xref: /openbmc/linux/fs/ubifs/tnc.c (revision 384740dc)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /*
37  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38  * @NAME_LESS: name corresponding to the first argument is less than second
39  * @NAME_MATCHES: names match
40  * @NAME_GREATER: name corresponding to the second argument is greater than
41  *                first
42  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43  *
44  * These constants were introduce to improve readability.
45  */
46 enum {
47 	NAME_LESS    = 0,
48 	NAME_MATCHES = 1,
49 	NAME_GREATER = 2,
50 	NOT_ON_MEDIA = 3,
51 };
52 
53 /**
54  * insert_old_idx - record an index node obsoleted since the last commit start.
55  * @c: UBIFS file-system description object
56  * @lnum: LEB number of obsoleted index node
57  * @offs: offset of obsoleted index node
58  *
59  * Returns %0 on success, and a negative error code on failure.
60  *
61  * For recovery, there must always be a complete intact version of the index on
62  * flash at all times. That is called the "old index". It is the index as at the
63  * time of the last successful commit. Many of the index nodes in the old index
64  * may be dirty, but they must not be erased until the next successful commit
65  * (at which point that index becomes the old index).
66  *
67  * That means that the garbage collection and the in-the-gaps method of
68  * committing must be able to determine if an index node is in the old index.
69  * Most of the old index nodes can be found by looking up the TNC using the
70  * 'lookup_znode()' function. However, some of the old index nodes may have
71  * been deleted from the current index or may have been changed so much that
72  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73  * That is what this function does. The RB-tree is ordered by LEB number and
74  * offset because they uniquely identify the old index node.
75  */
76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77 {
78 	struct ubifs_old_idx *old_idx, *o;
79 	struct rb_node **p, *parent = NULL;
80 
81 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 	if (unlikely(!old_idx))
83 		return -ENOMEM;
84 	old_idx->lnum = lnum;
85 	old_idx->offs = offs;
86 
87 	p = &c->old_idx.rb_node;
88 	while (*p) {
89 		parent = *p;
90 		o = rb_entry(parent, struct ubifs_old_idx, rb);
91 		if (lnum < o->lnum)
92 			p = &(*p)->rb_left;
93 		else if (lnum > o->lnum)
94 			p = &(*p)->rb_right;
95 		else if (offs < o->offs)
96 			p = &(*p)->rb_left;
97 		else if (offs > o->offs)
98 			p = &(*p)->rb_right;
99 		else {
100 			ubifs_err("old idx added twice!");
101 			kfree(old_idx);
102 			return 0;
103 		}
104 	}
105 	rb_link_node(&old_idx->rb, parent, p);
106 	rb_insert_color(&old_idx->rb, &c->old_idx);
107 	return 0;
108 }
109 
110 /**
111  * insert_old_idx_znode - record a znode obsoleted since last commit start.
112  * @c: UBIFS file-system description object
113  * @znode: znode of obsoleted index node
114  *
115  * Returns %0 on success, and a negative error code on failure.
116  */
117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118 {
119 	if (znode->parent) {
120 		struct ubifs_zbranch *zbr;
121 
122 		zbr = &znode->parent->zbranch[znode->iip];
123 		if (zbr->len)
124 			return insert_old_idx(c, zbr->lnum, zbr->offs);
125 	} else
126 		if (c->zroot.len)
127 			return insert_old_idx(c, c->zroot.lnum,
128 					      c->zroot.offs);
129 	return 0;
130 }
131 
132 /**
133  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134  * @c: UBIFS file-system description object
135  * @znode: znode of obsoleted index node
136  *
137  * Returns %0 on success, and a negative error code on failure.
138  */
139 static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 				 struct ubifs_znode *znode)
141 {
142 	int err;
143 
144 	if (znode->parent) {
145 		struct ubifs_zbranch *zbr;
146 
147 		zbr = &znode->parent->zbranch[znode->iip];
148 		if (zbr->len) {
149 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 			if (err)
151 				return err;
152 			zbr->lnum = 0;
153 			zbr->offs = 0;
154 			zbr->len = 0;
155 		}
156 	} else
157 		if (c->zroot.len) {
158 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 			if (err)
160 				return err;
161 			c->zroot.lnum = 0;
162 			c->zroot.offs = 0;
163 			c->zroot.len = 0;
164 		}
165 	return 0;
166 }
167 
168 /**
169  * destroy_old_idx - destroy the old_idx RB-tree.
170  * @c: UBIFS file-system description object
171  *
172  * During start commit, the old_idx RB-tree is used to avoid overwriting index
173  * nodes that were in the index last commit but have since been deleted.  This
174  * is necessary for recovery i.e. the old index must be kept intact until the
175  * new index is successfully written.  The old-idx RB-tree is used for the
176  * in-the-gaps method of writing index nodes and is destroyed every commit.
177  */
178 void destroy_old_idx(struct ubifs_info *c)
179 {
180 	struct rb_node *this = c->old_idx.rb_node;
181 	struct ubifs_old_idx *old_idx;
182 
183 	while (this) {
184 		if (this->rb_left) {
185 			this = this->rb_left;
186 			continue;
187 		} else if (this->rb_right) {
188 			this = this->rb_right;
189 			continue;
190 		}
191 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 		this = rb_parent(this);
193 		if (this) {
194 			if (this->rb_left == &old_idx->rb)
195 				this->rb_left = NULL;
196 			else
197 				this->rb_right = NULL;
198 		}
199 		kfree(old_idx);
200 	}
201 	c->old_idx = RB_ROOT;
202 }
203 
204 /**
205  * copy_znode - copy a dirty znode.
206  * @c: UBIFS file-system description object
207  * @znode: znode to copy
208  *
209  * A dirty znode being committed may not be changed, so it is copied.
210  */
211 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 				      struct ubifs_znode *znode)
213 {
214 	struct ubifs_znode *zn;
215 
216 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 	if (unlikely(!zn))
218 		return ERR_PTR(-ENOMEM);
219 
220 	memcpy(zn, znode, c->max_znode_sz);
221 	zn->cnext = NULL;
222 	__set_bit(DIRTY_ZNODE, &zn->flags);
223 	__clear_bit(COW_ZNODE, &zn->flags);
224 
225 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
227 
228 	if (znode->level != 0) {
229 		int i;
230 		const int n = zn->child_cnt;
231 
232 		/* The children now have new parent */
233 		for (i = 0; i < n; i++) {
234 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
235 
236 			if (zbr->znode)
237 				zbr->znode->parent = zn;
238 		}
239 	}
240 
241 	atomic_long_inc(&c->dirty_zn_cnt);
242 	return zn;
243 }
244 
245 /**
246  * add_idx_dirt - add dirt due to a dirty znode.
247  * @c: UBIFS file-system description object
248  * @lnum: LEB number of index node
249  * @dirt: size of index node
250  *
251  * This function updates lprops dirty space and the new size of the index.
252  */
253 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254 {
255 	c->calc_idx_sz -= ALIGN(dirt, 8);
256 	return ubifs_add_dirt(c, lnum, dirt);
257 }
258 
259 /**
260  * dirty_cow_znode - ensure a znode is not being committed.
261  * @c: UBIFS file-system description object
262  * @zbr: branch of znode to check
263  *
264  * Returns dirtied znode on success or negative error code on failure.
265  */
266 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 					   struct ubifs_zbranch *zbr)
268 {
269 	struct ubifs_znode *znode = zbr->znode;
270 	struct ubifs_znode *zn;
271 	int err;
272 
273 	if (!test_bit(COW_ZNODE, &znode->flags)) {
274 		/* znode is not being committed */
275 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 			atomic_long_inc(&c->dirty_zn_cnt);
277 			atomic_long_dec(&c->clean_zn_cnt);
278 			atomic_long_dec(&ubifs_clean_zn_cnt);
279 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 			if (unlikely(err))
281 				return ERR_PTR(err);
282 		}
283 		return znode;
284 	}
285 
286 	zn = copy_znode(c, znode);
287 	if (unlikely(IS_ERR(zn)))
288 		return zn;
289 
290 	if (zbr->len) {
291 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 		if (unlikely(err))
293 			return ERR_PTR(err);
294 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 	} else
296 		err = 0;
297 
298 	zbr->znode = zn;
299 	zbr->lnum = 0;
300 	zbr->offs = 0;
301 	zbr->len = 0;
302 
303 	if (unlikely(err))
304 		return ERR_PTR(err);
305 	return zn;
306 }
307 
308 /**
309  * lnc_add - add a leaf node to the leaf node cache.
310  * @c: UBIFS file-system description object
311  * @zbr: zbranch of leaf node
312  * @node: leaf node
313  *
314  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315  * purpose of the leaf node cache is to save re-reading the same leaf node over
316  * and over again. Most things are cached by VFS, however the file system must
317  * cache directory entries for readdir and for resolving hash collisions. The
318  * present implementation of the leaf node cache is extremely simple, and
319  * allows for error returns that are not used but that may be needed if a more
320  * complex implementation is created.
321  *
322  * Note, this function does not add the @node object to LNC directly, but
323  * allocates a copy of the object and adds the copy to LNC. The reason for this
324  * is that @node has been allocated outside of the TNC subsystem and will be
325  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326  * may be changed at any time, e.g. freed by the shrinker.
327  */
328 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 		   const void *node)
330 {
331 	int err;
332 	void *lnc_node;
333 	const struct ubifs_dent_node *dent = node;
334 
335 	ubifs_assert(!zbr->leaf);
336 	ubifs_assert(zbr->len != 0);
337 	ubifs_assert(is_hash_key(c, &zbr->key));
338 
339 	err = ubifs_validate_entry(c, dent);
340 	if (err) {
341 		dbg_dump_stack();
342 		dbg_dump_node(c, dent);
343 		return err;
344 	}
345 
346 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 	if (!lnc_node)
348 		/* We don't have to have the cache, so no error */
349 		return 0;
350 
351 	memcpy(lnc_node, node, zbr->len);
352 	zbr->leaf = lnc_node;
353 	return 0;
354 }
355 
356  /**
357  * lnc_add_directly - add a leaf node to the leaf-node-cache.
358  * @c: UBIFS file-system description object
359  * @zbr: zbranch of leaf node
360  * @node: leaf node
361  *
362  * This function is similar to 'lnc_add()', but it does not create a copy of
363  * @node but inserts @node to TNC directly.
364  */
365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 			    void *node)
367 {
368 	int err;
369 
370 	ubifs_assert(!zbr->leaf);
371 	ubifs_assert(zbr->len != 0);
372 
373 	err = ubifs_validate_entry(c, node);
374 	if (err) {
375 		dbg_dump_stack();
376 		dbg_dump_node(c, node);
377 		return err;
378 	}
379 
380 	zbr->leaf = node;
381 	return 0;
382 }
383 
384 /**
385  * lnc_free - remove a leaf node from the leaf node cache.
386  * @zbr: zbranch of leaf node
387  * @node: leaf node
388  */
389 static void lnc_free(struct ubifs_zbranch *zbr)
390 {
391 	if (!zbr->leaf)
392 		return;
393 	kfree(zbr->leaf);
394 	zbr->leaf = NULL;
395 }
396 
397 /**
398  * tnc_read_node_nm - read a "hashed" leaf node.
399  * @c: UBIFS file-system description object
400  * @zbr: key and position of the node
401  * @node: node is returned here
402  *
403  * This function reads a "hashed" node defined by @zbr from the leaf node cache
404  * (in it is there) or from the hash media, in which case the node is also
405  * added to LNC. Returns zero in case of success or a negative negative error
406  * code in case of failure.
407  */
408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 			    void *node)
410 {
411 	int err;
412 
413 	ubifs_assert(is_hash_key(c, &zbr->key));
414 
415 	if (zbr->leaf) {
416 		/* Read from the leaf node cache */
417 		ubifs_assert(zbr->len != 0);
418 		memcpy(node, zbr->leaf, zbr->len);
419 		return 0;
420 	}
421 
422 	err = ubifs_tnc_read_node(c, zbr, node);
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  */
447 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 			 int len, int lnum, int offs)
449 {
450 	int err, node_len;
451 	struct ubifs_ch *ch = buf;
452 	uint32_t crc, node_crc;
453 
454 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455 
456 	err = ubi_read(c->ubi, lnum, buf, offs, len);
457 	if (err) {
458 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 			  type, lnum, offs, err);
460 		return err;
461 	}
462 
463 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 		return 0;
465 
466 	if (ch->node_type != type)
467 		return 0;
468 
469 	node_len = le32_to_cpu(ch->len);
470 	if (node_len != len)
471 		return 0;
472 
473 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
474 	node_crc = le32_to_cpu(ch->crc);
475 	if (crc != node_crc)
476 		return 0;
477 
478 	return 1;
479 }
480 
481 /**
482  * fallible_read_node - try to read a leaf node.
483  * @c: UBIFS file-system description object
484  * @key:  key of node to read
485  * @zbr:  position of node
486  * @node: node returned
487  *
488  * This function tries to read a node and returns %1 if the node is read, %0
489  * if the node is not present, and a negative error code in the case of error.
490  */
491 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
492 			      struct ubifs_zbranch *zbr, void *node)
493 {
494 	int ret;
495 
496 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
497 
498 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
499 			    zbr->offs);
500 	if (ret == 1) {
501 		union ubifs_key node_key;
502 		struct ubifs_dent_node *dent = node;
503 
504 		/* All nodes have key in the same place */
505 		key_read(c, &dent->key, &node_key);
506 		if (keys_cmp(c, key, &node_key) != 0)
507 			ret = 0;
508 	}
509 	if (ret == 0 && c->replaying)
510 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
511 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
512 	return ret;
513 }
514 
515 /**
516  * matches_name - determine if a direntry or xattr entry matches a given name.
517  * @c: UBIFS file-system description object
518  * @zbr: zbranch of dent
519  * @nm: name to match
520  *
521  * This function checks if xentry/direntry referred by zbranch @zbr matches name
522  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
523  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
524  * of failure, a negative error code is returned.
525  */
526 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
527 			const struct qstr *nm)
528 {
529 	struct ubifs_dent_node *dent;
530 	int nlen, err;
531 
532 	/* If possible, match against the dent in the leaf node cache */
533 	if (!zbr->leaf) {
534 		dent = kmalloc(zbr->len, GFP_NOFS);
535 		if (!dent)
536 			return -ENOMEM;
537 
538 		err = ubifs_tnc_read_node(c, zbr, dent);
539 		if (err)
540 			goto out_free;
541 
542 		/* Add the node to the leaf node cache */
543 		err = lnc_add_directly(c, zbr, dent);
544 		if (err)
545 			goto out_free;
546 	} else
547 		dent = zbr->leaf;
548 
549 	nlen = le16_to_cpu(dent->nlen);
550 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
551 	if (err == 0) {
552 		if (nlen == nm->len)
553 			return NAME_MATCHES;
554 		else if (nlen < nm->len)
555 			return NAME_LESS;
556 		else
557 			return NAME_GREATER;
558 	} else if (err < 0)
559 		return NAME_LESS;
560 	else
561 		return NAME_GREATER;
562 
563 out_free:
564 	kfree(dent);
565 	return err;
566 }
567 
568 /**
569  * get_znode - get a TNC znode that may not be loaded yet.
570  * @c: UBIFS file-system description object
571  * @znode: parent znode
572  * @n: znode branch slot number
573  *
574  * This function returns the znode or a negative error code.
575  */
576 static struct ubifs_znode *get_znode(struct ubifs_info *c,
577 				     struct ubifs_znode *znode, int n)
578 {
579 	struct ubifs_zbranch *zbr;
580 
581 	zbr = &znode->zbranch[n];
582 	if (zbr->znode)
583 		znode = zbr->znode;
584 	else
585 		znode = ubifs_load_znode(c, zbr, znode, n);
586 	return znode;
587 }
588 
589 /**
590  * tnc_next - find next TNC entry.
591  * @c: UBIFS file-system description object
592  * @zn: znode is passed and returned here
593  * @n: znode branch slot number is passed and returned here
594  *
595  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
596  * no next entry, or a negative error code otherwise.
597  */
598 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
599 {
600 	struct ubifs_znode *znode = *zn;
601 	int nn = *n;
602 
603 	nn += 1;
604 	if (nn < znode->child_cnt) {
605 		*n = nn;
606 		return 0;
607 	}
608 	while (1) {
609 		struct ubifs_znode *zp;
610 
611 		zp = znode->parent;
612 		if (!zp)
613 			return -ENOENT;
614 		nn = znode->iip + 1;
615 		znode = zp;
616 		if (nn < znode->child_cnt) {
617 			znode = get_znode(c, znode, nn);
618 			if (IS_ERR(znode))
619 				return PTR_ERR(znode);
620 			while (znode->level != 0) {
621 				znode = get_znode(c, znode, 0);
622 				if (IS_ERR(znode))
623 					return PTR_ERR(znode);
624 			}
625 			nn = 0;
626 			break;
627 		}
628 	}
629 	*zn = znode;
630 	*n = nn;
631 	return 0;
632 }
633 
634 /**
635  * tnc_prev - find previous TNC entry.
636  * @c: UBIFS file-system description object
637  * @zn: znode is returned here
638  * @n: znode branch slot number is passed and returned here
639  *
640  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
641  * there is no next entry, or a negative error code otherwise.
642  */
643 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
644 {
645 	struct ubifs_znode *znode = *zn;
646 	int nn = *n;
647 
648 	if (nn > 0) {
649 		*n = nn - 1;
650 		return 0;
651 	}
652 	while (1) {
653 		struct ubifs_znode *zp;
654 
655 		zp = znode->parent;
656 		if (!zp)
657 			return -ENOENT;
658 		nn = znode->iip - 1;
659 		znode = zp;
660 		if (nn >= 0) {
661 			znode = get_znode(c, znode, nn);
662 			if (IS_ERR(znode))
663 				return PTR_ERR(znode);
664 			while (znode->level != 0) {
665 				nn = znode->child_cnt - 1;
666 				znode = get_znode(c, znode, nn);
667 				if (IS_ERR(znode))
668 					return PTR_ERR(znode);
669 			}
670 			nn = znode->child_cnt - 1;
671 			break;
672 		}
673 	}
674 	*zn = znode;
675 	*n = nn;
676 	return 0;
677 }
678 
679 /**
680  * resolve_collision - resolve a collision.
681  * @c: UBIFS file-system description object
682  * @key: key of a directory or extended attribute entry
683  * @zn: znode is returned here
684  * @n: zbranch number is passed and returned here
685  * @nm: name of the entry
686  *
687  * This function is called for "hashed" keys to make sure that the found key
688  * really corresponds to the looked up node (directory or extended attribute
689  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
690  * %0 is returned if @nm is not found and @zn and @n are set to the previous
691  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
692  * This means that @n may be set to %-1 if the leftmost key in @zn is the
693  * previous one. A negative error code is returned on failures.
694  */
695 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
696 			     struct ubifs_znode **zn, int *n,
697 			     const struct qstr *nm)
698 {
699 	int err;
700 
701 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
702 	if (unlikely(err < 0))
703 		return err;
704 	if (err == NAME_MATCHES)
705 		return 1;
706 
707 	if (err == NAME_GREATER) {
708 		/* Look left */
709 		while (1) {
710 			err = tnc_prev(c, zn, n);
711 			if (err == -ENOENT) {
712 				ubifs_assert(*n == 0);
713 				*n = -1;
714 				return 0;
715 			}
716 			if (err < 0)
717 				return err;
718 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
719 				/*
720 				 * We have found the branch after which we would
721 				 * like to insert, but inserting in this znode
722 				 * may still be wrong. Consider the following 3
723 				 * znodes, in the case where we are resolving a
724 				 * collision with Key2.
725 				 *
726 				 *                  znode zp
727 				 *            ----------------------
728 				 * level 1     |  Key0  |  Key1  |
729 				 *            -----------------------
730 				 *                 |            |
731 				 *       znode za  |            |  znode zb
732 				 *          ------------      ------------
733 				 * level 0  |  Key0  |        |  Key2  |
734 				 *          ------------      ------------
735 				 *
736 				 * The lookup finds Key2 in znode zb. Lets say
737 				 * there is no match and the name is greater so
738 				 * we look left. When we find Key0, we end up
739 				 * here. If we return now, we will insert into
740 				 * znode za at slot n = 1.  But that is invalid
741 				 * according to the parent's keys.  Key2 must
742 				 * be inserted into znode zb.
743 				 *
744 				 * Note, this problem is not relevant for the
745 				 * case when we go right, because
746 				 * 'tnc_insert()' would correct the parent key.
747 				 */
748 				if (*n == (*zn)->child_cnt - 1) {
749 					err = tnc_next(c, zn, n);
750 					if (err) {
751 						/* Should be impossible */
752 						ubifs_assert(0);
753 						if (err == -ENOENT)
754 							err = -EINVAL;
755 						return err;
756 					}
757 					ubifs_assert(*n == 0);
758 					*n = -1;
759 				}
760 				return 0;
761 			}
762 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
763 			if (err < 0)
764 				return err;
765 			if (err == NAME_LESS)
766 				return 0;
767 			if (err == NAME_MATCHES)
768 				return 1;
769 			ubifs_assert(err == NAME_GREATER);
770 		}
771 	} else {
772 		int nn = *n;
773 		struct ubifs_znode *znode = *zn;
774 
775 		/* Look right */
776 		while (1) {
777 			err = tnc_next(c, &znode, &nn);
778 			if (err == -ENOENT)
779 				return 0;
780 			if (err < 0)
781 				return err;
782 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
783 				return 0;
784 			err = matches_name(c, &znode->zbranch[nn], nm);
785 			if (err < 0)
786 				return err;
787 			if (err == NAME_GREATER)
788 				return 0;
789 			*zn = znode;
790 			*n = nn;
791 			if (err == NAME_MATCHES)
792 				return 1;
793 			ubifs_assert(err == NAME_LESS);
794 		}
795 	}
796 }
797 
798 /**
799  * fallible_matches_name - determine if a dent matches a given name.
800  * @c: UBIFS file-system description object
801  * @zbr: zbranch of dent
802  * @nm: name to match
803  *
804  * This is a "fallible" version of 'matches_name()' function which does not
805  * panic if the direntry/xentry referred by @zbr does not exist on the media.
806  *
807  * This function checks if xentry/direntry referred by zbranch @zbr matches name
808  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
809  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
810  * if xentry/direntry referred by @zbr does not exist on the media. A negative
811  * error code is returned in case of failure.
812  */
813 static int fallible_matches_name(struct ubifs_info *c,
814 				 struct ubifs_zbranch *zbr,
815 				 const struct qstr *nm)
816 {
817 	struct ubifs_dent_node *dent;
818 	int nlen, err;
819 
820 	/* If possible, match against the dent in the leaf node cache */
821 	if (!zbr->leaf) {
822 		dent = kmalloc(zbr->len, GFP_NOFS);
823 		if (!dent)
824 			return -ENOMEM;
825 
826 		err = fallible_read_node(c, &zbr->key, zbr, dent);
827 		if (err < 0)
828 			goto out_free;
829 		if (err == 0) {
830 			/* The node was not present */
831 			err = NOT_ON_MEDIA;
832 			goto out_free;
833 		}
834 		ubifs_assert(err == 1);
835 
836 		err = lnc_add_directly(c, zbr, dent);
837 		if (err)
838 			goto out_free;
839 	} else
840 		dent = zbr->leaf;
841 
842 	nlen = le16_to_cpu(dent->nlen);
843 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
844 	if (err == 0) {
845 		if (nlen == nm->len)
846 			return NAME_MATCHES;
847 		else if (nlen < nm->len)
848 			return NAME_LESS;
849 		else
850 			return NAME_GREATER;
851 	} else if (err < 0)
852 		return NAME_LESS;
853 	else
854 		return NAME_GREATER;
855 
856 out_free:
857 	kfree(dent);
858 	return err;
859 }
860 
861 /**
862  * fallible_resolve_collision - resolve a collision even if nodes are missing.
863  * @c: UBIFS file-system description object
864  * @key: key
865  * @zn: znode is returned here
866  * @n: branch number is passed and returned here
867  * @nm: name of directory entry
868  * @adding: indicates caller is adding a key to the TNC
869  *
870  * This is a "fallible" version of the 'resolve_collision()' function which
871  * does not panic if one of the nodes referred to by TNC does not exist on the
872  * media. This may happen when replaying the journal if a deleted node was
873  * Garbage-collected and the commit was not done. A branch that refers to a node
874  * that is not present is called a dangling branch. The following are the return
875  * codes for this function:
876  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
877  *    branch;
878  *  o if we are @adding and @nm was not found, %0 is returned;
879  *  o if we are not @adding and @nm was not found, but a dangling branch was
880  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
881  *  o a negative error code is returned in case of failure.
882  */
883 static int fallible_resolve_collision(struct ubifs_info *c,
884 				      const union ubifs_key *key,
885 				      struct ubifs_znode **zn, int *n,
886 				      const struct qstr *nm, int adding)
887 {
888 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
889 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
890 
891 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
892 	if (unlikely(cmp < 0))
893 		return cmp;
894 	if (cmp == NAME_MATCHES)
895 		return 1;
896 	if (cmp == NOT_ON_MEDIA) {
897 		o_znode = znode;
898 		o_n = nn;
899 		/*
900 		 * We are unlucky and hit a dangling branch straight away.
901 		 * Now we do not really know where to go to find the needed
902 		 * branch - to the left or to the right. Well, let's try left.
903 		 */
904 		unsure = 1;
905 	} else if (!adding)
906 		unsure = 1; /* Remove a dangling branch wherever it is */
907 
908 	if (cmp == NAME_GREATER || unsure) {
909 		/* Look left */
910 		while (1) {
911 			err = tnc_prev(c, zn, n);
912 			if (err == -ENOENT) {
913 				ubifs_assert(*n == 0);
914 				*n = -1;
915 				break;
916 			}
917 			if (err < 0)
918 				return err;
919 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
920 				/* See comments in 'resolve_collision()' */
921 				if (*n == (*zn)->child_cnt - 1) {
922 					err = tnc_next(c, zn, n);
923 					if (err) {
924 						/* Should be impossible */
925 						ubifs_assert(0);
926 						if (err == -ENOENT)
927 							err = -EINVAL;
928 						return err;
929 					}
930 					ubifs_assert(*n == 0);
931 					*n = -1;
932 				}
933 				break;
934 			}
935 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
936 			if (err < 0)
937 				return err;
938 			if (err == NAME_MATCHES)
939 				return 1;
940 			if (err == NOT_ON_MEDIA) {
941 				o_znode = *zn;
942 				o_n = *n;
943 				continue;
944 			}
945 			if (!adding)
946 				continue;
947 			if (err == NAME_LESS)
948 				break;
949 			else
950 				unsure = 0;
951 		}
952 	}
953 
954 	if (cmp == NAME_LESS || unsure) {
955 		/* Look right */
956 		*zn = znode;
957 		*n = nn;
958 		while (1) {
959 			err = tnc_next(c, &znode, &nn);
960 			if (err == -ENOENT)
961 				break;
962 			if (err < 0)
963 				return err;
964 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
965 				break;
966 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
967 			if (err < 0)
968 				return err;
969 			if (err == NAME_GREATER)
970 				break;
971 			*zn = znode;
972 			*n = nn;
973 			if (err == NAME_MATCHES)
974 				return 1;
975 			if (err == NOT_ON_MEDIA) {
976 				o_znode = znode;
977 				o_n = nn;
978 			}
979 		}
980 	}
981 
982 	/* Never match a dangling branch when adding */
983 	if (adding || !o_znode)
984 		return 0;
985 
986 	dbg_mnt("dangling match LEB %d:%d len %d %s",
987 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
988 		o_znode->zbranch[o_n].len, DBGKEY(key));
989 	*zn = o_znode;
990 	*n = o_n;
991 	return 1;
992 }
993 
994 /**
995  * matches_position - determine if a zbranch matches a given position.
996  * @zbr: zbranch of dent
997  * @lnum: LEB number of dent to match
998  * @offs: offset of dent to match
999  *
1000  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1001  */
1002 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1003 {
1004 	if (zbr->lnum == lnum && zbr->offs == offs)
1005 		return 1;
1006 	else
1007 		return 0;
1008 }
1009 
1010 /**
1011  * resolve_collision_directly - resolve a collision directly.
1012  * @c: UBIFS file-system description object
1013  * @key: key of directory entry
1014  * @zn: znode is passed and returned here
1015  * @n: zbranch number is passed and returned here
1016  * @lnum: LEB number of dent node to match
1017  * @offs: offset of dent node to match
1018  *
1019  * This function is used for "hashed" keys to make sure the found directory or
1020  * extended attribute entry node is what was looked for. It is used when the
1021  * flash address of the right node is known (@lnum:@offs) which makes it much
1022  * easier to resolve collisions (no need to read entries and match full
1023  * names). This function returns %1 and sets @zn and @n if the collision is
1024  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1025  * previous directory entry. Otherwise a negative error code is returned.
1026  */
1027 static int resolve_collision_directly(struct ubifs_info *c,
1028 				      const union ubifs_key *key,
1029 				      struct ubifs_znode **zn, int *n,
1030 				      int lnum, int offs)
1031 {
1032 	struct ubifs_znode *znode;
1033 	int nn, err;
1034 
1035 	znode = *zn;
1036 	nn = *n;
1037 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1038 		return 1;
1039 
1040 	/* Look left */
1041 	while (1) {
1042 		err = tnc_prev(c, &znode, &nn);
1043 		if (err == -ENOENT)
1044 			break;
1045 		if (err < 0)
1046 			return err;
1047 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1048 			break;
1049 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1050 			*zn = znode;
1051 			*n = nn;
1052 			return 1;
1053 		}
1054 	}
1055 
1056 	/* Look right */
1057 	znode = *zn;
1058 	nn = *n;
1059 	while (1) {
1060 		err = tnc_next(c, &znode, &nn);
1061 		if (err == -ENOENT)
1062 			return 0;
1063 		if (err < 0)
1064 			return err;
1065 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1066 			return 0;
1067 		*zn = znode;
1068 		*n = nn;
1069 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1070 			return 1;
1071 	}
1072 }
1073 
1074 /**
1075  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1076  * @c: UBIFS file-system description object
1077  * @znode: znode to dirty
1078  *
1079  * If we do not have a unique key that resides in a znode, then we cannot
1080  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1081  * This function records the path back to the last dirty ancestor, and then
1082  * dirties the znodes on that path.
1083  */
1084 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1085 					       struct ubifs_znode *znode)
1086 {
1087 	struct ubifs_znode *zp;
1088 	int *path = c->bottom_up_buf, p = 0;
1089 
1090 	ubifs_assert(c->zroot.znode);
1091 	ubifs_assert(znode);
1092 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1093 		kfree(c->bottom_up_buf);
1094 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1095 					   GFP_NOFS);
1096 		if (!c->bottom_up_buf)
1097 			return ERR_PTR(-ENOMEM);
1098 		path = c->bottom_up_buf;
1099 	}
1100 	if (c->zroot.znode->level) {
1101 		/* Go up until parent is dirty */
1102 		while (1) {
1103 			int n;
1104 
1105 			zp = znode->parent;
1106 			if (!zp)
1107 				break;
1108 			n = znode->iip;
1109 			ubifs_assert(p < c->zroot.znode->level);
1110 			path[p++] = n;
1111 			if (!zp->cnext && ubifs_zn_dirty(znode))
1112 				break;
1113 			znode = zp;
1114 		}
1115 	}
1116 
1117 	/* Come back down, dirtying as we go */
1118 	while (1) {
1119 		struct ubifs_zbranch *zbr;
1120 
1121 		zp = znode->parent;
1122 		if (zp) {
1123 			ubifs_assert(path[p - 1] >= 0);
1124 			ubifs_assert(path[p - 1] < zp->child_cnt);
1125 			zbr = &zp->zbranch[path[--p]];
1126 			znode = dirty_cow_znode(c, zbr);
1127 		} else {
1128 			ubifs_assert(znode == c->zroot.znode);
1129 			znode = dirty_cow_znode(c, &c->zroot);
1130 		}
1131 		if (unlikely(IS_ERR(znode)) || !p)
1132 			break;
1133 		ubifs_assert(path[p - 1] >= 0);
1134 		ubifs_assert(path[p - 1] < znode->child_cnt);
1135 		znode = znode->zbranch[path[p - 1]].znode;
1136 	}
1137 
1138 	return znode;
1139 }
1140 
1141 /**
1142  * ubifs_lookup_level0 - search for zero-level znode.
1143  * @c: UBIFS file-system description object
1144  * @key:  key to lookup
1145  * @zn: znode is returned here
1146  * @n: znode branch slot number is returned here
1147  *
1148  * This function looks up the TNC tree and search for zero-level znode which
1149  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1150  * cases:
1151  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1152  *     is returned and slot number of the matched branch is stored in @n;
1153  *   o not exact match, which means that zero-level znode does not contain
1154  *     @key, then %0 is returned and slot number of the closed branch is stored
1155  *     in  @n;
1156  *   o @key is so small that it is even less than the lowest key of the
1157  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1158  *
1159  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1160  * function reads corresponding indexing nodes and inserts them to TNC. In
1161  * case of failure, a negative error code is returned.
1162  */
1163 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1164 			struct ubifs_znode **zn, int *n)
1165 {
1166 	int err, exact;
1167 	struct ubifs_znode *znode;
1168 	unsigned long time = get_seconds();
1169 
1170 	dbg_tnc("search key %s", DBGKEY(key));
1171 
1172 	znode = c->zroot.znode;
1173 	if (unlikely(!znode)) {
1174 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1175 		if (IS_ERR(znode))
1176 			return PTR_ERR(znode);
1177 	}
1178 
1179 	znode->time = time;
1180 
1181 	while (1) {
1182 		struct ubifs_zbranch *zbr;
1183 
1184 		exact = ubifs_search_zbranch(c, znode, key, n);
1185 
1186 		if (znode->level == 0)
1187 			break;
1188 
1189 		if (*n < 0)
1190 			*n = 0;
1191 		zbr = &znode->zbranch[*n];
1192 
1193 		if (zbr->znode) {
1194 			znode->time = time;
1195 			znode = zbr->znode;
1196 			continue;
1197 		}
1198 
1199 		/* znode is not in TNC cache, load it from the media */
1200 		znode = ubifs_load_znode(c, zbr, znode, *n);
1201 		if (IS_ERR(znode))
1202 			return PTR_ERR(znode);
1203 	}
1204 
1205 	*zn = znode;
1206 	if (exact || !is_hash_key(c, key) || *n != -1) {
1207 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1208 		return exact;
1209 	}
1210 
1211 	/*
1212 	 * Here is a tricky place. We have not found the key and this is a
1213 	 * "hashed" key, which may collide. The rest of the code deals with
1214 	 * situations like this:
1215 	 *
1216 	 *                  | 3 | 5 |
1217 	 *                  /       \
1218 	 *          | 3 | 5 |      | 6 | 7 | (x)
1219 	 *
1220 	 * Or more a complex example:
1221 	 *
1222 	 *                | 1 | 5 |
1223 	 *                /       \
1224 	 *       | 1 | 3 |         | 5 | 8 |
1225 	 *              \           /
1226 	 *          | 5 | 5 |   | 6 | 7 | (x)
1227 	 *
1228 	 * In the examples, if we are looking for key "5", we may reach nodes
1229 	 * marked with "(x)". In this case what we have do is to look at the
1230 	 * left and see if there is "5" key there. If there is, we have to
1231 	 * return it.
1232 	 *
1233 	 * Note, this whole situation is possible because we allow to have
1234 	 * elements which are equivalent to the next key in the parent in the
1235 	 * children of current znode. For example, this happens if we split a
1236 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1237 	 * like this:
1238 	 *                      | 3 | 5 |
1239 	 *                       /     \
1240 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1241 	 *                              ^
1242 	 * And this becomes what is at the first "picture" after key "5" marked
1243 	 * with "^" is removed. What could be done is we could prohibit
1244 	 * splitting in the middle of the colliding sequence. Also, when
1245 	 * removing the leftmost key, we would have to correct the key of the
1246 	 * parent node, which would introduce additional complications. Namely,
1247 	 * if we changed the the leftmost key of the parent znode, the garbage
1248 	 * collector would be unable to find it (GC is doing this when GC'ing
1249 	 * indexing LEBs). Although we already have an additional RB-tree where
1250 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1251 	 * after the commit. But anyway, this does not look easy to implement
1252 	 * so we did not try this.
1253 	 */
1254 	err = tnc_prev(c, &znode, n);
1255 	if (err == -ENOENT) {
1256 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 		*n = -1;
1258 		return 0;
1259 	}
1260 	if (unlikely(err < 0))
1261 		return err;
1262 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1263 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264 		*n = -1;
1265 		return 0;
1266 	}
1267 
1268 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1269 	*zn = znode;
1270 	return 1;
1271 }
1272 
1273 /**
1274  * lookup_level0_dirty - search for zero-level znode dirtying.
1275  * @c: UBIFS file-system description object
1276  * @key:  key to lookup
1277  * @zn: znode is returned here
1278  * @n: znode branch slot number is returned here
1279  *
1280  * This function looks up the TNC tree and search for zero-level znode which
1281  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1282  * cases:
1283  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1284  *     is returned and slot number of the matched branch is stored in @n;
1285  *   o not exact match, which means that zero-level znode does not contain @key
1286  *     then %0 is returned and slot number of the closed branch is stored in
1287  *     @n;
1288  *   o @key is so small that it is even less than the lowest key of the
1289  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1290  *
1291  * Additionally all znodes in the path from the root to the located zero-level
1292  * znode are marked as dirty.
1293  *
1294  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1295  * function reads corresponding indexing nodes and inserts them to TNC. In
1296  * case of failure, a negative error code is returned.
1297  */
1298 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1299 			       struct ubifs_znode **zn, int *n)
1300 {
1301 	int err, exact;
1302 	struct ubifs_znode *znode;
1303 	unsigned long time = get_seconds();
1304 
1305 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1306 
1307 	znode = c->zroot.znode;
1308 	if (unlikely(!znode)) {
1309 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1310 		if (IS_ERR(znode))
1311 			return PTR_ERR(znode);
1312 	}
1313 
1314 	znode = dirty_cow_znode(c, &c->zroot);
1315 	if (IS_ERR(znode))
1316 		return PTR_ERR(znode);
1317 
1318 	znode->time = time;
1319 
1320 	while (1) {
1321 		struct ubifs_zbranch *zbr;
1322 
1323 		exact = ubifs_search_zbranch(c, znode, key, n);
1324 
1325 		if (znode->level == 0)
1326 			break;
1327 
1328 		if (*n < 0)
1329 			*n = 0;
1330 		zbr = &znode->zbranch[*n];
1331 
1332 		if (zbr->znode) {
1333 			znode->time = time;
1334 			znode = dirty_cow_znode(c, zbr);
1335 			if (IS_ERR(znode))
1336 				return PTR_ERR(znode);
1337 			continue;
1338 		}
1339 
1340 		/* znode is not in TNC cache, load it from the media */
1341 		znode = ubifs_load_znode(c, zbr, znode, *n);
1342 		if (IS_ERR(znode))
1343 			return PTR_ERR(znode);
1344 		znode = dirty_cow_znode(c, zbr);
1345 		if (IS_ERR(znode))
1346 			return PTR_ERR(znode);
1347 	}
1348 
1349 	*zn = znode;
1350 	if (exact || !is_hash_key(c, key) || *n != -1) {
1351 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1352 		return exact;
1353 	}
1354 
1355 	/*
1356 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1357 	 * code.
1358 	 */
1359 	err = tnc_prev(c, &znode, n);
1360 	if (err == -ENOENT) {
1361 		*n = -1;
1362 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 		return 0;
1364 	}
1365 	if (unlikely(err < 0))
1366 		return err;
1367 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1368 		*n = -1;
1369 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370 		return 0;
1371 	}
1372 
1373 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1374 		znode = dirty_cow_bottom_up(c, znode);
1375 		if (IS_ERR(znode))
1376 			return PTR_ERR(znode);
1377 	}
1378 
1379 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1380 	*zn = znode;
1381 	return 1;
1382 }
1383 
1384 /**
1385  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1386  * @c: UBIFS file-system description object
1387  * @lnum: LEB number
1388  * @gc_seq1: garbage collection sequence number
1389  *
1390  * This function determines if @lnum may have been garbage collected since
1391  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1392  * %0 is returned.
1393  */
1394 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1395 {
1396 	int gc_seq2, gced_lnum;
1397 
1398 	gced_lnum = c->gced_lnum;
1399 	smp_rmb();
1400 	gc_seq2 = c->gc_seq;
1401 	/* Same seq means no GC */
1402 	if (gc_seq1 == gc_seq2)
1403 		return 0;
1404 	/* Different by more than 1 means we don't know */
1405 	if (gc_seq1 + 1 != gc_seq2)
1406 		return 1;
1407 	/*
1408 	 * We have seen the sequence number has increased by 1. Now we need to
1409 	 * be sure we read the right LEB number, so read it again.
1410 	 */
1411 	smp_rmb();
1412 	if (gced_lnum != c->gced_lnum)
1413 		return 1;
1414 	/* Finally we can check lnum */
1415 	if (gced_lnum == lnum)
1416 		return 1;
1417 	return 0;
1418 }
1419 
1420 /**
1421  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422  * @c: UBIFS file-system description object
1423  * @key: node key to lookup
1424  * @node: the node is returned here
1425  * @lnum: LEB number is returned here
1426  * @offs: offset is returned here
1427  *
1428  * This function look up and reads node with key @key. The caller has to make
1429  * sure the @node buffer is large enough to fit the node. Returns zero in case
1430  * of success, %-ENOENT if the node was not found, and a negative error code in
1431  * case of failure. The node location can be returned in @lnum and @offs.
1432  */
1433 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434 		     void *node, int *lnum, int *offs)
1435 {
1436 	int found, n, err, safely = 0, gc_seq1;
1437 	struct ubifs_znode *znode;
1438 	struct ubifs_zbranch zbr, *zt;
1439 
1440 again:
1441 	mutex_lock(&c->tnc_mutex);
1442 	found = ubifs_lookup_level0(c, key, &znode, &n);
1443 	if (!found) {
1444 		err = -ENOENT;
1445 		goto out;
1446 	} else if (found < 0) {
1447 		err = found;
1448 		goto out;
1449 	}
1450 	zt = &znode->zbranch[n];
1451 	if (lnum) {
1452 		*lnum = zt->lnum;
1453 		*offs = zt->offs;
1454 	}
1455 	if (is_hash_key(c, key)) {
1456 		/*
1457 		 * In this case the leaf node cache gets used, so we pass the
1458 		 * address of the zbranch and keep the mutex locked
1459 		 */
1460 		err = tnc_read_node_nm(c, zt, node);
1461 		goto out;
1462 	}
1463 	if (safely) {
1464 		err = ubifs_tnc_read_node(c, zt, node);
1465 		goto out;
1466 	}
1467 	/* Drop the TNC mutex prematurely and race with garbage collection */
1468 	zbr = znode->zbranch[n];
1469 	gc_seq1 = c->gc_seq;
1470 	mutex_unlock(&c->tnc_mutex);
1471 
1472 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1473 		/* We do not GC journal heads */
1474 		err = ubifs_tnc_read_node(c, &zbr, node);
1475 		return err;
1476 	}
1477 
1478 	err = fallible_read_node(c, key, &zbr, node);
1479 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1480 		/*
1481 		 * The node may have been GC'ed out from under us so try again
1482 		 * while keeping the TNC mutex locked.
1483 		 */
1484 		safely = 1;
1485 		goto again;
1486 	}
1487 	return 0;
1488 
1489 out:
1490 	mutex_unlock(&c->tnc_mutex);
1491 	return err;
1492 }
1493 
1494 /**
1495  * do_lookup_nm- look up a "hashed" node.
1496  * @c: UBIFS file-system description object
1497  * @key: node key to lookup
1498  * @node: the node is returned here
1499  * @nm: node name
1500  *
1501  * This function look up and reads a node which contains name hash in the key.
1502  * Since the hash may have collisions, there may be many nodes with the same
1503  * key, so we have to sequentially look to all of them until the needed one is
1504  * found. This function returns zero in case of success, %-ENOENT if the node
1505  * was not found, and a negative error code in case of failure.
1506  */
1507 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1508 			void *node, const struct qstr *nm)
1509 {
1510 	int found, n, err;
1511 	struct ubifs_znode *znode;
1512 
1513 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1514 	mutex_lock(&c->tnc_mutex);
1515 	found = ubifs_lookup_level0(c, key, &znode, &n);
1516 	if (!found) {
1517 		err = -ENOENT;
1518 		goto out_unlock;
1519 	} else if (found < 0) {
1520 		err = found;
1521 		goto out_unlock;
1522 	}
1523 
1524 	ubifs_assert(n >= 0);
1525 
1526 	err = resolve_collision(c, key, &znode, &n, nm);
1527 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1528 	if (unlikely(err < 0))
1529 		goto out_unlock;
1530 	if (err == 0) {
1531 		err = -ENOENT;
1532 		goto out_unlock;
1533 	}
1534 
1535 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1536 
1537 out_unlock:
1538 	mutex_unlock(&c->tnc_mutex);
1539 	return err;
1540 }
1541 
1542 /**
1543  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1544  * @c: UBIFS file-system description object
1545  * @key: node key to lookup
1546  * @node: the node is returned here
1547  * @nm: node name
1548  *
1549  * This function look up and reads a node which contains name hash in the key.
1550  * Since the hash may have collisions, there may be many nodes with the same
1551  * key, so we have to sequentially look to all of them until the needed one is
1552  * found. This function returns zero in case of success, %-ENOENT if the node
1553  * was not found, and a negative error code in case of failure.
1554  */
1555 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1556 			void *node, const struct qstr *nm)
1557 {
1558 	int err, len;
1559 	const struct ubifs_dent_node *dent = node;
1560 
1561 	/*
1562 	 * We assume that in most of the cases there are no name collisions and
1563 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1564 	 */
1565 	err = ubifs_tnc_lookup(c, key, node);
1566 	if (err)
1567 		return err;
1568 
1569 	len = le16_to_cpu(dent->nlen);
1570 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1571 		return 0;
1572 
1573 	/*
1574 	 * Unluckily, there are hash collisions and we have to iterate over
1575 	 * them look at each direntry with colliding name hash sequentially.
1576 	 */
1577 	return do_lookup_nm(c, key, node, nm);
1578 }
1579 
1580 /**
1581  * correct_parent_keys - correct parent znodes' keys.
1582  * @c: UBIFS file-system description object
1583  * @znode: znode to correct parent znodes for
1584  *
1585  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1586  * zbranch changes, keys of parent znodes have to be corrected. This helper
1587  * function is called in such situations and corrects the keys if needed.
1588  */
1589 static void correct_parent_keys(const struct ubifs_info *c,
1590 				struct ubifs_znode *znode)
1591 {
1592 	union ubifs_key *key, *key1;
1593 
1594 	ubifs_assert(znode->parent);
1595 	ubifs_assert(znode->iip == 0);
1596 
1597 	key = &znode->zbranch[0].key;
1598 	key1 = &znode->parent->zbranch[0].key;
1599 
1600 	while (keys_cmp(c, key, key1) < 0) {
1601 		key_copy(c, key, key1);
1602 		znode = znode->parent;
1603 		znode->alt = 1;
1604 		if (!znode->parent || znode->iip)
1605 			break;
1606 		key1 = &znode->parent->zbranch[0].key;
1607 	}
1608 }
1609 
1610 /**
1611  * insert_zbranch - insert a zbranch into a znode.
1612  * @znode: znode into which to insert
1613  * @zbr: zbranch to insert
1614  * @n: slot number to insert to
1615  *
1616  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1617  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1618  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1619  * slot, zbranches starting from @n have to be moved right.
1620  */
1621 static void insert_zbranch(struct ubifs_znode *znode,
1622 			   const struct ubifs_zbranch *zbr, int n)
1623 {
1624 	int i;
1625 
1626 	ubifs_assert(ubifs_zn_dirty(znode));
1627 
1628 	if (znode->level) {
1629 		for (i = znode->child_cnt; i > n; i--) {
1630 			znode->zbranch[i] = znode->zbranch[i - 1];
1631 			if (znode->zbranch[i].znode)
1632 				znode->zbranch[i].znode->iip = i;
1633 		}
1634 		if (zbr->znode)
1635 			zbr->znode->iip = n;
1636 	} else
1637 		for (i = znode->child_cnt; i > n; i--)
1638 			znode->zbranch[i] = znode->zbranch[i - 1];
1639 
1640 	znode->zbranch[n] = *zbr;
1641 	znode->child_cnt += 1;
1642 
1643 	/*
1644 	 * After inserting at slot zero, the lower bound of the key range of
1645 	 * this znode may have changed. If this znode is subsequently split
1646 	 * then the upper bound of the key range may change, and furthermore
1647 	 * it could change to be lower than the original lower bound. If that
1648 	 * happens, then it will no longer be possible to find this znode in the
1649 	 * TNC using the key from the index node on flash. That is bad because
1650 	 * if it is not found, we will assume it is obsolete and may overwrite
1651 	 * it. Then if there is an unclean unmount, we will start using the
1652 	 * old index which will be broken.
1653 	 *
1654 	 * So we first mark znodes that have insertions at slot zero, and then
1655 	 * if they are split we add their lnum/offs to the old_idx tree.
1656 	 */
1657 	if (n == 0)
1658 		znode->alt = 1;
1659 }
1660 
1661 /**
1662  * tnc_insert - insert a node into TNC.
1663  * @c: UBIFS file-system description object
1664  * @znode: znode to insert into
1665  * @zbr: branch to insert
1666  * @n: slot number to insert new zbranch to
1667  *
1668  * This function inserts a new node described by @zbr into znode @znode. If
1669  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1670  * are splat as well if needed. Returns zero in case of success or a negative
1671  * error code in case of failure.
1672  */
1673 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1674 		      struct ubifs_zbranch *zbr, int n)
1675 {
1676 	struct ubifs_znode *zn, *zi, *zp;
1677 	int i, keep, move, appending = 0;
1678 	union ubifs_key *key = &zbr->key;
1679 
1680 	ubifs_assert(n >= 0 && n <= c->fanout);
1681 
1682 	/* Implement naive insert for now */
1683 again:
1684 	zp = znode->parent;
1685 	if (znode->child_cnt < c->fanout) {
1686 		ubifs_assert(n != c->fanout);
1687 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1688 			DBGKEY(key));
1689 
1690 		insert_zbranch(znode, zbr, n);
1691 
1692 		/* Ensure parent's key is correct */
1693 		if (n == 0 && zp && znode->iip == 0)
1694 			correct_parent_keys(c, znode);
1695 
1696 		return 0;
1697 	}
1698 
1699 	/*
1700 	 * Unfortunately, @znode does not have more empty slots and we have to
1701 	 * split it.
1702 	 */
1703 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1704 
1705 	if (znode->alt)
1706 		/*
1707 		 * We can no longer be sure of finding this znode by key, so we
1708 		 * record it in the old_idx tree.
1709 		 */
1710 		ins_clr_old_idx_znode(c, znode);
1711 
1712 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1713 	if (!zn)
1714 		return -ENOMEM;
1715 	zn->parent = zp;
1716 	zn->level = znode->level;
1717 
1718 	/* Decide where to split */
1719 	if (znode->level == 0 && n == c->fanout &&
1720 	    key_type(c, key) == UBIFS_DATA_KEY) {
1721 		union ubifs_key *key1;
1722 
1723 		/*
1724 		 * If this is an inode which is being appended - do not split
1725 		 * it because no other zbranches can be inserted between
1726 		 * zbranches of consecutive data nodes anyway.
1727 		 */
1728 		key1 = &znode->zbranch[n - 1].key;
1729 		if (key_inum(c, key1) == key_inum(c, key) &&
1730 		    key_type(c, key1) == UBIFS_DATA_KEY &&
1731 		    key_block(c, key1) == key_block(c, key) - 1)
1732 			appending = 1;
1733 	}
1734 
1735 	if (appending) {
1736 		keep = c->fanout;
1737 		move = 0;
1738 	} else {
1739 		keep = (c->fanout + 1) / 2;
1740 		move = c->fanout - keep;
1741 	}
1742 
1743 	/*
1744 	 * Although we don't at present, we could look at the neighbors and see
1745 	 * if we can move some zbranches there.
1746 	 */
1747 
1748 	if (n < keep) {
1749 		/* Insert into existing znode */
1750 		zi = znode;
1751 		move += 1;
1752 		keep -= 1;
1753 	} else {
1754 		/* Insert into new znode */
1755 		zi = zn;
1756 		n -= keep;
1757 		/* Re-parent */
1758 		if (zn->level != 0)
1759 			zbr->znode->parent = zn;
1760 	}
1761 
1762 	__set_bit(DIRTY_ZNODE, &zn->flags);
1763 	atomic_long_inc(&c->dirty_zn_cnt);
1764 
1765 	zn->child_cnt = move;
1766 	znode->child_cnt = keep;
1767 
1768 	dbg_tnc("moving %d, keeping %d", move, keep);
1769 
1770 	/* Move zbranch */
1771 	for (i = 0; i < move; i++) {
1772 		zn->zbranch[i] = znode->zbranch[keep + i];
1773 		/* Re-parent */
1774 		if (zn->level != 0)
1775 			if (zn->zbranch[i].znode) {
1776 				zn->zbranch[i].znode->parent = zn;
1777 				zn->zbranch[i].znode->iip = i;
1778 			}
1779 	}
1780 
1781 	/* Insert new key and branch */
1782 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
1783 
1784 	insert_zbranch(zi, zbr, n);
1785 
1786 	/* Insert new znode (produced by spitting) into the parent */
1787 	if (zp) {
1788 		i = n;
1789 		/* Locate insertion point */
1790 		n = znode->iip + 1;
1791 		if (appending && n != c->fanout)
1792 			appending = 0;
1793 
1794 		if (i == 0 && zi == znode && znode->iip == 0)
1795 			correct_parent_keys(c, znode);
1796 
1797 		/* Tail recursion */
1798 		zbr->key = zn->zbranch[0].key;
1799 		zbr->znode = zn;
1800 		zbr->lnum = 0;
1801 		zbr->offs = 0;
1802 		zbr->len = 0;
1803 		znode = zp;
1804 
1805 		goto again;
1806 	}
1807 
1808 	/* We have to split root znode */
1809 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
1810 
1811 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
1812 	if (!zi)
1813 		return -ENOMEM;
1814 
1815 	zi->child_cnt = 2;
1816 	zi->level = znode->level + 1;
1817 
1818 	__set_bit(DIRTY_ZNODE, &zi->flags);
1819 	atomic_long_inc(&c->dirty_zn_cnt);
1820 
1821 	zi->zbranch[0].key = znode->zbranch[0].key;
1822 	zi->zbranch[0].znode = znode;
1823 	zi->zbranch[0].lnum = c->zroot.lnum;
1824 	zi->zbranch[0].offs = c->zroot.offs;
1825 	zi->zbranch[0].len = c->zroot.len;
1826 	zi->zbranch[1].key = zn->zbranch[0].key;
1827 	zi->zbranch[1].znode = zn;
1828 
1829 	c->zroot.lnum = 0;
1830 	c->zroot.offs = 0;
1831 	c->zroot.len = 0;
1832 	c->zroot.znode = zi;
1833 
1834 	zn->parent = zi;
1835 	zn->iip = 1;
1836 	znode->parent = zi;
1837 	znode->iip = 0;
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * ubifs_tnc_add - add a node to TNC.
1844  * @c: UBIFS file-system description object
1845  * @key: key to add
1846  * @lnum: LEB number of node
1847  * @offs: node offset
1848  * @len: node length
1849  *
1850  * This function adds a node with key @key to TNC. The node may be new or it may
1851  * obsolete some existing one. Returns %0 on success or negative error code on
1852  * failure.
1853  */
1854 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
1855 		  int offs, int len)
1856 {
1857 	int found, n, err = 0;
1858 	struct ubifs_znode *znode;
1859 
1860 	mutex_lock(&c->tnc_mutex);
1861 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
1862 	found = lookup_level0_dirty(c, key, &znode, &n);
1863 	if (!found) {
1864 		struct ubifs_zbranch zbr;
1865 
1866 		zbr.znode = NULL;
1867 		zbr.lnum = lnum;
1868 		zbr.offs = offs;
1869 		zbr.len = len;
1870 		key_copy(c, key, &zbr.key);
1871 		err = tnc_insert(c, znode, &zbr, n + 1);
1872 	} else if (found == 1) {
1873 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
1874 
1875 		lnc_free(zbr);
1876 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1877 		zbr->lnum = lnum;
1878 		zbr->offs = offs;
1879 		zbr->len = len;
1880 	} else
1881 		err = found;
1882 	if (!err)
1883 		err = dbg_check_tnc(c, 0);
1884 	mutex_unlock(&c->tnc_mutex);
1885 
1886 	return err;
1887 }
1888 
1889 /**
1890  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
1891  * @c: UBIFS file-system description object
1892  * @key: key to add
1893  * @old_lnum: LEB number of old node
1894  * @old_offs: old node offset
1895  * @lnum: LEB number of node
1896  * @offs: node offset
1897  * @len: node length
1898  *
1899  * This function replaces a node with key @key in the TNC only if the old node
1900  * is found.  This function is called by garbage collection when node are moved.
1901  * Returns %0 on success or negative error code on failure.
1902  */
1903 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
1904 		      int old_lnum, int old_offs, int lnum, int offs, int len)
1905 {
1906 	int found, n, err = 0;
1907 	struct ubifs_znode *znode;
1908 
1909 	mutex_lock(&c->tnc_mutex);
1910 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
1911 		old_offs, lnum, offs, len, DBGKEY(key));
1912 	found = lookup_level0_dirty(c, key, &znode, &n);
1913 	if (found < 0) {
1914 		err = found;
1915 		goto out_unlock;
1916 	}
1917 
1918 	if (found == 1) {
1919 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
1920 
1921 		found = 0;
1922 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
1923 			lnc_free(zbr);
1924 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1925 			if (err)
1926 				goto out_unlock;
1927 			zbr->lnum = lnum;
1928 			zbr->offs = offs;
1929 			zbr->len = len;
1930 			found = 1;
1931 		} else if (is_hash_key(c, key)) {
1932 			found = resolve_collision_directly(c, key, &znode, &n,
1933 							   old_lnum, old_offs);
1934 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
1935 				found, znode, n, old_lnum, old_offs);
1936 			if (found < 0) {
1937 				err = found;
1938 				goto out_unlock;
1939 			}
1940 
1941 			if (found) {
1942 				/* Ensure the znode is dirtied */
1943 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
1944 					    znode = dirty_cow_bottom_up(c,
1945 									znode);
1946 					    if (IS_ERR(znode)) {
1947 						    err = PTR_ERR(znode);
1948 						    goto out_unlock;
1949 					    }
1950 				}
1951 				zbr = &znode->zbranch[n];
1952 				lnc_free(zbr);
1953 				err = ubifs_add_dirt(c, zbr->lnum,
1954 						     zbr->len);
1955 				if (err)
1956 					goto out_unlock;
1957 				zbr->lnum = lnum;
1958 				zbr->offs = offs;
1959 				zbr->len = len;
1960 			}
1961 		}
1962 	}
1963 
1964 	if (!found)
1965 		err = ubifs_add_dirt(c, lnum, len);
1966 
1967 	if (!err)
1968 		err = dbg_check_tnc(c, 0);
1969 
1970 out_unlock:
1971 	mutex_unlock(&c->tnc_mutex);
1972 	return err;
1973 }
1974 
1975 /**
1976  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
1977  * @c: UBIFS file-system description object
1978  * @key: key to add
1979  * @lnum: LEB number of node
1980  * @offs: node offset
1981  * @len: node length
1982  * @nm: node name
1983  *
1984  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
1985  * may have collisions, like directory entry keys.
1986  */
1987 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
1988 		     int lnum, int offs, int len, const struct qstr *nm)
1989 {
1990 	int found, n, err = 0;
1991 	struct ubifs_znode *znode;
1992 
1993 	mutex_lock(&c->tnc_mutex);
1994 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
1995 		DBGKEY(key));
1996 	found = lookup_level0_dirty(c, key, &znode, &n);
1997 	if (found < 0) {
1998 		err = found;
1999 		goto out_unlock;
2000 	}
2001 
2002 	if (found == 1) {
2003 		if (c->replaying)
2004 			found = fallible_resolve_collision(c, key, &znode, &n,
2005 							   nm, 1);
2006 		else
2007 			found = resolve_collision(c, key, &znode, &n, nm);
2008 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2009 		if (found < 0) {
2010 			err = found;
2011 			goto out_unlock;
2012 		}
2013 
2014 		/* Ensure the znode is dirtied */
2015 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2016 			    znode = dirty_cow_bottom_up(c, znode);
2017 			    if (IS_ERR(znode)) {
2018 				    err = PTR_ERR(znode);
2019 				    goto out_unlock;
2020 			    }
2021 		}
2022 
2023 		if (found == 1) {
2024 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2025 
2026 			lnc_free(zbr);
2027 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2028 			zbr->lnum = lnum;
2029 			zbr->offs = offs;
2030 			zbr->len = len;
2031 			goto out_unlock;
2032 		}
2033 	}
2034 
2035 	if (!found) {
2036 		struct ubifs_zbranch zbr;
2037 
2038 		zbr.znode = NULL;
2039 		zbr.lnum = lnum;
2040 		zbr.offs = offs;
2041 		zbr.len = len;
2042 		key_copy(c, key, &zbr.key);
2043 		err = tnc_insert(c, znode, &zbr, n + 1);
2044 		if (err)
2045 			goto out_unlock;
2046 		if (c->replaying) {
2047 			/*
2048 			 * We did not find it in the index so there may be a
2049 			 * dangling branch still in the index. So we remove it
2050 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2051 			 * an unmatchable name.
2052 			 */
2053 			struct qstr noname = { .len = 0, .name = "" };
2054 
2055 			err = dbg_check_tnc(c, 0);
2056 			mutex_unlock(&c->tnc_mutex);
2057 			if (err)
2058 				return err;
2059 			return ubifs_tnc_remove_nm(c, key, &noname);
2060 		}
2061 	}
2062 
2063 out_unlock:
2064 	if (!err)
2065 		err = dbg_check_tnc(c, 0);
2066 	mutex_unlock(&c->tnc_mutex);
2067 	return err;
2068 }
2069 
2070 /**
2071  * tnc_delete - delete a znode form TNC.
2072  * @c: UBIFS file-system description object
2073  * @znode: znode to delete from
2074  * @n: zbranch slot number to delete
2075  *
2076  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2077  * case of success and a negative error code in case of failure.
2078  */
2079 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2080 {
2081 	struct ubifs_zbranch *zbr;
2082 	struct ubifs_znode *zp;
2083 	int i, err;
2084 
2085 	/* Delete without merge for now */
2086 	ubifs_assert(znode->level == 0);
2087 	ubifs_assert(n >= 0 && n < c->fanout);
2088 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2089 
2090 	zbr = &znode->zbranch[n];
2091 	lnc_free(zbr);
2092 
2093 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2094 	if (err) {
2095 		dbg_dump_znode(c, znode);
2096 		return err;
2097 	}
2098 
2099 	/* We do not "gap" zbranch slots */
2100 	for (i = n; i < znode->child_cnt - 1; i++)
2101 		znode->zbranch[i] = znode->zbranch[i + 1];
2102 	znode->child_cnt -= 1;
2103 
2104 	if (znode->child_cnt > 0)
2105 		return 0;
2106 
2107 	/*
2108 	 * This was the last zbranch, we have to delete this znode from the
2109 	 * parent.
2110 	 */
2111 
2112 	do {
2113 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2114 		ubifs_assert(ubifs_zn_dirty(znode));
2115 
2116 		zp = znode->parent;
2117 		n = znode->iip;
2118 
2119 		atomic_long_dec(&c->dirty_zn_cnt);
2120 
2121 		err = insert_old_idx_znode(c, znode);
2122 		if (err)
2123 			return err;
2124 
2125 		if (znode->cnext) {
2126 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2127 			atomic_long_inc(&c->clean_zn_cnt);
2128 			atomic_long_inc(&ubifs_clean_zn_cnt);
2129 		} else
2130 			kfree(znode);
2131 		znode = zp;
2132 	} while (znode->child_cnt == 1); /* while removing last child */
2133 
2134 	/* Remove from znode, entry n - 1 */
2135 	znode->child_cnt -= 1;
2136 	ubifs_assert(znode->level != 0);
2137 	for (i = n; i < znode->child_cnt; i++) {
2138 		znode->zbranch[i] = znode->zbranch[i + 1];
2139 		if (znode->zbranch[i].znode)
2140 			znode->zbranch[i].znode->iip = i;
2141 	}
2142 
2143 	/*
2144 	 * If this is the root and it has only 1 child then
2145 	 * collapse the tree.
2146 	 */
2147 	if (!znode->parent) {
2148 		while (znode->child_cnt == 1 && znode->level != 0) {
2149 			zp = znode;
2150 			zbr = &znode->zbranch[0];
2151 			znode = get_znode(c, znode, 0);
2152 			if (IS_ERR(znode))
2153 				return PTR_ERR(znode);
2154 			znode = dirty_cow_znode(c, zbr);
2155 			if (IS_ERR(znode))
2156 				return PTR_ERR(znode);
2157 			znode->parent = NULL;
2158 			znode->iip = 0;
2159 			if (c->zroot.len) {
2160 				err = insert_old_idx(c, c->zroot.lnum,
2161 						     c->zroot.offs);
2162 				if (err)
2163 					return err;
2164 			}
2165 			c->zroot.lnum = zbr->lnum;
2166 			c->zroot.offs = zbr->offs;
2167 			c->zroot.len = zbr->len;
2168 			c->zroot.znode = znode;
2169 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2170 				     &zp->flags));
2171 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2172 			atomic_long_dec(&c->dirty_zn_cnt);
2173 
2174 			if (zp->cnext) {
2175 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2176 				atomic_long_inc(&c->clean_zn_cnt);
2177 				atomic_long_inc(&ubifs_clean_zn_cnt);
2178 			} else
2179 				kfree(zp);
2180 		}
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  * ubifs_tnc_remove - remove an index entry of a node.
2188  * @c: UBIFS file-system description object
2189  * @key: key of node
2190  *
2191  * Returns %0 on success or negative error code on failure.
2192  */
2193 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2194 {
2195 	int found, n, err = 0;
2196 	struct ubifs_znode *znode;
2197 
2198 	mutex_lock(&c->tnc_mutex);
2199 	dbg_tnc("key %s", DBGKEY(key));
2200 	found = lookup_level0_dirty(c, key, &znode, &n);
2201 	if (found < 0) {
2202 		err = found;
2203 		goto out_unlock;
2204 	}
2205 	if (found == 1)
2206 		err = tnc_delete(c, znode, n);
2207 	if (!err)
2208 		err = dbg_check_tnc(c, 0);
2209 
2210 out_unlock:
2211 	mutex_unlock(&c->tnc_mutex);
2212 	return err;
2213 }
2214 
2215 /**
2216  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2217  * @c: UBIFS file-system description object
2218  * @key: key of node
2219  * @nm: directory entry name
2220  *
2221  * Returns %0 on success or negative error code on failure.
2222  */
2223 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2224 			const struct qstr *nm)
2225 {
2226 	int n, err;
2227 	struct ubifs_znode *znode;
2228 
2229 	mutex_lock(&c->tnc_mutex);
2230 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2231 	err = lookup_level0_dirty(c, key, &znode, &n);
2232 	if (err < 0)
2233 		goto out_unlock;
2234 
2235 	if (err) {
2236 		if (c->replaying)
2237 			err = fallible_resolve_collision(c, key, &znode, &n,
2238 							 nm, 0);
2239 		else
2240 			err = resolve_collision(c, key, &znode, &n, nm);
2241 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2242 		if (err < 0)
2243 			goto out_unlock;
2244 		if (err) {
2245 			/* Ensure the znode is dirtied */
2246 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2247 				    znode = dirty_cow_bottom_up(c, znode);
2248 				    if (IS_ERR(znode)) {
2249 					    err = PTR_ERR(znode);
2250 					    goto out_unlock;
2251 				    }
2252 			}
2253 			err = tnc_delete(c, znode, n);
2254 		}
2255 	}
2256 
2257 out_unlock:
2258 	if (!err)
2259 		err = dbg_check_tnc(c, 0);
2260 	mutex_unlock(&c->tnc_mutex);
2261 	return err;
2262 }
2263 
2264 /**
2265  * key_in_range - determine if a key falls within a range of keys.
2266  * @c: UBIFS file-system description object
2267  * @key: key to check
2268  * @from_key: lowest key in range
2269  * @to_key: highest key in range
2270  *
2271  * This function returns %1 if the key is in range and %0 otherwise.
2272  */
2273 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2274 			union ubifs_key *from_key, union ubifs_key *to_key)
2275 {
2276 	if (keys_cmp(c, key, from_key) < 0)
2277 		return 0;
2278 	if (keys_cmp(c, key, to_key) > 0)
2279 		return 0;
2280 	return 1;
2281 }
2282 
2283 /**
2284  * ubifs_tnc_remove_range - remove index entries in range.
2285  * @c: UBIFS file-system description object
2286  * @from_key: lowest key to remove
2287  * @to_key: highest key to remove
2288  *
2289  * This function removes index entries starting at @from_key and ending at
2290  * @to_key.  This function returns zero in case of success and a negative error
2291  * code in case of failure.
2292  */
2293 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2294 			   union ubifs_key *to_key)
2295 {
2296 	int i, n, k, err = 0;
2297 	struct ubifs_znode *znode;
2298 	union ubifs_key *key;
2299 
2300 	mutex_lock(&c->tnc_mutex);
2301 	while (1) {
2302 		/* Find first level 0 znode that contains keys to remove */
2303 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2304 		if (err < 0)
2305 			goto out_unlock;
2306 
2307 		if (err)
2308 			key = from_key;
2309 		else {
2310 			err = tnc_next(c, &znode, &n);
2311 			if (err == -ENOENT) {
2312 				err = 0;
2313 				goto out_unlock;
2314 			}
2315 			if (err < 0)
2316 				goto out_unlock;
2317 			key = &znode->zbranch[n].key;
2318 			if (!key_in_range(c, key, from_key, to_key)) {
2319 				err = 0;
2320 				goto out_unlock;
2321 			}
2322 		}
2323 
2324 		/* Ensure the znode is dirtied */
2325 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2326 			    znode = dirty_cow_bottom_up(c, znode);
2327 			    if (IS_ERR(znode)) {
2328 				    err = PTR_ERR(znode);
2329 				    goto out_unlock;
2330 			    }
2331 		}
2332 
2333 		/* Remove all keys in range except the first */
2334 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2335 			key = &znode->zbranch[i].key;
2336 			if (!key_in_range(c, key, from_key, to_key))
2337 				break;
2338 			lnc_free(&znode->zbranch[i]);
2339 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2340 					     znode->zbranch[i].len);
2341 			if (err) {
2342 				dbg_dump_znode(c, znode);
2343 				goto out_unlock;
2344 			}
2345 			dbg_tnc("removing %s", DBGKEY(key));
2346 		}
2347 		if (k) {
2348 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2349 				znode->zbranch[i - k] = znode->zbranch[i];
2350 			znode->child_cnt -= k;
2351 		}
2352 
2353 		/* Now delete the first */
2354 		err = tnc_delete(c, znode, n);
2355 		if (err)
2356 			goto out_unlock;
2357 	}
2358 
2359 out_unlock:
2360 	if (!err)
2361 		err = dbg_check_tnc(c, 0);
2362 	mutex_unlock(&c->tnc_mutex);
2363 	return err;
2364 }
2365 
2366 /**
2367  * ubifs_tnc_remove_ino - remove an inode from TNC.
2368  * @c: UBIFS file-system description object
2369  * @inum: inode number to remove
2370  *
2371  * This function remove inode @inum and all the extended attributes associated
2372  * with the anode from TNC and returns zero in case of success or a negative
2373  * error code in case of failure.
2374  */
2375 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2376 {
2377 	union ubifs_key key1, key2;
2378 	struct ubifs_dent_node *xent, *pxent = NULL;
2379 	struct qstr nm = { .name = NULL };
2380 
2381 	dbg_tnc("ino %lu", inum);
2382 
2383 	/*
2384 	 * Walk all extended attribute entries and remove them together with
2385 	 * corresponding extended attribute inodes.
2386 	 */
2387 	lowest_xent_key(c, &key1, inum);
2388 	while (1) {
2389 		ino_t xattr_inum;
2390 		int err;
2391 
2392 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2393 		if (IS_ERR(xent)) {
2394 			err = PTR_ERR(xent);
2395 			if (err == -ENOENT)
2396 				break;
2397 			return err;
2398 		}
2399 
2400 		xattr_inum = le64_to_cpu(xent->inum);
2401 		dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2402 
2403 		nm.name = xent->name;
2404 		nm.len = le16_to_cpu(xent->nlen);
2405 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2406 		if (err) {
2407 			kfree(xent);
2408 			return err;
2409 		}
2410 
2411 		lowest_ino_key(c, &key1, xattr_inum);
2412 		highest_ino_key(c, &key2, xattr_inum);
2413 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2414 		if (err) {
2415 			kfree(xent);
2416 			return err;
2417 		}
2418 
2419 		kfree(pxent);
2420 		pxent = xent;
2421 		key_read(c, &xent->key, &key1);
2422 	}
2423 
2424 	kfree(pxent);
2425 	lowest_ino_key(c, &key1, inum);
2426 	highest_ino_key(c, &key2, inum);
2427 
2428 	return ubifs_tnc_remove_range(c, &key1, &key2);
2429 }
2430 
2431 /**
2432  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2433  * @c: UBIFS file-system description object
2434  * @key: key of last entry
2435  * @nm: name of last entry found or %NULL
2436  *
2437  * This function finds and reads the next directory or extended attribute entry
2438  * after the given key (@key) if there is one. @nm is used to resolve
2439  * collisions.
2440  *
2441  * If the name of the current entry is not known and only the key is known,
2442  * @nm->name has to be %NULL. In this case the semantics of this function is a
2443  * little bit different and it returns the entry corresponding to this key, not
2444  * the next one. If the key was not found, the closest "right" entry is
2445  * returned.
2446  *
2447  * If the fist entry has to be found, @key has to contain the lowest possible
2448  * key value for this inode and @name has to be %NULL.
2449  *
2450  * This function returns the found directory or extended attribute entry node
2451  * in case of success, %-ENOENT is returned if no entry was found, and a
2452  * negative error code is returned in case of failure.
2453  */
2454 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2455 					   union ubifs_key *key,
2456 					   const struct qstr *nm)
2457 {
2458 	int n, err, type = key_type(c, key);
2459 	struct ubifs_znode *znode;
2460 	struct ubifs_dent_node *dent;
2461 	struct ubifs_zbranch *zbr;
2462 	union ubifs_key *dkey;
2463 
2464 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2465 	ubifs_assert(is_hash_key(c, key));
2466 
2467 	mutex_lock(&c->tnc_mutex);
2468 	err = ubifs_lookup_level0(c, key, &znode, &n);
2469 	if (unlikely(err < 0))
2470 		goto out_unlock;
2471 
2472 	if (nm->name) {
2473 		if (err) {
2474 			/* Handle collisions */
2475 			err = resolve_collision(c, key, &znode, &n, nm);
2476 			dbg_tnc("rc returned %d, znode %p, n %d",
2477 				err, znode, n);
2478 			if (unlikely(err < 0))
2479 				goto out_unlock;
2480 		}
2481 
2482 		/* Now find next entry */
2483 		err = tnc_next(c, &znode, &n);
2484 		if (unlikely(err))
2485 			goto out_unlock;
2486 	} else {
2487 		/*
2488 		 * The full name of the entry was not given, in which case the
2489 		 * behavior of this function is a little different and it
2490 		 * returns current entry, not the next one.
2491 		 */
2492 		if (!err) {
2493 			/*
2494 			 * However, the given key does not exist in the TNC
2495 			 * tree and @znode/@n variables contain the closest
2496 			 * "preceding" element. Switch to the next one.
2497 			 */
2498 			err = tnc_next(c, &znode, &n);
2499 			if (err)
2500 				goto out_unlock;
2501 		}
2502 	}
2503 
2504 	zbr = &znode->zbranch[n];
2505 	dent = kmalloc(zbr->len, GFP_NOFS);
2506 	if (unlikely(!dent)) {
2507 		err = -ENOMEM;
2508 		goto out_unlock;
2509 	}
2510 
2511 	/*
2512 	 * The above 'tnc_next()' call could lead us to the next inode, check
2513 	 * this.
2514 	 */
2515 	dkey = &zbr->key;
2516 	if (key_inum(c, dkey) != key_inum(c, key) ||
2517 	    key_type(c, dkey) != type) {
2518 		err = -ENOENT;
2519 		goto out_free;
2520 	}
2521 
2522 	err = tnc_read_node_nm(c, zbr, dent);
2523 	if (unlikely(err))
2524 		goto out_free;
2525 
2526 	mutex_unlock(&c->tnc_mutex);
2527 	return dent;
2528 
2529 out_free:
2530 	kfree(dent);
2531 out_unlock:
2532 	mutex_unlock(&c->tnc_mutex);
2533 	return ERR_PTR(err);
2534 }
2535 
2536 /**
2537  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2538  * @c: UBIFS file-system description object
2539  *
2540  * Destroy left-over obsolete znodes from a failed commit.
2541  */
2542 static void tnc_destroy_cnext(struct ubifs_info *c)
2543 {
2544 	struct ubifs_znode *cnext;
2545 
2546 	if (!c->cnext)
2547 		return;
2548 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2549 	cnext = c->cnext;
2550 	do {
2551 		struct ubifs_znode *znode = cnext;
2552 
2553 		cnext = cnext->cnext;
2554 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2555 			kfree(znode);
2556 	} while (cnext && cnext != c->cnext);
2557 }
2558 
2559 /**
2560  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2561  * @c: UBIFS file-system description object
2562  */
2563 void ubifs_tnc_close(struct ubifs_info *c)
2564 {
2565 	long clean_freed;
2566 
2567 	tnc_destroy_cnext(c);
2568 	if (c->zroot.znode) {
2569 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2570 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2571 	}
2572 	kfree(c->gap_lebs);
2573 	kfree(c->ilebs);
2574 	destroy_old_idx(c);
2575 }
2576 
2577 /**
2578  * left_znode - get the znode to the left.
2579  * @c: UBIFS file-system description object
2580  * @znode: znode
2581  *
2582  * This function returns a pointer to the znode to the left of @znode or NULL if
2583  * there is not one. A negative error code is returned on failure.
2584  */
2585 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2586 				      struct ubifs_znode *znode)
2587 {
2588 	int level = znode->level;
2589 
2590 	while (1) {
2591 		int n = znode->iip - 1;
2592 
2593 		/* Go up until we can go left */
2594 		znode = znode->parent;
2595 		if (!znode)
2596 			return NULL;
2597 		if (n >= 0) {
2598 			/* Now go down the rightmost branch to 'level' */
2599 			znode = get_znode(c, znode, n);
2600 			if (IS_ERR(znode))
2601 				return znode;
2602 			while (znode->level != level) {
2603 				n = znode->child_cnt - 1;
2604 				znode = get_znode(c, znode, n);
2605 				if (IS_ERR(znode))
2606 					return znode;
2607 			}
2608 			break;
2609 		}
2610 	}
2611 	return znode;
2612 }
2613 
2614 /**
2615  * right_znode - get the znode to the right.
2616  * @c: UBIFS file-system description object
2617  * @znode: znode
2618  *
2619  * This function returns a pointer to the znode to the right of @znode or NULL
2620  * if there is not one. A negative error code is returned on failure.
2621  */
2622 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2623 				       struct ubifs_znode *znode)
2624 {
2625 	int level = znode->level;
2626 
2627 	while (1) {
2628 		int n = znode->iip + 1;
2629 
2630 		/* Go up until we can go right */
2631 		znode = znode->parent;
2632 		if (!znode)
2633 			return NULL;
2634 		if (n < znode->child_cnt) {
2635 			/* Now go down the leftmost branch to 'level' */
2636 			znode = get_znode(c, znode, n);
2637 			if (IS_ERR(znode))
2638 				return znode;
2639 			while (znode->level != level) {
2640 				znode = get_znode(c, znode, 0);
2641 				if (IS_ERR(znode))
2642 					return znode;
2643 			}
2644 			break;
2645 		}
2646 	}
2647 	return znode;
2648 }
2649 
2650 /**
2651  * lookup_znode - find a particular indexing node from TNC.
2652  * @c: UBIFS file-system description object
2653  * @key: index node key to lookup
2654  * @level: index node level
2655  * @lnum: index node LEB number
2656  * @offs: index node offset
2657  *
2658  * This function searches an indexing node by its first key @key and its
2659  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2660  * nodes it traverses to TNC. This function is called fro indexing nodes which
2661  * were found on the media by scanning, for example when garbage-collecting or
2662  * when doing in-the-gaps commit. This means that the indexing node which is
2663  * looked for does not have to have exactly the same leftmost key @key, because
2664  * the leftmost key may have been changed, in which case TNC will contain a
2665  * dirty znode which still refers the same @lnum:@offs. This function is clever
2666  * enough to recognize such indexing nodes.
2667  *
2668  * Note, if a znode was deleted or changed too much, then this function will
2669  * not find it. For situations like this UBIFS has the old index RB-tree
2670  * (indexed by @lnum:@offs).
2671  *
2672  * This function returns a pointer to the znode found or %NULL if it is not
2673  * found. A negative error code is returned on failure.
2674  */
2675 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2676 					union ubifs_key *key, int level,
2677 					int lnum, int offs)
2678 {
2679 	struct ubifs_znode *znode, *zn;
2680 	int n, nn;
2681 
2682 	/*
2683 	 * The arguments have probably been read off flash, so don't assume
2684 	 * they are valid.
2685 	 */
2686 	if (level < 0)
2687 		return ERR_PTR(-EINVAL);
2688 
2689 	/* Get the root znode */
2690 	znode = c->zroot.znode;
2691 	if (!znode) {
2692 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2693 		if (IS_ERR(znode))
2694 			return znode;
2695 	}
2696 	/* Check if it is the one we are looking for */
2697 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2698 		return znode;
2699 	/* Descend to the parent level i.e. (level + 1) */
2700 	if (level >= znode->level)
2701 		return NULL;
2702 	while (1) {
2703 		ubifs_search_zbranch(c, znode, key, &n);
2704 		if (n < 0) {
2705 			/*
2706 			 * We reached a znode where the leftmost key is greater
2707 			 * than the key we are searching for. This is the same
2708 			 * situation as the one described in a huge comment at
2709 			 * the end of the 'ubifs_lookup_level0()' function. And
2710 			 * for exactly the same reasons we have to try to look
2711 			 * left before giving up.
2712 			 */
2713 			znode = left_znode(c, znode);
2714 			if (!znode)
2715 				return NULL;
2716 			if (IS_ERR(znode))
2717 				return znode;
2718 			ubifs_search_zbranch(c, znode, key, &n);
2719 			ubifs_assert(n >= 0);
2720 		}
2721 		if (znode->level == level + 1)
2722 			break;
2723 		znode = get_znode(c, znode, n);
2724 		if (IS_ERR(znode))
2725 			return znode;
2726 	}
2727 	/* Check if the child is the one we are looking for */
2728 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
2729 		return get_znode(c, znode, n);
2730 	/* If the key is unique, there is nowhere else to look */
2731 	if (!is_hash_key(c, key))
2732 		return NULL;
2733 	/*
2734 	 * The key is not unique and so may be also in the znodes to either
2735 	 * side.
2736 	 */
2737 	zn = znode;
2738 	nn = n;
2739 	/* Look left */
2740 	while (1) {
2741 		/* Move one branch to the left */
2742 		if (n)
2743 			n -= 1;
2744 		else {
2745 			znode = left_znode(c, znode);
2746 			if (!znode)
2747 				break;
2748 			if (IS_ERR(znode))
2749 				return znode;
2750 			n = znode->child_cnt - 1;
2751 		}
2752 		/* Check it */
2753 		if (znode->zbranch[n].lnum == lnum &&
2754 		    znode->zbranch[n].offs == offs)
2755 			return get_znode(c, znode, n);
2756 		/* Stop if the key is less than the one we are looking for */
2757 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
2758 			break;
2759 	}
2760 	/* Back to the middle */
2761 	znode = zn;
2762 	n = nn;
2763 	/* Look right */
2764 	while (1) {
2765 		/* Move one branch to the right */
2766 		if (++n >= znode->child_cnt) {
2767 			znode = right_znode(c, znode);
2768 			if (!znode)
2769 				break;
2770 			if (IS_ERR(znode))
2771 				return znode;
2772 			n = 0;
2773 		}
2774 		/* Check it */
2775 		if (znode->zbranch[n].lnum == lnum &&
2776 		    znode->zbranch[n].offs == offs)
2777 			return get_znode(c, znode, n);
2778 		/* Stop if the key is greater than the one we are looking for */
2779 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
2780 			break;
2781 	}
2782 	return NULL;
2783 }
2784 
2785 /**
2786  * is_idx_node_in_tnc - determine if an index node is in the TNC.
2787  * @c: UBIFS file-system description object
2788  * @key: key of index node
2789  * @level: index node level
2790  * @lnum: LEB number of index node
2791  * @offs: offset of index node
2792  *
2793  * This function returns %0 if the index node is not referred to in the TNC, %1
2794  * if the index node is referred to in the TNC and the corresponding znode is
2795  * dirty, %2 if an index node is referred to in the TNC and the corresponding
2796  * znode is clean, and a negative error code in case of failure.
2797  *
2798  * Note, the @key argument has to be the key of the first child. Also note,
2799  * this function relies on the fact that 0:0 is never a valid LEB number and
2800  * offset for a main-area node.
2801  */
2802 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
2803 		       int lnum, int offs)
2804 {
2805 	struct ubifs_znode *znode;
2806 
2807 	znode = lookup_znode(c, key, level, lnum, offs);
2808 	if (!znode)
2809 		return 0;
2810 	if (IS_ERR(znode))
2811 		return PTR_ERR(znode);
2812 
2813 	return ubifs_zn_dirty(znode) ? 1 : 2;
2814 }
2815 
2816 /**
2817  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
2818  * @c: UBIFS file-system description object
2819  * @key: node key
2820  * @lnum: node LEB number
2821  * @offs: node offset
2822  *
2823  * This function returns %1 if the node is referred to in the TNC, %0 if it is
2824  * not, and a negative error code in case of failure.
2825  *
2826  * Note, this function relies on the fact that 0:0 is never a valid LEB number
2827  * and offset for a main-area node.
2828  */
2829 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
2830 			       int lnum, int offs)
2831 {
2832 	struct ubifs_zbranch *zbr;
2833 	struct ubifs_znode *znode, *zn;
2834 	int n, found, err, nn;
2835 	const int unique = !is_hash_key(c, key);
2836 
2837 	found = ubifs_lookup_level0(c, key, &znode, &n);
2838 	if (found < 0)
2839 		return found; /* Error code */
2840 	if (!found)
2841 		return 0;
2842 	zbr = &znode->zbranch[n];
2843 	if (lnum == zbr->lnum && offs == zbr->offs)
2844 		return 1; /* Found it */
2845 	if (unique)
2846 		return 0;
2847 	/*
2848 	 * Because the key is not unique, we have to look left
2849 	 * and right as well
2850 	 */
2851 	zn = znode;
2852 	nn = n;
2853 	/* Look left */
2854 	while (1) {
2855 		err = tnc_prev(c, &znode, &n);
2856 		if (err == -ENOENT)
2857 			break;
2858 		if (err)
2859 			return err;
2860 		if (keys_cmp(c, key, &znode->zbranch[n].key))
2861 			break;
2862 		zbr = &znode->zbranch[n];
2863 		if (lnum == zbr->lnum && offs == zbr->offs)
2864 			return 1; /* Found it */
2865 	}
2866 	/* Look right */
2867 	znode = zn;
2868 	n = nn;
2869 	while (1) {
2870 		err = tnc_next(c, &znode, &n);
2871 		if (err) {
2872 			if (err == -ENOENT)
2873 				return 0;
2874 			return err;
2875 		}
2876 		if (keys_cmp(c, key, &znode->zbranch[n].key))
2877 			break;
2878 		zbr = &znode->zbranch[n];
2879 		if (lnum == zbr->lnum && offs == zbr->offs)
2880 			return 1; /* Found it */
2881 	}
2882 	return 0;
2883 }
2884 
2885 /**
2886  * ubifs_tnc_has_node - determine whether a node is in the TNC.
2887  * @c: UBIFS file-system description object
2888  * @key: node key
2889  * @level: index node level (if it is an index node)
2890  * @lnum: node LEB number
2891  * @offs: node offset
2892  * @is_idx: non-zero if the node is an index node
2893  *
2894  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
2895  * negative error code in case of failure. For index nodes, @key has to be the
2896  * key of the first child. An index node is considered to be in the TNC only if
2897  * the corresponding znode is clean or has not been loaded.
2898  */
2899 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
2900 		       int lnum, int offs, int is_idx)
2901 {
2902 	int err;
2903 
2904 	mutex_lock(&c->tnc_mutex);
2905 	if (is_idx) {
2906 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
2907 		if (err < 0)
2908 			goto out_unlock;
2909 		if (err == 1)
2910 			/* The index node was found but it was dirty */
2911 			err = 0;
2912 		else if (err == 2)
2913 			/* The index node was found and it was clean */
2914 			err = 1;
2915 		else
2916 			BUG_ON(err != 0);
2917 	} else
2918 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
2919 
2920 out_unlock:
2921 	mutex_unlock(&c->tnc_mutex);
2922 	return err;
2923 }
2924 
2925 /**
2926  * ubifs_dirty_idx_node - dirty an index node.
2927  * @c: UBIFS file-system description object
2928  * @key: index node key
2929  * @level: index node level
2930  * @lnum: index node LEB number
2931  * @offs: index node offset
2932  *
2933  * This function loads and dirties an index node so that it can be garbage
2934  * collected. The @key argument has to be the key of the first child. This
2935  * function relies on the fact that 0:0 is never a valid LEB number and offset
2936  * for a main-area node. Returns %0 on success and a negative error code on
2937  * failure.
2938  */
2939 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
2940 			 int lnum, int offs)
2941 {
2942 	struct ubifs_znode *znode;
2943 	int err = 0;
2944 
2945 	mutex_lock(&c->tnc_mutex);
2946 	znode = lookup_znode(c, key, level, lnum, offs);
2947 	if (!znode)
2948 		goto out_unlock;
2949 	if (IS_ERR(znode)) {
2950 		err = PTR_ERR(znode);
2951 		goto out_unlock;
2952 	}
2953 	znode = dirty_cow_bottom_up(c, znode);
2954 	if (IS_ERR(znode)) {
2955 		err = PTR_ERR(znode);
2956 		goto out_unlock;
2957 	}
2958 
2959 out_unlock:
2960 	mutex_unlock(&c->tnc_mutex);
2961 	return err;
2962 }
2963