1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 38 struct ubifs_zbranch *zbr); 39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 40 struct ubifs_zbranch *zbr, void *node); 41 42 /* 43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 44 * @NAME_LESS: name corresponding to the first argument is less than second 45 * @NAME_MATCHES: names match 46 * @NAME_GREATER: name corresponding to the second argument is greater than 47 * first 48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 49 * 50 * These constants were introduce to improve readability. 51 */ 52 enum { 53 NAME_LESS = 0, 54 NAME_MATCHES = 1, 55 NAME_GREATER = 2, 56 NOT_ON_MEDIA = 3, 57 }; 58 59 /** 60 * insert_old_idx - record an index node obsoleted since the last commit start. 61 * @c: UBIFS file-system description object 62 * @lnum: LEB number of obsoleted index node 63 * @offs: offset of obsoleted index node 64 * 65 * Returns %0 on success, and a negative error code on failure. 66 * 67 * For recovery, there must always be a complete intact version of the index on 68 * flash at all times. That is called the "old index". It is the index as at the 69 * time of the last successful commit. Many of the index nodes in the old index 70 * may be dirty, but they must not be erased until the next successful commit 71 * (at which point that index becomes the old index). 72 * 73 * That means that the garbage collection and the in-the-gaps method of 74 * committing must be able to determine if an index node is in the old index. 75 * Most of the old index nodes can be found by looking up the TNC using the 76 * 'lookup_znode()' function. However, some of the old index nodes may have 77 * been deleted from the current index or may have been changed so much that 78 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 79 * That is what this function does. The RB-tree is ordered by LEB number and 80 * offset because they uniquely identify the old index node. 81 */ 82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 83 { 84 struct ubifs_old_idx *old_idx, *o; 85 struct rb_node **p, *parent = NULL; 86 87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 88 if (unlikely(!old_idx)) 89 return -ENOMEM; 90 old_idx->lnum = lnum; 91 old_idx->offs = offs; 92 93 p = &c->old_idx.rb_node; 94 while (*p) { 95 parent = *p; 96 o = rb_entry(parent, struct ubifs_old_idx, rb); 97 if (lnum < o->lnum) 98 p = &(*p)->rb_left; 99 else if (lnum > o->lnum) 100 p = &(*p)->rb_right; 101 else if (offs < o->offs) 102 p = &(*p)->rb_left; 103 else if (offs > o->offs) 104 p = &(*p)->rb_right; 105 else { 106 ubifs_err(c, "old idx added twice!"); 107 kfree(old_idx); 108 return 0; 109 } 110 } 111 rb_link_node(&old_idx->rb, parent, p); 112 rb_insert_color(&old_idx->rb, &c->old_idx); 113 return 0; 114 } 115 116 /** 117 * insert_old_idx_znode - record a znode obsoleted since last commit start. 118 * @c: UBIFS file-system description object 119 * @znode: znode of obsoleted index node 120 * 121 * Returns %0 on success, and a negative error code on failure. 122 */ 123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 124 { 125 if (znode->parent) { 126 struct ubifs_zbranch *zbr; 127 128 zbr = &znode->parent->zbranch[znode->iip]; 129 if (zbr->len) 130 return insert_old_idx(c, zbr->lnum, zbr->offs); 131 } else 132 if (c->zroot.len) 133 return insert_old_idx(c, c->zroot.lnum, 134 c->zroot.offs); 135 return 0; 136 } 137 138 /** 139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 140 * @c: UBIFS file-system description object 141 * @znode: znode of obsoleted index node 142 * 143 * Returns %0 on success, and a negative error code on failure. 144 */ 145 static int ins_clr_old_idx_znode(struct ubifs_info *c, 146 struct ubifs_znode *znode) 147 { 148 int err; 149 150 if (znode->parent) { 151 struct ubifs_zbranch *zbr; 152 153 zbr = &znode->parent->zbranch[znode->iip]; 154 if (zbr->len) { 155 err = insert_old_idx(c, zbr->lnum, zbr->offs); 156 if (err) 157 return err; 158 zbr->lnum = 0; 159 zbr->offs = 0; 160 zbr->len = 0; 161 } 162 } else 163 if (c->zroot.len) { 164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 165 if (err) 166 return err; 167 c->zroot.lnum = 0; 168 c->zroot.offs = 0; 169 c->zroot.len = 0; 170 } 171 return 0; 172 } 173 174 /** 175 * destroy_old_idx - destroy the old_idx RB-tree. 176 * @c: UBIFS file-system description object 177 * 178 * During start commit, the old_idx RB-tree is used to avoid overwriting index 179 * nodes that were in the index last commit but have since been deleted. This 180 * is necessary for recovery i.e. the old index must be kept intact until the 181 * new index is successfully written. The old-idx RB-tree is used for the 182 * in-the-gaps method of writing index nodes and is destroyed every commit. 183 */ 184 void destroy_old_idx(struct ubifs_info *c) 185 { 186 struct ubifs_old_idx *old_idx, *n; 187 188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 189 kfree(old_idx); 190 191 c->old_idx = RB_ROOT; 192 } 193 194 /** 195 * copy_znode - copy a dirty znode. 196 * @c: UBIFS file-system description object 197 * @znode: znode to copy 198 * 199 * A dirty znode being committed may not be changed, so it is copied. 200 */ 201 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 202 struct ubifs_znode *znode) 203 { 204 struct ubifs_znode *zn; 205 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 207 if (unlikely(!zn)) 208 return ERR_PTR(-ENOMEM); 209 210 zn->cnext = NULL; 211 __set_bit(DIRTY_ZNODE, &zn->flags); 212 __clear_bit(COW_ZNODE, &zn->flags); 213 214 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 215 __set_bit(OBSOLETE_ZNODE, &znode->flags); 216 217 if (znode->level != 0) { 218 int i; 219 const int n = zn->child_cnt; 220 221 /* The children now have new parent */ 222 for (i = 0; i < n; i++) { 223 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 224 225 if (zbr->znode) 226 zbr->znode->parent = zn; 227 } 228 } 229 230 atomic_long_inc(&c->dirty_zn_cnt); 231 return zn; 232 } 233 234 /** 235 * add_idx_dirt - add dirt due to a dirty znode. 236 * @c: UBIFS file-system description object 237 * @lnum: LEB number of index node 238 * @dirt: size of index node 239 * 240 * This function updates lprops dirty space and the new size of the index. 241 */ 242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 243 { 244 c->calc_idx_sz -= ALIGN(dirt, 8); 245 return ubifs_add_dirt(c, lnum, dirt); 246 } 247 248 /** 249 * dirty_cow_znode - ensure a znode is not being committed. 250 * @c: UBIFS file-system description object 251 * @zbr: branch of znode to check 252 * 253 * Returns dirtied znode on success or negative error code on failure. 254 */ 255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 256 struct ubifs_zbranch *zbr) 257 { 258 struct ubifs_znode *znode = zbr->znode; 259 struct ubifs_znode *zn; 260 int err; 261 262 if (!ubifs_zn_cow(znode)) { 263 /* znode is not being committed */ 264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 265 atomic_long_inc(&c->dirty_zn_cnt); 266 atomic_long_dec(&c->clean_zn_cnt); 267 atomic_long_dec(&ubifs_clean_zn_cnt); 268 err = add_idx_dirt(c, zbr->lnum, zbr->len); 269 if (unlikely(err)) 270 return ERR_PTR(err); 271 } 272 return znode; 273 } 274 275 zn = copy_znode(c, znode); 276 if (IS_ERR(zn)) 277 return zn; 278 279 if (zbr->len) { 280 err = insert_old_idx(c, zbr->lnum, zbr->offs); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 err = add_idx_dirt(c, zbr->lnum, zbr->len); 284 } else 285 err = 0; 286 287 zbr->znode = zn; 288 zbr->lnum = 0; 289 zbr->offs = 0; 290 zbr->len = 0; 291 292 if (unlikely(err)) 293 return ERR_PTR(err); 294 return zn; 295 } 296 297 /** 298 * lnc_add - add a leaf node to the leaf node cache. 299 * @c: UBIFS file-system description object 300 * @zbr: zbranch of leaf node 301 * @node: leaf node 302 * 303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 304 * purpose of the leaf node cache is to save re-reading the same leaf node over 305 * and over again. Most things are cached by VFS, however the file system must 306 * cache directory entries for readdir and for resolving hash collisions. The 307 * present implementation of the leaf node cache is extremely simple, and 308 * allows for error returns that are not used but that may be needed if a more 309 * complex implementation is created. 310 * 311 * Note, this function does not add the @node object to LNC directly, but 312 * allocates a copy of the object and adds the copy to LNC. The reason for this 313 * is that @node has been allocated outside of the TNC subsystem and will be 314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 315 * may be changed at any time, e.g. freed by the shrinker. 316 */ 317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 318 const void *node) 319 { 320 int err; 321 void *lnc_node; 322 const struct ubifs_dent_node *dent = node; 323 324 ubifs_assert(c, !zbr->leaf); 325 ubifs_assert(c, zbr->len != 0); 326 ubifs_assert(c, is_hash_key(c, &zbr->key)); 327 328 err = ubifs_validate_entry(c, dent); 329 if (err) { 330 dump_stack(); 331 ubifs_dump_node(c, dent); 332 return err; 333 } 334 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 336 if (!lnc_node) 337 /* We don't have to have the cache, so no error */ 338 return 0; 339 340 zbr->leaf = lnc_node; 341 return 0; 342 } 343 344 /** 345 * lnc_add_directly - add a leaf node to the leaf-node-cache. 346 * @c: UBIFS file-system description object 347 * @zbr: zbranch of leaf node 348 * @node: leaf node 349 * 350 * This function is similar to 'lnc_add()', but it does not create a copy of 351 * @node but inserts @node to TNC directly. 352 */ 353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 354 void *node) 355 { 356 int err; 357 358 ubifs_assert(c, !zbr->leaf); 359 ubifs_assert(c, zbr->len != 0); 360 361 err = ubifs_validate_entry(c, node); 362 if (err) { 363 dump_stack(); 364 ubifs_dump_node(c, node); 365 return err; 366 } 367 368 zbr->leaf = node; 369 return 0; 370 } 371 372 /** 373 * lnc_free - remove a leaf node from the leaf node cache. 374 * @zbr: zbranch of leaf node 375 * @node: leaf node 376 */ 377 static void lnc_free(struct ubifs_zbranch *zbr) 378 { 379 if (!zbr->leaf) 380 return; 381 kfree(zbr->leaf); 382 zbr->leaf = NULL; 383 } 384 385 /** 386 * tnc_read_hashed_node - read a "hashed" leaf node. 387 * @c: UBIFS file-system description object 388 * @zbr: key and position of the node 389 * @node: node is returned here 390 * 391 * This function reads a "hashed" node defined by @zbr from the leaf node cache 392 * (in it is there) or from the hash media, in which case the node is also 393 * added to LNC. Returns zero in case of success or a negative negative error 394 * code in case of failure. 395 */ 396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 397 void *node) 398 { 399 int err; 400 401 ubifs_assert(c, is_hash_key(c, &zbr->key)); 402 403 if (zbr->leaf) { 404 /* Read from the leaf node cache */ 405 ubifs_assert(c, zbr->len != 0); 406 memcpy(node, zbr->leaf, zbr->len); 407 return 0; 408 } 409 410 if (c->replaying) { 411 err = fallible_read_node(c, &zbr->key, zbr, node); 412 /* 413 * When the node was not found, return -ENOENT, 0 otherwise. 414 * Negative return codes stay as-is. 415 */ 416 if (err == 0) 417 err = -ENOENT; 418 else if (err == 1) 419 err = 0; 420 } else { 421 err = ubifs_tnc_read_node(c, zbr, node); 422 } 423 if (err) 424 return err; 425 426 /* Add the node to the leaf node cache */ 427 err = lnc_add(c, zbr, node); 428 return err; 429 } 430 431 /** 432 * try_read_node - read a node if it is a node. 433 * @c: UBIFS file-system description object 434 * @buf: buffer to read to 435 * @type: node type 436 * @zbr: the zbranch describing the node to read 437 * 438 * This function tries to read a node of known type and length, checks it and 439 * stores it in @buf. This function returns %1 if a node is present and %0 if 440 * a node is not present. A negative error code is returned for I/O errors. 441 * This function performs that same function as ubifs_read_node except that 442 * it does not require that there is actually a node present and instead 443 * the return code indicates if a node was read. 444 * 445 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 446 * is true (it is controlled by corresponding mount option). However, if 447 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 448 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 449 * because during mounting or re-mounting from R/O mode to R/W mode we may read 450 * journal nodes (when replying the journal or doing the recovery) and the 451 * journal nodes may potentially be corrupted, so checking is required. 452 */ 453 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 454 struct ubifs_zbranch *zbr) 455 { 456 int len = zbr->len; 457 int lnum = zbr->lnum; 458 int offs = zbr->offs; 459 int err, node_len; 460 struct ubifs_ch *ch = buf; 461 uint32_t crc, node_crc; 462 463 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 464 465 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 466 if (err) { 467 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 468 type, lnum, offs, err); 469 return err; 470 } 471 472 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 473 return 0; 474 475 if (ch->node_type != type) 476 return 0; 477 478 node_len = le32_to_cpu(ch->len); 479 if (node_len != len) 480 return 0; 481 482 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 483 !c->remounting_rw) 484 return 1; 485 486 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 487 node_crc = le32_to_cpu(ch->crc); 488 if (crc != node_crc) 489 return 0; 490 491 err = ubifs_node_check_hash(c, buf, zbr->hash); 492 if (err) { 493 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); 494 return 0; 495 } 496 497 return 1; 498 } 499 500 /** 501 * fallible_read_node - try to read a leaf node. 502 * @c: UBIFS file-system description object 503 * @key: key of node to read 504 * @zbr: position of node 505 * @node: node returned 506 * 507 * This function tries to read a node and returns %1 if the node is read, %0 508 * if the node is not present, and a negative error code in the case of error. 509 */ 510 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 511 struct ubifs_zbranch *zbr, void *node) 512 { 513 int ret; 514 515 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 516 517 ret = try_read_node(c, node, key_type(c, key), zbr); 518 if (ret == 1) { 519 union ubifs_key node_key; 520 struct ubifs_dent_node *dent = node; 521 522 /* All nodes have key in the same place */ 523 key_read(c, &dent->key, &node_key); 524 if (keys_cmp(c, key, &node_key) != 0) 525 ret = 0; 526 } 527 if (ret == 0 && c->replaying) 528 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 529 zbr->lnum, zbr->offs, zbr->len); 530 return ret; 531 } 532 533 /** 534 * matches_name - determine if a direntry or xattr entry matches a given name. 535 * @c: UBIFS file-system description object 536 * @zbr: zbranch of dent 537 * @nm: name to match 538 * 539 * This function checks if xentry/direntry referred by zbranch @zbr matches name 540 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 541 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 542 * of failure, a negative error code is returned. 543 */ 544 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 545 const struct fscrypt_name *nm) 546 { 547 struct ubifs_dent_node *dent; 548 int nlen, err; 549 550 /* If possible, match against the dent in the leaf node cache */ 551 if (!zbr->leaf) { 552 dent = kmalloc(zbr->len, GFP_NOFS); 553 if (!dent) 554 return -ENOMEM; 555 556 err = ubifs_tnc_read_node(c, zbr, dent); 557 if (err) 558 goto out_free; 559 560 /* Add the node to the leaf node cache */ 561 err = lnc_add_directly(c, zbr, dent); 562 if (err) 563 goto out_free; 564 } else 565 dent = zbr->leaf; 566 567 nlen = le16_to_cpu(dent->nlen); 568 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 569 if (err == 0) { 570 if (nlen == fname_len(nm)) 571 return NAME_MATCHES; 572 else if (nlen < fname_len(nm)) 573 return NAME_LESS; 574 else 575 return NAME_GREATER; 576 } else if (err < 0) 577 return NAME_LESS; 578 else 579 return NAME_GREATER; 580 581 out_free: 582 kfree(dent); 583 return err; 584 } 585 586 /** 587 * get_znode - get a TNC znode that may not be loaded yet. 588 * @c: UBIFS file-system description object 589 * @znode: parent znode 590 * @n: znode branch slot number 591 * 592 * This function returns the znode or a negative error code. 593 */ 594 static struct ubifs_znode *get_znode(struct ubifs_info *c, 595 struct ubifs_znode *znode, int n) 596 { 597 struct ubifs_zbranch *zbr; 598 599 zbr = &znode->zbranch[n]; 600 if (zbr->znode) 601 znode = zbr->znode; 602 else 603 znode = ubifs_load_znode(c, zbr, znode, n); 604 return znode; 605 } 606 607 /** 608 * tnc_next - find next TNC entry. 609 * @c: UBIFS file-system description object 610 * @zn: znode is passed and returned here 611 * @n: znode branch slot number is passed and returned here 612 * 613 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 614 * no next entry, or a negative error code otherwise. 615 */ 616 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 617 { 618 struct ubifs_znode *znode = *zn; 619 int nn = *n; 620 621 nn += 1; 622 if (nn < znode->child_cnt) { 623 *n = nn; 624 return 0; 625 } 626 while (1) { 627 struct ubifs_znode *zp; 628 629 zp = znode->parent; 630 if (!zp) 631 return -ENOENT; 632 nn = znode->iip + 1; 633 znode = zp; 634 if (nn < znode->child_cnt) { 635 znode = get_znode(c, znode, nn); 636 if (IS_ERR(znode)) 637 return PTR_ERR(znode); 638 while (znode->level != 0) { 639 znode = get_znode(c, znode, 0); 640 if (IS_ERR(znode)) 641 return PTR_ERR(znode); 642 } 643 nn = 0; 644 break; 645 } 646 } 647 *zn = znode; 648 *n = nn; 649 return 0; 650 } 651 652 /** 653 * tnc_prev - find previous TNC entry. 654 * @c: UBIFS file-system description object 655 * @zn: znode is returned here 656 * @n: znode branch slot number is passed and returned here 657 * 658 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 659 * there is no next entry, or a negative error code otherwise. 660 */ 661 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 662 { 663 struct ubifs_znode *znode = *zn; 664 int nn = *n; 665 666 if (nn > 0) { 667 *n = nn - 1; 668 return 0; 669 } 670 while (1) { 671 struct ubifs_znode *zp; 672 673 zp = znode->parent; 674 if (!zp) 675 return -ENOENT; 676 nn = znode->iip - 1; 677 znode = zp; 678 if (nn >= 0) { 679 znode = get_znode(c, znode, nn); 680 if (IS_ERR(znode)) 681 return PTR_ERR(znode); 682 while (znode->level != 0) { 683 nn = znode->child_cnt - 1; 684 znode = get_znode(c, znode, nn); 685 if (IS_ERR(znode)) 686 return PTR_ERR(znode); 687 } 688 nn = znode->child_cnt - 1; 689 break; 690 } 691 } 692 *zn = znode; 693 *n = nn; 694 return 0; 695 } 696 697 /** 698 * resolve_collision - resolve a collision. 699 * @c: UBIFS file-system description object 700 * @key: key of a directory or extended attribute entry 701 * @zn: znode is returned here 702 * @n: zbranch number is passed and returned here 703 * @nm: name of the entry 704 * 705 * This function is called for "hashed" keys to make sure that the found key 706 * really corresponds to the looked up node (directory or extended attribute 707 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 708 * %0 is returned if @nm is not found and @zn and @n are set to the previous 709 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 710 * This means that @n may be set to %-1 if the leftmost key in @zn is the 711 * previous one. A negative error code is returned on failures. 712 */ 713 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 714 struct ubifs_znode **zn, int *n, 715 const struct fscrypt_name *nm) 716 { 717 int err; 718 719 err = matches_name(c, &(*zn)->zbranch[*n], nm); 720 if (unlikely(err < 0)) 721 return err; 722 if (err == NAME_MATCHES) 723 return 1; 724 725 if (err == NAME_GREATER) { 726 /* Look left */ 727 while (1) { 728 err = tnc_prev(c, zn, n); 729 if (err == -ENOENT) { 730 ubifs_assert(c, *n == 0); 731 *n = -1; 732 return 0; 733 } 734 if (err < 0) 735 return err; 736 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 737 /* 738 * We have found the branch after which we would 739 * like to insert, but inserting in this znode 740 * may still be wrong. Consider the following 3 741 * znodes, in the case where we are resolving a 742 * collision with Key2. 743 * 744 * znode zp 745 * ---------------------- 746 * level 1 | Key0 | Key1 | 747 * ----------------------- 748 * | | 749 * znode za | | znode zb 750 * ------------ ------------ 751 * level 0 | Key0 | | Key2 | 752 * ------------ ------------ 753 * 754 * The lookup finds Key2 in znode zb. Lets say 755 * there is no match and the name is greater so 756 * we look left. When we find Key0, we end up 757 * here. If we return now, we will insert into 758 * znode za at slot n = 1. But that is invalid 759 * according to the parent's keys. Key2 must 760 * be inserted into znode zb. 761 * 762 * Note, this problem is not relevant for the 763 * case when we go right, because 764 * 'tnc_insert()' would correct the parent key. 765 */ 766 if (*n == (*zn)->child_cnt - 1) { 767 err = tnc_next(c, zn, n); 768 if (err) { 769 /* Should be impossible */ 770 ubifs_assert(c, 0); 771 if (err == -ENOENT) 772 err = -EINVAL; 773 return err; 774 } 775 ubifs_assert(c, *n == 0); 776 *n = -1; 777 } 778 return 0; 779 } 780 err = matches_name(c, &(*zn)->zbranch[*n], nm); 781 if (err < 0) 782 return err; 783 if (err == NAME_LESS) 784 return 0; 785 if (err == NAME_MATCHES) 786 return 1; 787 ubifs_assert(c, err == NAME_GREATER); 788 } 789 } else { 790 int nn = *n; 791 struct ubifs_znode *znode = *zn; 792 793 /* Look right */ 794 while (1) { 795 err = tnc_next(c, &znode, &nn); 796 if (err == -ENOENT) 797 return 0; 798 if (err < 0) 799 return err; 800 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 801 return 0; 802 err = matches_name(c, &znode->zbranch[nn], nm); 803 if (err < 0) 804 return err; 805 if (err == NAME_GREATER) 806 return 0; 807 *zn = znode; 808 *n = nn; 809 if (err == NAME_MATCHES) 810 return 1; 811 ubifs_assert(c, err == NAME_LESS); 812 } 813 } 814 } 815 816 /** 817 * fallible_matches_name - determine if a dent matches a given name. 818 * @c: UBIFS file-system description object 819 * @zbr: zbranch of dent 820 * @nm: name to match 821 * 822 * This is a "fallible" version of 'matches_name()' function which does not 823 * panic if the direntry/xentry referred by @zbr does not exist on the media. 824 * 825 * This function checks if xentry/direntry referred by zbranch @zbr matches name 826 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 827 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 828 * if xentry/direntry referred by @zbr does not exist on the media. A negative 829 * error code is returned in case of failure. 830 */ 831 static int fallible_matches_name(struct ubifs_info *c, 832 struct ubifs_zbranch *zbr, 833 const struct fscrypt_name *nm) 834 { 835 struct ubifs_dent_node *dent; 836 int nlen, err; 837 838 /* If possible, match against the dent in the leaf node cache */ 839 if (!zbr->leaf) { 840 dent = kmalloc(zbr->len, GFP_NOFS); 841 if (!dent) 842 return -ENOMEM; 843 844 err = fallible_read_node(c, &zbr->key, zbr, dent); 845 if (err < 0) 846 goto out_free; 847 if (err == 0) { 848 /* The node was not present */ 849 err = NOT_ON_MEDIA; 850 goto out_free; 851 } 852 ubifs_assert(c, err == 1); 853 854 err = lnc_add_directly(c, zbr, dent); 855 if (err) 856 goto out_free; 857 } else 858 dent = zbr->leaf; 859 860 nlen = le16_to_cpu(dent->nlen); 861 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 862 if (err == 0) { 863 if (nlen == fname_len(nm)) 864 return NAME_MATCHES; 865 else if (nlen < fname_len(nm)) 866 return NAME_LESS; 867 else 868 return NAME_GREATER; 869 } else if (err < 0) 870 return NAME_LESS; 871 else 872 return NAME_GREATER; 873 874 out_free: 875 kfree(dent); 876 return err; 877 } 878 879 /** 880 * fallible_resolve_collision - resolve a collision even if nodes are missing. 881 * @c: UBIFS file-system description object 882 * @key: key 883 * @zn: znode is returned here 884 * @n: branch number is passed and returned here 885 * @nm: name of directory entry 886 * @adding: indicates caller is adding a key to the TNC 887 * 888 * This is a "fallible" version of the 'resolve_collision()' function which 889 * does not panic if one of the nodes referred to by TNC does not exist on the 890 * media. This may happen when replaying the journal if a deleted node was 891 * Garbage-collected and the commit was not done. A branch that refers to a node 892 * that is not present is called a dangling branch. The following are the return 893 * codes for this function: 894 * o if @nm was found, %1 is returned and @zn and @n are set to the found 895 * branch; 896 * o if we are @adding and @nm was not found, %0 is returned; 897 * o if we are not @adding and @nm was not found, but a dangling branch was 898 * found, then %1 is returned and @zn and @n are set to the dangling branch; 899 * o a negative error code is returned in case of failure. 900 */ 901 static int fallible_resolve_collision(struct ubifs_info *c, 902 const union ubifs_key *key, 903 struct ubifs_znode **zn, int *n, 904 const struct fscrypt_name *nm, 905 int adding) 906 { 907 struct ubifs_znode *o_znode = NULL, *znode = *zn; 908 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 909 910 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 911 if (unlikely(cmp < 0)) 912 return cmp; 913 if (cmp == NAME_MATCHES) 914 return 1; 915 if (cmp == NOT_ON_MEDIA) { 916 o_znode = znode; 917 o_n = nn; 918 /* 919 * We are unlucky and hit a dangling branch straight away. 920 * Now we do not really know where to go to find the needed 921 * branch - to the left or to the right. Well, let's try left. 922 */ 923 unsure = 1; 924 } else if (!adding) 925 unsure = 1; /* Remove a dangling branch wherever it is */ 926 927 if (cmp == NAME_GREATER || unsure) { 928 /* Look left */ 929 while (1) { 930 err = tnc_prev(c, zn, n); 931 if (err == -ENOENT) { 932 ubifs_assert(c, *n == 0); 933 *n = -1; 934 break; 935 } 936 if (err < 0) 937 return err; 938 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 939 /* See comments in 'resolve_collision()' */ 940 if (*n == (*zn)->child_cnt - 1) { 941 err = tnc_next(c, zn, n); 942 if (err) { 943 /* Should be impossible */ 944 ubifs_assert(c, 0); 945 if (err == -ENOENT) 946 err = -EINVAL; 947 return err; 948 } 949 ubifs_assert(c, *n == 0); 950 *n = -1; 951 } 952 break; 953 } 954 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 955 if (err < 0) 956 return err; 957 if (err == NAME_MATCHES) 958 return 1; 959 if (err == NOT_ON_MEDIA) { 960 o_znode = *zn; 961 o_n = *n; 962 continue; 963 } 964 if (!adding) 965 continue; 966 if (err == NAME_LESS) 967 break; 968 else 969 unsure = 0; 970 } 971 } 972 973 if (cmp == NAME_LESS || unsure) { 974 /* Look right */ 975 *zn = znode; 976 *n = nn; 977 while (1) { 978 err = tnc_next(c, &znode, &nn); 979 if (err == -ENOENT) 980 break; 981 if (err < 0) 982 return err; 983 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 984 break; 985 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 986 if (err < 0) 987 return err; 988 if (err == NAME_GREATER) 989 break; 990 *zn = znode; 991 *n = nn; 992 if (err == NAME_MATCHES) 993 return 1; 994 if (err == NOT_ON_MEDIA) { 995 o_znode = znode; 996 o_n = nn; 997 } 998 } 999 } 1000 1001 /* Never match a dangling branch when adding */ 1002 if (adding || !o_znode) 1003 return 0; 1004 1005 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 1006 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1007 o_znode->zbranch[o_n].len); 1008 *zn = o_znode; 1009 *n = o_n; 1010 return 1; 1011 } 1012 1013 /** 1014 * matches_position - determine if a zbranch matches a given position. 1015 * @zbr: zbranch of dent 1016 * @lnum: LEB number of dent to match 1017 * @offs: offset of dent to match 1018 * 1019 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1020 */ 1021 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1022 { 1023 if (zbr->lnum == lnum && zbr->offs == offs) 1024 return 1; 1025 else 1026 return 0; 1027 } 1028 1029 /** 1030 * resolve_collision_directly - resolve a collision directly. 1031 * @c: UBIFS file-system description object 1032 * @key: key of directory entry 1033 * @zn: znode is passed and returned here 1034 * @n: zbranch number is passed and returned here 1035 * @lnum: LEB number of dent node to match 1036 * @offs: offset of dent node to match 1037 * 1038 * This function is used for "hashed" keys to make sure the found directory or 1039 * extended attribute entry node is what was looked for. It is used when the 1040 * flash address of the right node is known (@lnum:@offs) which makes it much 1041 * easier to resolve collisions (no need to read entries and match full 1042 * names). This function returns %1 and sets @zn and @n if the collision is 1043 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1044 * previous directory entry. Otherwise a negative error code is returned. 1045 */ 1046 static int resolve_collision_directly(struct ubifs_info *c, 1047 const union ubifs_key *key, 1048 struct ubifs_znode **zn, int *n, 1049 int lnum, int offs) 1050 { 1051 struct ubifs_znode *znode; 1052 int nn, err; 1053 1054 znode = *zn; 1055 nn = *n; 1056 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1057 return 1; 1058 1059 /* Look left */ 1060 while (1) { 1061 err = tnc_prev(c, &znode, &nn); 1062 if (err == -ENOENT) 1063 break; 1064 if (err < 0) 1065 return err; 1066 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1067 break; 1068 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1069 *zn = znode; 1070 *n = nn; 1071 return 1; 1072 } 1073 } 1074 1075 /* Look right */ 1076 znode = *zn; 1077 nn = *n; 1078 while (1) { 1079 err = tnc_next(c, &znode, &nn); 1080 if (err == -ENOENT) 1081 return 0; 1082 if (err < 0) 1083 return err; 1084 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1085 return 0; 1086 *zn = znode; 1087 *n = nn; 1088 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1089 return 1; 1090 } 1091 } 1092 1093 /** 1094 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1095 * @c: UBIFS file-system description object 1096 * @znode: znode to dirty 1097 * 1098 * If we do not have a unique key that resides in a znode, then we cannot 1099 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1100 * This function records the path back to the last dirty ancestor, and then 1101 * dirties the znodes on that path. 1102 */ 1103 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1104 struct ubifs_znode *znode) 1105 { 1106 struct ubifs_znode *zp; 1107 int *path = c->bottom_up_buf, p = 0; 1108 1109 ubifs_assert(c, c->zroot.znode); 1110 ubifs_assert(c, znode); 1111 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1112 kfree(c->bottom_up_buf); 1113 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1114 sizeof(int), 1115 GFP_NOFS); 1116 if (!c->bottom_up_buf) 1117 return ERR_PTR(-ENOMEM); 1118 path = c->bottom_up_buf; 1119 } 1120 if (c->zroot.znode->level) { 1121 /* Go up until parent is dirty */ 1122 while (1) { 1123 int n; 1124 1125 zp = znode->parent; 1126 if (!zp) 1127 break; 1128 n = znode->iip; 1129 ubifs_assert(c, p < c->zroot.znode->level); 1130 path[p++] = n; 1131 if (!zp->cnext && ubifs_zn_dirty(znode)) 1132 break; 1133 znode = zp; 1134 } 1135 } 1136 1137 /* Come back down, dirtying as we go */ 1138 while (1) { 1139 struct ubifs_zbranch *zbr; 1140 1141 zp = znode->parent; 1142 if (zp) { 1143 ubifs_assert(c, path[p - 1] >= 0); 1144 ubifs_assert(c, path[p - 1] < zp->child_cnt); 1145 zbr = &zp->zbranch[path[--p]]; 1146 znode = dirty_cow_znode(c, zbr); 1147 } else { 1148 ubifs_assert(c, znode == c->zroot.znode); 1149 znode = dirty_cow_znode(c, &c->zroot); 1150 } 1151 if (IS_ERR(znode) || !p) 1152 break; 1153 ubifs_assert(c, path[p - 1] >= 0); 1154 ubifs_assert(c, path[p - 1] < znode->child_cnt); 1155 znode = znode->zbranch[path[p - 1]].znode; 1156 } 1157 1158 return znode; 1159 } 1160 1161 /** 1162 * ubifs_lookup_level0 - search for zero-level znode. 1163 * @c: UBIFS file-system description object 1164 * @key: key to lookup 1165 * @zn: znode is returned here 1166 * @n: znode branch slot number is returned here 1167 * 1168 * This function looks up the TNC tree and search for zero-level znode which 1169 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1170 * cases: 1171 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1172 * is returned and slot number of the matched branch is stored in @n; 1173 * o not exact match, which means that zero-level znode does not contain 1174 * @key, then %0 is returned and slot number of the closest branch is stored 1175 * in @n; 1176 * o @key is so small that it is even less than the lowest key of the 1177 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1178 * 1179 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1180 * function reads corresponding indexing nodes and inserts them to TNC. In 1181 * case of failure, a negative error code is returned. 1182 */ 1183 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1184 struct ubifs_znode **zn, int *n) 1185 { 1186 int err, exact; 1187 struct ubifs_znode *znode; 1188 time64_t time = ktime_get_seconds(); 1189 1190 dbg_tnck(key, "search key "); 1191 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 1192 1193 znode = c->zroot.znode; 1194 if (unlikely(!znode)) { 1195 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1196 if (IS_ERR(znode)) 1197 return PTR_ERR(znode); 1198 } 1199 1200 znode->time = time; 1201 1202 while (1) { 1203 struct ubifs_zbranch *zbr; 1204 1205 exact = ubifs_search_zbranch(c, znode, key, n); 1206 1207 if (znode->level == 0) 1208 break; 1209 1210 if (*n < 0) 1211 *n = 0; 1212 zbr = &znode->zbranch[*n]; 1213 1214 if (zbr->znode) { 1215 znode->time = time; 1216 znode = zbr->znode; 1217 continue; 1218 } 1219 1220 /* znode is not in TNC cache, load it from the media */ 1221 znode = ubifs_load_znode(c, zbr, znode, *n); 1222 if (IS_ERR(znode)) 1223 return PTR_ERR(znode); 1224 } 1225 1226 *zn = znode; 1227 if (exact || !is_hash_key(c, key) || *n != -1) { 1228 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1229 return exact; 1230 } 1231 1232 /* 1233 * Here is a tricky place. We have not found the key and this is a 1234 * "hashed" key, which may collide. The rest of the code deals with 1235 * situations like this: 1236 * 1237 * | 3 | 5 | 1238 * / \ 1239 * | 3 | 5 | | 6 | 7 | (x) 1240 * 1241 * Or more a complex example: 1242 * 1243 * | 1 | 5 | 1244 * / \ 1245 * | 1 | 3 | | 5 | 8 | 1246 * \ / 1247 * | 5 | 5 | | 6 | 7 | (x) 1248 * 1249 * In the examples, if we are looking for key "5", we may reach nodes 1250 * marked with "(x)". In this case what we have do is to look at the 1251 * left and see if there is "5" key there. If there is, we have to 1252 * return it. 1253 * 1254 * Note, this whole situation is possible because we allow to have 1255 * elements which are equivalent to the next key in the parent in the 1256 * children of current znode. For example, this happens if we split a 1257 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1258 * like this: 1259 * | 3 | 5 | 1260 * / \ 1261 * | 3 | 5 | | 5 | 6 | 7 | 1262 * ^ 1263 * And this becomes what is at the first "picture" after key "5" marked 1264 * with "^" is removed. What could be done is we could prohibit 1265 * splitting in the middle of the colliding sequence. Also, when 1266 * removing the leftmost key, we would have to correct the key of the 1267 * parent node, which would introduce additional complications. Namely, 1268 * if we changed the leftmost key of the parent znode, the garbage 1269 * collector would be unable to find it (GC is doing this when GC'ing 1270 * indexing LEBs). Although we already have an additional RB-tree where 1271 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1272 * after the commit. But anyway, this does not look easy to implement 1273 * so we did not try this. 1274 */ 1275 err = tnc_prev(c, &znode, n); 1276 if (err == -ENOENT) { 1277 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1278 *n = -1; 1279 return 0; 1280 } 1281 if (unlikely(err < 0)) 1282 return err; 1283 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1284 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1285 *n = -1; 1286 return 0; 1287 } 1288 1289 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1290 *zn = znode; 1291 return 1; 1292 } 1293 1294 /** 1295 * lookup_level0_dirty - search for zero-level znode dirtying. 1296 * @c: UBIFS file-system description object 1297 * @key: key to lookup 1298 * @zn: znode is returned here 1299 * @n: znode branch slot number is returned here 1300 * 1301 * This function looks up the TNC tree and search for zero-level znode which 1302 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1303 * cases: 1304 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1305 * is returned and slot number of the matched branch is stored in @n; 1306 * o not exact match, which means that zero-level znode does not contain @key 1307 * then %0 is returned and slot number of the closed branch is stored in 1308 * @n; 1309 * o @key is so small that it is even less than the lowest key of the 1310 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1311 * 1312 * Additionally all znodes in the path from the root to the located zero-level 1313 * znode are marked as dirty. 1314 * 1315 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1316 * function reads corresponding indexing nodes and inserts them to TNC. In 1317 * case of failure, a negative error code is returned. 1318 */ 1319 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1320 struct ubifs_znode **zn, int *n) 1321 { 1322 int err, exact; 1323 struct ubifs_znode *znode; 1324 time64_t time = ktime_get_seconds(); 1325 1326 dbg_tnck(key, "search and dirty key "); 1327 1328 znode = c->zroot.znode; 1329 if (unlikely(!znode)) { 1330 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1331 if (IS_ERR(znode)) 1332 return PTR_ERR(znode); 1333 } 1334 1335 znode = dirty_cow_znode(c, &c->zroot); 1336 if (IS_ERR(znode)) 1337 return PTR_ERR(znode); 1338 1339 znode->time = time; 1340 1341 while (1) { 1342 struct ubifs_zbranch *zbr; 1343 1344 exact = ubifs_search_zbranch(c, znode, key, n); 1345 1346 if (znode->level == 0) 1347 break; 1348 1349 if (*n < 0) 1350 *n = 0; 1351 zbr = &znode->zbranch[*n]; 1352 1353 if (zbr->znode) { 1354 znode->time = time; 1355 znode = dirty_cow_znode(c, zbr); 1356 if (IS_ERR(znode)) 1357 return PTR_ERR(znode); 1358 continue; 1359 } 1360 1361 /* znode is not in TNC cache, load it from the media */ 1362 znode = ubifs_load_znode(c, zbr, znode, *n); 1363 if (IS_ERR(znode)) 1364 return PTR_ERR(znode); 1365 znode = dirty_cow_znode(c, zbr); 1366 if (IS_ERR(znode)) 1367 return PTR_ERR(znode); 1368 } 1369 1370 *zn = znode; 1371 if (exact || !is_hash_key(c, key) || *n != -1) { 1372 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1373 return exact; 1374 } 1375 1376 /* 1377 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1378 * code. 1379 */ 1380 err = tnc_prev(c, &znode, n); 1381 if (err == -ENOENT) { 1382 *n = -1; 1383 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1384 return 0; 1385 } 1386 if (unlikely(err < 0)) 1387 return err; 1388 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1389 *n = -1; 1390 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1391 return 0; 1392 } 1393 1394 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1395 znode = dirty_cow_bottom_up(c, znode); 1396 if (IS_ERR(znode)) 1397 return PTR_ERR(znode); 1398 } 1399 1400 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1401 *zn = znode; 1402 return 1; 1403 } 1404 1405 /** 1406 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1407 * @c: UBIFS file-system description object 1408 * @lnum: LEB number 1409 * @gc_seq1: garbage collection sequence number 1410 * 1411 * This function determines if @lnum may have been garbage collected since 1412 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1413 * %0 is returned. 1414 */ 1415 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1416 { 1417 int gc_seq2, gced_lnum; 1418 1419 gced_lnum = c->gced_lnum; 1420 smp_rmb(); 1421 gc_seq2 = c->gc_seq; 1422 /* Same seq means no GC */ 1423 if (gc_seq1 == gc_seq2) 1424 return 0; 1425 /* Different by more than 1 means we don't know */ 1426 if (gc_seq1 + 1 != gc_seq2) 1427 return 1; 1428 /* 1429 * We have seen the sequence number has increased by 1. Now we need to 1430 * be sure we read the right LEB number, so read it again. 1431 */ 1432 smp_rmb(); 1433 if (gced_lnum != c->gced_lnum) 1434 return 1; 1435 /* Finally we can check lnum */ 1436 if (gced_lnum == lnum) 1437 return 1; 1438 return 0; 1439 } 1440 1441 /** 1442 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1443 * @c: UBIFS file-system description object 1444 * @key: node key to lookup 1445 * @node: the node is returned here 1446 * @lnum: LEB number is returned here 1447 * @offs: offset is returned here 1448 * 1449 * This function looks up and reads node with key @key. The caller has to make 1450 * sure the @node buffer is large enough to fit the node. Returns zero in case 1451 * of success, %-ENOENT if the node was not found, and a negative error code in 1452 * case of failure. The node location can be returned in @lnum and @offs. 1453 */ 1454 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1455 void *node, int *lnum, int *offs) 1456 { 1457 int found, n, err, safely = 0, gc_seq1; 1458 struct ubifs_znode *znode; 1459 struct ubifs_zbranch zbr, *zt; 1460 1461 again: 1462 mutex_lock(&c->tnc_mutex); 1463 found = ubifs_lookup_level0(c, key, &znode, &n); 1464 if (!found) { 1465 err = -ENOENT; 1466 goto out; 1467 } else if (found < 0) { 1468 err = found; 1469 goto out; 1470 } 1471 zt = &znode->zbranch[n]; 1472 if (lnum) { 1473 *lnum = zt->lnum; 1474 *offs = zt->offs; 1475 } 1476 if (is_hash_key(c, key)) { 1477 /* 1478 * In this case the leaf node cache gets used, so we pass the 1479 * address of the zbranch and keep the mutex locked 1480 */ 1481 err = tnc_read_hashed_node(c, zt, node); 1482 goto out; 1483 } 1484 if (safely) { 1485 err = ubifs_tnc_read_node(c, zt, node); 1486 goto out; 1487 } 1488 /* Drop the TNC mutex prematurely and race with garbage collection */ 1489 zbr = znode->zbranch[n]; 1490 gc_seq1 = c->gc_seq; 1491 mutex_unlock(&c->tnc_mutex); 1492 1493 if (ubifs_get_wbuf(c, zbr.lnum)) { 1494 /* We do not GC journal heads */ 1495 err = ubifs_tnc_read_node(c, &zbr, node); 1496 return err; 1497 } 1498 1499 err = fallible_read_node(c, key, &zbr, node); 1500 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1501 /* 1502 * The node may have been GC'ed out from under us so try again 1503 * while keeping the TNC mutex locked. 1504 */ 1505 safely = 1; 1506 goto again; 1507 } 1508 return 0; 1509 1510 out: 1511 mutex_unlock(&c->tnc_mutex); 1512 return err; 1513 } 1514 1515 /** 1516 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1517 * @c: UBIFS file-system description object 1518 * @bu: bulk-read parameters and results 1519 * 1520 * Lookup consecutive data node keys for the same inode that reside 1521 * consecutively in the same LEB. This function returns zero in case of success 1522 * and a negative error code in case of failure. 1523 * 1524 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1525 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1526 * maximum possible amount of nodes for bulk-read. 1527 */ 1528 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1529 { 1530 int n, err = 0, lnum = -1, uninitialized_var(offs); 1531 int uninitialized_var(len); 1532 unsigned int block = key_block(c, &bu->key); 1533 struct ubifs_znode *znode; 1534 1535 bu->cnt = 0; 1536 bu->blk_cnt = 0; 1537 bu->eof = 0; 1538 1539 mutex_lock(&c->tnc_mutex); 1540 /* Find first key */ 1541 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1542 if (err < 0) 1543 goto out; 1544 if (err) { 1545 /* Key found */ 1546 len = znode->zbranch[n].len; 1547 /* The buffer must be big enough for at least 1 node */ 1548 if (len > bu->buf_len) { 1549 err = -EINVAL; 1550 goto out; 1551 } 1552 /* Add this key */ 1553 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1554 bu->blk_cnt += 1; 1555 lnum = znode->zbranch[n].lnum; 1556 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1557 } 1558 while (1) { 1559 struct ubifs_zbranch *zbr; 1560 union ubifs_key *key; 1561 unsigned int next_block; 1562 1563 /* Find next key */ 1564 err = tnc_next(c, &znode, &n); 1565 if (err) 1566 goto out; 1567 zbr = &znode->zbranch[n]; 1568 key = &zbr->key; 1569 /* See if there is another data key for this file */ 1570 if (key_inum(c, key) != key_inum(c, &bu->key) || 1571 key_type(c, key) != UBIFS_DATA_KEY) { 1572 err = -ENOENT; 1573 goto out; 1574 } 1575 if (lnum < 0) { 1576 /* First key found */ 1577 lnum = zbr->lnum; 1578 offs = ALIGN(zbr->offs + zbr->len, 8); 1579 len = zbr->len; 1580 if (len > bu->buf_len) { 1581 err = -EINVAL; 1582 goto out; 1583 } 1584 } else { 1585 /* 1586 * The data nodes must be in consecutive positions in 1587 * the same LEB. 1588 */ 1589 if (zbr->lnum != lnum || zbr->offs != offs) 1590 goto out; 1591 offs += ALIGN(zbr->len, 8); 1592 len = ALIGN(len, 8) + zbr->len; 1593 /* Must not exceed buffer length */ 1594 if (len > bu->buf_len) 1595 goto out; 1596 } 1597 /* Allow for holes */ 1598 next_block = key_block(c, key); 1599 bu->blk_cnt += (next_block - block - 1); 1600 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1601 goto out; 1602 block = next_block; 1603 /* Add this key */ 1604 bu->zbranch[bu->cnt++] = *zbr; 1605 bu->blk_cnt += 1; 1606 /* See if we have room for more */ 1607 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1608 goto out; 1609 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1610 goto out; 1611 } 1612 out: 1613 if (err == -ENOENT) { 1614 bu->eof = 1; 1615 err = 0; 1616 } 1617 bu->gc_seq = c->gc_seq; 1618 mutex_unlock(&c->tnc_mutex); 1619 if (err) 1620 return err; 1621 /* 1622 * An enormous hole could cause bulk-read to encompass too many 1623 * page cache pages, so limit the number here. 1624 */ 1625 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1626 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1627 /* 1628 * Ensure that bulk-read covers a whole number of page cache 1629 * pages. 1630 */ 1631 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1632 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1633 return 0; 1634 if (bu->eof) { 1635 /* At the end of file we can round up */ 1636 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1637 return 0; 1638 } 1639 /* Exclude data nodes that do not make up a whole page cache page */ 1640 block = key_block(c, &bu->key) + bu->blk_cnt; 1641 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1642 while (bu->cnt) { 1643 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1644 break; 1645 bu->cnt -= 1; 1646 } 1647 return 0; 1648 } 1649 1650 /** 1651 * read_wbuf - bulk-read from a LEB with a wbuf. 1652 * @wbuf: wbuf that may overlap the read 1653 * @buf: buffer into which to read 1654 * @len: read length 1655 * @lnum: LEB number from which to read 1656 * @offs: offset from which to read 1657 * 1658 * This functions returns %0 on success or a negative error code on failure. 1659 */ 1660 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1661 int offs) 1662 { 1663 const struct ubifs_info *c = wbuf->c; 1664 int rlen, overlap; 1665 1666 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1667 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1668 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1669 ubifs_assert(c, offs + len <= c->leb_size); 1670 1671 spin_lock(&wbuf->lock); 1672 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1673 if (!overlap) { 1674 /* We may safely unlock the write-buffer and read the data */ 1675 spin_unlock(&wbuf->lock); 1676 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1677 } 1678 1679 /* Don't read under wbuf */ 1680 rlen = wbuf->offs - offs; 1681 if (rlen < 0) 1682 rlen = 0; 1683 1684 /* Copy the rest from the write-buffer */ 1685 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1686 spin_unlock(&wbuf->lock); 1687 1688 if (rlen > 0) 1689 /* Read everything that goes before write-buffer */ 1690 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * validate_data_node - validate data nodes for bulk-read. 1697 * @c: UBIFS file-system description object 1698 * @buf: buffer containing data node to validate 1699 * @zbr: zbranch of data node to validate 1700 * 1701 * This functions returns %0 on success or a negative error code on failure. 1702 */ 1703 static int validate_data_node(struct ubifs_info *c, void *buf, 1704 struct ubifs_zbranch *zbr) 1705 { 1706 union ubifs_key key1; 1707 struct ubifs_ch *ch = buf; 1708 int err, len; 1709 1710 if (ch->node_type != UBIFS_DATA_NODE) { 1711 ubifs_err(c, "bad node type (%d but expected %d)", 1712 ch->node_type, UBIFS_DATA_NODE); 1713 goto out_err; 1714 } 1715 1716 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1717 if (err) { 1718 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1719 goto out; 1720 } 1721 1722 err = ubifs_node_check_hash(c, buf, zbr->hash); 1723 if (err) { 1724 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); 1725 return err; 1726 } 1727 1728 len = le32_to_cpu(ch->len); 1729 if (len != zbr->len) { 1730 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1731 goto out_err; 1732 } 1733 1734 /* Make sure the key of the read node is correct */ 1735 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1736 if (!keys_eq(c, &zbr->key, &key1)) { 1737 ubifs_err(c, "bad key in node at LEB %d:%d", 1738 zbr->lnum, zbr->offs); 1739 dbg_tnck(&zbr->key, "looked for key "); 1740 dbg_tnck(&key1, "found node's key "); 1741 goto out_err; 1742 } 1743 1744 return 0; 1745 1746 out_err: 1747 err = -EINVAL; 1748 out: 1749 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1750 ubifs_dump_node(c, buf); 1751 dump_stack(); 1752 return err; 1753 } 1754 1755 /** 1756 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1757 * @c: UBIFS file-system description object 1758 * @bu: bulk-read parameters and results 1759 * 1760 * This functions reads and validates the data nodes that were identified by the 1761 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1762 * -EAGAIN to indicate a race with GC, or another negative error code on 1763 * failure. 1764 */ 1765 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1766 { 1767 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1768 struct ubifs_wbuf *wbuf; 1769 void *buf; 1770 1771 len = bu->zbranch[bu->cnt - 1].offs; 1772 len += bu->zbranch[bu->cnt - 1].len - offs; 1773 if (len > bu->buf_len) { 1774 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1775 return -EINVAL; 1776 } 1777 1778 /* Do the read */ 1779 wbuf = ubifs_get_wbuf(c, lnum); 1780 if (wbuf) 1781 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1782 else 1783 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1784 1785 /* Check for a race with GC */ 1786 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1787 return -EAGAIN; 1788 1789 if (err && err != -EBADMSG) { 1790 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1791 lnum, offs, err); 1792 dump_stack(); 1793 dbg_tnck(&bu->key, "key "); 1794 return err; 1795 } 1796 1797 /* Validate the nodes read */ 1798 buf = bu->buf; 1799 for (i = 0; i < bu->cnt; i++) { 1800 err = validate_data_node(c, buf, &bu->zbranch[i]); 1801 if (err) 1802 return err; 1803 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1804 } 1805 1806 return 0; 1807 } 1808 1809 /** 1810 * do_lookup_nm- look up a "hashed" node. 1811 * @c: UBIFS file-system description object 1812 * @key: node key to lookup 1813 * @node: the node is returned here 1814 * @nm: node name 1815 * 1816 * This function looks up and reads a node which contains name hash in the key. 1817 * Since the hash may have collisions, there may be many nodes with the same 1818 * key, so we have to sequentially look to all of them until the needed one is 1819 * found. This function returns zero in case of success, %-ENOENT if the node 1820 * was not found, and a negative error code in case of failure. 1821 */ 1822 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1823 void *node, const struct fscrypt_name *nm) 1824 { 1825 int found, n, err; 1826 struct ubifs_znode *znode; 1827 1828 dbg_tnck(key, "key "); 1829 mutex_lock(&c->tnc_mutex); 1830 found = ubifs_lookup_level0(c, key, &znode, &n); 1831 if (!found) { 1832 err = -ENOENT; 1833 goto out_unlock; 1834 } else if (found < 0) { 1835 err = found; 1836 goto out_unlock; 1837 } 1838 1839 ubifs_assert(c, n >= 0); 1840 1841 err = resolve_collision(c, key, &znode, &n, nm); 1842 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1843 if (unlikely(err < 0)) 1844 goto out_unlock; 1845 if (err == 0) { 1846 err = -ENOENT; 1847 goto out_unlock; 1848 } 1849 1850 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1851 1852 out_unlock: 1853 mutex_unlock(&c->tnc_mutex); 1854 return err; 1855 } 1856 1857 /** 1858 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1859 * @c: UBIFS file-system description object 1860 * @key: node key to lookup 1861 * @node: the node is returned here 1862 * @nm: node name 1863 * 1864 * This function looks up and reads a node which contains name hash in the key. 1865 * Since the hash may have collisions, there may be many nodes with the same 1866 * key, so we have to sequentially look to all of them until the needed one is 1867 * found. This function returns zero in case of success, %-ENOENT if the node 1868 * was not found, and a negative error code in case of failure. 1869 */ 1870 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1871 void *node, const struct fscrypt_name *nm) 1872 { 1873 int err, len; 1874 const struct ubifs_dent_node *dent = node; 1875 1876 /* 1877 * We assume that in most of the cases there are no name collisions and 1878 * 'ubifs_tnc_lookup()' returns us the right direntry. 1879 */ 1880 err = ubifs_tnc_lookup(c, key, node); 1881 if (err) 1882 return err; 1883 1884 len = le16_to_cpu(dent->nlen); 1885 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1886 return 0; 1887 1888 /* 1889 * Unluckily, there are hash collisions and we have to iterate over 1890 * them look at each direntry with colliding name hash sequentially. 1891 */ 1892 1893 return do_lookup_nm(c, key, node, nm); 1894 } 1895 1896 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1897 struct ubifs_dent_node *dent, uint32_t cookie, 1898 struct ubifs_znode **zn, int *n) 1899 { 1900 int err; 1901 struct ubifs_znode *znode = *zn; 1902 struct ubifs_zbranch *zbr; 1903 union ubifs_key *dkey; 1904 1905 for (;;) { 1906 zbr = &znode->zbranch[*n]; 1907 dkey = &zbr->key; 1908 1909 if (key_inum(c, dkey) != key_inum(c, key) || 1910 key_type(c, dkey) != key_type(c, key)) { 1911 return -ENOENT; 1912 } 1913 1914 err = tnc_read_hashed_node(c, zbr, dent); 1915 if (err) 1916 return err; 1917 1918 if (key_hash(c, key) == key_hash(c, dkey) && 1919 le32_to_cpu(dent->cookie) == cookie) { 1920 *zn = znode; 1921 return 0; 1922 } 1923 1924 err = tnc_next(c, &znode, n); 1925 if (err) 1926 return err; 1927 } 1928 } 1929 1930 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1931 struct ubifs_dent_node *dent, uint32_t cookie) 1932 { 1933 int n, err; 1934 struct ubifs_znode *znode; 1935 union ubifs_key start_key; 1936 1937 ubifs_assert(c, is_hash_key(c, key)); 1938 1939 lowest_dent_key(c, &start_key, key_inum(c, key)); 1940 1941 mutex_lock(&c->tnc_mutex); 1942 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1943 if (unlikely(err < 0)) 1944 goto out_unlock; 1945 1946 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 1947 1948 out_unlock: 1949 mutex_unlock(&c->tnc_mutex); 1950 return err; 1951 } 1952 1953 /** 1954 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1955 * @c: UBIFS file-system description object 1956 * @key: node key to lookup 1957 * @node: the node is returned here 1958 * @cookie: node cookie for collision resolution 1959 * 1960 * This function looks up and reads a node which contains name hash in the key. 1961 * Since the hash may have collisions, there may be many nodes with the same 1962 * key, so we have to sequentially look to all of them until the needed one 1963 * with the same cookie value is found. 1964 * This function returns zero in case of success, %-ENOENT if the node 1965 * was not found, and a negative error code in case of failure. 1966 */ 1967 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1968 void *node, uint32_t cookie) 1969 { 1970 int err; 1971 const struct ubifs_dent_node *dent = node; 1972 1973 if (!c->double_hash) 1974 return -EOPNOTSUPP; 1975 1976 /* 1977 * We assume that in most of the cases there are no name collisions and 1978 * 'ubifs_tnc_lookup()' returns us the right direntry. 1979 */ 1980 err = ubifs_tnc_lookup(c, key, node); 1981 if (err) 1982 return err; 1983 1984 if (le32_to_cpu(dent->cookie) == cookie) 1985 return 0; 1986 1987 /* 1988 * Unluckily, there are hash collisions and we have to iterate over 1989 * them look at each direntry with colliding name hash sequentially. 1990 */ 1991 return do_lookup_dh(c, key, node, cookie); 1992 } 1993 1994 /** 1995 * correct_parent_keys - correct parent znodes' keys. 1996 * @c: UBIFS file-system description object 1997 * @znode: znode to correct parent znodes for 1998 * 1999 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 2000 * zbranch changes, keys of parent znodes have to be corrected. This helper 2001 * function is called in such situations and corrects the keys if needed. 2002 */ 2003 static void correct_parent_keys(const struct ubifs_info *c, 2004 struct ubifs_znode *znode) 2005 { 2006 union ubifs_key *key, *key1; 2007 2008 ubifs_assert(c, znode->parent); 2009 ubifs_assert(c, znode->iip == 0); 2010 2011 key = &znode->zbranch[0].key; 2012 key1 = &znode->parent->zbranch[0].key; 2013 2014 while (keys_cmp(c, key, key1) < 0) { 2015 key_copy(c, key, key1); 2016 znode = znode->parent; 2017 znode->alt = 1; 2018 if (!znode->parent || znode->iip) 2019 break; 2020 key1 = &znode->parent->zbranch[0].key; 2021 } 2022 } 2023 2024 /** 2025 * insert_zbranch - insert a zbranch into a znode. 2026 * @c: UBIFS file-system description object 2027 * @znode: znode into which to insert 2028 * @zbr: zbranch to insert 2029 * @n: slot number to insert to 2030 * 2031 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2032 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2033 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2034 * slot, zbranches starting from @n have to be moved right. 2035 */ 2036 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, 2037 const struct ubifs_zbranch *zbr, int n) 2038 { 2039 int i; 2040 2041 ubifs_assert(c, ubifs_zn_dirty(znode)); 2042 2043 if (znode->level) { 2044 for (i = znode->child_cnt; i > n; i--) { 2045 znode->zbranch[i] = znode->zbranch[i - 1]; 2046 if (znode->zbranch[i].znode) 2047 znode->zbranch[i].znode->iip = i; 2048 } 2049 if (zbr->znode) 2050 zbr->znode->iip = n; 2051 } else 2052 for (i = znode->child_cnt; i > n; i--) 2053 znode->zbranch[i] = znode->zbranch[i - 1]; 2054 2055 znode->zbranch[n] = *zbr; 2056 znode->child_cnt += 1; 2057 2058 /* 2059 * After inserting at slot zero, the lower bound of the key range of 2060 * this znode may have changed. If this znode is subsequently split 2061 * then the upper bound of the key range may change, and furthermore 2062 * it could change to be lower than the original lower bound. If that 2063 * happens, then it will no longer be possible to find this znode in the 2064 * TNC using the key from the index node on flash. That is bad because 2065 * if it is not found, we will assume it is obsolete and may overwrite 2066 * it. Then if there is an unclean unmount, we will start using the 2067 * old index which will be broken. 2068 * 2069 * So we first mark znodes that have insertions at slot zero, and then 2070 * if they are split we add their lnum/offs to the old_idx tree. 2071 */ 2072 if (n == 0) 2073 znode->alt = 1; 2074 } 2075 2076 /** 2077 * tnc_insert - insert a node into TNC. 2078 * @c: UBIFS file-system description object 2079 * @znode: znode to insert into 2080 * @zbr: branch to insert 2081 * @n: slot number to insert new zbranch to 2082 * 2083 * This function inserts a new node described by @zbr into znode @znode. If 2084 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2085 * are splat as well if needed. Returns zero in case of success or a negative 2086 * error code in case of failure. 2087 */ 2088 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2089 struct ubifs_zbranch *zbr, int n) 2090 { 2091 struct ubifs_znode *zn, *zi, *zp; 2092 int i, keep, move, appending = 0; 2093 union ubifs_key *key = &zbr->key, *key1; 2094 2095 ubifs_assert(c, n >= 0 && n <= c->fanout); 2096 2097 /* Implement naive insert for now */ 2098 again: 2099 zp = znode->parent; 2100 if (znode->child_cnt < c->fanout) { 2101 ubifs_assert(c, n != c->fanout); 2102 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2103 2104 insert_zbranch(c, znode, zbr, n); 2105 2106 /* Ensure parent's key is correct */ 2107 if (n == 0 && zp && znode->iip == 0) 2108 correct_parent_keys(c, znode); 2109 2110 return 0; 2111 } 2112 2113 /* 2114 * Unfortunately, @znode does not have more empty slots and we have to 2115 * split it. 2116 */ 2117 dbg_tnck(key, "splitting level %d, key ", znode->level); 2118 2119 if (znode->alt) 2120 /* 2121 * We can no longer be sure of finding this znode by key, so we 2122 * record it in the old_idx tree. 2123 */ 2124 ins_clr_old_idx_znode(c, znode); 2125 2126 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2127 if (!zn) 2128 return -ENOMEM; 2129 zn->parent = zp; 2130 zn->level = znode->level; 2131 2132 /* Decide where to split */ 2133 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2134 /* Try not to split consecutive data keys */ 2135 if (n == c->fanout) { 2136 key1 = &znode->zbranch[n - 1].key; 2137 if (key_inum(c, key1) == key_inum(c, key) && 2138 key_type(c, key1) == UBIFS_DATA_KEY) 2139 appending = 1; 2140 } else 2141 goto check_split; 2142 } else if (appending && n != c->fanout) { 2143 /* Try not to split consecutive data keys */ 2144 appending = 0; 2145 check_split: 2146 if (n >= (c->fanout + 1) / 2) { 2147 key1 = &znode->zbranch[0].key; 2148 if (key_inum(c, key1) == key_inum(c, key) && 2149 key_type(c, key1) == UBIFS_DATA_KEY) { 2150 key1 = &znode->zbranch[n].key; 2151 if (key_inum(c, key1) != key_inum(c, key) || 2152 key_type(c, key1) != UBIFS_DATA_KEY) { 2153 keep = n; 2154 move = c->fanout - keep; 2155 zi = znode; 2156 goto do_split; 2157 } 2158 } 2159 } 2160 } 2161 2162 if (appending) { 2163 keep = c->fanout; 2164 move = 0; 2165 } else { 2166 keep = (c->fanout + 1) / 2; 2167 move = c->fanout - keep; 2168 } 2169 2170 /* 2171 * Although we don't at present, we could look at the neighbors and see 2172 * if we can move some zbranches there. 2173 */ 2174 2175 if (n < keep) { 2176 /* Insert into existing znode */ 2177 zi = znode; 2178 move += 1; 2179 keep -= 1; 2180 } else { 2181 /* Insert into new znode */ 2182 zi = zn; 2183 n -= keep; 2184 /* Re-parent */ 2185 if (zn->level != 0) 2186 zbr->znode->parent = zn; 2187 } 2188 2189 do_split: 2190 2191 __set_bit(DIRTY_ZNODE, &zn->flags); 2192 atomic_long_inc(&c->dirty_zn_cnt); 2193 2194 zn->child_cnt = move; 2195 znode->child_cnt = keep; 2196 2197 dbg_tnc("moving %d, keeping %d", move, keep); 2198 2199 /* Move zbranch */ 2200 for (i = 0; i < move; i++) { 2201 zn->zbranch[i] = znode->zbranch[keep + i]; 2202 /* Re-parent */ 2203 if (zn->level != 0) 2204 if (zn->zbranch[i].znode) { 2205 zn->zbranch[i].znode->parent = zn; 2206 zn->zbranch[i].znode->iip = i; 2207 } 2208 } 2209 2210 /* Insert new key and branch */ 2211 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2212 2213 insert_zbranch(c, zi, zbr, n); 2214 2215 /* Insert new znode (produced by spitting) into the parent */ 2216 if (zp) { 2217 if (n == 0 && zi == znode && znode->iip == 0) 2218 correct_parent_keys(c, znode); 2219 2220 /* Locate insertion point */ 2221 n = znode->iip + 1; 2222 2223 /* Tail recursion */ 2224 zbr->key = zn->zbranch[0].key; 2225 zbr->znode = zn; 2226 zbr->lnum = 0; 2227 zbr->offs = 0; 2228 zbr->len = 0; 2229 znode = zp; 2230 2231 goto again; 2232 } 2233 2234 /* We have to split root znode */ 2235 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2236 2237 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2238 if (!zi) 2239 return -ENOMEM; 2240 2241 zi->child_cnt = 2; 2242 zi->level = znode->level + 1; 2243 2244 __set_bit(DIRTY_ZNODE, &zi->flags); 2245 atomic_long_inc(&c->dirty_zn_cnt); 2246 2247 zi->zbranch[0].key = znode->zbranch[0].key; 2248 zi->zbranch[0].znode = znode; 2249 zi->zbranch[0].lnum = c->zroot.lnum; 2250 zi->zbranch[0].offs = c->zroot.offs; 2251 zi->zbranch[0].len = c->zroot.len; 2252 zi->zbranch[1].key = zn->zbranch[0].key; 2253 zi->zbranch[1].znode = zn; 2254 2255 c->zroot.lnum = 0; 2256 c->zroot.offs = 0; 2257 c->zroot.len = 0; 2258 c->zroot.znode = zi; 2259 2260 zn->parent = zi; 2261 zn->iip = 1; 2262 znode->parent = zi; 2263 znode->iip = 0; 2264 2265 return 0; 2266 } 2267 2268 /** 2269 * ubifs_tnc_add - add a node to TNC. 2270 * @c: UBIFS file-system description object 2271 * @key: key to add 2272 * @lnum: LEB number of node 2273 * @offs: node offset 2274 * @len: node length 2275 * @hash: The hash over the node 2276 * 2277 * This function adds a node with key @key to TNC. The node may be new or it may 2278 * obsolete some existing one. Returns %0 on success or negative error code on 2279 * failure. 2280 */ 2281 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2282 int offs, int len, const u8 *hash) 2283 { 2284 int found, n, err = 0; 2285 struct ubifs_znode *znode; 2286 2287 mutex_lock(&c->tnc_mutex); 2288 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2289 found = lookup_level0_dirty(c, key, &znode, &n); 2290 if (!found) { 2291 struct ubifs_zbranch zbr; 2292 2293 zbr.znode = NULL; 2294 zbr.lnum = lnum; 2295 zbr.offs = offs; 2296 zbr.len = len; 2297 ubifs_copy_hash(c, hash, zbr.hash); 2298 key_copy(c, key, &zbr.key); 2299 err = tnc_insert(c, znode, &zbr, n + 1); 2300 } else if (found == 1) { 2301 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2302 2303 lnc_free(zbr); 2304 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2305 zbr->lnum = lnum; 2306 zbr->offs = offs; 2307 zbr->len = len; 2308 ubifs_copy_hash(c, hash, zbr->hash); 2309 } else 2310 err = found; 2311 if (!err) 2312 err = dbg_check_tnc(c, 0); 2313 mutex_unlock(&c->tnc_mutex); 2314 2315 return err; 2316 } 2317 2318 /** 2319 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2320 * @c: UBIFS file-system description object 2321 * @key: key to add 2322 * @old_lnum: LEB number of old node 2323 * @old_offs: old node offset 2324 * @lnum: LEB number of node 2325 * @offs: node offset 2326 * @len: node length 2327 * 2328 * This function replaces a node with key @key in the TNC only if the old node 2329 * is found. This function is called by garbage collection when node are moved. 2330 * Returns %0 on success or negative error code on failure. 2331 */ 2332 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2333 int old_lnum, int old_offs, int lnum, int offs, int len) 2334 { 2335 int found, n, err = 0; 2336 struct ubifs_znode *znode; 2337 2338 mutex_lock(&c->tnc_mutex); 2339 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2340 old_offs, lnum, offs, len); 2341 found = lookup_level0_dirty(c, key, &znode, &n); 2342 if (found < 0) { 2343 err = found; 2344 goto out_unlock; 2345 } 2346 2347 if (found == 1) { 2348 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2349 2350 found = 0; 2351 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2352 lnc_free(zbr); 2353 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2354 if (err) 2355 goto out_unlock; 2356 zbr->lnum = lnum; 2357 zbr->offs = offs; 2358 zbr->len = len; 2359 found = 1; 2360 } else if (is_hash_key(c, key)) { 2361 found = resolve_collision_directly(c, key, &znode, &n, 2362 old_lnum, old_offs); 2363 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2364 found, znode, n, old_lnum, old_offs); 2365 if (found < 0) { 2366 err = found; 2367 goto out_unlock; 2368 } 2369 2370 if (found) { 2371 /* Ensure the znode is dirtied */ 2372 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2373 znode = dirty_cow_bottom_up(c, znode); 2374 if (IS_ERR(znode)) { 2375 err = PTR_ERR(znode); 2376 goto out_unlock; 2377 } 2378 } 2379 zbr = &znode->zbranch[n]; 2380 lnc_free(zbr); 2381 err = ubifs_add_dirt(c, zbr->lnum, 2382 zbr->len); 2383 if (err) 2384 goto out_unlock; 2385 zbr->lnum = lnum; 2386 zbr->offs = offs; 2387 zbr->len = len; 2388 } 2389 } 2390 } 2391 2392 if (!found) 2393 err = ubifs_add_dirt(c, lnum, len); 2394 2395 if (!err) 2396 err = dbg_check_tnc(c, 0); 2397 2398 out_unlock: 2399 mutex_unlock(&c->tnc_mutex); 2400 return err; 2401 } 2402 2403 /** 2404 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2405 * @c: UBIFS file-system description object 2406 * @key: key to add 2407 * @lnum: LEB number of node 2408 * @offs: node offset 2409 * @len: node length 2410 * @hash: The hash over the node 2411 * @nm: node name 2412 * 2413 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2414 * may have collisions, like directory entry keys. 2415 */ 2416 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2417 int lnum, int offs, int len, const u8 *hash, 2418 const struct fscrypt_name *nm) 2419 { 2420 int found, n, err = 0; 2421 struct ubifs_znode *znode; 2422 2423 mutex_lock(&c->tnc_mutex); 2424 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2425 found = lookup_level0_dirty(c, key, &znode, &n); 2426 if (found < 0) { 2427 err = found; 2428 goto out_unlock; 2429 } 2430 2431 if (found == 1) { 2432 if (c->replaying) 2433 found = fallible_resolve_collision(c, key, &znode, &n, 2434 nm, 1); 2435 else 2436 found = resolve_collision(c, key, &znode, &n, nm); 2437 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2438 if (found < 0) { 2439 err = found; 2440 goto out_unlock; 2441 } 2442 2443 /* Ensure the znode is dirtied */ 2444 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2445 znode = dirty_cow_bottom_up(c, znode); 2446 if (IS_ERR(znode)) { 2447 err = PTR_ERR(znode); 2448 goto out_unlock; 2449 } 2450 } 2451 2452 if (found == 1) { 2453 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2454 2455 lnc_free(zbr); 2456 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2457 zbr->lnum = lnum; 2458 zbr->offs = offs; 2459 zbr->len = len; 2460 ubifs_copy_hash(c, hash, zbr->hash); 2461 goto out_unlock; 2462 } 2463 } 2464 2465 if (!found) { 2466 struct ubifs_zbranch zbr; 2467 2468 zbr.znode = NULL; 2469 zbr.lnum = lnum; 2470 zbr.offs = offs; 2471 zbr.len = len; 2472 ubifs_copy_hash(c, hash, zbr.hash); 2473 key_copy(c, key, &zbr.key); 2474 err = tnc_insert(c, znode, &zbr, n + 1); 2475 if (err) 2476 goto out_unlock; 2477 if (c->replaying) { 2478 /* 2479 * We did not find it in the index so there may be a 2480 * dangling branch still in the index. So we remove it 2481 * by passing 'ubifs_tnc_remove_nm()' the same key but 2482 * an unmatchable name. 2483 */ 2484 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2485 2486 err = dbg_check_tnc(c, 0); 2487 mutex_unlock(&c->tnc_mutex); 2488 if (err) 2489 return err; 2490 return ubifs_tnc_remove_nm(c, key, &noname); 2491 } 2492 } 2493 2494 out_unlock: 2495 if (!err) 2496 err = dbg_check_tnc(c, 0); 2497 mutex_unlock(&c->tnc_mutex); 2498 return err; 2499 } 2500 2501 /** 2502 * tnc_delete - delete a znode form TNC. 2503 * @c: UBIFS file-system description object 2504 * @znode: znode to delete from 2505 * @n: zbranch slot number to delete 2506 * 2507 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2508 * case of success and a negative error code in case of failure. 2509 */ 2510 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2511 { 2512 struct ubifs_zbranch *zbr; 2513 struct ubifs_znode *zp; 2514 int i, err; 2515 2516 /* Delete without merge for now */ 2517 ubifs_assert(c, znode->level == 0); 2518 ubifs_assert(c, n >= 0 && n < c->fanout); 2519 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2520 2521 zbr = &znode->zbranch[n]; 2522 lnc_free(zbr); 2523 2524 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2525 if (err) { 2526 ubifs_dump_znode(c, znode); 2527 return err; 2528 } 2529 2530 /* We do not "gap" zbranch slots */ 2531 for (i = n; i < znode->child_cnt - 1; i++) 2532 znode->zbranch[i] = znode->zbranch[i + 1]; 2533 znode->child_cnt -= 1; 2534 2535 if (znode->child_cnt > 0) 2536 return 0; 2537 2538 /* 2539 * This was the last zbranch, we have to delete this znode from the 2540 * parent. 2541 */ 2542 2543 do { 2544 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 2545 ubifs_assert(c, ubifs_zn_dirty(znode)); 2546 2547 zp = znode->parent; 2548 n = znode->iip; 2549 2550 atomic_long_dec(&c->dirty_zn_cnt); 2551 2552 err = insert_old_idx_znode(c, znode); 2553 if (err) 2554 return err; 2555 2556 if (znode->cnext) { 2557 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2558 atomic_long_inc(&c->clean_zn_cnt); 2559 atomic_long_inc(&ubifs_clean_zn_cnt); 2560 } else 2561 kfree(znode); 2562 znode = zp; 2563 } while (znode->child_cnt == 1); /* while removing last child */ 2564 2565 /* Remove from znode, entry n - 1 */ 2566 znode->child_cnt -= 1; 2567 ubifs_assert(c, znode->level != 0); 2568 for (i = n; i < znode->child_cnt; i++) { 2569 znode->zbranch[i] = znode->zbranch[i + 1]; 2570 if (znode->zbranch[i].znode) 2571 znode->zbranch[i].znode->iip = i; 2572 } 2573 2574 /* 2575 * If this is the root and it has only 1 child then 2576 * collapse the tree. 2577 */ 2578 if (!znode->parent) { 2579 while (znode->child_cnt == 1 && znode->level != 0) { 2580 zp = znode; 2581 zbr = &znode->zbranch[0]; 2582 znode = get_znode(c, znode, 0); 2583 if (IS_ERR(znode)) 2584 return PTR_ERR(znode); 2585 znode = dirty_cow_znode(c, zbr); 2586 if (IS_ERR(znode)) 2587 return PTR_ERR(znode); 2588 znode->parent = NULL; 2589 znode->iip = 0; 2590 if (c->zroot.len) { 2591 err = insert_old_idx(c, c->zroot.lnum, 2592 c->zroot.offs); 2593 if (err) 2594 return err; 2595 } 2596 c->zroot.lnum = zbr->lnum; 2597 c->zroot.offs = zbr->offs; 2598 c->zroot.len = zbr->len; 2599 c->zroot.znode = znode; 2600 ubifs_assert(c, !ubifs_zn_obsolete(zp)); 2601 ubifs_assert(c, ubifs_zn_dirty(zp)); 2602 atomic_long_dec(&c->dirty_zn_cnt); 2603 2604 if (zp->cnext) { 2605 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2606 atomic_long_inc(&c->clean_zn_cnt); 2607 atomic_long_inc(&ubifs_clean_zn_cnt); 2608 } else 2609 kfree(zp); 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * ubifs_tnc_remove - remove an index entry of a node. 2618 * @c: UBIFS file-system description object 2619 * @key: key of node 2620 * 2621 * Returns %0 on success or negative error code on failure. 2622 */ 2623 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2624 { 2625 int found, n, err = 0; 2626 struct ubifs_znode *znode; 2627 2628 mutex_lock(&c->tnc_mutex); 2629 dbg_tnck(key, "key "); 2630 found = lookup_level0_dirty(c, key, &znode, &n); 2631 if (found < 0) { 2632 err = found; 2633 goto out_unlock; 2634 } 2635 if (found == 1) 2636 err = tnc_delete(c, znode, n); 2637 if (!err) 2638 err = dbg_check_tnc(c, 0); 2639 2640 out_unlock: 2641 mutex_unlock(&c->tnc_mutex); 2642 return err; 2643 } 2644 2645 /** 2646 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2647 * @c: UBIFS file-system description object 2648 * @key: key of node 2649 * @nm: directory entry name 2650 * 2651 * Returns %0 on success or negative error code on failure. 2652 */ 2653 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2654 const struct fscrypt_name *nm) 2655 { 2656 int n, err; 2657 struct ubifs_znode *znode; 2658 2659 mutex_lock(&c->tnc_mutex); 2660 dbg_tnck(key, "key "); 2661 err = lookup_level0_dirty(c, key, &znode, &n); 2662 if (err < 0) 2663 goto out_unlock; 2664 2665 if (err) { 2666 if (c->replaying) 2667 err = fallible_resolve_collision(c, key, &znode, &n, 2668 nm, 0); 2669 else 2670 err = resolve_collision(c, key, &znode, &n, nm); 2671 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2672 if (err < 0) 2673 goto out_unlock; 2674 if (err) { 2675 /* Ensure the znode is dirtied */ 2676 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2677 znode = dirty_cow_bottom_up(c, znode); 2678 if (IS_ERR(znode)) { 2679 err = PTR_ERR(znode); 2680 goto out_unlock; 2681 } 2682 } 2683 err = tnc_delete(c, znode, n); 2684 } 2685 } 2686 2687 out_unlock: 2688 if (!err) 2689 err = dbg_check_tnc(c, 0); 2690 mutex_unlock(&c->tnc_mutex); 2691 return err; 2692 } 2693 2694 /** 2695 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2696 * @c: UBIFS file-system description object 2697 * @key: key of node 2698 * @cookie: node cookie for collision resolution 2699 * 2700 * Returns %0 on success or negative error code on failure. 2701 */ 2702 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2703 uint32_t cookie) 2704 { 2705 int n, err; 2706 struct ubifs_znode *znode; 2707 struct ubifs_dent_node *dent; 2708 struct ubifs_zbranch *zbr; 2709 2710 if (!c->double_hash) 2711 return -EOPNOTSUPP; 2712 2713 mutex_lock(&c->tnc_mutex); 2714 err = lookup_level0_dirty(c, key, &znode, &n); 2715 if (err <= 0) 2716 goto out_unlock; 2717 2718 zbr = &znode->zbranch[n]; 2719 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2720 if (!dent) { 2721 err = -ENOMEM; 2722 goto out_unlock; 2723 } 2724 2725 err = tnc_read_hashed_node(c, zbr, dent); 2726 if (err) 2727 goto out_free; 2728 2729 /* If the cookie does not match, we're facing a hash collision. */ 2730 if (le32_to_cpu(dent->cookie) != cookie) { 2731 union ubifs_key start_key; 2732 2733 lowest_dent_key(c, &start_key, key_inum(c, key)); 2734 2735 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2736 if (unlikely(err < 0)) 2737 goto out_free; 2738 2739 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 2740 if (err) 2741 goto out_free; 2742 } 2743 2744 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2745 znode = dirty_cow_bottom_up(c, znode); 2746 if (IS_ERR(znode)) { 2747 err = PTR_ERR(znode); 2748 goto out_free; 2749 } 2750 } 2751 err = tnc_delete(c, znode, n); 2752 2753 out_free: 2754 kfree(dent); 2755 out_unlock: 2756 if (!err) 2757 err = dbg_check_tnc(c, 0); 2758 mutex_unlock(&c->tnc_mutex); 2759 return err; 2760 } 2761 2762 /** 2763 * key_in_range - determine if a key falls within a range of keys. 2764 * @c: UBIFS file-system description object 2765 * @key: key to check 2766 * @from_key: lowest key in range 2767 * @to_key: highest key in range 2768 * 2769 * This function returns %1 if the key is in range and %0 otherwise. 2770 */ 2771 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2772 union ubifs_key *from_key, union ubifs_key *to_key) 2773 { 2774 if (keys_cmp(c, key, from_key) < 0) 2775 return 0; 2776 if (keys_cmp(c, key, to_key) > 0) 2777 return 0; 2778 return 1; 2779 } 2780 2781 /** 2782 * ubifs_tnc_remove_range - remove index entries in range. 2783 * @c: UBIFS file-system description object 2784 * @from_key: lowest key to remove 2785 * @to_key: highest key to remove 2786 * 2787 * This function removes index entries starting at @from_key and ending at 2788 * @to_key. This function returns zero in case of success and a negative error 2789 * code in case of failure. 2790 */ 2791 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2792 union ubifs_key *to_key) 2793 { 2794 int i, n, k, err = 0; 2795 struct ubifs_znode *znode; 2796 union ubifs_key *key; 2797 2798 mutex_lock(&c->tnc_mutex); 2799 while (1) { 2800 /* Find first level 0 znode that contains keys to remove */ 2801 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2802 if (err < 0) 2803 goto out_unlock; 2804 2805 if (err) 2806 key = from_key; 2807 else { 2808 err = tnc_next(c, &znode, &n); 2809 if (err == -ENOENT) { 2810 err = 0; 2811 goto out_unlock; 2812 } 2813 if (err < 0) 2814 goto out_unlock; 2815 key = &znode->zbranch[n].key; 2816 if (!key_in_range(c, key, from_key, to_key)) { 2817 err = 0; 2818 goto out_unlock; 2819 } 2820 } 2821 2822 /* Ensure the znode is dirtied */ 2823 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2824 znode = dirty_cow_bottom_up(c, znode); 2825 if (IS_ERR(znode)) { 2826 err = PTR_ERR(znode); 2827 goto out_unlock; 2828 } 2829 } 2830 2831 /* Remove all keys in range except the first */ 2832 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2833 key = &znode->zbranch[i].key; 2834 if (!key_in_range(c, key, from_key, to_key)) 2835 break; 2836 lnc_free(&znode->zbranch[i]); 2837 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2838 znode->zbranch[i].len); 2839 if (err) { 2840 ubifs_dump_znode(c, znode); 2841 goto out_unlock; 2842 } 2843 dbg_tnck(key, "removing key "); 2844 } 2845 if (k) { 2846 for (i = n + 1 + k; i < znode->child_cnt; i++) 2847 znode->zbranch[i - k] = znode->zbranch[i]; 2848 znode->child_cnt -= k; 2849 } 2850 2851 /* Now delete the first */ 2852 err = tnc_delete(c, znode, n); 2853 if (err) 2854 goto out_unlock; 2855 } 2856 2857 out_unlock: 2858 if (!err) 2859 err = dbg_check_tnc(c, 0); 2860 mutex_unlock(&c->tnc_mutex); 2861 return err; 2862 } 2863 2864 /** 2865 * ubifs_tnc_remove_ino - remove an inode from TNC. 2866 * @c: UBIFS file-system description object 2867 * @inum: inode number to remove 2868 * 2869 * This function remove inode @inum and all the extended attributes associated 2870 * with the anode from TNC and returns zero in case of success or a negative 2871 * error code in case of failure. 2872 */ 2873 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2874 { 2875 union ubifs_key key1, key2; 2876 struct ubifs_dent_node *xent, *pxent = NULL; 2877 struct fscrypt_name nm = {0}; 2878 2879 dbg_tnc("ino %lu", (unsigned long)inum); 2880 2881 /* 2882 * Walk all extended attribute entries and remove them together with 2883 * corresponding extended attribute inodes. 2884 */ 2885 lowest_xent_key(c, &key1, inum); 2886 while (1) { 2887 ino_t xattr_inum; 2888 int err; 2889 2890 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2891 if (IS_ERR(xent)) { 2892 err = PTR_ERR(xent); 2893 if (err == -ENOENT) 2894 break; 2895 return err; 2896 } 2897 2898 xattr_inum = le64_to_cpu(xent->inum); 2899 dbg_tnc("xent '%s', ino %lu", xent->name, 2900 (unsigned long)xattr_inum); 2901 2902 ubifs_evict_xattr_inode(c, xattr_inum); 2903 2904 fname_name(&nm) = xent->name; 2905 fname_len(&nm) = le16_to_cpu(xent->nlen); 2906 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2907 if (err) { 2908 kfree(xent); 2909 return err; 2910 } 2911 2912 lowest_ino_key(c, &key1, xattr_inum); 2913 highest_ino_key(c, &key2, xattr_inum); 2914 err = ubifs_tnc_remove_range(c, &key1, &key2); 2915 if (err) { 2916 kfree(xent); 2917 return err; 2918 } 2919 2920 kfree(pxent); 2921 pxent = xent; 2922 key_read(c, &xent->key, &key1); 2923 } 2924 2925 kfree(pxent); 2926 lowest_ino_key(c, &key1, inum); 2927 highest_ino_key(c, &key2, inum); 2928 2929 return ubifs_tnc_remove_range(c, &key1, &key2); 2930 } 2931 2932 /** 2933 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2934 * @c: UBIFS file-system description object 2935 * @key: key of last entry 2936 * @nm: name of last entry found or %NULL 2937 * 2938 * This function finds and reads the next directory or extended attribute entry 2939 * after the given key (@key) if there is one. @nm is used to resolve 2940 * collisions. 2941 * 2942 * If the name of the current entry is not known and only the key is known, 2943 * @nm->name has to be %NULL. In this case the semantics of this function is a 2944 * little bit different and it returns the entry corresponding to this key, not 2945 * the next one. If the key was not found, the closest "right" entry is 2946 * returned. 2947 * 2948 * If the fist entry has to be found, @key has to contain the lowest possible 2949 * key value for this inode and @name has to be %NULL. 2950 * 2951 * This function returns the found directory or extended attribute entry node 2952 * in case of success, %-ENOENT is returned if no entry was found, and a 2953 * negative error code is returned in case of failure. 2954 */ 2955 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2956 union ubifs_key *key, 2957 const struct fscrypt_name *nm) 2958 { 2959 int n, err, type = key_type(c, key); 2960 struct ubifs_znode *znode; 2961 struct ubifs_dent_node *dent; 2962 struct ubifs_zbranch *zbr; 2963 union ubifs_key *dkey; 2964 2965 dbg_tnck(key, "key "); 2966 ubifs_assert(c, is_hash_key(c, key)); 2967 2968 mutex_lock(&c->tnc_mutex); 2969 err = ubifs_lookup_level0(c, key, &znode, &n); 2970 if (unlikely(err < 0)) 2971 goto out_unlock; 2972 2973 if (fname_len(nm) > 0) { 2974 if (err) { 2975 /* Handle collisions */ 2976 if (c->replaying) 2977 err = fallible_resolve_collision(c, key, &znode, &n, 2978 nm, 0); 2979 else 2980 err = resolve_collision(c, key, &znode, &n, nm); 2981 dbg_tnc("rc returned %d, znode %p, n %d", 2982 err, znode, n); 2983 if (unlikely(err < 0)) 2984 goto out_unlock; 2985 } 2986 2987 /* Now find next entry */ 2988 err = tnc_next(c, &znode, &n); 2989 if (unlikely(err)) 2990 goto out_unlock; 2991 } else { 2992 /* 2993 * The full name of the entry was not given, in which case the 2994 * behavior of this function is a little different and it 2995 * returns current entry, not the next one. 2996 */ 2997 if (!err) { 2998 /* 2999 * However, the given key does not exist in the TNC 3000 * tree and @znode/@n variables contain the closest 3001 * "preceding" element. Switch to the next one. 3002 */ 3003 err = tnc_next(c, &znode, &n); 3004 if (err) 3005 goto out_unlock; 3006 } 3007 } 3008 3009 zbr = &znode->zbranch[n]; 3010 dent = kmalloc(zbr->len, GFP_NOFS); 3011 if (unlikely(!dent)) { 3012 err = -ENOMEM; 3013 goto out_unlock; 3014 } 3015 3016 /* 3017 * The above 'tnc_next()' call could lead us to the next inode, check 3018 * this. 3019 */ 3020 dkey = &zbr->key; 3021 if (key_inum(c, dkey) != key_inum(c, key) || 3022 key_type(c, dkey) != type) { 3023 err = -ENOENT; 3024 goto out_free; 3025 } 3026 3027 err = tnc_read_hashed_node(c, zbr, dent); 3028 if (unlikely(err)) 3029 goto out_free; 3030 3031 mutex_unlock(&c->tnc_mutex); 3032 return dent; 3033 3034 out_free: 3035 kfree(dent); 3036 out_unlock: 3037 mutex_unlock(&c->tnc_mutex); 3038 return ERR_PTR(err); 3039 } 3040 3041 /** 3042 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3043 * @c: UBIFS file-system description object 3044 * 3045 * Destroy left-over obsolete znodes from a failed commit. 3046 */ 3047 static void tnc_destroy_cnext(struct ubifs_info *c) 3048 { 3049 struct ubifs_znode *cnext; 3050 3051 if (!c->cnext) 3052 return; 3053 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); 3054 cnext = c->cnext; 3055 do { 3056 struct ubifs_znode *znode = cnext; 3057 3058 cnext = cnext->cnext; 3059 if (ubifs_zn_obsolete(znode)) 3060 kfree(znode); 3061 } while (cnext && cnext != c->cnext); 3062 } 3063 3064 /** 3065 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3066 * @c: UBIFS file-system description object 3067 */ 3068 void ubifs_tnc_close(struct ubifs_info *c) 3069 { 3070 tnc_destroy_cnext(c); 3071 if (c->zroot.znode) { 3072 long n, freed; 3073 3074 n = atomic_long_read(&c->clean_zn_cnt); 3075 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 3076 ubifs_assert(c, freed == n); 3077 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3078 } 3079 kfree(c->gap_lebs); 3080 kfree(c->ilebs); 3081 destroy_old_idx(c); 3082 } 3083 3084 /** 3085 * left_znode - get the znode to the left. 3086 * @c: UBIFS file-system description object 3087 * @znode: znode 3088 * 3089 * This function returns a pointer to the znode to the left of @znode or NULL if 3090 * there is not one. A negative error code is returned on failure. 3091 */ 3092 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3093 struct ubifs_znode *znode) 3094 { 3095 int level = znode->level; 3096 3097 while (1) { 3098 int n = znode->iip - 1; 3099 3100 /* Go up until we can go left */ 3101 znode = znode->parent; 3102 if (!znode) 3103 return NULL; 3104 if (n >= 0) { 3105 /* Now go down the rightmost branch to 'level' */ 3106 znode = get_znode(c, znode, n); 3107 if (IS_ERR(znode)) 3108 return znode; 3109 while (znode->level != level) { 3110 n = znode->child_cnt - 1; 3111 znode = get_znode(c, znode, n); 3112 if (IS_ERR(znode)) 3113 return znode; 3114 } 3115 break; 3116 } 3117 } 3118 return znode; 3119 } 3120 3121 /** 3122 * right_znode - get the znode to the right. 3123 * @c: UBIFS file-system description object 3124 * @znode: znode 3125 * 3126 * This function returns a pointer to the znode to the right of @znode or NULL 3127 * if there is not one. A negative error code is returned on failure. 3128 */ 3129 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3130 struct ubifs_znode *znode) 3131 { 3132 int level = znode->level; 3133 3134 while (1) { 3135 int n = znode->iip + 1; 3136 3137 /* Go up until we can go right */ 3138 znode = znode->parent; 3139 if (!znode) 3140 return NULL; 3141 if (n < znode->child_cnt) { 3142 /* Now go down the leftmost branch to 'level' */ 3143 znode = get_znode(c, znode, n); 3144 if (IS_ERR(znode)) 3145 return znode; 3146 while (znode->level != level) { 3147 znode = get_znode(c, znode, 0); 3148 if (IS_ERR(znode)) 3149 return znode; 3150 } 3151 break; 3152 } 3153 } 3154 return znode; 3155 } 3156 3157 /** 3158 * lookup_znode - find a particular indexing node from TNC. 3159 * @c: UBIFS file-system description object 3160 * @key: index node key to lookup 3161 * @level: index node level 3162 * @lnum: index node LEB number 3163 * @offs: index node offset 3164 * 3165 * This function searches an indexing node by its first key @key and its 3166 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3167 * nodes it traverses to TNC. This function is called for indexing nodes which 3168 * were found on the media by scanning, for example when garbage-collecting or 3169 * when doing in-the-gaps commit. This means that the indexing node which is 3170 * looked for does not have to have exactly the same leftmost key @key, because 3171 * the leftmost key may have been changed, in which case TNC will contain a 3172 * dirty znode which still refers the same @lnum:@offs. This function is clever 3173 * enough to recognize such indexing nodes. 3174 * 3175 * Note, if a znode was deleted or changed too much, then this function will 3176 * not find it. For situations like this UBIFS has the old index RB-tree 3177 * (indexed by @lnum:@offs). 3178 * 3179 * This function returns a pointer to the znode found or %NULL if it is not 3180 * found. A negative error code is returned on failure. 3181 */ 3182 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3183 union ubifs_key *key, int level, 3184 int lnum, int offs) 3185 { 3186 struct ubifs_znode *znode, *zn; 3187 int n, nn; 3188 3189 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 3190 3191 /* 3192 * The arguments have probably been read off flash, so don't assume 3193 * they are valid. 3194 */ 3195 if (level < 0) 3196 return ERR_PTR(-EINVAL); 3197 3198 /* Get the root znode */ 3199 znode = c->zroot.znode; 3200 if (!znode) { 3201 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3202 if (IS_ERR(znode)) 3203 return znode; 3204 } 3205 /* Check if it is the one we are looking for */ 3206 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3207 return znode; 3208 /* Descend to the parent level i.e. (level + 1) */ 3209 if (level >= znode->level) 3210 return NULL; 3211 while (1) { 3212 ubifs_search_zbranch(c, znode, key, &n); 3213 if (n < 0) { 3214 /* 3215 * We reached a znode where the leftmost key is greater 3216 * than the key we are searching for. This is the same 3217 * situation as the one described in a huge comment at 3218 * the end of the 'ubifs_lookup_level0()' function. And 3219 * for exactly the same reasons we have to try to look 3220 * left before giving up. 3221 */ 3222 znode = left_znode(c, znode); 3223 if (!znode) 3224 return NULL; 3225 if (IS_ERR(znode)) 3226 return znode; 3227 ubifs_search_zbranch(c, znode, key, &n); 3228 ubifs_assert(c, n >= 0); 3229 } 3230 if (znode->level == level + 1) 3231 break; 3232 znode = get_znode(c, znode, n); 3233 if (IS_ERR(znode)) 3234 return znode; 3235 } 3236 /* Check if the child is the one we are looking for */ 3237 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3238 return get_znode(c, znode, n); 3239 /* If the key is unique, there is nowhere else to look */ 3240 if (!is_hash_key(c, key)) 3241 return NULL; 3242 /* 3243 * The key is not unique and so may be also in the znodes to either 3244 * side. 3245 */ 3246 zn = znode; 3247 nn = n; 3248 /* Look left */ 3249 while (1) { 3250 /* Move one branch to the left */ 3251 if (n) 3252 n -= 1; 3253 else { 3254 znode = left_znode(c, znode); 3255 if (!znode) 3256 break; 3257 if (IS_ERR(znode)) 3258 return znode; 3259 n = znode->child_cnt - 1; 3260 } 3261 /* Check it */ 3262 if (znode->zbranch[n].lnum == lnum && 3263 znode->zbranch[n].offs == offs) 3264 return get_znode(c, znode, n); 3265 /* Stop if the key is less than the one we are looking for */ 3266 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3267 break; 3268 } 3269 /* Back to the middle */ 3270 znode = zn; 3271 n = nn; 3272 /* Look right */ 3273 while (1) { 3274 /* Move one branch to the right */ 3275 if (++n >= znode->child_cnt) { 3276 znode = right_znode(c, znode); 3277 if (!znode) 3278 break; 3279 if (IS_ERR(znode)) 3280 return znode; 3281 n = 0; 3282 } 3283 /* Check it */ 3284 if (znode->zbranch[n].lnum == lnum && 3285 znode->zbranch[n].offs == offs) 3286 return get_znode(c, znode, n); 3287 /* Stop if the key is greater than the one we are looking for */ 3288 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3289 break; 3290 } 3291 return NULL; 3292 } 3293 3294 /** 3295 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3296 * @c: UBIFS file-system description object 3297 * @key: key of index node 3298 * @level: index node level 3299 * @lnum: LEB number of index node 3300 * @offs: offset of index node 3301 * 3302 * This function returns %0 if the index node is not referred to in the TNC, %1 3303 * if the index node is referred to in the TNC and the corresponding znode is 3304 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3305 * znode is clean, and a negative error code in case of failure. 3306 * 3307 * Note, the @key argument has to be the key of the first child. Also note, 3308 * this function relies on the fact that 0:0 is never a valid LEB number and 3309 * offset for a main-area node. 3310 */ 3311 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3312 int lnum, int offs) 3313 { 3314 struct ubifs_znode *znode; 3315 3316 znode = lookup_znode(c, key, level, lnum, offs); 3317 if (!znode) 3318 return 0; 3319 if (IS_ERR(znode)) 3320 return PTR_ERR(znode); 3321 3322 return ubifs_zn_dirty(znode) ? 1 : 2; 3323 } 3324 3325 /** 3326 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3327 * @c: UBIFS file-system description object 3328 * @key: node key 3329 * @lnum: node LEB number 3330 * @offs: node offset 3331 * 3332 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3333 * not, and a negative error code in case of failure. 3334 * 3335 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3336 * and offset for a main-area node. 3337 */ 3338 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3339 int lnum, int offs) 3340 { 3341 struct ubifs_zbranch *zbr; 3342 struct ubifs_znode *znode, *zn; 3343 int n, found, err, nn; 3344 const int unique = !is_hash_key(c, key); 3345 3346 found = ubifs_lookup_level0(c, key, &znode, &n); 3347 if (found < 0) 3348 return found; /* Error code */ 3349 if (!found) 3350 return 0; 3351 zbr = &znode->zbranch[n]; 3352 if (lnum == zbr->lnum && offs == zbr->offs) 3353 return 1; /* Found it */ 3354 if (unique) 3355 return 0; 3356 /* 3357 * Because the key is not unique, we have to look left 3358 * and right as well 3359 */ 3360 zn = znode; 3361 nn = n; 3362 /* Look left */ 3363 while (1) { 3364 err = tnc_prev(c, &znode, &n); 3365 if (err == -ENOENT) 3366 break; 3367 if (err) 3368 return err; 3369 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3370 break; 3371 zbr = &znode->zbranch[n]; 3372 if (lnum == zbr->lnum && offs == zbr->offs) 3373 return 1; /* Found it */ 3374 } 3375 /* Look right */ 3376 znode = zn; 3377 n = nn; 3378 while (1) { 3379 err = tnc_next(c, &znode, &n); 3380 if (err) { 3381 if (err == -ENOENT) 3382 return 0; 3383 return err; 3384 } 3385 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3386 break; 3387 zbr = &znode->zbranch[n]; 3388 if (lnum == zbr->lnum && offs == zbr->offs) 3389 return 1; /* Found it */ 3390 } 3391 return 0; 3392 } 3393 3394 /** 3395 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3396 * @c: UBIFS file-system description object 3397 * @key: node key 3398 * @level: index node level (if it is an index node) 3399 * @lnum: node LEB number 3400 * @offs: node offset 3401 * @is_idx: non-zero if the node is an index node 3402 * 3403 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3404 * negative error code in case of failure. For index nodes, @key has to be the 3405 * key of the first child. An index node is considered to be in the TNC only if 3406 * the corresponding znode is clean or has not been loaded. 3407 */ 3408 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3409 int lnum, int offs, int is_idx) 3410 { 3411 int err; 3412 3413 mutex_lock(&c->tnc_mutex); 3414 if (is_idx) { 3415 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3416 if (err < 0) 3417 goto out_unlock; 3418 if (err == 1) 3419 /* The index node was found but it was dirty */ 3420 err = 0; 3421 else if (err == 2) 3422 /* The index node was found and it was clean */ 3423 err = 1; 3424 else 3425 BUG_ON(err != 0); 3426 } else 3427 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3428 3429 out_unlock: 3430 mutex_unlock(&c->tnc_mutex); 3431 return err; 3432 } 3433 3434 /** 3435 * ubifs_dirty_idx_node - dirty an index node. 3436 * @c: UBIFS file-system description object 3437 * @key: index node key 3438 * @level: index node level 3439 * @lnum: index node LEB number 3440 * @offs: index node offset 3441 * 3442 * This function loads and dirties an index node so that it can be garbage 3443 * collected. The @key argument has to be the key of the first child. This 3444 * function relies on the fact that 0:0 is never a valid LEB number and offset 3445 * for a main-area node. Returns %0 on success and a negative error code on 3446 * failure. 3447 */ 3448 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3449 int lnum, int offs) 3450 { 3451 struct ubifs_znode *znode; 3452 int err = 0; 3453 3454 mutex_lock(&c->tnc_mutex); 3455 znode = lookup_znode(c, key, level, lnum, offs); 3456 if (!znode) 3457 goto out_unlock; 3458 if (IS_ERR(znode)) { 3459 err = PTR_ERR(znode); 3460 goto out_unlock; 3461 } 3462 znode = dirty_cow_bottom_up(c, znode); 3463 if (IS_ERR(znode)) { 3464 err = PTR_ERR(znode); 3465 goto out_unlock; 3466 } 3467 3468 out_unlock: 3469 mutex_unlock(&c->tnc_mutex); 3470 return err; 3471 } 3472 3473 /** 3474 * dbg_check_inode_size - check if inode size is correct. 3475 * @c: UBIFS file-system description object 3476 * @inum: inode number 3477 * @size: inode size 3478 * 3479 * This function makes sure that the inode size (@size) is correct and it does 3480 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3481 * if it has a data page beyond @size, and other negative error code in case of 3482 * other errors. 3483 */ 3484 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3485 loff_t size) 3486 { 3487 int err, n; 3488 union ubifs_key from_key, to_key, *key; 3489 struct ubifs_znode *znode; 3490 unsigned int block; 3491 3492 if (!S_ISREG(inode->i_mode)) 3493 return 0; 3494 if (!dbg_is_chk_gen(c)) 3495 return 0; 3496 3497 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3498 data_key_init(c, &from_key, inode->i_ino, block); 3499 highest_data_key(c, &to_key, inode->i_ino); 3500 3501 mutex_lock(&c->tnc_mutex); 3502 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3503 if (err < 0) 3504 goto out_unlock; 3505 3506 if (err) { 3507 key = &from_key; 3508 goto out_dump; 3509 } 3510 3511 err = tnc_next(c, &znode, &n); 3512 if (err == -ENOENT) { 3513 err = 0; 3514 goto out_unlock; 3515 } 3516 if (err < 0) 3517 goto out_unlock; 3518 3519 ubifs_assert(c, err == 0); 3520 key = &znode->zbranch[n].key; 3521 if (!key_in_range(c, key, &from_key, &to_key)) 3522 goto out_unlock; 3523 3524 out_dump: 3525 block = key_block(c, key); 3526 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3527 (unsigned long)inode->i_ino, size, 3528 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3529 mutex_unlock(&c->tnc_mutex); 3530 ubifs_dump_inode(c, inode); 3531 dump_stack(); 3532 return -EINVAL; 3533 3534 out_unlock: 3535 mutex_unlock(&c->tnc_mutex); 3536 return err; 3537 } 3538