1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include "ubifs.h" 35 36 /* 37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 38 * @NAME_LESS: name corresponding to the first argument is less than second 39 * @NAME_MATCHES: names match 40 * @NAME_GREATER: name corresponding to the second argument is greater than 41 * first 42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 43 * 44 * These constants were introduce to improve readability. 45 */ 46 enum { 47 NAME_LESS = 0, 48 NAME_MATCHES = 1, 49 NAME_GREATER = 2, 50 NOT_ON_MEDIA = 3, 51 }; 52 53 /** 54 * insert_old_idx - record an index node obsoleted since the last commit start. 55 * @c: UBIFS file-system description object 56 * @lnum: LEB number of obsoleted index node 57 * @offs: offset of obsoleted index node 58 * 59 * Returns %0 on success, and a negative error code on failure. 60 * 61 * For recovery, there must always be a complete intact version of the index on 62 * flash at all times. That is called the "old index". It is the index as at the 63 * time of the last successful commit. Many of the index nodes in the old index 64 * may be dirty, but they must not be erased until the next successful commit 65 * (at which point that index becomes the old index). 66 * 67 * That means that the garbage collection and the in-the-gaps method of 68 * committing must be able to determine if an index node is in the old index. 69 * Most of the old index nodes can be found by looking up the TNC using the 70 * 'lookup_znode()' function. However, some of the old index nodes may have 71 * been deleted from the current index or may have been changed so much that 72 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 73 * That is what this function does. The RB-tree is ordered by LEB number and 74 * offset because they uniquely identify the old index node. 75 */ 76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 77 { 78 struct ubifs_old_idx *old_idx, *o; 79 struct rb_node **p, *parent = NULL; 80 81 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 82 if (unlikely(!old_idx)) 83 return -ENOMEM; 84 old_idx->lnum = lnum; 85 old_idx->offs = offs; 86 87 p = &c->old_idx.rb_node; 88 while (*p) { 89 parent = *p; 90 o = rb_entry(parent, struct ubifs_old_idx, rb); 91 if (lnum < o->lnum) 92 p = &(*p)->rb_left; 93 else if (lnum > o->lnum) 94 p = &(*p)->rb_right; 95 else if (offs < o->offs) 96 p = &(*p)->rb_left; 97 else if (offs > o->offs) 98 p = &(*p)->rb_right; 99 else { 100 ubifs_err("old idx added twice!"); 101 kfree(old_idx); 102 return 0; 103 } 104 } 105 rb_link_node(&old_idx->rb, parent, p); 106 rb_insert_color(&old_idx->rb, &c->old_idx); 107 return 0; 108 } 109 110 /** 111 * insert_old_idx_znode - record a znode obsoleted since last commit start. 112 * @c: UBIFS file-system description object 113 * @znode: znode of obsoleted index node 114 * 115 * Returns %0 on success, and a negative error code on failure. 116 */ 117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 118 { 119 if (znode->parent) { 120 struct ubifs_zbranch *zbr; 121 122 zbr = &znode->parent->zbranch[znode->iip]; 123 if (zbr->len) 124 return insert_old_idx(c, zbr->lnum, zbr->offs); 125 } else 126 if (c->zroot.len) 127 return insert_old_idx(c, c->zroot.lnum, 128 c->zroot.offs); 129 return 0; 130 } 131 132 /** 133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 134 * @c: UBIFS file-system description object 135 * @znode: znode of obsoleted index node 136 * 137 * Returns %0 on success, and a negative error code on failure. 138 */ 139 static int ins_clr_old_idx_znode(struct ubifs_info *c, 140 struct ubifs_znode *znode) 141 { 142 int err; 143 144 if (znode->parent) { 145 struct ubifs_zbranch *zbr; 146 147 zbr = &znode->parent->zbranch[znode->iip]; 148 if (zbr->len) { 149 err = insert_old_idx(c, zbr->lnum, zbr->offs); 150 if (err) 151 return err; 152 zbr->lnum = 0; 153 zbr->offs = 0; 154 zbr->len = 0; 155 } 156 } else 157 if (c->zroot.len) { 158 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 159 if (err) 160 return err; 161 c->zroot.lnum = 0; 162 c->zroot.offs = 0; 163 c->zroot.len = 0; 164 } 165 return 0; 166 } 167 168 /** 169 * destroy_old_idx - destroy the old_idx RB-tree. 170 * @c: UBIFS file-system description object 171 * 172 * During start commit, the old_idx RB-tree is used to avoid overwriting index 173 * nodes that were in the index last commit but have since been deleted. This 174 * is necessary for recovery i.e. the old index must be kept intact until the 175 * new index is successfully written. The old-idx RB-tree is used for the 176 * in-the-gaps method of writing index nodes and is destroyed every commit. 177 */ 178 void destroy_old_idx(struct ubifs_info *c) 179 { 180 struct rb_node *this = c->old_idx.rb_node; 181 struct ubifs_old_idx *old_idx; 182 183 while (this) { 184 if (this->rb_left) { 185 this = this->rb_left; 186 continue; 187 } else if (this->rb_right) { 188 this = this->rb_right; 189 continue; 190 } 191 old_idx = rb_entry(this, struct ubifs_old_idx, rb); 192 this = rb_parent(this); 193 if (this) { 194 if (this->rb_left == &old_idx->rb) 195 this->rb_left = NULL; 196 else 197 this->rb_right = NULL; 198 } 199 kfree(old_idx); 200 } 201 c->old_idx = RB_ROOT; 202 } 203 204 /** 205 * copy_znode - copy a dirty znode. 206 * @c: UBIFS file-system description object 207 * @znode: znode to copy 208 * 209 * A dirty znode being committed may not be changed, so it is copied. 210 */ 211 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 212 struct ubifs_znode *znode) 213 { 214 struct ubifs_znode *zn; 215 216 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 217 if (unlikely(!zn)) 218 return ERR_PTR(-ENOMEM); 219 220 memcpy(zn, znode, c->max_znode_sz); 221 zn->cnext = NULL; 222 __set_bit(DIRTY_ZNODE, &zn->flags); 223 __clear_bit(COW_ZNODE, &zn->flags); 224 225 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 226 __set_bit(OBSOLETE_ZNODE, &znode->flags); 227 228 if (znode->level != 0) { 229 int i; 230 const int n = zn->child_cnt; 231 232 /* The children now have new parent */ 233 for (i = 0; i < n; i++) { 234 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 235 236 if (zbr->znode) 237 zbr->znode->parent = zn; 238 } 239 } 240 241 atomic_long_inc(&c->dirty_zn_cnt); 242 return zn; 243 } 244 245 /** 246 * add_idx_dirt - add dirt due to a dirty znode. 247 * @c: UBIFS file-system description object 248 * @lnum: LEB number of index node 249 * @dirt: size of index node 250 * 251 * This function updates lprops dirty space and the new size of the index. 252 */ 253 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 254 { 255 c->calc_idx_sz -= ALIGN(dirt, 8); 256 return ubifs_add_dirt(c, lnum, dirt); 257 } 258 259 /** 260 * dirty_cow_znode - ensure a znode is not being committed. 261 * @c: UBIFS file-system description object 262 * @zbr: branch of znode to check 263 * 264 * Returns dirtied znode on success or negative error code on failure. 265 */ 266 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 267 struct ubifs_zbranch *zbr) 268 { 269 struct ubifs_znode *znode = zbr->znode; 270 struct ubifs_znode *zn; 271 int err; 272 273 if (!test_bit(COW_ZNODE, &znode->flags)) { 274 /* znode is not being committed */ 275 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 276 atomic_long_inc(&c->dirty_zn_cnt); 277 atomic_long_dec(&c->clean_zn_cnt); 278 atomic_long_dec(&ubifs_clean_zn_cnt); 279 err = add_idx_dirt(c, zbr->lnum, zbr->len); 280 if (unlikely(err)) 281 return ERR_PTR(err); 282 } 283 return znode; 284 } 285 286 zn = copy_znode(c, znode); 287 if (unlikely(IS_ERR(zn))) 288 return zn; 289 290 if (zbr->len) { 291 err = insert_old_idx(c, zbr->lnum, zbr->offs); 292 if (unlikely(err)) 293 return ERR_PTR(err); 294 err = add_idx_dirt(c, zbr->lnum, zbr->len); 295 } else 296 err = 0; 297 298 zbr->znode = zn; 299 zbr->lnum = 0; 300 zbr->offs = 0; 301 zbr->len = 0; 302 303 if (unlikely(err)) 304 return ERR_PTR(err); 305 return zn; 306 } 307 308 /** 309 * lnc_add - add a leaf node to the leaf node cache. 310 * @c: UBIFS file-system description object 311 * @zbr: zbranch of leaf node 312 * @node: leaf node 313 * 314 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 315 * purpose of the leaf node cache is to save re-reading the same leaf node over 316 * and over again. Most things are cached by VFS, however the file system must 317 * cache directory entries for readdir and for resolving hash collisions. The 318 * present implementation of the leaf node cache is extremely simple, and 319 * allows for error returns that are not used but that may be needed if a more 320 * complex implementation is created. 321 * 322 * Note, this function does not add the @node object to LNC directly, but 323 * allocates a copy of the object and adds the copy to LNC. The reason for this 324 * is that @node has been allocated outside of the TNC subsystem and will be 325 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 326 * may be changed at any time, e.g. freed by the shrinker. 327 */ 328 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 329 const void *node) 330 { 331 int err; 332 void *lnc_node; 333 const struct ubifs_dent_node *dent = node; 334 335 ubifs_assert(!zbr->leaf); 336 ubifs_assert(zbr->len != 0); 337 ubifs_assert(is_hash_key(c, &zbr->key)); 338 339 err = ubifs_validate_entry(c, dent); 340 if (err) { 341 dbg_dump_stack(); 342 dbg_dump_node(c, dent); 343 return err; 344 } 345 346 lnc_node = kmalloc(zbr->len, GFP_NOFS); 347 if (!lnc_node) 348 /* We don't have to have the cache, so no error */ 349 return 0; 350 351 memcpy(lnc_node, node, zbr->len); 352 zbr->leaf = lnc_node; 353 return 0; 354 } 355 356 /** 357 * lnc_add_directly - add a leaf node to the leaf-node-cache. 358 * @c: UBIFS file-system description object 359 * @zbr: zbranch of leaf node 360 * @node: leaf node 361 * 362 * This function is similar to 'lnc_add()', but it does not create a copy of 363 * @node but inserts @node to TNC directly. 364 */ 365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 366 void *node) 367 { 368 int err; 369 370 ubifs_assert(!zbr->leaf); 371 ubifs_assert(zbr->len != 0); 372 373 err = ubifs_validate_entry(c, node); 374 if (err) { 375 dbg_dump_stack(); 376 dbg_dump_node(c, node); 377 return err; 378 } 379 380 zbr->leaf = node; 381 return 0; 382 } 383 384 /** 385 * lnc_free - remove a leaf node from the leaf node cache. 386 * @zbr: zbranch of leaf node 387 * @node: leaf node 388 */ 389 static void lnc_free(struct ubifs_zbranch *zbr) 390 { 391 if (!zbr->leaf) 392 return; 393 kfree(zbr->leaf); 394 zbr->leaf = NULL; 395 } 396 397 /** 398 * tnc_read_node_nm - read a "hashed" leaf node. 399 * @c: UBIFS file-system description object 400 * @zbr: key and position of the node 401 * @node: node is returned here 402 * 403 * This function reads a "hashed" node defined by @zbr from the leaf node cache 404 * (in it is there) or from the hash media, in which case the node is also 405 * added to LNC. Returns zero in case of success or a negative negative error 406 * code in case of failure. 407 */ 408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 409 void *node) 410 { 411 int err; 412 413 ubifs_assert(is_hash_key(c, &zbr->key)); 414 415 if (zbr->leaf) { 416 /* Read from the leaf node cache */ 417 ubifs_assert(zbr->len != 0); 418 memcpy(node, zbr->leaf, zbr->len); 419 return 0; 420 } 421 422 err = ubifs_tnc_read_node(c, zbr, node); 423 if (err) 424 return err; 425 426 /* Add the node to the leaf node cache */ 427 err = lnc_add(c, zbr, node); 428 return err; 429 } 430 431 /** 432 * try_read_node - read a node if it is a node. 433 * @c: UBIFS file-system description object 434 * @buf: buffer to read to 435 * @type: node type 436 * @len: node length (not aligned) 437 * @lnum: LEB number of node to read 438 * @offs: offset of node to read 439 * 440 * This function tries to read a node of known type and length, checks it and 441 * stores it in @buf. This function returns %1 if a node is present and %0 if 442 * a node is not present. A negative error code is returned for I/O errors. 443 * This function performs that same function as ubifs_read_node except that 444 * it does not require that there is actually a node present and instead 445 * the return code indicates if a node was read. 446 */ 447 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 448 int len, int lnum, int offs) 449 { 450 int err, node_len; 451 struct ubifs_ch *ch = buf; 452 uint32_t crc, node_crc; 453 454 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 455 456 err = ubi_read(c->ubi, lnum, buf, offs, len); 457 if (err) { 458 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 459 type, lnum, offs, err); 460 return err; 461 } 462 463 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 464 return 0; 465 466 if (ch->node_type != type) 467 return 0; 468 469 node_len = le32_to_cpu(ch->len); 470 if (node_len != len) 471 return 0; 472 473 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 474 node_crc = le32_to_cpu(ch->crc); 475 if (crc != node_crc) 476 return 0; 477 478 return 1; 479 } 480 481 /** 482 * fallible_read_node - try to read a leaf node. 483 * @c: UBIFS file-system description object 484 * @key: key of node to read 485 * @zbr: position of node 486 * @node: node returned 487 * 488 * This function tries to read a node and returns %1 if the node is read, %0 489 * if the node is not present, and a negative error code in the case of error. 490 */ 491 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 492 struct ubifs_zbranch *zbr, void *node) 493 { 494 int ret; 495 496 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); 497 498 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 499 zbr->offs); 500 if (ret == 1) { 501 union ubifs_key node_key; 502 struct ubifs_dent_node *dent = node; 503 504 /* All nodes have key in the same place */ 505 key_read(c, &dent->key, &node_key); 506 if (keys_cmp(c, key, &node_key) != 0) 507 ret = 0; 508 } 509 if (ret == 0 && c->replaying) 510 dbg_mnt("dangling branch LEB %d:%d len %d, key %s", 511 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); 512 return ret; 513 } 514 515 /** 516 * matches_name - determine if a direntry or xattr entry matches a given name. 517 * @c: UBIFS file-system description object 518 * @zbr: zbranch of dent 519 * @nm: name to match 520 * 521 * This function checks if xentry/direntry referred by zbranch @zbr matches name 522 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 523 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 524 * of failure, a negative error code is returned. 525 */ 526 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 527 const struct qstr *nm) 528 { 529 struct ubifs_dent_node *dent; 530 int nlen, err; 531 532 /* If possible, match against the dent in the leaf node cache */ 533 if (!zbr->leaf) { 534 dent = kmalloc(zbr->len, GFP_NOFS); 535 if (!dent) 536 return -ENOMEM; 537 538 err = ubifs_tnc_read_node(c, zbr, dent); 539 if (err) 540 goto out_free; 541 542 /* Add the node to the leaf node cache */ 543 err = lnc_add_directly(c, zbr, dent); 544 if (err) 545 goto out_free; 546 } else 547 dent = zbr->leaf; 548 549 nlen = le16_to_cpu(dent->nlen); 550 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 551 if (err == 0) { 552 if (nlen == nm->len) 553 return NAME_MATCHES; 554 else if (nlen < nm->len) 555 return NAME_LESS; 556 else 557 return NAME_GREATER; 558 } else if (err < 0) 559 return NAME_LESS; 560 else 561 return NAME_GREATER; 562 563 out_free: 564 kfree(dent); 565 return err; 566 } 567 568 /** 569 * get_znode - get a TNC znode that may not be loaded yet. 570 * @c: UBIFS file-system description object 571 * @znode: parent znode 572 * @n: znode branch slot number 573 * 574 * This function returns the znode or a negative error code. 575 */ 576 static struct ubifs_znode *get_znode(struct ubifs_info *c, 577 struct ubifs_znode *znode, int n) 578 { 579 struct ubifs_zbranch *zbr; 580 581 zbr = &znode->zbranch[n]; 582 if (zbr->znode) 583 znode = zbr->znode; 584 else 585 znode = ubifs_load_znode(c, zbr, znode, n); 586 return znode; 587 } 588 589 /** 590 * tnc_next - find next TNC entry. 591 * @c: UBIFS file-system description object 592 * @zn: znode is passed and returned here 593 * @n: znode branch slot number is passed and returned here 594 * 595 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 596 * no next entry, or a negative error code otherwise. 597 */ 598 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 599 { 600 struct ubifs_znode *znode = *zn; 601 int nn = *n; 602 603 nn += 1; 604 if (nn < znode->child_cnt) { 605 *n = nn; 606 return 0; 607 } 608 while (1) { 609 struct ubifs_znode *zp; 610 611 zp = znode->parent; 612 if (!zp) 613 return -ENOENT; 614 nn = znode->iip + 1; 615 znode = zp; 616 if (nn < znode->child_cnt) { 617 znode = get_znode(c, znode, nn); 618 if (IS_ERR(znode)) 619 return PTR_ERR(znode); 620 while (znode->level != 0) { 621 znode = get_znode(c, znode, 0); 622 if (IS_ERR(znode)) 623 return PTR_ERR(znode); 624 } 625 nn = 0; 626 break; 627 } 628 } 629 *zn = znode; 630 *n = nn; 631 return 0; 632 } 633 634 /** 635 * tnc_prev - find previous TNC entry. 636 * @c: UBIFS file-system description object 637 * @zn: znode is returned here 638 * @n: znode branch slot number is passed and returned here 639 * 640 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 641 * there is no next entry, or a negative error code otherwise. 642 */ 643 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 644 { 645 struct ubifs_znode *znode = *zn; 646 int nn = *n; 647 648 if (nn > 0) { 649 *n = nn - 1; 650 return 0; 651 } 652 while (1) { 653 struct ubifs_znode *zp; 654 655 zp = znode->parent; 656 if (!zp) 657 return -ENOENT; 658 nn = znode->iip - 1; 659 znode = zp; 660 if (nn >= 0) { 661 znode = get_znode(c, znode, nn); 662 if (IS_ERR(znode)) 663 return PTR_ERR(znode); 664 while (znode->level != 0) { 665 nn = znode->child_cnt - 1; 666 znode = get_znode(c, znode, nn); 667 if (IS_ERR(znode)) 668 return PTR_ERR(znode); 669 } 670 nn = znode->child_cnt - 1; 671 break; 672 } 673 } 674 *zn = znode; 675 *n = nn; 676 return 0; 677 } 678 679 /** 680 * resolve_collision - resolve a collision. 681 * @c: UBIFS file-system description object 682 * @key: key of a directory or extended attribute entry 683 * @zn: znode is returned here 684 * @n: zbranch number is passed and returned here 685 * @nm: name of the entry 686 * 687 * This function is called for "hashed" keys to make sure that the found key 688 * really corresponds to the looked up node (directory or extended attribute 689 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 690 * %0 is returned if @nm is not found and @zn and @n are set to the previous 691 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 692 * This means that @n may be set to %-1 if the leftmost key in @zn is the 693 * previous one. A negative error code is returned on failures. 694 */ 695 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 696 struct ubifs_znode **zn, int *n, 697 const struct qstr *nm) 698 { 699 int err; 700 701 err = matches_name(c, &(*zn)->zbranch[*n], nm); 702 if (unlikely(err < 0)) 703 return err; 704 if (err == NAME_MATCHES) 705 return 1; 706 707 if (err == NAME_GREATER) { 708 /* Look left */ 709 while (1) { 710 err = tnc_prev(c, zn, n); 711 if (err == -ENOENT) { 712 ubifs_assert(*n == 0); 713 *n = -1; 714 return 0; 715 } 716 if (err < 0) 717 return err; 718 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 719 /* 720 * We have found the branch after which we would 721 * like to insert, but inserting in this znode 722 * may still be wrong. Consider the following 3 723 * znodes, in the case where we are resolving a 724 * collision with Key2. 725 * 726 * znode zp 727 * ---------------------- 728 * level 1 | Key0 | Key1 | 729 * ----------------------- 730 * | | 731 * znode za | | znode zb 732 * ------------ ------------ 733 * level 0 | Key0 | | Key2 | 734 * ------------ ------------ 735 * 736 * The lookup finds Key2 in znode zb. Lets say 737 * there is no match and the name is greater so 738 * we look left. When we find Key0, we end up 739 * here. If we return now, we will insert into 740 * znode za at slot n = 1. But that is invalid 741 * according to the parent's keys. Key2 must 742 * be inserted into znode zb. 743 * 744 * Note, this problem is not relevant for the 745 * case when we go right, because 746 * 'tnc_insert()' would correct the parent key. 747 */ 748 if (*n == (*zn)->child_cnt - 1) { 749 err = tnc_next(c, zn, n); 750 if (err) { 751 /* Should be impossible */ 752 ubifs_assert(0); 753 if (err == -ENOENT) 754 err = -EINVAL; 755 return err; 756 } 757 ubifs_assert(*n == 0); 758 *n = -1; 759 } 760 return 0; 761 } 762 err = matches_name(c, &(*zn)->zbranch[*n], nm); 763 if (err < 0) 764 return err; 765 if (err == NAME_LESS) 766 return 0; 767 if (err == NAME_MATCHES) 768 return 1; 769 ubifs_assert(err == NAME_GREATER); 770 } 771 } else { 772 int nn = *n; 773 struct ubifs_znode *znode = *zn; 774 775 /* Look right */ 776 while (1) { 777 err = tnc_next(c, &znode, &nn); 778 if (err == -ENOENT) 779 return 0; 780 if (err < 0) 781 return err; 782 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 783 return 0; 784 err = matches_name(c, &znode->zbranch[nn], nm); 785 if (err < 0) 786 return err; 787 if (err == NAME_GREATER) 788 return 0; 789 *zn = znode; 790 *n = nn; 791 if (err == NAME_MATCHES) 792 return 1; 793 ubifs_assert(err == NAME_LESS); 794 } 795 } 796 } 797 798 /** 799 * fallible_matches_name - determine if a dent matches a given name. 800 * @c: UBIFS file-system description object 801 * @zbr: zbranch of dent 802 * @nm: name to match 803 * 804 * This is a "fallible" version of 'matches_name()' function which does not 805 * panic if the direntry/xentry referred by @zbr does not exist on the media. 806 * 807 * This function checks if xentry/direntry referred by zbranch @zbr matches name 808 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 809 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 810 * if xentry/direntry referred by @zbr does not exist on the media. A negative 811 * error code is returned in case of failure. 812 */ 813 static int fallible_matches_name(struct ubifs_info *c, 814 struct ubifs_zbranch *zbr, 815 const struct qstr *nm) 816 { 817 struct ubifs_dent_node *dent; 818 int nlen, err; 819 820 /* If possible, match against the dent in the leaf node cache */ 821 if (!zbr->leaf) { 822 dent = kmalloc(zbr->len, GFP_NOFS); 823 if (!dent) 824 return -ENOMEM; 825 826 err = fallible_read_node(c, &zbr->key, zbr, dent); 827 if (err < 0) 828 goto out_free; 829 if (err == 0) { 830 /* The node was not present */ 831 err = NOT_ON_MEDIA; 832 goto out_free; 833 } 834 ubifs_assert(err == 1); 835 836 err = lnc_add_directly(c, zbr, dent); 837 if (err) 838 goto out_free; 839 } else 840 dent = zbr->leaf; 841 842 nlen = le16_to_cpu(dent->nlen); 843 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 844 if (err == 0) { 845 if (nlen == nm->len) 846 return NAME_MATCHES; 847 else if (nlen < nm->len) 848 return NAME_LESS; 849 else 850 return NAME_GREATER; 851 } else if (err < 0) 852 return NAME_LESS; 853 else 854 return NAME_GREATER; 855 856 out_free: 857 kfree(dent); 858 return err; 859 } 860 861 /** 862 * fallible_resolve_collision - resolve a collision even if nodes are missing. 863 * @c: UBIFS file-system description object 864 * @key: key 865 * @zn: znode is returned here 866 * @n: branch number is passed and returned here 867 * @nm: name of directory entry 868 * @adding: indicates caller is adding a key to the TNC 869 * 870 * This is a "fallible" version of the 'resolve_collision()' function which 871 * does not panic if one of the nodes referred to by TNC does not exist on the 872 * media. This may happen when replaying the journal if a deleted node was 873 * Garbage-collected and the commit was not done. A branch that refers to a node 874 * that is not present is called a dangling branch. The following are the return 875 * codes for this function: 876 * o if @nm was found, %1 is returned and @zn and @n are set to the found 877 * branch; 878 * o if we are @adding and @nm was not found, %0 is returned; 879 * o if we are not @adding and @nm was not found, but a dangling branch was 880 * found, then %1 is returned and @zn and @n are set to the dangling branch; 881 * o a negative error code is returned in case of failure. 882 */ 883 static int fallible_resolve_collision(struct ubifs_info *c, 884 const union ubifs_key *key, 885 struct ubifs_znode **zn, int *n, 886 const struct qstr *nm, int adding) 887 { 888 struct ubifs_znode *o_znode = NULL, *znode = *zn; 889 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 890 891 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 892 if (unlikely(cmp < 0)) 893 return cmp; 894 if (cmp == NAME_MATCHES) 895 return 1; 896 if (cmp == NOT_ON_MEDIA) { 897 o_znode = znode; 898 o_n = nn; 899 /* 900 * We are unlucky and hit a dangling branch straight away. 901 * Now we do not really know where to go to find the needed 902 * branch - to the left or to the right. Well, let's try left. 903 */ 904 unsure = 1; 905 } else if (!adding) 906 unsure = 1; /* Remove a dangling branch wherever it is */ 907 908 if (cmp == NAME_GREATER || unsure) { 909 /* Look left */ 910 while (1) { 911 err = tnc_prev(c, zn, n); 912 if (err == -ENOENT) { 913 ubifs_assert(*n == 0); 914 *n = -1; 915 break; 916 } 917 if (err < 0) 918 return err; 919 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 920 /* See comments in 'resolve_collision()' */ 921 if (*n == (*zn)->child_cnt - 1) { 922 err = tnc_next(c, zn, n); 923 if (err) { 924 /* Should be impossible */ 925 ubifs_assert(0); 926 if (err == -ENOENT) 927 err = -EINVAL; 928 return err; 929 } 930 ubifs_assert(*n == 0); 931 *n = -1; 932 } 933 break; 934 } 935 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 936 if (err < 0) 937 return err; 938 if (err == NAME_MATCHES) 939 return 1; 940 if (err == NOT_ON_MEDIA) { 941 o_znode = *zn; 942 o_n = *n; 943 continue; 944 } 945 if (!adding) 946 continue; 947 if (err == NAME_LESS) 948 break; 949 else 950 unsure = 0; 951 } 952 } 953 954 if (cmp == NAME_LESS || unsure) { 955 /* Look right */ 956 *zn = znode; 957 *n = nn; 958 while (1) { 959 err = tnc_next(c, &znode, &nn); 960 if (err == -ENOENT) 961 break; 962 if (err < 0) 963 return err; 964 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 965 break; 966 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 967 if (err < 0) 968 return err; 969 if (err == NAME_GREATER) 970 break; 971 *zn = znode; 972 *n = nn; 973 if (err == NAME_MATCHES) 974 return 1; 975 if (err == NOT_ON_MEDIA) { 976 o_znode = znode; 977 o_n = nn; 978 } 979 } 980 } 981 982 /* Never match a dangling branch when adding */ 983 if (adding || !o_znode) 984 return 0; 985 986 dbg_mnt("dangling match LEB %d:%d len %d %s", 987 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 988 o_znode->zbranch[o_n].len, DBGKEY(key)); 989 *zn = o_znode; 990 *n = o_n; 991 return 1; 992 } 993 994 /** 995 * matches_position - determine if a zbranch matches a given position. 996 * @zbr: zbranch of dent 997 * @lnum: LEB number of dent to match 998 * @offs: offset of dent to match 999 * 1000 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1001 */ 1002 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1003 { 1004 if (zbr->lnum == lnum && zbr->offs == offs) 1005 return 1; 1006 else 1007 return 0; 1008 } 1009 1010 /** 1011 * resolve_collision_directly - resolve a collision directly. 1012 * @c: UBIFS file-system description object 1013 * @key: key of directory entry 1014 * @zn: znode is passed and returned here 1015 * @n: zbranch number is passed and returned here 1016 * @lnum: LEB number of dent node to match 1017 * @offs: offset of dent node to match 1018 * 1019 * This function is used for "hashed" keys to make sure the found directory or 1020 * extended attribute entry node is what was looked for. It is used when the 1021 * flash address of the right node is known (@lnum:@offs) which makes it much 1022 * easier to resolve collisions (no need to read entries and match full 1023 * names). This function returns %1 and sets @zn and @n if the collision is 1024 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1025 * previous directory entry. Otherwise a negative error code is returned. 1026 */ 1027 static int resolve_collision_directly(struct ubifs_info *c, 1028 const union ubifs_key *key, 1029 struct ubifs_znode **zn, int *n, 1030 int lnum, int offs) 1031 { 1032 struct ubifs_znode *znode; 1033 int nn, err; 1034 1035 znode = *zn; 1036 nn = *n; 1037 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1038 return 1; 1039 1040 /* Look left */ 1041 while (1) { 1042 err = tnc_prev(c, &znode, &nn); 1043 if (err == -ENOENT) 1044 break; 1045 if (err < 0) 1046 return err; 1047 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1048 break; 1049 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1050 *zn = znode; 1051 *n = nn; 1052 return 1; 1053 } 1054 } 1055 1056 /* Look right */ 1057 znode = *zn; 1058 nn = *n; 1059 while (1) { 1060 err = tnc_next(c, &znode, &nn); 1061 if (err == -ENOENT) 1062 return 0; 1063 if (err < 0) 1064 return err; 1065 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1066 return 0; 1067 *zn = znode; 1068 *n = nn; 1069 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1070 return 1; 1071 } 1072 } 1073 1074 /** 1075 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1076 * @c: UBIFS file-system description object 1077 * @znode: znode to dirty 1078 * 1079 * If we do not have a unique key that resides in a znode, then we cannot 1080 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1081 * This function records the path back to the last dirty ancestor, and then 1082 * dirties the znodes on that path. 1083 */ 1084 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1085 struct ubifs_znode *znode) 1086 { 1087 struct ubifs_znode *zp; 1088 int *path = c->bottom_up_buf, p = 0; 1089 1090 ubifs_assert(c->zroot.znode); 1091 ubifs_assert(znode); 1092 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1093 kfree(c->bottom_up_buf); 1094 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1095 GFP_NOFS); 1096 if (!c->bottom_up_buf) 1097 return ERR_PTR(-ENOMEM); 1098 path = c->bottom_up_buf; 1099 } 1100 if (c->zroot.znode->level) { 1101 /* Go up until parent is dirty */ 1102 while (1) { 1103 int n; 1104 1105 zp = znode->parent; 1106 if (!zp) 1107 break; 1108 n = znode->iip; 1109 ubifs_assert(p < c->zroot.znode->level); 1110 path[p++] = n; 1111 if (!zp->cnext && ubifs_zn_dirty(znode)) 1112 break; 1113 znode = zp; 1114 } 1115 } 1116 1117 /* Come back down, dirtying as we go */ 1118 while (1) { 1119 struct ubifs_zbranch *zbr; 1120 1121 zp = znode->parent; 1122 if (zp) { 1123 ubifs_assert(path[p - 1] >= 0); 1124 ubifs_assert(path[p - 1] < zp->child_cnt); 1125 zbr = &zp->zbranch[path[--p]]; 1126 znode = dirty_cow_znode(c, zbr); 1127 } else { 1128 ubifs_assert(znode == c->zroot.znode); 1129 znode = dirty_cow_znode(c, &c->zroot); 1130 } 1131 if (unlikely(IS_ERR(znode)) || !p) 1132 break; 1133 ubifs_assert(path[p - 1] >= 0); 1134 ubifs_assert(path[p - 1] < znode->child_cnt); 1135 znode = znode->zbranch[path[p - 1]].znode; 1136 } 1137 1138 return znode; 1139 } 1140 1141 /** 1142 * ubifs_lookup_level0 - search for zero-level znode. 1143 * @c: UBIFS file-system description object 1144 * @key: key to lookup 1145 * @zn: znode is returned here 1146 * @n: znode branch slot number is returned here 1147 * 1148 * This function looks up the TNC tree and search for zero-level znode which 1149 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1150 * cases: 1151 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1152 * is returned and slot number of the matched branch is stored in @n; 1153 * o not exact match, which means that zero-level znode does not contain 1154 * @key, then %0 is returned and slot number of the closed branch is stored 1155 * in @n; 1156 * o @key is so small that it is even less than the lowest key of the 1157 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1158 * 1159 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1160 * function reads corresponding indexing nodes and inserts them to TNC. In 1161 * case of failure, a negative error code is returned. 1162 */ 1163 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1164 struct ubifs_znode **zn, int *n) 1165 { 1166 int err, exact; 1167 struct ubifs_znode *znode; 1168 unsigned long time = get_seconds(); 1169 1170 dbg_tnc("search key %s", DBGKEY(key)); 1171 1172 znode = c->zroot.znode; 1173 if (unlikely(!znode)) { 1174 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1175 if (IS_ERR(znode)) 1176 return PTR_ERR(znode); 1177 } 1178 1179 znode->time = time; 1180 1181 while (1) { 1182 struct ubifs_zbranch *zbr; 1183 1184 exact = ubifs_search_zbranch(c, znode, key, n); 1185 1186 if (znode->level == 0) 1187 break; 1188 1189 if (*n < 0) 1190 *n = 0; 1191 zbr = &znode->zbranch[*n]; 1192 1193 if (zbr->znode) { 1194 znode->time = time; 1195 znode = zbr->znode; 1196 continue; 1197 } 1198 1199 /* znode is not in TNC cache, load it from the media */ 1200 znode = ubifs_load_znode(c, zbr, znode, *n); 1201 if (IS_ERR(znode)) 1202 return PTR_ERR(znode); 1203 } 1204 1205 *zn = znode; 1206 if (exact || !is_hash_key(c, key) || *n != -1) { 1207 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1208 return exact; 1209 } 1210 1211 /* 1212 * Here is a tricky place. We have not found the key and this is a 1213 * "hashed" key, which may collide. The rest of the code deals with 1214 * situations like this: 1215 * 1216 * | 3 | 5 | 1217 * / \ 1218 * | 3 | 5 | | 6 | 7 | (x) 1219 * 1220 * Or more a complex example: 1221 * 1222 * | 1 | 5 | 1223 * / \ 1224 * | 1 | 3 | | 5 | 8 | 1225 * \ / 1226 * | 5 | 5 | | 6 | 7 | (x) 1227 * 1228 * In the examples, if we are looking for key "5", we may reach nodes 1229 * marked with "(x)". In this case what we have do is to look at the 1230 * left and see if there is "5" key there. If there is, we have to 1231 * return it. 1232 * 1233 * Note, this whole situation is possible because we allow to have 1234 * elements which are equivalent to the next key in the parent in the 1235 * children of current znode. For example, this happens if we split a 1236 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1237 * like this: 1238 * | 3 | 5 | 1239 * / \ 1240 * | 3 | 5 | | 5 | 6 | 7 | 1241 * ^ 1242 * And this becomes what is at the first "picture" after key "5" marked 1243 * with "^" is removed. What could be done is we could prohibit 1244 * splitting in the middle of the colliding sequence. Also, when 1245 * removing the leftmost key, we would have to correct the key of the 1246 * parent node, which would introduce additional complications. Namely, 1247 * if we changed the the leftmost key of the parent znode, the garbage 1248 * collector would be unable to find it (GC is doing this when GC'ing 1249 * indexing LEBs). Although we already have an additional RB-tree where 1250 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1251 * after the commit. But anyway, this does not look easy to implement 1252 * so we did not try this. 1253 */ 1254 err = tnc_prev(c, &znode, n); 1255 if (err == -ENOENT) { 1256 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1257 *n = -1; 1258 return 0; 1259 } 1260 if (unlikely(err < 0)) 1261 return err; 1262 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1263 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1264 *n = -1; 1265 return 0; 1266 } 1267 1268 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1269 *zn = znode; 1270 return 1; 1271 } 1272 1273 /** 1274 * lookup_level0_dirty - search for zero-level znode dirtying. 1275 * @c: UBIFS file-system description object 1276 * @key: key to lookup 1277 * @zn: znode is returned here 1278 * @n: znode branch slot number is returned here 1279 * 1280 * This function looks up the TNC tree and search for zero-level znode which 1281 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1282 * cases: 1283 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1284 * is returned and slot number of the matched branch is stored in @n; 1285 * o not exact match, which means that zero-level znode does not contain @key 1286 * then %0 is returned and slot number of the closed branch is stored in 1287 * @n; 1288 * o @key is so small that it is even less than the lowest key of the 1289 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1290 * 1291 * Additionally all znodes in the path from the root to the located zero-level 1292 * znode are marked as dirty. 1293 * 1294 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1295 * function reads corresponding indexing nodes and inserts them to TNC. In 1296 * case of failure, a negative error code is returned. 1297 */ 1298 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1299 struct ubifs_znode **zn, int *n) 1300 { 1301 int err, exact; 1302 struct ubifs_znode *znode; 1303 unsigned long time = get_seconds(); 1304 1305 dbg_tnc("search and dirty key %s", DBGKEY(key)); 1306 1307 znode = c->zroot.znode; 1308 if (unlikely(!znode)) { 1309 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1310 if (IS_ERR(znode)) 1311 return PTR_ERR(znode); 1312 } 1313 1314 znode = dirty_cow_znode(c, &c->zroot); 1315 if (IS_ERR(znode)) 1316 return PTR_ERR(znode); 1317 1318 znode->time = time; 1319 1320 while (1) { 1321 struct ubifs_zbranch *zbr; 1322 1323 exact = ubifs_search_zbranch(c, znode, key, n); 1324 1325 if (znode->level == 0) 1326 break; 1327 1328 if (*n < 0) 1329 *n = 0; 1330 zbr = &znode->zbranch[*n]; 1331 1332 if (zbr->znode) { 1333 znode->time = time; 1334 znode = dirty_cow_znode(c, zbr); 1335 if (IS_ERR(znode)) 1336 return PTR_ERR(znode); 1337 continue; 1338 } 1339 1340 /* znode is not in TNC cache, load it from the media */ 1341 znode = ubifs_load_znode(c, zbr, znode, *n); 1342 if (IS_ERR(znode)) 1343 return PTR_ERR(znode); 1344 znode = dirty_cow_znode(c, zbr); 1345 if (IS_ERR(znode)) 1346 return PTR_ERR(znode); 1347 } 1348 1349 *zn = znode; 1350 if (exact || !is_hash_key(c, key) || *n != -1) { 1351 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1352 return exact; 1353 } 1354 1355 /* 1356 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1357 * code. 1358 */ 1359 err = tnc_prev(c, &znode, n); 1360 if (err == -ENOENT) { 1361 *n = -1; 1362 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1363 return 0; 1364 } 1365 if (unlikely(err < 0)) 1366 return err; 1367 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1368 *n = -1; 1369 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1370 return 0; 1371 } 1372 1373 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1374 znode = dirty_cow_bottom_up(c, znode); 1375 if (IS_ERR(znode)) 1376 return PTR_ERR(znode); 1377 } 1378 1379 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1380 *zn = znode; 1381 return 1; 1382 } 1383 1384 /** 1385 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1386 * @c: UBIFS file-system description object 1387 * @lnum: LEB number 1388 * @gc_seq1: garbage collection sequence number 1389 * 1390 * This function determines if @lnum may have been garbage collected since 1391 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1392 * %0 is returned. 1393 */ 1394 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1395 { 1396 int gc_seq2, gced_lnum; 1397 1398 gced_lnum = c->gced_lnum; 1399 smp_rmb(); 1400 gc_seq2 = c->gc_seq; 1401 /* Same seq means no GC */ 1402 if (gc_seq1 == gc_seq2) 1403 return 0; 1404 /* Different by more than 1 means we don't know */ 1405 if (gc_seq1 + 1 != gc_seq2) 1406 return 1; 1407 /* 1408 * We have seen the sequence number has increased by 1. Now we need to 1409 * be sure we read the right LEB number, so read it again. 1410 */ 1411 smp_rmb(); 1412 if (gced_lnum != c->gced_lnum) 1413 return 1; 1414 /* Finally we can check lnum */ 1415 if (gced_lnum == lnum) 1416 return 1; 1417 return 0; 1418 } 1419 1420 /** 1421 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1422 * @c: UBIFS file-system description object 1423 * @key: node key to lookup 1424 * @node: the node is returned here 1425 * @lnum: LEB number is returned here 1426 * @offs: offset is returned here 1427 * 1428 * This function look up and reads node with key @key. The caller has to make 1429 * sure the @node buffer is large enough to fit the node. Returns zero in case 1430 * of success, %-ENOENT if the node was not found, and a negative error code in 1431 * case of failure. The node location can be returned in @lnum and @offs. 1432 */ 1433 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1434 void *node, int *lnum, int *offs) 1435 { 1436 int found, n, err, safely = 0, gc_seq1; 1437 struct ubifs_znode *znode; 1438 struct ubifs_zbranch zbr, *zt; 1439 1440 again: 1441 mutex_lock(&c->tnc_mutex); 1442 found = ubifs_lookup_level0(c, key, &znode, &n); 1443 if (!found) { 1444 err = -ENOENT; 1445 goto out; 1446 } else if (found < 0) { 1447 err = found; 1448 goto out; 1449 } 1450 zt = &znode->zbranch[n]; 1451 if (lnum) { 1452 *lnum = zt->lnum; 1453 *offs = zt->offs; 1454 } 1455 if (is_hash_key(c, key)) { 1456 /* 1457 * In this case the leaf node cache gets used, so we pass the 1458 * address of the zbranch and keep the mutex locked 1459 */ 1460 err = tnc_read_node_nm(c, zt, node); 1461 goto out; 1462 } 1463 if (safely) { 1464 err = ubifs_tnc_read_node(c, zt, node); 1465 goto out; 1466 } 1467 /* Drop the TNC mutex prematurely and race with garbage collection */ 1468 zbr = znode->zbranch[n]; 1469 gc_seq1 = c->gc_seq; 1470 mutex_unlock(&c->tnc_mutex); 1471 1472 if (ubifs_get_wbuf(c, zbr.lnum)) { 1473 /* We do not GC journal heads */ 1474 err = ubifs_tnc_read_node(c, &zbr, node); 1475 return err; 1476 } 1477 1478 err = fallible_read_node(c, key, &zbr, node); 1479 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1480 /* 1481 * The node may have been GC'ed out from under us so try again 1482 * while keeping the TNC mutex locked. 1483 */ 1484 safely = 1; 1485 goto again; 1486 } 1487 return 0; 1488 1489 out: 1490 mutex_unlock(&c->tnc_mutex); 1491 return err; 1492 } 1493 1494 /** 1495 * do_lookup_nm- look up a "hashed" node. 1496 * @c: UBIFS file-system description object 1497 * @key: node key to lookup 1498 * @node: the node is returned here 1499 * @nm: node name 1500 * 1501 * This function look up and reads a node which contains name hash in the key. 1502 * Since the hash may have collisions, there may be many nodes with the same 1503 * key, so we have to sequentially look to all of them until the needed one is 1504 * found. This function returns zero in case of success, %-ENOENT if the node 1505 * was not found, and a negative error code in case of failure. 1506 */ 1507 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1508 void *node, const struct qstr *nm) 1509 { 1510 int found, n, err; 1511 struct ubifs_znode *znode; 1512 1513 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); 1514 mutex_lock(&c->tnc_mutex); 1515 found = ubifs_lookup_level0(c, key, &znode, &n); 1516 if (!found) { 1517 err = -ENOENT; 1518 goto out_unlock; 1519 } else if (found < 0) { 1520 err = found; 1521 goto out_unlock; 1522 } 1523 1524 ubifs_assert(n >= 0); 1525 1526 err = resolve_collision(c, key, &znode, &n, nm); 1527 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1528 if (unlikely(err < 0)) 1529 goto out_unlock; 1530 if (err == 0) { 1531 err = -ENOENT; 1532 goto out_unlock; 1533 } 1534 1535 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1536 1537 out_unlock: 1538 mutex_unlock(&c->tnc_mutex); 1539 return err; 1540 } 1541 1542 /** 1543 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1544 * @c: UBIFS file-system description object 1545 * @key: node key to lookup 1546 * @node: the node is returned here 1547 * @nm: node name 1548 * 1549 * This function look up and reads a node which contains name hash in the key. 1550 * Since the hash may have collisions, there may be many nodes with the same 1551 * key, so we have to sequentially look to all of them until the needed one is 1552 * found. This function returns zero in case of success, %-ENOENT if the node 1553 * was not found, and a negative error code in case of failure. 1554 */ 1555 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1556 void *node, const struct qstr *nm) 1557 { 1558 int err, len; 1559 const struct ubifs_dent_node *dent = node; 1560 1561 /* 1562 * We assume that in most of the cases there are no name collisions and 1563 * 'ubifs_tnc_lookup()' returns us the right direntry. 1564 */ 1565 err = ubifs_tnc_lookup(c, key, node); 1566 if (err) 1567 return err; 1568 1569 len = le16_to_cpu(dent->nlen); 1570 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1571 return 0; 1572 1573 /* 1574 * Unluckily, there are hash collisions and we have to iterate over 1575 * them look at each direntry with colliding name hash sequentially. 1576 */ 1577 return do_lookup_nm(c, key, node, nm); 1578 } 1579 1580 /** 1581 * correct_parent_keys - correct parent znodes' keys. 1582 * @c: UBIFS file-system description object 1583 * @znode: znode to correct parent znodes for 1584 * 1585 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1586 * zbranch changes, keys of parent znodes have to be corrected. This helper 1587 * function is called in such situations and corrects the keys if needed. 1588 */ 1589 static void correct_parent_keys(const struct ubifs_info *c, 1590 struct ubifs_znode *znode) 1591 { 1592 union ubifs_key *key, *key1; 1593 1594 ubifs_assert(znode->parent); 1595 ubifs_assert(znode->iip == 0); 1596 1597 key = &znode->zbranch[0].key; 1598 key1 = &znode->parent->zbranch[0].key; 1599 1600 while (keys_cmp(c, key, key1) < 0) { 1601 key_copy(c, key, key1); 1602 znode = znode->parent; 1603 znode->alt = 1; 1604 if (!znode->parent || znode->iip) 1605 break; 1606 key1 = &znode->parent->zbranch[0].key; 1607 } 1608 } 1609 1610 /** 1611 * insert_zbranch - insert a zbranch into a znode. 1612 * @znode: znode into which to insert 1613 * @zbr: zbranch to insert 1614 * @n: slot number to insert to 1615 * 1616 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1617 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1618 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1619 * slot, zbranches starting from @n have to be moved right. 1620 */ 1621 static void insert_zbranch(struct ubifs_znode *znode, 1622 const struct ubifs_zbranch *zbr, int n) 1623 { 1624 int i; 1625 1626 ubifs_assert(ubifs_zn_dirty(znode)); 1627 1628 if (znode->level) { 1629 for (i = znode->child_cnt; i > n; i--) { 1630 znode->zbranch[i] = znode->zbranch[i - 1]; 1631 if (znode->zbranch[i].znode) 1632 znode->zbranch[i].znode->iip = i; 1633 } 1634 if (zbr->znode) 1635 zbr->znode->iip = n; 1636 } else 1637 for (i = znode->child_cnt; i > n; i--) 1638 znode->zbranch[i] = znode->zbranch[i - 1]; 1639 1640 znode->zbranch[n] = *zbr; 1641 znode->child_cnt += 1; 1642 1643 /* 1644 * After inserting at slot zero, the lower bound of the key range of 1645 * this znode may have changed. If this znode is subsequently split 1646 * then the upper bound of the key range may change, and furthermore 1647 * it could change to be lower than the original lower bound. If that 1648 * happens, then it will no longer be possible to find this znode in the 1649 * TNC using the key from the index node on flash. That is bad because 1650 * if it is not found, we will assume it is obsolete and may overwrite 1651 * it. Then if there is an unclean unmount, we will start using the 1652 * old index which will be broken. 1653 * 1654 * So we first mark znodes that have insertions at slot zero, and then 1655 * if they are split we add their lnum/offs to the old_idx tree. 1656 */ 1657 if (n == 0) 1658 znode->alt = 1; 1659 } 1660 1661 /** 1662 * tnc_insert - insert a node into TNC. 1663 * @c: UBIFS file-system description object 1664 * @znode: znode to insert into 1665 * @zbr: branch to insert 1666 * @n: slot number to insert new zbranch to 1667 * 1668 * This function inserts a new node described by @zbr into znode @znode. If 1669 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1670 * are splat as well if needed. Returns zero in case of success or a negative 1671 * error code in case of failure. 1672 */ 1673 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1674 struct ubifs_zbranch *zbr, int n) 1675 { 1676 struct ubifs_znode *zn, *zi, *zp; 1677 int i, keep, move, appending = 0; 1678 union ubifs_key *key = &zbr->key; 1679 1680 ubifs_assert(n >= 0 && n <= c->fanout); 1681 1682 /* Implement naive insert for now */ 1683 again: 1684 zp = znode->parent; 1685 if (znode->child_cnt < c->fanout) { 1686 ubifs_assert(n != c->fanout); 1687 dbg_tnc("inserted at %d level %d, key %s", n, znode->level, 1688 DBGKEY(key)); 1689 1690 insert_zbranch(znode, zbr, n); 1691 1692 /* Ensure parent's key is correct */ 1693 if (n == 0 && zp && znode->iip == 0) 1694 correct_parent_keys(c, znode); 1695 1696 return 0; 1697 } 1698 1699 /* 1700 * Unfortunately, @znode does not have more empty slots and we have to 1701 * split it. 1702 */ 1703 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); 1704 1705 if (znode->alt) 1706 /* 1707 * We can no longer be sure of finding this znode by key, so we 1708 * record it in the old_idx tree. 1709 */ 1710 ins_clr_old_idx_znode(c, znode); 1711 1712 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 1713 if (!zn) 1714 return -ENOMEM; 1715 zn->parent = zp; 1716 zn->level = znode->level; 1717 1718 /* Decide where to split */ 1719 if (znode->level == 0 && n == c->fanout && 1720 key_type(c, key) == UBIFS_DATA_KEY) { 1721 union ubifs_key *key1; 1722 1723 /* 1724 * If this is an inode which is being appended - do not split 1725 * it because no other zbranches can be inserted between 1726 * zbranches of consecutive data nodes anyway. 1727 */ 1728 key1 = &znode->zbranch[n - 1].key; 1729 if (key_inum(c, key1) == key_inum(c, key) && 1730 key_type(c, key1) == UBIFS_DATA_KEY && 1731 key_block(c, key1) == key_block(c, key) - 1) 1732 appending = 1; 1733 } 1734 1735 if (appending) { 1736 keep = c->fanout; 1737 move = 0; 1738 } else { 1739 keep = (c->fanout + 1) / 2; 1740 move = c->fanout - keep; 1741 } 1742 1743 /* 1744 * Although we don't at present, we could look at the neighbors and see 1745 * if we can move some zbranches there. 1746 */ 1747 1748 if (n < keep) { 1749 /* Insert into existing znode */ 1750 zi = znode; 1751 move += 1; 1752 keep -= 1; 1753 } else { 1754 /* Insert into new znode */ 1755 zi = zn; 1756 n -= keep; 1757 /* Re-parent */ 1758 if (zn->level != 0) 1759 zbr->znode->parent = zn; 1760 } 1761 1762 __set_bit(DIRTY_ZNODE, &zn->flags); 1763 atomic_long_inc(&c->dirty_zn_cnt); 1764 1765 zn->child_cnt = move; 1766 znode->child_cnt = keep; 1767 1768 dbg_tnc("moving %d, keeping %d", move, keep); 1769 1770 /* Move zbranch */ 1771 for (i = 0; i < move; i++) { 1772 zn->zbranch[i] = znode->zbranch[keep + i]; 1773 /* Re-parent */ 1774 if (zn->level != 0) 1775 if (zn->zbranch[i].znode) { 1776 zn->zbranch[i].znode->parent = zn; 1777 zn->zbranch[i].znode->iip = i; 1778 } 1779 } 1780 1781 /* Insert new key and branch */ 1782 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); 1783 1784 insert_zbranch(zi, zbr, n); 1785 1786 /* Insert new znode (produced by spitting) into the parent */ 1787 if (zp) { 1788 i = n; 1789 /* Locate insertion point */ 1790 n = znode->iip + 1; 1791 if (appending && n != c->fanout) 1792 appending = 0; 1793 1794 if (i == 0 && zi == znode && znode->iip == 0) 1795 correct_parent_keys(c, znode); 1796 1797 /* Tail recursion */ 1798 zbr->key = zn->zbranch[0].key; 1799 zbr->znode = zn; 1800 zbr->lnum = 0; 1801 zbr->offs = 0; 1802 zbr->len = 0; 1803 znode = zp; 1804 1805 goto again; 1806 } 1807 1808 /* We have to split root znode */ 1809 dbg_tnc("creating new zroot at level %d", znode->level + 1); 1810 1811 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 1812 if (!zi) 1813 return -ENOMEM; 1814 1815 zi->child_cnt = 2; 1816 zi->level = znode->level + 1; 1817 1818 __set_bit(DIRTY_ZNODE, &zi->flags); 1819 atomic_long_inc(&c->dirty_zn_cnt); 1820 1821 zi->zbranch[0].key = znode->zbranch[0].key; 1822 zi->zbranch[0].znode = znode; 1823 zi->zbranch[0].lnum = c->zroot.lnum; 1824 zi->zbranch[0].offs = c->zroot.offs; 1825 zi->zbranch[0].len = c->zroot.len; 1826 zi->zbranch[1].key = zn->zbranch[0].key; 1827 zi->zbranch[1].znode = zn; 1828 1829 c->zroot.lnum = 0; 1830 c->zroot.offs = 0; 1831 c->zroot.len = 0; 1832 c->zroot.znode = zi; 1833 1834 zn->parent = zi; 1835 zn->iip = 1; 1836 znode->parent = zi; 1837 znode->iip = 0; 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * ubifs_tnc_add - add a node to TNC. 1844 * @c: UBIFS file-system description object 1845 * @key: key to add 1846 * @lnum: LEB number of node 1847 * @offs: node offset 1848 * @len: node length 1849 * 1850 * This function adds a node with key @key to TNC. The node may be new or it may 1851 * obsolete some existing one. Returns %0 on success or negative error code on 1852 * failure. 1853 */ 1854 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 1855 int offs, int len) 1856 { 1857 int found, n, err = 0; 1858 struct ubifs_znode *znode; 1859 1860 mutex_lock(&c->tnc_mutex); 1861 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); 1862 found = lookup_level0_dirty(c, key, &znode, &n); 1863 if (!found) { 1864 struct ubifs_zbranch zbr; 1865 1866 zbr.znode = NULL; 1867 zbr.lnum = lnum; 1868 zbr.offs = offs; 1869 zbr.len = len; 1870 key_copy(c, key, &zbr.key); 1871 err = tnc_insert(c, znode, &zbr, n + 1); 1872 } else if (found == 1) { 1873 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 1874 1875 lnc_free(zbr); 1876 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 1877 zbr->lnum = lnum; 1878 zbr->offs = offs; 1879 zbr->len = len; 1880 } else 1881 err = found; 1882 if (!err) 1883 err = dbg_check_tnc(c, 0); 1884 mutex_unlock(&c->tnc_mutex); 1885 1886 return err; 1887 } 1888 1889 /** 1890 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 1891 * @c: UBIFS file-system description object 1892 * @key: key to add 1893 * @old_lnum: LEB number of old node 1894 * @old_offs: old node offset 1895 * @lnum: LEB number of node 1896 * @offs: node offset 1897 * @len: node length 1898 * 1899 * This function replaces a node with key @key in the TNC only if the old node 1900 * is found. This function is called by garbage collection when node are moved. 1901 * Returns %0 on success or negative error code on failure. 1902 */ 1903 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 1904 int old_lnum, int old_offs, int lnum, int offs, int len) 1905 { 1906 int found, n, err = 0; 1907 struct ubifs_znode *znode; 1908 1909 mutex_lock(&c->tnc_mutex); 1910 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, 1911 old_offs, lnum, offs, len, DBGKEY(key)); 1912 found = lookup_level0_dirty(c, key, &znode, &n); 1913 if (found < 0) { 1914 err = found; 1915 goto out_unlock; 1916 } 1917 1918 if (found == 1) { 1919 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 1920 1921 found = 0; 1922 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 1923 lnc_free(zbr); 1924 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 1925 if (err) 1926 goto out_unlock; 1927 zbr->lnum = lnum; 1928 zbr->offs = offs; 1929 zbr->len = len; 1930 found = 1; 1931 } else if (is_hash_key(c, key)) { 1932 found = resolve_collision_directly(c, key, &znode, &n, 1933 old_lnum, old_offs); 1934 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 1935 found, znode, n, old_lnum, old_offs); 1936 if (found < 0) { 1937 err = found; 1938 goto out_unlock; 1939 } 1940 1941 if (found) { 1942 /* Ensure the znode is dirtied */ 1943 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1944 znode = dirty_cow_bottom_up(c, 1945 znode); 1946 if (IS_ERR(znode)) { 1947 err = PTR_ERR(znode); 1948 goto out_unlock; 1949 } 1950 } 1951 zbr = &znode->zbranch[n]; 1952 lnc_free(zbr); 1953 err = ubifs_add_dirt(c, zbr->lnum, 1954 zbr->len); 1955 if (err) 1956 goto out_unlock; 1957 zbr->lnum = lnum; 1958 zbr->offs = offs; 1959 zbr->len = len; 1960 } 1961 } 1962 } 1963 1964 if (!found) 1965 err = ubifs_add_dirt(c, lnum, len); 1966 1967 if (!err) 1968 err = dbg_check_tnc(c, 0); 1969 1970 out_unlock: 1971 mutex_unlock(&c->tnc_mutex); 1972 return err; 1973 } 1974 1975 /** 1976 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 1977 * @c: UBIFS file-system description object 1978 * @key: key to add 1979 * @lnum: LEB number of node 1980 * @offs: node offset 1981 * @len: node length 1982 * @nm: node name 1983 * 1984 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 1985 * may have collisions, like directory entry keys. 1986 */ 1987 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 1988 int lnum, int offs, int len, const struct qstr *nm) 1989 { 1990 int found, n, err = 0; 1991 struct ubifs_znode *znode; 1992 1993 mutex_lock(&c->tnc_mutex); 1994 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, 1995 DBGKEY(key)); 1996 found = lookup_level0_dirty(c, key, &znode, &n); 1997 if (found < 0) { 1998 err = found; 1999 goto out_unlock; 2000 } 2001 2002 if (found == 1) { 2003 if (c->replaying) 2004 found = fallible_resolve_collision(c, key, &znode, &n, 2005 nm, 1); 2006 else 2007 found = resolve_collision(c, key, &znode, &n, nm); 2008 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2009 if (found < 0) { 2010 err = found; 2011 goto out_unlock; 2012 } 2013 2014 /* Ensure the znode is dirtied */ 2015 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2016 znode = dirty_cow_bottom_up(c, znode); 2017 if (IS_ERR(znode)) { 2018 err = PTR_ERR(znode); 2019 goto out_unlock; 2020 } 2021 } 2022 2023 if (found == 1) { 2024 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2025 2026 lnc_free(zbr); 2027 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2028 zbr->lnum = lnum; 2029 zbr->offs = offs; 2030 zbr->len = len; 2031 goto out_unlock; 2032 } 2033 } 2034 2035 if (!found) { 2036 struct ubifs_zbranch zbr; 2037 2038 zbr.znode = NULL; 2039 zbr.lnum = lnum; 2040 zbr.offs = offs; 2041 zbr.len = len; 2042 key_copy(c, key, &zbr.key); 2043 err = tnc_insert(c, znode, &zbr, n + 1); 2044 if (err) 2045 goto out_unlock; 2046 if (c->replaying) { 2047 /* 2048 * We did not find it in the index so there may be a 2049 * dangling branch still in the index. So we remove it 2050 * by passing 'ubifs_tnc_remove_nm()' the same key but 2051 * an unmatchable name. 2052 */ 2053 struct qstr noname = { .len = 0, .name = "" }; 2054 2055 err = dbg_check_tnc(c, 0); 2056 mutex_unlock(&c->tnc_mutex); 2057 if (err) 2058 return err; 2059 return ubifs_tnc_remove_nm(c, key, &noname); 2060 } 2061 } 2062 2063 out_unlock: 2064 if (!err) 2065 err = dbg_check_tnc(c, 0); 2066 mutex_unlock(&c->tnc_mutex); 2067 return err; 2068 } 2069 2070 /** 2071 * tnc_delete - delete a znode form TNC. 2072 * @c: UBIFS file-system description object 2073 * @znode: znode to delete from 2074 * @n: zbranch slot number to delete 2075 * 2076 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2077 * case of success and a negative error code in case of failure. 2078 */ 2079 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2080 { 2081 struct ubifs_zbranch *zbr; 2082 struct ubifs_znode *zp; 2083 int i, err; 2084 2085 /* Delete without merge for now */ 2086 ubifs_assert(znode->level == 0); 2087 ubifs_assert(n >= 0 && n < c->fanout); 2088 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); 2089 2090 zbr = &znode->zbranch[n]; 2091 lnc_free(zbr); 2092 2093 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2094 if (err) { 2095 dbg_dump_znode(c, znode); 2096 return err; 2097 } 2098 2099 /* We do not "gap" zbranch slots */ 2100 for (i = n; i < znode->child_cnt - 1; i++) 2101 znode->zbranch[i] = znode->zbranch[i + 1]; 2102 znode->child_cnt -= 1; 2103 2104 if (znode->child_cnt > 0) 2105 return 0; 2106 2107 /* 2108 * This was the last zbranch, we have to delete this znode from the 2109 * parent. 2110 */ 2111 2112 do { 2113 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 2114 ubifs_assert(ubifs_zn_dirty(znode)); 2115 2116 zp = znode->parent; 2117 n = znode->iip; 2118 2119 atomic_long_dec(&c->dirty_zn_cnt); 2120 2121 err = insert_old_idx_znode(c, znode); 2122 if (err) 2123 return err; 2124 2125 if (znode->cnext) { 2126 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2127 atomic_long_inc(&c->clean_zn_cnt); 2128 atomic_long_inc(&ubifs_clean_zn_cnt); 2129 } else 2130 kfree(znode); 2131 znode = zp; 2132 } while (znode->child_cnt == 1); /* while removing last child */ 2133 2134 /* Remove from znode, entry n - 1 */ 2135 znode->child_cnt -= 1; 2136 ubifs_assert(znode->level != 0); 2137 for (i = n; i < znode->child_cnt; i++) { 2138 znode->zbranch[i] = znode->zbranch[i + 1]; 2139 if (znode->zbranch[i].znode) 2140 znode->zbranch[i].znode->iip = i; 2141 } 2142 2143 /* 2144 * If this is the root and it has only 1 child then 2145 * collapse the tree. 2146 */ 2147 if (!znode->parent) { 2148 while (znode->child_cnt == 1 && znode->level != 0) { 2149 zp = znode; 2150 zbr = &znode->zbranch[0]; 2151 znode = get_znode(c, znode, 0); 2152 if (IS_ERR(znode)) 2153 return PTR_ERR(znode); 2154 znode = dirty_cow_znode(c, zbr); 2155 if (IS_ERR(znode)) 2156 return PTR_ERR(znode); 2157 znode->parent = NULL; 2158 znode->iip = 0; 2159 if (c->zroot.len) { 2160 err = insert_old_idx(c, c->zroot.lnum, 2161 c->zroot.offs); 2162 if (err) 2163 return err; 2164 } 2165 c->zroot.lnum = zbr->lnum; 2166 c->zroot.offs = zbr->offs; 2167 c->zroot.len = zbr->len; 2168 c->zroot.znode = znode; 2169 ubifs_assert(!test_bit(OBSOLETE_ZNODE, 2170 &zp->flags)); 2171 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); 2172 atomic_long_dec(&c->dirty_zn_cnt); 2173 2174 if (zp->cnext) { 2175 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2176 atomic_long_inc(&c->clean_zn_cnt); 2177 atomic_long_inc(&ubifs_clean_zn_cnt); 2178 } else 2179 kfree(zp); 2180 } 2181 } 2182 2183 return 0; 2184 } 2185 2186 /** 2187 * ubifs_tnc_remove - remove an index entry of a node. 2188 * @c: UBIFS file-system description object 2189 * @key: key of node 2190 * 2191 * Returns %0 on success or negative error code on failure. 2192 */ 2193 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2194 { 2195 int found, n, err = 0; 2196 struct ubifs_znode *znode; 2197 2198 mutex_lock(&c->tnc_mutex); 2199 dbg_tnc("key %s", DBGKEY(key)); 2200 found = lookup_level0_dirty(c, key, &znode, &n); 2201 if (found < 0) { 2202 err = found; 2203 goto out_unlock; 2204 } 2205 if (found == 1) 2206 err = tnc_delete(c, znode, n); 2207 if (!err) 2208 err = dbg_check_tnc(c, 0); 2209 2210 out_unlock: 2211 mutex_unlock(&c->tnc_mutex); 2212 return err; 2213 } 2214 2215 /** 2216 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2217 * @c: UBIFS file-system description object 2218 * @key: key of node 2219 * @nm: directory entry name 2220 * 2221 * Returns %0 on success or negative error code on failure. 2222 */ 2223 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2224 const struct qstr *nm) 2225 { 2226 int n, err; 2227 struct ubifs_znode *znode; 2228 2229 mutex_lock(&c->tnc_mutex); 2230 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); 2231 err = lookup_level0_dirty(c, key, &znode, &n); 2232 if (err < 0) 2233 goto out_unlock; 2234 2235 if (err) { 2236 if (c->replaying) 2237 err = fallible_resolve_collision(c, key, &znode, &n, 2238 nm, 0); 2239 else 2240 err = resolve_collision(c, key, &znode, &n, nm); 2241 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2242 if (err < 0) 2243 goto out_unlock; 2244 if (err) { 2245 /* Ensure the znode is dirtied */ 2246 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2247 znode = dirty_cow_bottom_up(c, znode); 2248 if (IS_ERR(znode)) { 2249 err = PTR_ERR(znode); 2250 goto out_unlock; 2251 } 2252 } 2253 err = tnc_delete(c, znode, n); 2254 } 2255 } 2256 2257 out_unlock: 2258 if (!err) 2259 err = dbg_check_tnc(c, 0); 2260 mutex_unlock(&c->tnc_mutex); 2261 return err; 2262 } 2263 2264 /** 2265 * key_in_range - determine if a key falls within a range of keys. 2266 * @c: UBIFS file-system description object 2267 * @key: key to check 2268 * @from_key: lowest key in range 2269 * @to_key: highest key in range 2270 * 2271 * This function returns %1 if the key is in range and %0 otherwise. 2272 */ 2273 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2274 union ubifs_key *from_key, union ubifs_key *to_key) 2275 { 2276 if (keys_cmp(c, key, from_key) < 0) 2277 return 0; 2278 if (keys_cmp(c, key, to_key) > 0) 2279 return 0; 2280 return 1; 2281 } 2282 2283 /** 2284 * ubifs_tnc_remove_range - remove index entries in range. 2285 * @c: UBIFS file-system description object 2286 * @from_key: lowest key to remove 2287 * @to_key: highest key to remove 2288 * 2289 * This function removes index entries starting at @from_key and ending at 2290 * @to_key. This function returns zero in case of success and a negative error 2291 * code in case of failure. 2292 */ 2293 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2294 union ubifs_key *to_key) 2295 { 2296 int i, n, k, err = 0; 2297 struct ubifs_znode *znode; 2298 union ubifs_key *key; 2299 2300 mutex_lock(&c->tnc_mutex); 2301 while (1) { 2302 /* Find first level 0 znode that contains keys to remove */ 2303 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2304 if (err < 0) 2305 goto out_unlock; 2306 2307 if (err) 2308 key = from_key; 2309 else { 2310 err = tnc_next(c, &znode, &n); 2311 if (err == -ENOENT) { 2312 err = 0; 2313 goto out_unlock; 2314 } 2315 if (err < 0) 2316 goto out_unlock; 2317 key = &znode->zbranch[n].key; 2318 if (!key_in_range(c, key, from_key, to_key)) { 2319 err = 0; 2320 goto out_unlock; 2321 } 2322 } 2323 2324 /* Ensure the znode is dirtied */ 2325 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2326 znode = dirty_cow_bottom_up(c, znode); 2327 if (IS_ERR(znode)) { 2328 err = PTR_ERR(znode); 2329 goto out_unlock; 2330 } 2331 } 2332 2333 /* Remove all keys in range except the first */ 2334 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2335 key = &znode->zbranch[i].key; 2336 if (!key_in_range(c, key, from_key, to_key)) 2337 break; 2338 lnc_free(&znode->zbranch[i]); 2339 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2340 znode->zbranch[i].len); 2341 if (err) { 2342 dbg_dump_znode(c, znode); 2343 goto out_unlock; 2344 } 2345 dbg_tnc("removing %s", DBGKEY(key)); 2346 } 2347 if (k) { 2348 for (i = n + 1 + k; i < znode->child_cnt; i++) 2349 znode->zbranch[i - k] = znode->zbranch[i]; 2350 znode->child_cnt -= k; 2351 } 2352 2353 /* Now delete the first */ 2354 err = tnc_delete(c, znode, n); 2355 if (err) 2356 goto out_unlock; 2357 } 2358 2359 out_unlock: 2360 if (!err) 2361 err = dbg_check_tnc(c, 0); 2362 mutex_unlock(&c->tnc_mutex); 2363 return err; 2364 } 2365 2366 /** 2367 * ubifs_tnc_remove_ino - remove an inode from TNC. 2368 * @c: UBIFS file-system description object 2369 * @inum: inode number to remove 2370 * 2371 * This function remove inode @inum and all the extended attributes associated 2372 * with the anode from TNC and returns zero in case of success or a negative 2373 * error code in case of failure. 2374 */ 2375 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2376 { 2377 union ubifs_key key1, key2; 2378 struct ubifs_dent_node *xent, *pxent = NULL; 2379 struct qstr nm = { .name = NULL }; 2380 2381 dbg_tnc("ino %lu", inum); 2382 2383 /* 2384 * Walk all extended attribute entries and remove them together with 2385 * corresponding extended attribute inodes. 2386 */ 2387 lowest_xent_key(c, &key1, inum); 2388 while (1) { 2389 ino_t xattr_inum; 2390 int err; 2391 2392 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2393 if (IS_ERR(xent)) { 2394 err = PTR_ERR(xent); 2395 if (err == -ENOENT) 2396 break; 2397 return err; 2398 } 2399 2400 xattr_inum = le64_to_cpu(xent->inum); 2401 dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum); 2402 2403 nm.name = xent->name; 2404 nm.len = le16_to_cpu(xent->nlen); 2405 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2406 if (err) { 2407 kfree(xent); 2408 return err; 2409 } 2410 2411 lowest_ino_key(c, &key1, xattr_inum); 2412 highest_ino_key(c, &key2, xattr_inum); 2413 err = ubifs_tnc_remove_range(c, &key1, &key2); 2414 if (err) { 2415 kfree(xent); 2416 return err; 2417 } 2418 2419 kfree(pxent); 2420 pxent = xent; 2421 key_read(c, &xent->key, &key1); 2422 } 2423 2424 kfree(pxent); 2425 lowest_ino_key(c, &key1, inum); 2426 highest_ino_key(c, &key2, inum); 2427 2428 return ubifs_tnc_remove_range(c, &key1, &key2); 2429 } 2430 2431 /** 2432 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2433 * @c: UBIFS file-system description object 2434 * @key: key of last entry 2435 * @nm: name of last entry found or %NULL 2436 * 2437 * This function finds and reads the next directory or extended attribute entry 2438 * after the given key (@key) if there is one. @nm is used to resolve 2439 * collisions. 2440 * 2441 * If the name of the current entry is not known and only the key is known, 2442 * @nm->name has to be %NULL. In this case the semantics of this function is a 2443 * little bit different and it returns the entry corresponding to this key, not 2444 * the next one. If the key was not found, the closest "right" entry is 2445 * returned. 2446 * 2447 * If the fist entry has to be found, @key has to contain the lowest possible 2448 * key value for this inode and @name has to be %NULL. 2449 * 2450 * This function returns the found directory or extended attribute entry node 2451 * in case of success, %-ENOENT is returned if no entry was found, and a 2452 * negative error code is returned in case of failure. 2453 */ 2454 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2455 union ubifs_key *key, 2456 const struct qstr *nm) 2457 { 2458 int n, err, type = key_type(c, key); 2459 struct ubifs_znode *znode; 2460 struct ubifs_dent_node *dent; 2461 struct ubifs_zbranch *zbr; 2462 union ubifs_key *dkey; 2463 2464 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); 2465 ubifs_assert(is_hash_key(c, key)); 2466 2467 mutex_lock(&c->tnc_mutex); 2468 err = ubifs_lookup_level0(c, key, &znode, &n); 2469 if (unlikely(err < 0)) 2470 goto out_unlock; 2471 2472 if (nm->name) { 2473 if (err) { 2474 /* Handle collisions */ 2475 err = resolve_collision(c, key, &znode, &n, nm); 2476 dbg_tnc("rc returned %d, znode %p, n %d", 2477 err, znode, n); 2478 if (unlikely(err < 0)) 2479 goto out_unlock; 2480 } 2481 2482 /* Now find next entry */ 2483 err = tnc_next(c, &znode, &n); 2484 if (unlikely(err)) 2485 goto out_unlock; 2486 } else { 2487 /* 2488 * The full name of the entry was not given, in which case the 2489 * behavior of this function is a little different and it 2490 * returns current entry, not the next one. 2491 */ 2492 if (!err) { 2493 /* 2494 * However, the given key does not exist in the TNC 2495 * tree and @znode/@n variables contain the closest 2496 * "preceding" element. Switch to the next one. 2497 */ 2498 err = tnc_next(c, &znode, &n); 2499 if (err) 2500 goto out_unlock; 2501 } 2502 } 2503 2504 zbr = &znode->zbranch[n]; 2505 dent = kmalloc(zbr->len, GFP_NOFS); 2506 if (unlikely(!dent)) { 2507 err = -ENOMEM; 2508 goto out_unlock; 2509 } 2510 2511 /* 2512 * The above 'tnc_next()' call could lead us to the next inode, check 2513 * this. 2514 */ 2515 dkey = &zbr->key; 2516 if (key_inum(c, dkey) != key_inum(c, key) || 2517 key_type(c, dkey) != type) { 2518 err = -ENOENT; 2519 goto out_free; 2520 } 2521 2522 err = tnc_read_node_nm(c, zbr, dent); 2523 if (unlikely(err)) 2524 goto out_free; 2525 2526 mutex_unlock(&c->tnc_mutex); 2527 return dent; 2528 2529 out_free: 2530 kfree(dent); 2531 out_unlock: 2532 mutex_unlock(&c->tnc_mutex); 2533 return ERR_PTR(err); 2534 } 2535 2536 /** 2537 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2538 * @c: UBIFS file-system description object 2539 * 2540 * Destroy left-over obsolete znodes from a failed commit. 2541 */ 2542 static void tnc_destroy_cnext(struct ubifs_info *c) 2543 { 2544 struct ubifs_znode *cnext; 2545 2546 if (!c->cnext) 2547 return; 2548 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2549 cnext = c->cnext; 2550 do { 2551 struct ubifs_znode *znode = cnext; 2552 2553 cnext = cnext->cnext; 2554 if (test_bit(OBSOLETE_ZNODE, &znode->flags)) 2555 kfree(znode); 2556 } while (cnext && cnext != c->cnext); 2557 } 2558 2559 /** 2560 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2561 * @c: UBIFS file-system description object 2562 */ 2563 void ubifs_tnc_close(struct ubifs_info *c) 2564 { 2565 long clean_freed; 2566 2567 tnc_destroy_cnext(c); 2568 if (c->zroot.znode) { 2569 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2570 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt); 2571 } 2572 kfree(c->gap_lebs); 2573 kfree(c->ilebs); 2574 destroy_old_idx(c); 2575 } 2576 2577 /** 2578 * left_znode - get the znode to the left. 2579 * @c: UBIFS file-system description object 2580 * @znode: znode 2581 * 2582 * This function returns a pointer to the znode to the left of @znode or NULL if 2583 * there is not one. A negative error code is returned on failure. 2584 */ 2585 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2586 struct ubifs_znode *znode) 2587 { 2588 int level = znode->level; 2589 2590 while (1) { 2591 int n = znode->iip - 1; 2592 2593 /* Go up until we can go left */ 2594 znode = znode->parent; 2595 if (!znode) 2596 return NULL; 2597 if (n >= 0) { 2598 /* Now go down the rightmost branch to 'level' */ 2599 znode = get_znode(c, znode, n); 2600 if (IS_ERR(znode)) 2601 return znode; 2602 while (znode->level != level) { 2603 n = znode->child_cnt - 1; 2604 znode = get_znode(c, znode, n); 2605 if (IS_ERR(znode)) 2606 return znode; 2607 } 2608 break; 2609 } 2610 } 2611 return znode; 2612 } 2613 2614 /** 2615 * right_znode - get the znode to the right. 2616 * @c: UBIFS file-system description object 2617 * @znode: znode 2618 * 2619 * This function returns a pointer to the znode to the right of @znode or NULL 2620 * if there is not one. A negative error code is returned on failure. 2621 */ 2622 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2623 struct ubifs_znode *znode) 2624 { 2625 int level = znode->level; 2626 2627 while (1) { 2628 int n = znode->iip + 1; 2629 2630 /* Go up until we can go right */ 2631 znode = znode->parent; 2632 if (!znode) 2633 return NULL; 2634 if (n < znode->child_cnt) { 2635 /* Now go down the leftmost branch to 'level' */ 2636 znode = get_znode(c, znode, n); 2637 if (IS_ERR(znode)) 2638 return znode; 2639 while (znode->level != level) { 2640 znode = get_znode(c, znode, 0); 2641 if (IS_ERR(znode)) 2642 return znode; 2643 } 2644 break; 2645 } 2646 } 2647 return znode; 2648 } 2649 2650 /** 2651 * lookup_znode - find a particular indexing node from TNC. 2652 * @c: UBIFS file-system description object 2653 * @key: index node key to lookup 2654 * @level: index node level 2655 * @lnum: index node LEB number 2656 * @offs: index node offset 2657 * 2658 * This function searches an indexing node by its first key @key and its 2659 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2660 * nodes it traverses to TNC. This function is called fro indexing nodes which 2661 * were found on the media by scanning, for example when garbage-collecting or 2662 * when doing in-the-gaps commit. This means that the indexing node which is 2663 * looked for does not have to have exactly the same leftmost key @key, because 2664 * the leftmost key may have been changed, in which case TNC will contain a 2665 * dirty znode which still refers the same @lnum:@offs. This function is clever 2666 * enough to recognize such indexing nodes. 2667 * 2668 * Note, if a znode was deleted or changed too much, then this function will 2669 * not find it. For situations like this UBIFS has the old index RB-tree 2670 * (indexed by @lnum:@offs). 2671 * 2672 * This function returns a pointer to the znode found or %NULL if it is not 2673 * found. A negative error code is returned on failure. 2674 */ 2675 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2676 union ubifs_key *key, int level, 2677 int lnum, int offs) 2678 { 2679 struct ubifs_znode *znode, *zn; 2680 int n, nn; 2681 2682 /* 2683 * The arguments have probably been read off flash, so don't assume 2684 * they are valid. 2685 */ 2686 if (level < 0) 2687 return ERR_PTR(-EINVAL); 2688 2689 /* Get the root znode */ 2690 znode = c->zroot.znode; 2691 if (!znode) { 2692 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 2693 if (IS_ERR(znode)) 2694 return znode; 2695 } 2696 /* Check if it is the one we are looking for */ 2697 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 2698 return znode; 2699 /* Descend to the parent level i.e. (level + 1) */ 2700 if (level >= znode->level) 2701 return NULL; 2702 while (1) { 2703 ubifs_search_zbranch(c, znode, key, &n); 2704 if (n < 0) { 2705 /* 2706 * We reached a znode where the leftmost key is greater 2707 * than the key we are searching for. This is the same 2708 * situation as the one described in a huge comment at 2709 * the end of the 'ubifs_lookup_level0()' function. And 2710 * for exactly the same reasons we have to try to look 2711 * left before giving up. 2712 */ 2713 znode = left_znode(c, znode); 2714 if (!znode) 2715 return NULL; 2716 if (IS_ERR(znode)) 2717 return znode; 2718 ubifs_search_zbranch(c, znode, key, &n); 2719 ubifs_assert(n >= 0); 2720 } 2721 if (znode->level == level + 1) 2722 break; 2723 znode = get_znode(c, znode, n); 2724 if (IS_ERR(znode)) 2725 return znode; 2726 } 2727 /* Check if the child is the one we are looking for */ 2728 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 2729 return get_znode(c, znode, n); 2730 /* If the key is unique, there is nowhere else to look */ 2731 if (!is_hash_key(c, key)) 2732 return NULL; 2733 /* 2734 * The key is not unique and so may be also in the znodes to either 2735 * side. 2736 */ 2737 zn = znode; 2738 nn = n; 2739 /* Look left */ 2740 while (1) { 2741 /* Move one branch to the left */ 2742 if (n) 2743 n -= 1; 2744 else { 2745 znode = left_znode(c, znode); 2746 if (!znode) 2747 break; 2748 if (IS_ERR(znode)) 2749 return znode; 2750 n = znode->child_cnt - 1; 2751 } 2752 /* Check it */ 2753 if (znode->zbranch[n].lnum == lnum && 2754 znode->zbranch[n].offs == offs) 2755 return get_znode(c, znode, n); 2756 /* Stop if the key is less than the one we are looking for */ 2757 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 2758 break; 2759 } 2760 /* Back to the middle */ 2761 znode = zn; 2762 n = nn; 2763 /* Look right */ 2764 while (1) { 2765 /* Move one branch to the right */ 2766 if (++n >= znode->child_cnt) { 2767 znode = right_znode(c, znode); 2768 if (!znode) 2769 break; 2770 if (IS_ERR(znode)) 2771 return znode; 2772 n = 0; 2773 } 2774 /* Check it */ 2775 if (znode->zbranch[n].lnum == lnum && 2776 znode->zbranch[n].offs == offs) 2777 return get_znode(c, znode, n); 2778 /* Stop if the key is greater than the one we are looking for */ 2779 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 2780 break; 2781 } 2782 return NULL; 2783 } 2784 2785 /** 2786 * is_idx_node_in_tnc - determine if an index node is in the TNC. 2787 * @c: UBIFS file-system description object 2788 * @key: key of index node 2789 * @level: index node level 2790 * @lnum: LEB number of index node 2791 * @offs: offset of index node 2792 * 2793 * This function returns %0 if the index node is not referred to in the TNC, %1 2794 * if the index node is referred to in the TNC and the corresponding znode is 2795 * dirty, %2 if an index node is referred to in the TNC and the corresponding 2796 * znode is clean, and a negative error code in case of failure. 2797 * 2798 * Note, the @key argument has to be the key of the first child. Also note, 2799 * this function relies on the fact that 0:0 is never a valid LEB number and 2800 * offset for a main-area node. 2801 */ 2802 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 2803 int lnum, int offs) 2804 { 2805 struct ubifs_znode *znode; 2806 2807 znode = lookup_znode(c, key, level, lnum, offs); 2808 if (!znode) 2809 return 0; 2810 if (IS_ERR(znode)) 2811 return PTR_ERR(znode); 2812 2813 return ubifs_zn_dirty(znode) ? 1 : 2; 2814 } 2815 2816 /** 2817 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 2818 * @c: UBIFS file-system description object 2819 * @key: node key 2820 * @lnum: node LEB number 2821 * @offs: node offset 2822 * 2823 * This function returns %1 if the node is referred to in the TNC, %0 if it is 2824 * not, and a negative error code in case of failure. 2825 * 2826 * Note, this function relies on the fact that 0:0 is never a valid LEB number 2827 * and offset for a main-area node. 2828 */ 2829 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 2830 int lnum, int offs) 2831 { 2832 struct ubifs_zbranch *zbr; 2833 struct ubifs_znode *znode, *zn; 2834 int n, found, err, nn; 2835 const int unique = !is_hash_key(c, key); 2836 2837 found = ubifs_lookup_level0(c, key, &znode, &n); 2838 if (found < 0) 2839 return found; /* Error code */ 2840 if (!found) 2841 return 0; 2842 zbr = &znode->zbranch[n]; 2843 if (lnum == zbr->lnum && offs == zbr->offs) 2844 return 1; /* Found it */ 2845 if (unique) 2846 return 0; 2847 /* 2848 * Because the key is not unique, we have to look left 2849 * and right as well 2850 */ 2851 zn = znode; 2852 nn = n; 2853 /* Look left */ 2854 while (1) { 2855 err = tnc_prev(c, &znode, &n); 2856 if (err == -ENOENT) 2857 break; 2858 if (err) 2859 return err; 2860 if (keys_cmp(c, key, &znode->zbranch[n].key)) 2861 break; 2862 zbr = &znode->zbranch[n]; 2863 if (lnum == zbr->lnum && offs == zbr->offs) 2864 return 1; /* Found it */ 2865 } 2866 /* Look right */ 2867 znode = zn; 2868 n = nn; 2869 while (1) { 2870 err = tnc_next(c, &znode, &n); 2871 if (err) { 2872 if (err == -ENOENT) 2873 return 0; 2874 return err; 2875 } 2876 if (keys_cmp(c, key, &znode->zbranch[n].key)) 2877 break; 2878 zbr = &znode->zbranch[n]; 2879 if (lnum == zbr->lnum && offs == zbr->offs) 2880 return 1; /* Found it */ 2881 } 2882 return 0; 2883 } 2884 2885 /** 2886 * ubifs_tnc_has_node - determine whether a node is in the TNC. 2887 * @c: UBIFS file-system description object 2888 * @key: node key 2889 * @level: index node level (if it is an index node) 2890 * @lnum: node LEB number 2891 * @offs: node offset 2892 * @is_idx: non-zero if the node is an index node 2893 * 2894 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 2895 * negative error code in case of failure. For index nodes, @key has to be the 2896 * key of the first child. An index node is considered to be in the TNC only if 2897 * the corresponding znode is clean or has not been loaded. 2898 */ 2899 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 2900 int lnum, int offs, int is_idx) 2901 { 2902 int err; 2903 2904 mutex_lock(&c->tnc_mutex); 2905 if (is_idx) { 2906 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 2907 if (err < 0) 2908 goto out_unlock; 2909 if (err == 1) 2910 /* The index node was found but it was dirty */ 2911 err = 0; 2912 else if (err == 2) 2913 /* The index node was found and it was clean */ 2914 err = 1; 2915 else 2916 BUG_ON(err != 0); 2917 } else 2918 err = is_leaf_node_in_tnc(c, key, lnum, offs); 2919 2920 out_unlock: 2921 mutex_unlock(&c->tnc_mutex); 2922 return err; 2923 } 2924 2925 /** 2926 * ubifs_dirty_idx_node - dirty an index node. 2927 * @c: UBIFS file-system description object 2928 * @key: index node key 2929 * @level: index node level 2930 * @lnum: index node LEB number 2931 * @offs: index node offset 2932 * 2933 * This function loads and dirties an index node so that it can be garbage 2934 * collected. The @key argument has to be the key of the first child. This 2935 * function relies on the fact that 0:0 is never a valid LEB number and offset 2936 * for a main-area node. Returns %0 on success and a negative error code on 2937 * failure. 2938 */ 2939 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 2940 int lnum, int offs) 2941 { 2942 struct ubifs_znode *znode; 2943 int err = 0; 2944 2945 mutex_lock(&c->tnc_mutex); 2946 znode = lookup_znode(c, key, level, lnum, offs); 2947 if (!znode) 2948 goto out_unlock; 2949 if (IS_ERR(znode)) { 2950 err = PTR_ERR(znode); 2951 goto out_unlock; 2952 } 2953 znode = dirty_cow_bottom_up(c, znode); 2954 if (IS_ERR(znode)) { 2955 err = PTR_ERR(znode); 2956 goto out_unlock; 2957 } 2958 2959 out_unlock: 2960 mutex_unlock(&c->tnc_mutex); 2961 return err; 2962 } 2963