 is never a valid LEB number and offset 3248 * for a main-area node. Returns %0 on success and a negative error code on 3249 * failure. 3250 */ 3251 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3252 int lnum, int offs) 3253 { 3254 struct ubifs_znode *znode; 3255 int err = 0; 3256 3257 mutex_lock(&c->tnc_mutex); 3258 znode = lookup_znode(c, key, level, lnum, offs); 3259 if (!znode) 3260 goto out_unlock; 3261 if (IS_ERR(znode)) { 3262 err = PTR_ERR(znode); 3263 goto out_unlock; 3264 } 3265 znode = dirty_cow_bottom_up(c, znode); 3266 if (IS_ERR(znode)) { 3267 err = PTR_ERR(znode); 3268 goto out_unlock; 3269 } 3270 3271 out_unlock: 3272 mutex_unlock(&c->tnc_mutex); 3273 return err; 3274 } 3275 3276 #ifdef CONFIG_UBIFS_FS_DEBUG 3277 3278 /** 3279 * dbg_check_inode_size - check if inode size is correct. 3280 * @c: UBIFS file-system description object 3281 * @inum: inode number 3282 * @size: inode size 3283 * 3284 * This function makes sure that the inode size (@size) is correct and it does 3285 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3286 * if it has a data page beyond @size, and other negative error code in case of 3287 * other errors. 3288 */ 3289 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3290 loff_t size) 3291 { 3292 int err, n; 3293 union ubifs_key from_key, to_key, *key; 3294 struct ubifs_znode *znode; 3295 unsigned int block; 3296 3297 if (!S_ISREG(inode->i_mode)) 3298 return 0; 3299 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 3300 return 0; 3301 3302 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3303 data_key_init(c, &from_key, inode->i_ino, block); 3304 highest_data_key(c, &to_key, inode->i_ino); 3305 3306 mutex_lock(&c->tnc_mutex); 3307 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3308 if (err < 0) 3309 goto out_unlock; 3310 3311 if (err) { 3312 err = -EINVAL; 3313 key = &from_key; 3314 goto out_dump; 3315 } 3316 3317 err = tnc_next(c, &znode, &n); 3318 if (err == -ENOENT) { 3319 err = 0; 3320 goto out_unlock; 3321 } 3322 if (err < 0) 3323 goto out_unlock; 3324 3325 ubifs_assert(err == 0); 3326 key = &znode->zbranch[n].key; 3327 if (!key_in_range(c, key, &from_key, &to_key)) 3328 goto out_unlock; 3329 3330 out_dump: 3331 block = key_block(c, key); 3332 ubifs_err("inode %lu has size %lld, but there are data at offset %lld " 3333 "(data key %s)", (unsigned long)inode->i_ino, size, 3334 ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key)); 3335 dbg_dump_inode(c, inode); 3336 dbg_dump_stack(); 3337 err = -EINVAL; 3338 3339 out_unlock: 3340 mutex_unlock(&c->tnc_mutex); 3341 return err; 3342 } 3343 3344 #endif /* CONFIG_UBIFS_FS_DEBUG */ 3345