xref: /openbmc/linux/fs/ubifs/tnc.c (revision 260ea95c)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 			 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 			      struct ubifs_zbranch *zbr, void *node);
41 
42 /*
43  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44  * @NAME_LESS: name corresponding to the first argument is less than second
45  * @NAME_MATCHES: names match
46  * @NAME_GREATER: name corresponding to the second argument is greater than
47  *                first
48  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49  *
50  * These constants were introduce to improve readability.
51  */
52 enum {
53 	NAME_LESS    = 0,
54 	NAME_MATCHES = 1,
55 	NAME_GREATER = 2,
56 	NOT_ON_MEDIA = 3,
57 };
58 
59 /**
60  * insert_old_idx - record an index node obsoleted since the last commit start.
61  * @c: UBIFS file-system description object
62  * @lnum: LEB number of obsoleted index node
63  * @offs: offset of obsoleted index node
64  *
65  * Returns %0 on success, and a negative error code on failure.
66  *
67  * For recovery, there must always be a complete intact version of the index on
68  * flash at all times. That is called the "old index". It is the index as at the
69  * time of the last successful commit. Many of the index nodes in the old index
70  * may be dirty, but they must not be erased until the next successful commit
71  * (at which point that index becomes the old index).
72  *
73  * That means that the garbage collection and the in-the-gaps method of
74  * committing must be able to determine if an index node is in the old index.
75  * Most of the old index nodes can be found by looking up the TNC using the
76  * 'lookup_znode()' function. However, some of the old index nodes may have
77  * been deleted from the current index or may have been changed so much that
78  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79  * That is what this function does. The RB-tree is ordered by LEB number and
80  * offset because they uniquely identify the old index node.
81  */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 	struct ubifs_old_idx *old_idx, *o;
85 	struct rb_node **p, *parent = NULL;
86 
87 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 	if (unlikely(!old_idx))
89 		return -ENOMEM;
90 	old_idx->lnum = lnum;
91 	old_idx->offs = offs;
92 
93 	p = &c->old_idx.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		o = rb_entry(parent, struct ubifs_old_idx, rb);
97 		if (lnum < o->lnum)
98 			p = &(*p)->rb_left;
99 		else if (lnum > o->lnum)
100 			p = &(*p)->rb_right;
101 		else if (offs < o->offs)
102 			p = &(*p)->rb_left;
103 		else if (offs > o->offs)
104 			p = &(*p)->rb_right;
105 		else {
106 			ubifs_err(c, "old idx added twice!");
107 			kfree(old_idx);
108 			return 0;
109 		}
110 	}
111 	rb_link_node(&old_idx->rb, parent, p);
112 	rb_insert_color(&old_idx->rb, &c->old_idx);
113 	return 0;
114 }
115 
116 /**
117  * insert_old_idx_znode - record a znode obsoleted since last commit start.
118  * @c: UBIFS file-system description object
119  * @znode: znode of obsoleted index node
120  *
121  * Returns %0 on success, and a negative error code on failure.
122  */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 	if (znode->parent) {
126 		struct ubifs_zbranch *zbr;
127 
128 		zbr = &znode->parent->zbranch[znode->iip];
129 		if (zbr->len)
130 			return insert_old_idx(c, zbr->lnum, zbr->offs);
131 	} else
132 		if (c->zroot.len)
133 			return insert_old_idx(c, c->zroot.lnum,
134 					      c->zroot.offs);
135 	return 0;
136 }
137 
138 /**
139  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140  * @c: UBIFS file-system description object
141  * @znode: znode of obsoleted index node
142  *
143  * Returns %0 on success, and a negative error code on failure.
144  */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 				 struct ubifs_znode *znode)
147 {
148 	int err;
149 
150 	if (znode->parent) {
151 		struct ubifs_zbranch *zbr;
152 
153 		zbr = &znode->parent->zbranch[znode->iip];
154 		if (zbr->len) {
155 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 			if (err)
157 				return err;
158 			zbr->lnum = 0;
159 			zbr->offs = 0;
160 			zbr->len = 0;
161 		}
162 	} else
163 		if (c->zroot.len) {
164 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 			if (err)
166 				return err;
167 			c->zroot.lnum = 0;
168 			c->zroot.offs = 0;
169 			c->zroot.len = 0;
170 		}
171 	return 0;
172 }
173 
174 /**
175  * destroy_old_idx - destroy the old_idx RB-tree.
176  * @c: UBIFS file-system description object
177  *
178  * During start commit, the old_idx RB-tree is used to avoid overwriting index
179  * nodes that were in the index last commit but have since been deleted.  This
180  * is necessary for recovery i.e. the old index must be kept intact until the
181  * new index is successfully written.  The old-idx RB-tree is used for the
182  * in-the-gaps method of writing index nodes and is destroyed every commit.
183  */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 	struct ubifs_old_idx *old_idx, *n;
187 
188 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 		kfree(old_idx);
190 
191 	c->old_idx = RB_ROOT;
192 }
193 
194 /**
195  * copy_znode - copy a dirty znode.
196  * @c: UBIFS file-system description object
197  * @znode: znode to copy
198  *
199  * A dirty znode being committed may not be changed, so it is copied.
200  */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 				      struct ubifs_znode *znode)
203 {
204 	struct ubifs_znode *zn;
205 
206 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 	if (unlikely(!zn))
208 		return ERR_PTR(-ENOMEM);
209 
210 	zn->cnext = NULL;
211 	__set_bit(DIRTY_ZNODE, &zn->flags);
212 	__clear_bit(COW_ZNODE, &zn->flags);
213 
214 	ubifs_assert(!ubifs_zn_obsolete(znode));
215 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
216 
217 	if (znode->level != 0) {
218 		int i;
219 		const int n = zn->child_cnt;
220 
221 		/* The children now have new parent */
222 		for (i = 0; i < n; i++) {
223 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
224 
225 			if (zbr->znode)
226 				zbr->znode->parent = zn;
227 		}
228 	}
229 
230 	atomic_long_inc(&c->dirty_zn_cnt);
231 	return zn;
232 }
233 
234 /**
235  * add_idx_dirt - add dirt due to a dirty znode.
236  * @c: UBIFS file-system description object
237  * @lnum: LEB number of index node
238  * @dirt: size of index node
239  *
240  * This function updates lprops dirty space and the new size of the index.
241  */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 	c->calc_idx_sz -= ALIGN(dirt, 8);
245 	return ubifs_add_dirt(c, lnum, dirt);
246 }
247 
248 /**
249  * dirty_cow_znode - ensure a znode is not being committed.
250  * @c: UBIFS file-system description object
251  * @zbr: branch of znode to check
252  *
253  * Returns dirtied znode on success or negative error code on failure.
254  */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 					   struct ubifs_zbranch *zbr)
257 {
258 	struct ubifs_znode *znode = zbr->znode;
259 	struct ubifs_znode *zn;
260 	int err;
261 
262 	if (!ubifs_zn_cow(znode)) {
263 		/* znode is not being committed */
264 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 			atomic_long_inc(&c->dirty_zn_cnt);
266 			atomic_long_dec(&c->clean_zn_cnt);
267 			atomic_long_dec(&ubifs_clean_zn_cnt);
268 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 			if (unlikely(err))
270 				return ERR_PTR(err);
271 		}
272 		return znode;
273 	}
274 
275 	zn = copy_znode(c, znode);
276 	if (IS_ERR(zn))
277 		return zn;
278 
279 	if (zbr->len) {
280 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 		if (unlikely(err))
282 			return ERR_PTR(err);
283 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 	} else
285 		err = 0;
286 
287 	zbr->znode = zn;
288 	zbr->lnum = 0;
289 	zbr->offs = 0;
290 	zbr->len = 0;
291 
292 	if (unlikely(err))
293 		return ERR_PTR(err);
294 	return zn;
295 }
296 
297 /**
298  * lnc_add - add a leaf node to the leaf node cache.
299  * @c: UBIFS file-system description object
300  * @zbr: zbranch of leaf node
301  * @node: leaf node
302  *
303  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304  * purpose of the leaf node cache is to save re-reading the same leaf node over
305  * and over again. Most things are cached by VFS, however the file system must
306  * cache directory entries for readdir and for resolving hash collisions. The
307  * present implementation of the leaf node cache is extremely simple, and
308  * allows for error returns that are not used but that may be needed if a more
309  * complex implementation is created.
310  *
311  * Note, this function does not add the @node object to LNC directly, but
312  * allocates a copy of the object and adds the copy to LNC. The reason for this
313  * is that @node has been allocated outside of the TNC subsystem and will be
314  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315  * may be changed at any time, e.g. freed by the shrinker.
316  */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 		   const void *node)
319 {
320 	int err;
321 	void *lnc_node;
322 	const struct ubifs_dent_node *dent = node;
323 
324 	ubifs_assert(!zbr->leaf);
325 	ubifs_assert(zbr->len != 0);
326 	ubifs_assert(is_hash_key(c, &zbr->key));
327 
328 	err = ubifs_validate_entry(c, dent);
329 	if (err) {
330 		dump_stack();
331 		ubifs_dump_node(c, dent);
332 		return err;
333 	}
334 
335 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 	if (!lnc_node)
337 		/* We don't have to have the cache, so no error */
338 		return 0;
339 
340 	zbr->leaf = lnc_node;
341 	return 0;
342 }
343 
344  /**
345  * lnc_add_directly - add a leaf node to the leaf-node-cache.
346  * @c: UBIFS file-system description object
347  * @zbr: zbranch of leaf node
348  * @node: leaf node
349  *
350  * This function is similar to 'lnc_add()', but it does not create a copy of
351  * @node but inserts @node to TNC directly.
352  */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 			    void *node)
355 {
356 	int err;
357 
358 	ubifs_assert(!zbr->leaf);
359 	ubifs_assert(zbr->len != 0);
360 
361 	err = ubifs_validate_entry(c, node);
362 	if (err) {
363 		dump_stack();
364 		ubifs_dump_node(c, node);
365 		return err;
366 	}
367 
368 	zbr->leaf = node;
369 	return 0;
370 }
371 
372 /**
373  * lnc_free - remove a leaf node from the leaf node cache.
374  * @zbr: zbranch of leaf node
375  * @node: leaf node
376  */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 	if (!zbr->leaf)
380 		return;
381 	kfree(zbr->leaf);
382 	zbr->leaf = NULL;
383 }
384 
385 /**
386  * tnc_read_hashed_node - read a "hashed" leaf node.
387  * @c: UBIFS file-system description object
388  * @zbr: key and position of the node
389  * @node: node is returned here
390  *
391  * This function reads a "hashed" node defined by @zbr from the leaf node cache
392  * (in it is there) or from the hash media, in which case the node is also
393  * added to LNC. Returns zero in case of success or a negative negative error
394  * code in case of failure.
395  */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 				void *node)
398 {
399 	int err;
400 
401 	ubifs_assert(is_hash_key(c, &zbr->key));
402 
403 	if (zbr->leaf) {
404 		/* Read from the leaf node cache */
405 		ubifs_assert(zbr->len != 0);
406 		memcpy(node, zbr->leaf, zbr->len);
407 		return 0;
408 	}
409 
410 	if (c->replaying) {
411 		err = fallible_read_node(c, &zbr->key, zbr, node);
412 		/*
413 		 * When the node was not found, return -ENOENT, 0 otherwise.
414 		 * Negative return codes stay as-is.
415 		 */
416 		if (err == 0)
417 			err = -ENOENT;
418 		else if (err == 1)
419 			err = 0;
420 	} else {
421 		err = ubifs_tnc_read_node(c, zbr, node);
422 	}
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  *
447  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448  * is true (it is controlled by corresponding mount option). However, if
449  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451  * because during mounting or re-mounting from R/O mode to R/W mode we may read
452  * journal nodes (when replying the journal or doing the recovery) and the
453  * journal nodes may potentially be corrupted, so checking is required.
454  */
455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 			 int len, int lnum, int offs)
457 {
458 	int err, node_len;
459 	struct ubifs_ch *ch = buf;
460 	uint32_t crc, node_crc;
461 
462 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463 
464 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 	if (err) {
466 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
467 			  type, lnum, offs, err);
468 		return err;
469 	}
470 
471 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 		return 0;
473 
474 	if (ch->node_type != type)
475 		return 0;
476 
477 	node_len = le32_to_cpu(ch->len);
478 	if (node_len != len)
479 		return 0;
480 
481 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 	    !c->remounting_rw)
483 		return 1;
484 
485 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 	node_crc = le32_to_cpu(ch->crc);
487 	if (crc != node_crc)
488 		return 0;
489 
490 	return 1;
491 }
492 
493 /**
494  * fallible_read_node - try to read a leaf node.
495  * @c: UBIFS file-system description object
496  * @key:  key of node to read
497  * @zbr:  position of node
498  * @node: node returned
499  *
500  * This function tries to read a node and returns %1 if the node is read, %0
501  * if the node is not present, and a negative error code in the case of error.
502  */
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 			      struct ubifs_zbranch *zbr, void *node)
505 {
506 	int ret;
507 
508 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509 
510 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 			    zbr->offs);
512 	if (ret == 1) {
513 		union ubifs_key node_key;
514 		struct ubifs_dent_node *dent = node;
515 
516 		/* All nodes have key in the same place */
517 		key_read(c, &dent->key, &node_key);
518 		if (keys_cmp(c, key, &node_key) != 0)
519 			ret = 0;
520 	}
521 	if (ret == 0 && c->replaying)
522 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 			zbr->lnum, zbr->offs, zbr->len);
524 	return ret;
525 }
526 
527 /**
528  * matches_name - determine if a direntry or xattr entry matches a given name.
529  * @c: UBIFS file-system description object
530  * @zbr: zbranch of dent
531  * @nm: name to match
532  *
533  * This function checks if xentry/direntry referred by zbranch @zbr matches name
534  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536  * of failure, a negative error code is returned.
537  */
538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 			const struct fscrypt_name *nm)
540 {
541 	struct ubifs_dent_node *dent;
542 	int nlen, err;
543 
544 	/* If possible, match against the dent in the leaf node cache */
545 	if (!zbr->leaf) {
546 		dent = kmalloc(zbr->len, GFP_NOFS);
547 		if (!dent)
548 			return -ENOMEM;
549 
550 		err = ubifs_tnc_read_node(c, zbr, dent);
551 		if (err)
552 			goto out_free;
553 
554 		/* Add the node to the leaf node cache */
555 		err = lnc_add_directly(c, zbr, dent);
556 		if (err)
557 			goto out_free;
558 	} else
559 		dent = zbr->leaf;
560 
561 	nlen = le16_to_cpu(dent->nlen);
562 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 	if (err == 0) {
564 		if (nlen == fname_len(nm))
565 			return NAME_MATCHES;
566 		else if (nlen < fname_len(nm))
567 			return NAME_LESS;
568 		else
569 			return NAME_GREATER;
570 	} else if (err < 0)
571 		return NAME_LESS;
572 	else
573 		return NAME_GREATER;
574 
575 out_free:
576 	kfree(dent);
577 	return err;
578 }
579 
580 /**
581  * get_znode - get a TNC znode that may not be loaded yet.
582  * @c: UBIFS file-system description object
583  * @znode: parent znode
584  * @n: znode branch slot number
585  *
586  * This function returns the znode or a negative error code.
587  */
588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 				     struct ubifs_znode *znode, int n)
590 {
591 	struct ubifs_zbranch *zbr;
592 
593 	zbr = &znode->zbranch[n];
594 	if (zbr->znode)
595 		znode = zbr->znode;
596 	else
597 		znode = ubifs_load_znode(c, zbr, znode, n);
598 	return znode;
599 }
600 
601 /**
602  * tnc_next - find next TNC entry.
603  * @c: UBIFS file-system description object
604  * @zn: znode is passed and returned here
605  * @n: znode branch slot number is passed and returned here
606  *
607  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608  * no next entry, or a negative error code otherwise.
609  */
610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611 {
612 	struct ubifs_znode *znode = *zn;
613 	int nn = *n;
614 
615 	nn += 1;
616 	if (nn < znode->child_cnt) {
617 		*n = nn;
618 		return 0;
619 	}
620 	while (1) {
621 		struct ubifs_znode *zp;
622 
623 		zp = znode->parent;
624 		if (!zp)
625 			return -ENOENT;
626 		nn = znode->iip + 1;
627 		znode = zp;
628 		if (nn < znode->child_cnt) {
629 			znode = get_znode(c, znode, nn);
630 			if (IS_ERR(znode))
631 				return PTR_ERR(znode);
632 			while (znode->level != 0) {
633 				znode = get_znode(c, znode, 0);
634 				if (IS_ERR(znode))
635 					return PTR_ERR(znode);
636 			}
637 			nn = 0;
638 			break;
639 		}
640 	}
641 	*zn = znode;
642 	*n = nn;
643 	return 0;
644 }
645 
646 /**
647  * tnc_prev - find previous TNC entry.
648  * @c: UBIFS file-system description object
649  * @zn: znode is returned here
650  * @n: znode branch slot number is passed and returned here
651  *
652  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653  * there is no next entry, or a negative error code otherwise.
654  */
655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656 {
657 	struct ubifs_znode *znode = *zn;
658 	int nn = *n;
659 
660 	if (nn > 0) {
661 		*n = nn - 1;
662 		return 0;
663 	}
664 	while (1) {
665 		struct ubifs_znode *zp;
666 
667 		zp = znode->parent;
668 		if (!zp)
669 			return -ENOENT;
670 		nn = znode->iip - 1;
671 		znode = zp;
672 		if (nn >= 0) {
673 			znode = get_znode(c, znode, nn);
674 			if (IS_ERR(znode))
675 				return PTR_ERR(znode);
676 			while (znode->level != 0) {
677 				nn = znode->child_cnt - 1;
678 				znode = get_znode(c, znode, nn);
679 				if (IS_ERR(znode))
680 					return PTR_ERR(znode);
681 			}
682 			nn = znode->child_cnt - 1;
683 			break;
684 		}
685 	}
686 	*zn = znode;
687 	*n = nn;
688 	return 0;
689 }
690 
691 /**
692  * resolve_collision - resolve a collision.
693  * @c: UBIFS file-system description object
694  * @key: key of a directory or extended attribute entry
695  * @zn: znode is returned here
696  * @n: zbranch number is passed and returned here
697  * @nm: name of the entry
698  *
699  * This function is called for "hashed" keys to make sure that the found key
700  * really corresponds to the looked up node (directory or extended attribute
701  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702  * %0 is returned if @nm is not found and @zn and @n are set to the previous
703  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704  * This means that @n may be set to %-1 if the leftmost key in @zn is the
705  * previous one. A negative error code is returned on failures.
706  */
707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 			     struct ubifs_znode **zn, int *n,
709 			     const struct fscrypt_name *nm)
710 {
711 	int err;
712 
713 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 	if (unlikely(err < 0))
715 		return err;
716 	if (err == NAME_MATCHES)
717 		return 1;
718 
719 	if (err == NAME_GREATER) {
720 		/* Look left */
721 		while (1) {
722 			err = tnc_prev(c, zn, n);
723 			if (err == -ENOENT) {
724 				ubifs_assert(*n == 0);
725 				*n = -1;
726 				return 0;
727 			}
728 			if (err < 0)
729 				return err;
730 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 				/*
732 				 * We have found the branch after which we would
733 				 * like to insert, but inserting in this znode
734 				 * may still be wrong. Consider the following 3
735 				 * znodes, in the case where we are resolving a
736 				 * collision with Key2.
737 				 *
738 				 *                  znode zp
739 				 *            ----------------------
740 				 * level 1     |  Key0  |  Key1  |
741 				 *            -----------------------
742 				 *                 |            |
743 				 *       znode za  |            |  znode zb
744 				 *          ------------      ------------
745 				 * level 0  |  Key0  |        |  Key2  |
746 				 *          ------------      ------------
747 				 *
748 				 * The lookup finds Key2 in znode zb. Lets say
749 				 * there is no match and the name is greater so
750 				 * we look left. When we find Key0, we end up
751 				 * here. If we return now, we will insert into
752 				 * znode za at slot n = 1.  But that is invalid
753 				 * according to the parent's keys.  Key2 must
754 				 * be inserted into znode zb.
755 				 *
756 				 * Note, this problem is not relevant for the
757 				 * case when we go right, because
758 				 * 'tnc_insert()' would correct the parent key.
759 				 */
760 				if (*n == (*zn)->child_cnt - 1) {
761 					err = tnc_next(c, zn, n);
762 					if (err) {
763 						/* Should be impossible */
764 						ubifs_assert(0);
765 						if (err == -ENOENT)
766 							err = -EINVAL;
767 						return err;
768 					}
769 					ubifs_assert(*n == 0);
770 					*n = -1;
771 				}
772 				return 0;
773 			}
774 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 			if (err < 0)
776 				return err;
777 			if (err == NAME_LESS)
778 				return 0;
779 			if (err == NAME_MATCHES)
780 				return 1;
781 			ubifs_assert(err == NAME_GREATER);
782 		}
783 	} else {
784 		int nn = *n;
785 		struct ubifs_znode *znode = *zn;
786 
787 		/* Look right */
788 		while (1) {
789 			err = tnc_next(c, &znode, &nn);
790 			if (err == -ENOENT)
791 				return 0;
792 			if (err < 0)
793 				return err;
794 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 				return 0;
796 			err = matches_name(c, &znode->zbranch[nn], nm);
797 			if (err < 0)
798 				return err;
799 			if (err == NAME_GREATER)
800 				return 0;
801 			*zn = znode;
802 			*n = nn;
803 			if (err == NAME_MATCHES)
804 				return 1;
805 			ubifs_assert(err == NAME_LESS);
806 		}
807 	}
808 }
809 
810 /**
811  * fallible_matches_name - determine if a dent matches a given name.
812  * @c: UBIFS file-system description object
813  * @zbr: zbranch of dent
814  * @nm: name to match
815  *
816  * This is a "fallible" version of 'matches_name()' function which does not
817  * panic if the direntry/xentry referred by @zbr does not exist on the media.
818  *
819  * This function checks if xentry/direntry referred by zbranch @zbr matches name
820  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822  * if xentry/direntry referred by @zbr does not exist on the media. A negative
823  * error code is returned in case of failure.
824  */
825 static int fallible_matches_name(struct ubifs_info *c,
826 				 struct ubifs_zbranch *zbr,
827 				 const struct fscrypt_name *nm)
828 {
829 	struct ubifs_dent_node *dent;
830 	int nlen, err;
831 
832 	/* If possible, match against the dent in the leaf node cache */
833 	if (!zbr->leaf) {
834 		dent = kmalloc(zbr->len, GFP_NOFS);
835 		if (!dent)
836 			return -ENOMEM;
837 
838 		err = fallible_read_node(c, &zbr->key, zbr, dent);
839 		if (err < 0)
840 			goto out_free;
841 		if (err == 0) {
842 			/* The node was not present */
843 			err = NOT_ON_MEDIA;
844 			goto out_free;
845 		}
846 		ubifs_assert(err == 1);
847 
848 		err = lnc_add_directly(c, zbr, dent);
849 		if (err)
850 			goto out_free;
851 	} else
852 		dent = zbr->leaf;
853 
854 	nlen = le16_to_cpu(dent->nlen);
855 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 	if (err == 0) {
857 		if (nlen == fname_len(nm))
858 			return NAME_MATCHES;
859 		else if (nlen < fname_len(nm))
860 			return NAME_LESS;
861 		else
862 			return NAME_GREATER;
863 	} else if (err < 0)
864 		return NAME_LESS;
865 	else
866 		return NAME_GREATER;
867 
868 out_free:
869 	kfree(dent);
870 	return err;
871 }
872 
873 /**
874  * fallible_resolve_collision - resolve a collision even if nodes are missing.
875  * @c: UBIFS file-system description object
876  * @key: key
877  * @zn: znode is returned here
878  * @n: branch number is passed and returned here
879  * @nm: name of directory entry
880  * @adding: indicates caller is adding a key to the TNC
881  *
882  * This is a "fallible" version of the 'resolve_collision()' function which
883  * does not panic if one of the nodes referred to by TNC does not exist on the
884  * media. This may happen when replaying the journal if a deleted node was
885  * Garbage-collected and the commit was not done. A branch that refers to a node
886  * that is not present is called a dangling branch. The following are the return
887  * codes for this function:
888  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
889  *    branch;
890  *  o if we are @adding and @nm was not found, %0 is returned;
891  *  o if we are not @adding and @nm was not found, but a dangling branch was
892  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
893  *  o a negative error code is returned in case of failure.
894  */
895 static int fallible_resolve_collision(struct ubifs_info *c,
896 				      const union ubifs_key *key,
897 				      struct ubifs_znode **zn, int *n,
898 				      const struct fscrypt_name *nm,
899 				      int adding)
900 {
901 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903 
904 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 	if (unlikely(cmp < 0))
906 		return cmp;
907 	if (cmp == NAME_MATCHES)
908 		return 1;
909 	if (cmp == NOT_ON_MEDIA) {
910 		o_znode = znode;
911 		o_n = nn;
912 		/*
913 		 * We are unlucky and hit a dangling branch straight away.
914 		 * Now we do not really know where to go to find the needed
915 		 * branch - to the left or to the right. Well, let's try left.
916 		 */
917 		unsure = 1;
918 	} else if (!adding)
919 		unsure = 1; /* Remove a dangling branch wherever it is */
920 
921 	if (cmp == NAME_GREATER || unsure) {
922 		/* Look left */
923 		while (1) {
924 			err = tnc_prev(c, zn, n);
925 			if (err == -ENOENT) {
926 				ubifs_assert(*n == 0);
927 				*n = -1;
928 				break;
929 			}
930 			if (err < 0)
931 				return err;
932 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 				/* See comments in 'resolve_collision()' */
934 				if (*n == (*zn)->child_cnt - 1) {
935 					err = tnc_next(c, zn, n);
936 					if (err) {
937 						/* Should be impossible */
938 						ubifs_assert(0);
939 						if (err == -ENOENT)
940 							err = -EINVAL;
941 						return err;
942 					}
943 					ubifs_assert(*n == 0);
944 					*n = -1;
945 				}
946 				break;
947 			}
948 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 			if (err < 0)
950 				return err;
951 			if (err == NAME_MATCHES)
952 				return 1;
953 			if (err == NOT_ON_MEDIA) {
954 				o_znode = *zn;
955 				o_n = *n;
956 				continue;
957 			}
958 			if (!adding)
959 				continue;
960 			if (err == NAME_LESS)
961 				break;
962 			else
963 				unsure = 0;
964 		}
965 	}
966 
967 	if (cmp == NAME_LESS || unsure) {
968 		/* Look right */
969 		*zn = znode;
970 		*n = nn;
971 		while (1) {
972 			err = tnc_next(c, &znode, &nn);
973 			if (err == -ENOENT)
974 				break;
975 			if (err < 0)
976 				return err;
977 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 				break;
979 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 			if (err < 0)
981 				return err;
982 			if (err == NAME_GREATER)
983 				break;
984 			*zn = znode;
985 			*n = nn;
986 			if (err == NAME_MATCHES)
987 				return 1;
988 			if (err == NOT_ON_MEDIA) {
989 				o_znode = znode;
990 				o_n = nn;
991 			}
992 		}
993 	}
994 
995 	/* Never match a dangling branch when adding */
996 	if (adding || !o_znode)
997 		return 0;
998 
999 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1000 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 		o_znode->zbranch[o_n].len);
1002 	*zn = o_znode;
1003 	*n = o_n;
1004 	return 1;
1005 }
1006 
1007 /**
1008  * matches_position - determine if a zbranch matches a given position.
1009  * @zbr: zbranch of dent
1010  * @lnum: LEB number of dent to match
1011  * @offs: offset of dent to match
1012  *
1013  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014  */
1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016 {
1017 	if (zbr->lnum == lnum && zbr->offs == offs)
1018 		return 1;
1019 	else
1020 		return 0;
1021 }
1022 
1023 /**
1024  * resolve_collision_directly - resolve a collision directly.
1025  * @c: UBIFS file-system description object
1026  * @key: key of directory entry
1027  * @zn: znode is passed and returned here
1028  * @n: zbranch number is passed and returned here
1029  * @lnum: LEB number of dent node to match
1030  * @offs: offset of dent node to match
1031  *
1032  * This function is used for "hashed" keys to make sure the found directory or
1033  * extended attribute entry node is what was looked for. It is used when the
1034  * flash address of the right node is known (@lnum:@offs) which makes it much
1035  * easier to resolve collisions (no need to read entries and match full
1036  * names). This function returns %1 and sets @zn and @n if the collision is
1037  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038  * previous directory entry. Otherwise a negative error code is returned.
1039  */
1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 				      const union ubifs_key *key,
1042 				      struct ubifs_znode **zn, int *n,
1043 				      int lnum, int offs)
1044 {
1045 	struct ubifs_znode *znode;
1046 	int nn, err;
1047 
1048 	znode = *zn;
1049 	nn = *n;
1050 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 		return 1;
1052 
1053 	/* Look left */
1054 	while (1) {
1055 		err = tnc_prev(c, &znode, &nn);
1056 		if (err == -ENOENT)
1057 			break;
1058 		if (err < 0)
1059 			return err;
1060 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 			break;
1062 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 			*zn = znode;
1064 			*n = nn;
1065 			return 1;
1066 		}
1067 	}
1068 
1069 	/* Look right */
1070 	znode = *zn;
1071 	nn = *n;
1072 	while (1) {
1073 		err = tnc_next(c, &znode, &nn);
1074 		if (err == -ENOENT)
1075 			return 0;
1076 		if (err < 0)
1077 			return err;
1078 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 			return 0;
1080 		*zn = znode;
1081 		*n = nn;
1082 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 			return 1;
1084 	}
1085 }
1086 
1087 /**
1088  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089  * @c: UBIFS file-system description object
1090  * @znode: znode to dirty
1091  *
1092  * If we do not have a unique key that resides in a znode, then we cannot
1093  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094  * This function records the path back to the last dirty ancestor, and then
1095  * dirties the znodes on that path.
1096  */
1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 					       struct ubifs_znode *znode)
1099 {
1100 	struct ubifs_znode *zp;
1101 	int *path = c->bottom_up_buf, p = 0;
1102 
1103 	ubifs_assert(c->zroot.znode);
1104 	ubifs_assert(znode);
1105 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 		kfree(c->bottom_up_buf);
1107 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 					   GFP_NOFS);
1109 		if (!c->bottom_up_buf)
1110 			return ERR_PTR(-ENOMEM);
1111 		path = c->bottom_up_buf;
1112 	}
1113 	if (c->zroot.znode->level) {
1114 		/* Go up until parent is dirty */
1115 		while (1) {
1116 			int n;
1117 
1118 			zp = znode->parent;
1119 			if (!zp)
1120 				break;
1121 			n = znode->iip;
1122 			ubifs_assert(p < c->zroot.znode->level);
1123 			path[p++] = n;
1124 			if (!zp->cnext && ubifs_zn_dirty(znode))
1125 				break;
1126 			znode = zp;
1127 		}
1128 	}
1129 
1130 	/* Come back down, dirtying as we go */
1131 	while (1) {
1132 		struct ubifs_zbranch *zbr;
1133 
1134 		zp = znode->parent;
1135 		if (zp) {
1136 			ubifs_assert(path[p - 1] >= 0);
1137 			ubifs_assert(path[p - 1] < zp->child_cnt);
1138 			zbr = &zp->zbranch[path[--p]];
1139 			znode = dirty_cow_znode(c, zbr);
1140 		} else {
1141 			ubifs_assert(znode == c->zroot.znode);
1142 			znode = dirty_cow_znode(c, &c->zroot);
1143 		}
1144 		if (IS_ERR(znode) || !p)
1145 			break;
1146 		ubifs_assert(path[p - 1] >= 0);
1147 		ubifs_assert(path[p - 1] < znode->child_cnt);
1148 		znode = znode->zbranch[path[p - 1]].znode;
1149 	}
1150 
1151 	return znode;
1152 }
1153 
1154 /**
1155  * ubifs_lookup_level0 - search for zero-level znode.
1156  * @c: UBIFS file-system description object
1157  * @key:  key to lookup
1158  * @zn: znode is returned here
1159  * @n: znode branch slot number is returned here
1160  *
1161  * This function looks up the TNC tree and search for zero-level znode which
1162  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163  * cases:
1164  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165  *     is returned and slot number of the matched branch is stored in @n;
1166  *   o not exact match, which means that zero-level znode does not contain
1167  *     @key, then %0 is returned and slot number of the closest branch is stored
1168  *     in @n;
1169  *   o @key is so small that it is even less than the lowest key of the
1170  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171  *
1172  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173  * function reads corresponding indexing nodes and inserts them to TNC. In
1174  * case of failure, a negative error code is returned.
1175  */
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 			struct ubifs_znode **zn, int *n)
1178 {
1179 	int err, exact;
1180 	struct ubifs_znode *znode;
1181 	unsigned long time = get_seconds();
1182 
1183 	dbg_tnck(key, "search key ");
1184 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1185 
1186 	znode = c->zroot.znode;
1187 	if (unlikely(!znode)) {
1188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 		if (IS_ERR(znode))
1190 			return PTR_ERR(znode);
1191 	}
1192 
1193 	znode->time = time;
1194 
1195 	while (1) {
1196 		struct ubifs_zbranch *zbr;
1197 
1198 		exact = ubifs_search_zbranch(c, znode, key, n);
1199 
1200 		if (znode->level == 0)
1201 			break;
1202 
1203 		if (*n < 0)
1204 			*n = 0;
1205 		zbr = &znode->zbranch[*n];
1206 
1207 		if (zbr->znode) {
1208 			znode->time = time;
1209 			znode = zbr->znode;
1210 			continue;
1211 		}
1212 
1213 		/* znode is not in TNC cache, load it from the media */
1214 		znode = ubifs_load_znode(c, zbr, znode, *n);
1215 		if (IS_ERR(znode))
1216 			return PTR_ERR(znode);
1217 	}
1218 
1219 	*zn = znode;
1220 	if (exact || !is_hash_key(c, key) || *n != -1) {
1221 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 		return exact;
1223 	}
1224 
1225 	/*
1226 	 * Here is a tricky place. We have not found the key and this is a
1227 	 * "hashed" key, which may collide. The rest of the code deals with
1228 	 * situations like this:
1229 	 *
1230 	 *                  | 3 | 5 |
1231 	 *                  /       \
1232 	 *          | 3 | 5 |      | 6 | 7 | (x)
1233 	 *
1234 	 * Or more a complex example:
1235 	 *
1236 	 *                | 1 | 5 |
1237 	 *                /       \
1238 	 *       | 1 | 3 |         | 5 | 8 |
1239 	 *              \           /
1240 	 *          | 5 | 5 |   | 6 | 7 | (x)
1241 	 *
1242 	 * In the examples, if we are looking for key "5", we may reach nodes
1243 	 * marked with "(x)". In this case what we have do is to look at the
1244 	 * left and see if there is "5" key there. If there is, we have to
1245 	 * return it.
1246 	 *
1247 	 * Note, this whole situation is possible because we allow to have
1248 	 * elements which are equivalent to the next key in the parent in the
1249 	 * children of current znode. For example, this happens if we split a
1250 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 	 * like this:
1252 	 *                      | 3 | 5 |
1253 	 *                       /     \
1254 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255 	 *                              ^
1256 	 * And this becomes what is at the first "picture" after key "5" marked
1257 	 * with "^" is removed. What could be done is we could prohibit
1258 	 * splitting in the middle of the colliding sequence. Also, when
1259 	 * removing the leftmost key, we would have to correct the key of the
1260 	 * parent node, which would introduce additional complications. Namely,
1261 	 * if we changed the leftmost key of the parent znode, the garbage
1262 	 * collector would be unable to find it (GC is doing this when GC'ing
1263 	 * indexing LEBs). Although we already have an additional RB-tree where
1264 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 	 * after the commit. But anyway, this does not look easy to implement
1266 	 * so we did not try this.
1267 	 */
1268 	err = tnc_prev(c, &znode, n);
1269 	if (err == -ENOENT) {
1270 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 		*n = -1;
1272 		return 0;
1273 	}
1274 	if (unlikely(err < 0))
1275 		return err;
1276 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 		*n = -1;
1279 		return 0;
1280 	}
1281 
1282 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 	*zn = znode;
1284 	return 1;
1285 }
1286 
1287 /**
1288  * lookup_level0_dirty - search for zero-level znode dirtying.
1289  * @c: UBIFS file-system description object
1290  * @key:  key to lookup
1291  * @zn: znode is returned here
1292  * @n: znode branch slot number is returned here
1293  *
1294  * This function looks up the TNC tree and search for zero-level znode which
1295  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296  * cases:
1297  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298  *     is returned and slot number of the matched branch is stored in @n;
1299  *   o not exact match, which means that zero-level znode does not contain @key
1300  *     then %0 is returned and slot number of the closed branch is stored in
1301  *     @n;
1302  *   o @key is so small that it is even less than the lowest key of the
1303  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304  *
1305  * Additionally all znodes in the path from the root to the located zero-level
1306  * znode are marked as dirty.
1307  *
1308  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309  * function reads corresponding indexing nodes and inserts them to TNC. In
1310  * case of failure, a negative error code is returned.
1311  */
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 			       struct ubifs_znode **zn, int *n)
1314 {
1315 	int err, exact;
1316 	struct ubifs_znode *znode;
1317 	unsigned long time = get_seconds();
1318 
1319 	dbg_tnck(key, "search and dirty key ");
1320 
1321 	znode = c->zroot.znode;
1322 	if (unlikely(!znode)) {
1323 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 		if (IS_ERR(znode))
1325 			return PTR_ERR(znode);
1326 	}
1327 
1328 	znode = dirty_cow_znode(c, &c->zroot);
1329 	if (IS_ERR(znode))
1330 		return PTR_ERR(znode);
1331 
1332 	znode->time = time;
1333 
1334 	while (1) {
1335 		struct ubifs_zbranch *zbr;
1336 
1337 		exact = ubifs_search_zbranch(c, znode, key, n);
1338 
1339 		if (znode->level == 0)
1340 			break;
1341 
1342 		if (*n < 0)
1343 			*n = 0;
1344 		zbr = &znode->zbranch[*n];
1345 
1346 		if (zbr->znode) {
1347 			znode->time = time;
1348 			znode = dirty_cow_znode(c, zbr);
1349 			if (IS_ERR(znode))
1350 				return PTR_ERR(znode);
1351 			continue;
1352 		}
1353 
1354 		/* znode is not in TNC cache, load it from the media */
1355 		znode = ubifs_load_znode(c, zbr, znode, *n);
1356 		if (IS_ERR(znode))
1357 			return PTR_ERR(znode);
1358 		znode = dirty_cow_znode(c, zbr);
1359 		if (IS_ERR(znode))
1360 			return PTR_ERR(znode);
1361 	}
1362 
1363 	*zn = znode;
1364 	if (exact || !is_hash_key(c, key) || *n != -1) {
1365 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 		return exact;
1367 	}
1368 
1369 	/*
1370 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 	 * code.
1372 	 */
1373 	err = tnc_prev(c, &znode, n);
1374 	if (err == -ENOENT) {
1375 		*n = -1;
1376 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 		return 0;
1378 	}
1379 	if (unlikely(err < 0))
1380 		return err;
1381 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 		*n = -1;
1383 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 		return 0;
1385 	}
1386 
1387 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 		znode = dirty_cow_bottom_up(c, znode);
1389 		if (IS_ERR(znode))
1390 			return PTR_ERR(znode);
1391 	}
1392 
1393 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 	*zn = znode;
1395 	return 1;
1396 }
1397 
1398 /**
1399  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400  * @c: UBIFS file-system description object
1401  * @lnum: LEB number
1402  * @gc_seq1: garbage collection sequence number
1403  *
1404  * This function determines if @lnum may have been garbage collected since
1405  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406  * %0 is returned.
1407  */
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409 {
1410 	int gc_seq2, gced_lnum;
1411 
1412 	gced_lnum = c->gced_lnum;
1413 	smp_rmb();
1414 	gc_seq2 = c->gc_seq;
1415 	/* Same seq means no GC */
1416 	if (gc_seq1 == gc_seq2)
1417 		return 0;
1418 	/* Different by more than 1 means we don't know */
1419 	if (gc_seq1 + 1 != gc_seq2)
1420 		return 1;
1421 	/*
1422 	 * We have seen the sequence number has increased by 1. Now we need to
1423 	 * be sure we read the right LEB number, so read it again.
1424 	 */
1425 	smp_rmb();
1426 	if (gced_lnum != c->gced_lnum)
1427 		return 1;
1428 	/* Finally we can check lnum */
1429 	if (gced_lnum == lnum)
1430 		return 1;
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436  * @c: UBIFS file-system description object
1437  * @key: node key to lookup
1438  * @node: the node is returned here
1439  * @lnum: LEB number is returned here
1440  * @offs: offset is returned here
1441  *
1442  * This function looks up and reads node with key @key. The caller has to make
1443  * sure the @node buffer is large enough to fit the node. Returns zero in case
1444  * of success, %-ENOENT if the node was not found, and a negative error code in
1445  * case of failure. The node location can be returned in @lnum and @offs.
1446  */
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 		     void *node, int *lnum, int *offs)
1449 {
1450 	int found, n, err, safely = 0, gc_seq1;
1451 	struct ubifs_znode *znode;
1452 	struct ubifs_zbranch zbr, *zt;
1453 
1454 again:
1455 	mutex_lock(&c->tnc_mutex);
1456 	found = ubifs_lookup_level0(c, key, &znode, &n);
1457 	if (!found) {
1458 		err = -ENOENT;
1459 		goto out;
1460 	} else if (found < 0) {
1461 		err = found;
1462 		goto out;
1463 	}
1464 	zt = &znode->zbranch[n];
1465 	if (lnum) {
1466 		*lnum = zt->lnum;
1467 		*offs = zt->offs;
1468 	}
1469 	if (is_hash_key(c, key)) {
1470 		/*
1471 		 * In this case the leaf node cache gets used, so we pass the
1472 		 * address of the zbranch and keep the mutex locked
1473 		 */
1474 		err = tnc_read_hashed_node(c, zt, node);
1475 		goto out;
1476 	}
1477 	if (safely) {
1478 		err = ubifs_tnc_read_node(c, zt, node);
1479 		goto out;
1480 	}
1481 	/* Drop the TNC mutex prematurely and race with garbage collection */
1482 	zbr = znode->zbranch[n];
1483 	gc_seq1 = c->gc_seq;
1484 	mutex_unlock(&c->tnc_mutex);
1485 
1486 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 		/* We do not GC journal heads */
1488 		err = ubifs_tnc_read_node(c, &zbr, node);
1489 		return err;
1490 	}
1491 
1492 	err = fallible_read_node(c, key, &zbr, node);
1493 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494 		/*
1495 		 * The node may have been GC'ed out from under us so try again
1496 		 * while keeping the TNC mutex locked.
1497 		 */
1498 		safely = 1;
1499 		goto again;
1500 	}
1501 	return 0;
1502 
1503 out:
1504 	mutex_unlock(&c->tnc_mutex);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510  * @c: UBIFS file-system description object
1511  * @bu: bulk-read parameters and results
1512  *
1513  * Lookup consecutive data node keys for the same inode that reside
1514  * consecutively in the same LEB. This function returns zero in case of success
1515  * and a negative error code in case of failure.
1516  *
1517  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519  * maximum possible amount of nodes for bulk-read.
1520  */
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522 {
1523 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 	int uninitialized_var(len);
1525 	unsigned int block = key_block(c, &bu->key);
1526 	struct ubifs_znode *znode;
1527 
1528 	bu->cnt = 0;
1529 	bu->blk_cnt = 0;
1530 	bu->eof = 0;
1531 
1532 	mutex_lock(&c->tnc_mutex);
1533 	/* Find first key */
1534 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 	if (err < 0)
1536 		goto out;
1537 	if (err) {
1538 		/* Key found */
1539 		len = znode->zbranch[n].len;
1540 		/* The buffer must be big enough for at least 1 node */
1541 		if (len > bu->buf_len) {
1542 			err = -EINVAL;
1543 			goto out;
1544 		}
1545 		/* Add this key */
1546 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 		bu->blk_cnt += 1;
1548 		lnum = znode->zbranch[n].lnum;
1549 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 	}
1551 	while (1) {
1552 		struct ubifs_zbranch *zbr;
1553 		union ubifs_key *key;
1554 		unsigned int next_block;
1555 
1556 		/* Find next key */
1557 		err = tnc_next(c, &znode, &n);
1558 		if (err)
1559 			goto out;
1560 		zbr = &znode->zbranch[n];
1561 		key = &zbr->key;
1562 		/* See if there is another data key for this file */
1563 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 		    key_type(c, key) != UBIFS_DATA_KEY) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		if (lnum < 0) {
1569 			/* First key found */
1570 			lnum = zbr->lnum;
1571 			offs = ALIGN(zbr->offs + zbr->len, 8);
1572 			len = zbr->len;
1573 			if (len > bu->buf_len) {
1574 				err = -EINVAL;
1575 				goto out;
1576 			}
1577 		} else {
1578 			/*
1579 			 * The data nodes must be in consecutive positions in
1580 			 * the same LEB.
1581 			 */
1582 			if (zbr->lnum != lnum || zbr->offs != offs)
1583 				goto out;
1584 			offs += ALIGN(zbr->len, 8);
1585 			len = ALIGN(len, 8) + zbr->len;
1586 			/* Must not exceed buffer length */
1587 			if (len > bu->buf_len)
1588 				goto out;
1589 		}
1590 		/* Allow for holes */
1591 		next_block = key_block(c, key);
1592 		bu->blk_cnt += (next_block - block - 1);
1593 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 			goto out;
1595 		block = next_block;
1596 		/* Add this key */
1597 		bu->zbranch[bu->cnt++] = *zbr;
1598 		bu->blk_cnt += 1;
1599 		/* See if we have room for more */
1600 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 			goto out;
1602 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 			goto out;
1604 	}
1605 out:
1606 	if (err == -ENOENT) {
1607 		bu->eof = 1;
1608 		err = 0;
1609 	}
1610 	bu->gc_seq = c->gc_seq;
1611 	mutex_unlock(&c->tnc_mutex);
1612 	if (err)
1613 		return err;
1614 	/*
1615 	 * An enormous hole could cause bulk-read to encompass too many
1616 	 * page cache pages, so limit the number here.
1617 	 */
1618 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 	/*
1621 	 * Ensure that bulk-read covers a whole number of page cache
1622 	 * pages.
1623 	 */
1624 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 		return 0;
1627 	if (bu->eof) {
1628 		/* At the end of file we can round up */
1629 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 		return 0;
1631 	}
1632 	/* Exclude data nodes that do not make up a whole page cache page */
1633 	block = key_block(c, &bu->key) + bu->blk_cnt;
1634 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 	while (bu->cnt) {
1636 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 			break;
1638 		bu->cnt -= 1;
1639 	}
1640 	return 0;
1641 }
1642 
1643 /**
1644  * read_wbuf - bulk-read from a LEB with a wbuf.
1645  * @wbuf: wbuf that may overlap the read
1646  * @buf: buffer into which to read
1647  * @len: read length
1648  * @lnum: LEB number from which to read
1649  * @offs: offset from which to read
1650  *
1651  * This functions returns %0 on success or a negative error code on failure.
1652  */
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 		     int offs)
1655 {
1656 	const struct ubifs_info *c = wbuf->c;
1657 	int rlen, overlap;
1658 
1659 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 	ubifs_assert(offs + len <= c->leb_size);
1663 
1664 	spin_lock(&wbuf->lock);
1665 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 	if (!overlap) {
1667 		/* We may safely unlock the write-buffer and read the data */
1668 		spin_unlock(&wbuf->lock);
1669 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670 	}
1671 
1672 	/* Don't read under wbuf */
1673 	rlen = wbuf->offs - offs;
1674 	if (rlen < 0)
1675 		rlen = 0;
1676 
1677 	/* Copy the rest from the write-buffer */
1678 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 	spin_unlock(&wbuf->lock);
1680 
1681 	if (rlen > 0)
1682 		/* Read everything that goes before write-buffer */
1683 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * validate_data_node - validate data nodes for bulk-read.
1690  * @c: UBIFS file-system description object
1691  * @buf: buffer containing data node to validate
1692  * @zbr: zbranch of data node to validate
1693  *
1694  * This functions returns %0 on success or a negative error code on failure.
1695  */
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 			      struct ubifs_zbranch *zbr)
1698 {
1699 	union ubifs_key key1;
1700 	struct ubifs_ch *ch = buf;
1701 	int err, len;
1702 
1703 	if (ch->node_type != UBIFS_DATA_NODE) {
1704 		ubifs_err(c, "bad node type (%d but expected %d)",
1705 			  ch->node_type, UBIFS_DATA_NODE);
1706 		goto out_err;
1707 	}
1708 
1709 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710 	if (err) {
1711 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1712 		goto out;
1713 	}
1714 
1715 	len = le32_to_cpu(ch->len);
1716 	if (len != zbr->len) {
1717 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718 		goto out_err;
1719 	}
1720 
1721 	/* Make sure the key of the read node is correct */
1722 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 	if (!keys_eq(c, &zbr->key, &key1)) {
1724 		ubifs_err(c, "bad key in node at LEB %d:%d",
1725 			  zbr->lnum, zbr->offs);
1726 		dbg_tnck(&zbr->key, "looked for key ");
1727 		dbg_tnck(&key1, "found node's key ");
1728 		goto out_err;
1729 	}
1730 
1731 	return 0;
1732 
1733 out_err:
1734 	err = -EINVAL;
1735 out:
1736 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 	ubifs_dump_node(c, buf);
1738 	dump_stack();
1739 	return err;
1740 }
1741 
1742 /**
1743  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744  * @c: UBIFS file-system description object
1745  * @bu: bulk-read parameters and results
1746  *
1747  * This functions reads and validates the data nodes that were identified by the
1748  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749  * -EAGAIN to indicate a race with GC, or another negative error code on
1750  * failure.
1751  */
1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 {
1754 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 	struct ubifs_wbuf *wbuf;
1756 	void *buf;
1757 
1758 	len = bu->zbranch[bu->cnt - 1].offs;
1759 	len += bu->zbranch[bu->cnt - 1].len - offs;
1760 	if (len > bu->buf_len) {
1761 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Do the read */
1766 	wbuf = ubifs_get_wbuf(c, lnum);
1767 	if (wbuf)
1768 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 	else
1770 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771 
1772 	/* Check for a race with GC */
1773 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 		return -EAGAIN;
1775 
1776 	if (err && err != -EBADMSG) {
1777 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778 			  lnum, offs, err);
1779 		dump_stack();
1780 		dbg_tnck(&bu->key, "key ");
1781 		return err;
1782 	}
1783 
1784 	/* Validate the nodes read */
1785 	buf = bu->buf;
1786 	for (i = 0; i < bu->cnt; i++) {
1787 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 		if (err)
1789 			return err;
1790 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * do_lookup_nm- look up a "hashed" node.
1798  * @c: UBIFS file-system description object
1799  * @key: node key to lookup
1800  * @node: the node is returned here
1801  * @nm: node name
1802  *
1803  * This function looks up and reads a node which contains name hash in the key.
1804  * Since the hash may have collisions, there may be many nodes with the same
1805  * key, so we have to sequentially look to all of them until the needed one is
1806  * found. This function returns zero in case of success, %-ENOENT if the node
1807  * was not found, and a negative error code in case of failure.
1808  */
1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 			void *node, const struct fscrypt_name *nm)
1811 {
1812 	int found, n, err;
1813 	struct ubifs_znode *znode;
1814 
1815 	dbg_tnck(key, "key ");
1816 	mutex_lock(&c->tnc_mutex);
1817 	found = ubifs_lookup_level0(c, key, &znode, &n);
1818 	if (!found) {
1819 		err = -ENOENT;
1820 		goto out_unlock;
1821 	} else if (found < 0) {
1822 		err = found;
1823 		goto out_unlock;
1824 	}
1825 
1826 	ubifs_assert(n >= 0);
1827 
1828 	err = resolve_collision(c, key, &znode, &n, nm);
1829 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 	if (unlikely(err < 0))
1831 		goto out_unlock;
1832 	if (err == 0) {
1833 		err = -ENOENT;
1834 		goto out_unlock;
1835 	}
1836 
1837 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838 
1839 out_unlock:
1840 	mutex_unlock(&c->tnc_mutex);
1841 	return err;
1842 }
1843 
1844 /**
1845  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846  * @c: UBIFS file-system description object
1847  * @key: node key to lookup
1848  * @node: the node is returned here
1849  * @nm: node name
1850  *
1851  * This function looks up and reads a node which contains name hash in the key.
1852  * Since the hash may have collisions, there may be many nodes with the same
1853  * key, so we have to sequentially look to all of them until the needed one is
1854  * found. This function returns zero in case of success, %-ENOENT if the node
1855  * was not found, and a negative error code in case of failure.
1856  */
1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 			void *node, const struct fscrypt_name *nm)
1859 {
1860 	int err, len;
1861 	const struct ubifs_dent_node *dent = node;
1862 
1863 	/*
1864 	 * We assume that in most of the cases there are no name collisions and
1865 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 	 */
1867 	err = ubifs_tnc_lookup(c, key, node);
1868 	if (err)
1869 		return err;
1870 
1871 	len = le16_to_cpu(dent->nlen);
1872 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873 		return 0;
1874 
1875 	/*
1876 	 * Unluckily, there are hash collisions and we have to iterate over
1877 	 * them look at each direntry with colliding name hash sequentially.
1878 	 */
1879 
1880 	return do_lookup_nm(c, key, node, nm);
1881 }
1882 
1883 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884 			    struct ubifs_dent_node *dent, uint32_t cookie,
1885 			    struct ubifs_znode **zn, int *n)
1886 {
1887 	int err;
1888 	struct ubifs_znode *znode = *zn;
1889 	struct ubifs_zbranch *zbr;
1890 	union ubifs_key *dkey;
1891 
1892 	for (;;) {
1893 		if (!err) {
1894 			err = tnc_next(c, &znode, n);
1895 			if (err)
1896 				goto out;
1897 		}
1898 
1899 		zbr = &znode->zbranch[*n];
1900 		dkey = &zbr->key;
1901 
1902 		if (key_inum(c, dkey) != key_inum(c, key) ||
1903 		    key_type(c, dkey) != key_type(c, key)) {
1904 			err = -ENOENT;
1905 			goto out;
1906 		}
1907 
1908 		err = tnc_read_hashed_node(c, zbr, dent);
1909 		if (err)
1910 			goto out;
1911 
1912 		if (key_hash(c, key) == key_hash(c, dkey) &&
1913 		    le32_to_cpu(dent->cookie) == cookie) {
1914 			*zn = znode;
1915 			goto out;
1916 		}
1917 	}
1918 
1919 out:
1920 
1921 	return err;
1922 }
1923 
1924 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1925 			struct ubifs_dent_node *dent, uint32_t cookie)
1926 {
1927 	int n, err;
1928 	struct ubifs_znode *znode;
1929 	union ubifs_key start_key;
1930 
1931 	ubifs_assert(is_hash_key(c, key));
1932 
1933 	lowest_dent_key(c, &start_key, key_inum(c, key));
1934 
1935 	mutex_lock(&c->tnc_mutex);
1936 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1937 	if (unlikely(err < 0))
1938 		goto out_unlock;
1939 
1940 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1941 
1942 out_unlock:
1943 	mutex_unlock(&c->tnc_mutex);
1944 	return err;
1945 }
1946 
1947 /**
1948  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1949  * @c: UBIFS file-system description object
1950  * @key: node key to lookup
1951  * @node: the node is returned here
1952  * @cookie: node cookie for collision resolution
1953  *
1954  * This function looks up and reads a node which contains name hash in the key.
1955  * Since the hash may have collisions, there may be many nodes with the same
1956  * key, so we have to sequentially look to all of them until the needed one
1957  * with the same cookie value is found.
1958  * This function returns zero in case of success, %-ENOENT if the node
1959  * was not found, and a negative error code in case of failure.
1960  */
1961 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1962 			void *node, uint32_t cookie)
1963 {
1964 	int err;
1965 	const struct ubifs_dent_node *dent = node;
1966 
1967 	if (!c->double_hash)
1968 		return -EOPNOTSUPP;
1969 
1970 	/*
1971 	 * We assume that in most of the cases there are no name collisions and
1972 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1973 	 */
1974 	err = ubifs_tnc_lookup(c, key, node);
1975 	if (err)
1976 		return err;
1977 
1978 	if (le32_to_cpu(dent->cookie) == cookie)
1979 		return 0;
1980 
1981 	/*
1982 	 * Unluckily, there are hash collisions and we have to iterate over
1983 	 * them look at each direntry with colliding name hash sequentially.
1984 	 */
1985 	return do_lookup_dh(c, key, node, cookie);
1986 }
1987 
1988 /**
1989  * correct_parent_keys - correct parent znodes' keys.
1990  * @c: UBIFS file-system description object
1991  * @znode: znode to correct parent znodes for
1992  *
1993  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1994  * zbranch changes, keys of parent znodes have to be corrected. This helper
1995  * function is called in such situations and corrects the keys if needed.
1996  */
1997 static void correct_parent_keys(const struct ubifs_info *c,
1998 				struct ubifs_znode *znode)
1999 {
2000 	union ubifs_key *key, *key1;
2001 
2002 	ubifs_assert(znode->parent);
2003 	ubifs_assert(znode->iip == 0);
2004 
2005 	key = &znode->zbranch[0].key;
2006 	key1 = &znode->parent->zbranch[0].key;
2007 
2008 	while (keys_cmp(c, key, key1) < 0) {
2009 		key_copy(c, key, key1);
2010 		znode = znode->parent;
2011 		znode->alt = 1;
2012 		if (!znode->parent || znode->iip)
2013 			break;
2014 		key1 = &znode->parent->zbranch[0].key;
2015 	}
2016 }
2017 
2018 /**
2019  * insert_zbranch - insert a zbranch into a znode.
2020  * @znode: znode into which to insert
2021  * @zbr: zbranch to insert
2022  * @n: slot number to insert to
2023  *
2024  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027  * slot, zbranches starting from @n have to be moved right.
2028  */
2029 static void insert_zbranch(struct ubifs_znode *znode,
2030 			   const struct ubifs_zbranch *zbr, int n)
2031 {
2032 	int i;
2033 
2034 	ubifs_assert(ubifs_zn_dirty(znode));
2035 
2036 	if (znode->level) {
2037 		for (i = znode->child_cnt; i > n; i--) {
2038 			znode->zbranch[i] = znode->zbranch[i - 1];
2039 			if (znode->zbranch[i].znode)
2040 				znode->zbranch[i].znode->iip = i;
2041 		}
2042 		if (zbr->znode)
2043 			zbr->znode->iip = n;
2044 	} else
2045 		for (i = znode->child_cnt; i > n; i--)
2046 			znode->zbranch[i] = znode->zbranch[i - 1];
2047 
2048 	znode->zbranch[n] = *zbr;
2049 	znode->child_cnt += 1;
2050 
2051 	/*
2052 	 * After inserting at slot zero, the lower bound of the key range of
2053 	 * this znode may have changed. If this znode is subsequently split
2054 	 * then the upper bound of the key range may change, and furthermore
2055 	 * it could change to be lower than the original lower bound. If that
2056 	 * happens, then it will no longer be possible to find this znode in the
2057 	 * TNC using the key from the index node on flash. That is bad because
2058 	 * if it is not found, we will assume it is obsolete and may overwrite
2059 	 * it. Then if there is an unclean unmount, we will start using the
2060 	 * old index which will be broken.
2061 	 *
2062 	 * So we first mark znodes that have insertions at slot zero, and then
2063 	 * if they are split we add their lnum/offs to the old_idx tree.
2064 	 */
2065 	if (n == 0)
2066 		znode->alt = 1;
2067 }
2068 
2069 /**
2070  * tnc_insert - insert a node into TNC.
2071  * @c: UBIFS file-system description object
2072  * @znode: znode to insert into
2073  * @zbr: branch to insert
2074  * @n: slot number to insert new zbranch to
2075  *
2076  * This function inserts a new node described by @zbr into znode @znode. If
2077  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078  * are splat as well if needed. Returns zero in case of success or a negative
2079  * error code in case of failure.
2080  */
2081 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2082 		      struct ubifs_zbranch *zbr, int n)
2083 {
2084 	struct ubifs_znode *zn, *zi, *zp;
2085 	int i, keep, move, appending = 0;
2086 	union ubifs_key *key = &zbr->key, *key1;
2087 
2088 	ubifs_assert(n >= 0 && n <= c->fanout);
2089 
2090 	/* Implement naive insert for now */
2091 again:
2092 	zp = znode->parent;
2093 	if (znode->child_cnt < c->fanout) {
2094 		ubifs_assert(n != c->fanout);
2095 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2096 
2097 		insert_zbranch(znode, zbr, n);
2098 
2099 		/* Ensure parent's key is correct */
2100 		if (n == 0 && zp && znode->iip == 0)
2101 			correct_parent_keys(c, znode);
2102 
2103 		return 0;
2104 	}
2105 
2106 	/*
2107 	 * Unfortunately, @znode does not have more empty slots and we have to
2108 	 * split it.
2109 	 */
2110 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2111 
2112 	if (znode->alt)
2113 		/*
2114 		 * We can no longer be sure of finding this znode by key, so we
2115 		 * record it in the old_idx tree.
2116 		 */
2117 		ins_clr_old_idx_znode(c, znode);
2118 
2119 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2120 	if (!zn)
2121 		return -ENOMEM;
2122 	zn->parent = zp;
2123 	zn->level = znode->level;
2124 
2125 	/* Decide where to split */
2126 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2127 		/* Try not to split consecutive data keys */
2128 		if (n == c->fanout) {
2129 			key1 = &znode->zbranch[n - 1].key;
2130 			if (key_inum(c, key1) == key_inum(c, key) &&
2131 			    key_type(c, key1) == UBIFS_DATA_KEY)
2132 				appending = 1;
2133 		} else
2134 			goto check_split;
2135 	} else if (appending && n != c->fanout) {
2136 		/* Try not to split consecutive data keys */
2137 		appending = 0;
2138 check_split:
2139 		if (n >= (c->fanout + 1) / 2) {
2140 			key1 = &znode->zbranch[0].key;
2141 			if (key_inum(c, key1) == key_inum(c, key) &&
2142 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2143 				key1 = &znode->zbranch[n].key;
2144 				if (key_inum(c, key1) != key_inum(c, key) ||
2145 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2146 					keep = n;
2147 					move = c->fanout - keep;
2148 					zi = znode;
2149 					goto do_split;
2150 				}
2151 			}
2152 		}
2153 	}
2154 
2155 	if (appending) {
2156 		keep = c->fanout;
2157 		move = 0;
2158 	} else {
2159 		keep = (c->fanout + 1) / 2;
2160 		move = c->fanout - keep;
2161 	}
2162 
2163 	/*
2164 	 * Although we don't at present, we could look at the neighbors and see
2165 	 * if we can move some zbranches there.
2166 	 */
2167 
2168 	if (n < keep) {
2169 		/* Insert into existing znode */
2170 		zi = znode;
2171 		move += 1;
2172 		keep -= 1;
2173 	} else {
2174 		/* Insert into new znode */
2175 		zi = zn;
2176 		n -= keep;
2177 		/* Re-parent */
2178 		if (zn->level != 0)
2179 			zbr->znode->parent = zn;
2180 	}
2181 
2182 do_split:
2183 
2184 	__set_bit(DIRTY_ZNODE, &zn->flags);
2185 	atomic_long_inc(&c->dirty_zn_cnt);
2186 
2187 	zn->child_cnt = move;
2188 	znode->child_cnt = keep;
2189 
2190 	dbg_tnc("moving %d, keeping %d", move, keep);
2191 
2192 	/* Move zbranch */
2193 	for (i = 0; i < move; i++) {
2194 		zn->zbranch[i] = znode->zbranch[keep + i];
2195 		/* Re-parent */
2196 		if (zn->level != 0)
2197 			if (zn->zbranch[i].znode) {
2198 				zn->zbranch[i].znode->parent = zn;
2199 				zn->zbranch[i].znode->iip = i;
2200 			}
2201 	}
2202 
2203 	/* Insert new key and branch */
2204 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2205 
2206 	insert_zbranch(zi, zbr, n);
2207 
2208 	/* Insert new znode (produced by spitting) into the parent */
2209 	if (zp) {
2210 		if (n == 0 && zi == znode && znode->iip == 0)
2211 			correct_parent_keys(c, znode);
2212 
2213 		/* Locate insertion point */
2214 		n = znode->iip + 1;
2215 
2216 		/* Tail recursion */
2217 		zbr->key = zn->zbranch[0].key;
2218 		zbr->znode = zn;
2219 		zbr->lnum = 0;
2220 		zbr->offs = 0;
2221 		zbr->len = 0;
2222 		znode = zp;
2223 
2224 		goto again;
2225 	}
2226 
2227 	/* We have to split root znode */
2228 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229 
2230 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2231 	if (!zi)
2232 		return -ENOMEM;
2233 
2234 	zi->child_cnt = 2;
2235 	zi->level = znode->level + 1;
2236 
2237 	__set_bit(DIRTY_ZNODE, &zi->flags);
2238 	atomic_long_inc(&c->dirty_zn_cnt);
2239 
2240 	zi->zbranch[0].key = znode->zbranch[0].key;
2241 	zi->zbranch[0].znode = znode;
2242 	zi->zbranch[0].lnum = c->zroot.lnum;
2243 	zi->zbranch[0].offs = c->zroot.offs;
2244 	zi->zbranch[0].len = c->zroot.len;
2245 	zi->zbranch[1].key = zn->zbranch[0].key;
2246 	zi->zbranch[1].znode = zn;
2247 
2248 	c->zroot.lnum = 0;
2249 	c->zroot.offs = 0;
2250 	c->zroot.len = 0;
2251 	c->zroot.znode = zi;
2252 
2253 	zn->parent = zi;
2254 	zn->iip = 1;
2255 	znode->parent = zi;
2256 	znode->iip = 0;
2257 
2258 	return 0;
2259 }
2260 
2261 /**
2262  * ubifs_tnc_add - add a node to TNC.
2263  * @c: UBIFS file-system description object
2264  * @key: key to add
2265  * @lnum: LEB number of node
2266  * @offs: node offset
2267  * @len: node length
2268  *
2269  * This function adds a node with key @key to TNC. The node may be new or it may
2270  * obsolete some existing one. Returns %0 on success or negative error code on
2271  * failure.
2272  */
2273 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2274 		  int offs, int len)
2275 {
2276 	int found, n, err = 0;
2277 	struct ubifs_znode *znode;
2278 
2279 	mutex_lock(&c->tnc_mutex);
2280 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2281 	found = lookup_level0_dirty(c, key, &znode, &n);
2282 	if (!found) {
2283 		struct ubifs_zbranch zbr;
2284 
2285 		zbr.znode = NULL;
2286 		zbr.lnum = lnum;
2287 		zbr.offs = offs;
2288 		zbr.len = len;
2289 		key_copy(c, key, &zbr.key);
2290 		err = tnc_insert(c, znode, &zbr, n + 1);
2291 	} else if (found == 1) {
2292 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2293 
2294 		lnc_free(zbr);
2295 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2296 		zbr->lnum = lnum;
2297 		zbr->offs = offs;
2298 		zbr->len = len;
2299 	} else
2300 		err = found;
2301 	if (!err)
2302 		err = dbg_check_tnc(c, 0);
2303 	mutex_unlock(&c->tnc_mutex);
2304 
2305 	return err;
2306 }
2307 
2308 /**
2309  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2310  * @c: UBIFS file-system description object
2311  * @key: key to add
2312  * @old_lnum: LEB number of old node
2313  * @old_offs: old node offset
2314  * @lnum: LEB number of node
2315  * @offs: node offset
2316  * @len: node length
2317  *
2318  * This function replaces a node with key @key in the TNC only if the old node
2319  * is found.  This function is called by garbage collection when node are moved.
2320  * Returns %0 on success or negative error code on failure.
2321  */
2322 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2323 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2324 {
2325 	int found, n, err = 0;
2326 	struct ubifs_znode *znode;
2327 
2328 	mutex_lock(&c->tnc_mutex);
2329 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2330 		 old_offs, lnum, offs, len);
2331 	found = lookup_level0_dirty(c, key, &znode, &n);
2332 	if (found < 0) {
2333 		err = found;
2334 		goto out_unlock;
2335 	}
2336 
2337 	if (found == 1) {
2338 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2339 
2340 		found = 0;
2341 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2342 			lnc_free(zbr);
2343 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2344 			if (err)
2345 				goto out_unlock;
2346 			zbr->lnum = lnum;
2347 			zbr->offs = offs;
2348 			zbr->len = len;
2349 			found = 1;
2350 		} else if (is_hash_key(c, key)) {
2351 			found = resolve_collision_directly(c, key, &znode, &n,
2352 							   old_lnum, old_offs);
2353 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2354 				found, znode, n, old_lnum, old_offs);
2355 			if (found < 0) {
2356 				err = found;
2357 				goto out_unlock;
2358 			}
2359 
2360 			if (found) {
2361 				/* Ensure the znode is dirtied */
2362 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2363 					znode = dirty_cow_bottom_up(c, znode);
2364 					if (IS_ERR(znode)) {
2365 						err = PTR_ERR(znode);
2366 						goto out_unlock;
2367 					}
2368 				}
2369 				zbr = &znode->zbranch[n];
2370 				lnc_free(zbr);
2371 				err = ubifs_add_dirt(c, zbr->lnum,
2372 						     zbr->len);
2373 				if (err)
2374 					goto out_unlock;
2375 				zbr->lnum = lnum;
2376 				zbr->offs = offs;
2377 				zbr->len = len;
2378 			}
2379 		}
2380 	}
2381 
2382 	if (!found)
2383 		err = ubifs_add_dirt(c, lnum, len);
2384 
2385 	if (!err)
2386 		err = dbg_check_tnc(c, 0);
2387 
2388 out_unlock:
2389 	mutex_unlock(&c->tnc_mutex);
2390 	return err;
2391 }
2392 
2393 /**
2394  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2395  * @c: UBIFS file-system description object
2396  * @key: key to add
2397  * @lnum: LEB number of node
2398  * @offs: node offset
2399  * @len: node length
2400  * @nm: node name
2401  *
2402  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2403  * may have collisions, like directory entry keys.
2404  */
2405 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2406 		     int lnum, int offs, int len,
2407 		     const struct fscrypt_name *nm)
2408 {
2409 	int found, n, err = 0;
2410 	struct ubifs_znode *znode;
2411 
2412 	mutex_lock(&c->tnc_mutex);
2413 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2414 	found = lookup_level0_dirty(c, key, &znode, &n);
2415 	if (found < 0) {
2416 		err = found;
2417 		goto out_unlock;
2418 	}
2419 
2420 	if (found == 1) {
2421 		if (c->replaying)
2422 			found = fallible_resolve_collision(c, key, &znode, &n,
2423 							   nm, 1);
2424 		else
2425 			found = resolve_collision(c, key, &znode, &n, nm);
2426 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2427 		if (found < 0) {
2428 			err = found;
2429 			goto out_unlock;
2430 		}
2431 
2432 		/* Ensure the znode is dirtied */
2433 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2434 			znode = dirty_cow_bottom_up(c, znode);
2435 			if (IS_ERR(znode)) {
2436 				err = PTR_ERR(znode);
2437 				goto out_unlock;
2438 			}
2439 		}
2440 
2441 		if (found == 1) {
2442 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2443 
2444 			lnc_free(zbr);
2445 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2446 			zbr->lnum = lnum;
2447 			zbr->offs = offs;
2448 			zbr->len = len;
2449 			goto out_unlock;
2450 		}
2451 	}
2452 
2453 	if (!found) {
2454 		struct ubifs_zbranch zbr;
2455 
2456 		zbr.znode = NULL;
2457 		zbr.lnum = lnum;
2458 		zbr.offs = offs;
2459 		zbr.len = len;
2460 		key_copy(c, key, &zbr.key);
2461 		err = tnc_insert(c, znode, &zbr, n + 1);
2462 		if (err)
2463 			goto out_unlock;
2464 		if (c->replaying) {
2465 			/*
2466 			 * We did not find it in the index so there may be a
2467 			 * dangling branch still in the index. So we remove it
2468 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2469 			 * an unmatchable name.
2470 			 */
2471 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2472 
2473 			err = dbg_check_tnc(c, 0);
2474 			mutex_unlock(&c->tnc_mutex);
2475 			if (err)
2476 				return err;
2477 			return ubifs_tnc_remove_nm(c, key, &noname);
2478 		}
2479 	}
2480 
2481 out_unlock:
2482 	if (!err)
2483 		err = dbg_check_tnc(c, 0);
2484 	mutex_unlock(&c->tnc_mutex);
2485 	return err;
2486 }
2487 
2488 /**
2489  * tnc_delete - delete a znode form TNC.
2490  * @c: UBIFS file-system description object
2491  * @znode: znode to delete from
2492  * @n: zbranch slot number to delete
2493  *
2494  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2495  * case of success and a negative error code in case of failure.
2496  */
2497 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2498 {
2499 	struct ubifs_zbranch *zbr;
2500 	struct ubifs_znode *zp;
2501 	int i, err;
2502 
2503 	/* Delete without merge for now */
2504 	ubifs_assert(znode->level == 0);
2505 	ubifs_assert(n >= 0 && n < c->fanout);
2506 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2507 
2508 	zbr = &znode->zbranch[n];
2509 	lnc_free(zbr);
2510 
2511 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2512 	if (err) {
2513 		ubifs_dump_znode(c, znode);
2514 		return err;
2515 	}
2516 
2517 	/* We do not "gap" zbranch slots */
2518 	for (i = n; i < znode->child_cnt - 1; i++)
2519 		znode->zbranch[i] = znode->zbranch[i + 1];
2520 	znode->child_cnt -= 1;
2521 
2522 	if (znode->child_cnt > 0)
2523 		return 0;
2524 
2525 	/*
2526 	 * This was the last zbranch, we have to delete this znode from the
2527 	 * parent.
2528 	 */
2529 
2530 	do {
2531 		ubifs_assert(!ubifs_zn_obsolete(znode));
2532 		ubifs_assert(ubifs_zn_dirty(znode));
2533 
2534 		zp = znode->parent;
2535 		n = znode->iip;
2536 
2537 		atomic_long_dec(&c->dirty_zn_cnt);
2538 
2539 		err = insert_old_idx_znode(c, znode);
2540 		if (err)
2541 			return err;
2542 
2543 		if (znode->cnext) {
2544 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2545 			atomic_long_inc(&c->clean_zn_cnt);
2546 			atomic_long_inc(&ubifs_clean_zn_cnt);
2547 		} else
2548 			kfree(znode);
2549 		znode = zp;
2550 	} while (znode->child_cnt == 1); /* while removing last child */
2551 
2552 	/* Remove from znode, entry n - 1 */
2553 	znode->child_cnt -= 1;
2554 	ubifs_assert(znode->level != 0);
2555 	for (i = n; i < znode->child_cnt; i++) {
2556 		znode->zbranch[i] = znode->zbranch[i + 1];
2557 		if (znode->zbranch[i].znode)
2558 			znode->zbranch[i].znode->iip = i;
2559 	}
2560 
2561 	/*
2562 	 * If this is the root and it has only 1 child then
2563 	 * collapse the tree.
2564 	 */
2565 	if (!znode->parent) {
2566 		while (znode->child_cnt == 1 && znode->level != 0) {
2567 			zp = znode;
2568 			zbr = &znode->zbranch[0];
2569 			znode = get_znode(c, znode, 0);
2570 			if (IS_ERR(znode))
2571 				return PTR_ERR(znode);
2572 			znode = dirty_cow_znode(c, zbr);
2573 			if (IS_ERR(znode))
2574 				return PTR_ERR(znode);
2575 			znode->parent = NULL;
2576 			znode->iip = 0;
2577 			if (c->zroot.len) {
2578 				err = insert_old_idx(c, c->zroot.lnum,
2579 						     c->zroot.offs);
2580 				if (err)
2581 					return err;
2582 			}
2583 			c->zroot.lnum = zbr->lnum;
2584 			c->zroot.offs = zbr->offs;
2585 			c->zroot.len = zbr->len;
2586 			c->zroot.znode = znode;
2587 			ubifs_assert(!ubifs_zn_obsolete(zp));
2588 			ubifs_assert(ubifs_zn_dirty(zp));
2589 			atomic_long_dec(&c->dirty_zn_cnt);
2590 
2591 			if (zp->cnext) {
2592 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2593 				atomic_long_inc(&c->clean_zn_cnt);
2594 				atomic_long_inc(&ubifs_clean_zn_cnt);
2595 			} else
2596 				kfree(zp);
2597 		}
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 /**
2604  * ubifs_tnc_remove - remove an index entry of a node.
2605  * @c: UBIFS file-system description object
2606  * @key: key of node
2607  *
2608  * Returns %0 on success or negative error code on failure.
2609  */
2610 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2611 {
2612 	int found, n, err = 0;
2613 	struct ubifs_znode *znode;
2614 
2615 	mutex_lock(&c->tnc_mutex);
2616 	dbg_tnck(key, "key ");
2617 	found = lookup_level0_dirty(c, key, &znode, &n);
2618 	if (found < 0) {
2619 		err = found;
2620 		goto out_unlock;
2621 	}
2622 	if (found == 1)
2623 		err = tnc_delete(c, znode, n);
2624 	if (!err)
2625 		err = dbg_check_tnc(c, 0);
2626 
2627 out_unlock:
2628 	mutex_unlock(&c->tnc_mutex);
2629 	return err;
2630 }
2631 
2632 /**
2633  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2634  * @c: UBIFS file-system description object
2635  * @key: key of node
2636  * @nm: directory entry name
2637  *
2638  * Returns %0 on success or negative error code on failure.
2639  */
2640 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2641 			const struct fscrypt_name *nm)
2642 {
2643 	int n, err;
2644 	struct ubifs_znode *znode;
2645 
2646 	mutex_lock(&c->tnc_mutex);
2647 	dbg_tnck(key, "key ");
2648 	err = lookup_level0_dirty(c, key, &znode, &n);
2649 	if (err < 0)
2650 		goto out_unlock;
2651 
2652 	if (err) {
2653 		if (c->replaying)
2654 			err = fallible_resolve_collision(c, key, &znode, &n,
2655 							 nm, 0);
2656 		else
2657 			err = resolve_collision(c, key, &znode, &n, nm);
2658 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2659 		if (err < 0)
2660 			goto out_unlock;
2661 		if (err) {
2662 			/* Ensure the znode is dirtied */
2663 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2664 				znode = dirty_cow_bottom_up(c, znode);
2665 				if (IS_ERR(znode)) {
2666 					err = PTR_ERR(znode);
2667 					goto out_unlock;
2668 				}
2669 			}
2670 			err = tnc_delete(c, znode, n);
2671 		}
2672 	}
2673 
2674 out_unlock:
2675 	if (!err)
2676 		err = dbg_check_tnc(c, 0);
2677 	mutex_unlock(&c->tnc_mutex);
2678 	return err;
2679 }
2680 
2681 /**
2682  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2683  * @c: UBIFS file-system description object
2684  * @key: key of node
2685  * @cookie: node cookie for collision resolution
2686  *
2687  * Returns %0 on success or negative error code on failure.
2688  */
2689 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2690 			uint32_t cookie)
2691 {
2692 	int n, err;
2693 	struct ubifs_znode *znode;
2694 	struct ubifs_dent_node *dent;
2695 	struct ubifs_zbranch *zbr;
2696 
2697 	if (!c->double_hash)
2698 		return -EOPNOTSUPP;
2699 
2700 	mutex_lock(&c->tnc_mutex);
2701 	err = lookup_level0_dirty(c, key, &znode, &n);
2702 	if (err <= 0)
2703 		goto out_unlock;
2704 
2705 	zbr = &znode->zbranch[n];
2706 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2707 	if (!dent) {
2708 		err = -ENOMEM;
2709 		goto out_unlock;
2710 	}
2711 
2712 	err = tnc_read_hashed_node(c, zbr, dent);
2713 	if (err)
2714 		goto out_free;
2715 
2716 	/* If the cookie does not match, we're facing a hash collision. */
2717 	if (le32_to_cpu(dent->cookie) != cookie) {
2718 		union ubifs_key start_key;
2719 
2720 		lowest_dent_key(c, &start_key, key_inum(c, key));
2721 
2722 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2723 		if (unlikely(err < 0))
2724 			goto out_free;
2725 
2726 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2727 		if (err)
2728 			goto out_free;
2729 	}
2730 
2731 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2732 		znode = dirty_cow_bottom_up(c, znode);
2733 		if (IS_ERR(znode)) {
2734 			err = PTR_ERR(znode);
2735 			goto out_free;
2736 		}
2737 	}
2738 	err = tnc_delete(c, znode, n);
2739 
2740 out_free:
2741 	kfree(dent);
2742 out_unlock:
2743 	if (!err)
2744 		err = dbg_check_tnc(c, 0);
2745 	mutex_unlock(&c->tnc_mutex);
2746 	return err;
2747 }
2748 
2749 /**
2750  * key_in_range - determine if a key falls within a range of keys.
2751  * @c: UBIFS file-system description object
2752  * @key: key to check
2753  * @from_key: lowest key in range
2754  * @to_key: highest key in range
2755  *
2756  * This function returns %1 if the key is in range and %0 otherwise.
2757  */
2758 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2759 			union ubifs_key *from_key, union ubifs_key *to_key)
2760 {
2761 	if (keys_cmp(c, key, from_key) < 0)
2762 		return 0;
2763 	if (keys_cmp(c, key, to_key) > 0)
2764 		return 0;
2765 	return 1;
2766 }
2767 
2768 /**
2769  * ubifs_tnc_remove_range - remove index entries in range.
2770  * @c: UBIFS file-system description object
2771  * @from_key: lowest key to remove
2772  * @to_key: highest key to remove
2773  *
2774  * This function removes index entries starting at @from_key and ending at
2775  * @to_key.  This function returns zero in case of success and a negative error
2776  * code in case of failure.
2777  */
2778 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2779 			   union ubifs_key *to_key)
2780 {
2781 	int i, n, k, err = 0;
2782 	struct ubifs_znode *znode;
2783 	union ubifs_key *key;
2784 
2785 	mutex_lock(&c->tnc_mutex);
2786 	while (1) {
2787 		/* Find first level 0 znode that contains keys to remove */
2788 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2789 		if (err < 0)
2790 			goto out_unlock;
2791 
2792 		if (err)
2793 			key = from_key;
2794 		else {
2795 			err = tnc_next(c, &znode, &n);
2796 			if (err == -ENOENT) {
2797 				err = 0;
2798 				goto out_unlock;
2799 			}
2800 			if (err < 0)
2801 				goto out_unlock;
2802 			key = &znode->zbranch[n].key;
2803 			if (!key_in_range(c, key, from_key, to_key)) {
2804 				err = 0;
2805 				goto out_unlock;
2806 			}
2807 		}
2808 
2809 		/* Ensure the znode is dirtied */
2810 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2811 			znode = dirty_cow_bottom_up(c, znode);
2812 			if (IS_ERR(znode)) {
2813 				err = PTR_ERR(znode);
2814 				goto out_unlock;
2815 			}
2816 		}
2817 
2818 		/* Remove all keys in range except the first */
2819 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2820 			key = &znode->zbranch[i].key;
2821 			if (!key_in_range(c, key, from_key, to_key))
2822 				break;
2823 			lnc_free(&znode->zbranch[i]);
2824 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2825 					     znode->zbranch[i].len);
2826 			if (err) {
2827 				ubifs_dump_znode(c, znode);
2828 				goto out_unlock;
2829 			}
2830 			dbg_tnck(key, "removing key ");
2831 		}
2832 		if (k) {
2833 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2834 				znode->zbranch[i - k] = znode->zbranch[i];
2835 			znode->child_cnt -= k;
2836 		}
2837 
2838 		/* Now delete the first */
2839 		err = tnc_delete(c, znode, n);
2840 		if (err)
2841 			goto out_unlock;
2842 	}
2843 
2844 out_unlock:
2845 	if (!err)
2846 		err = dbg_check_tnc(c, 0);
2847 	mutex_unlock(&c->tnc_mutex);
2848 	return err;
2849 }
2850 
2851 /**
2852  * ubifs_tnc_remove_ino - remove an inode from TNC.
2853  * @c: UBIFS file-system description object
2854  * @inum: inode number to remove
2855  *
2856  * This function remove inode @inum and all the extended attributes associated
2857  * with the anode from TNC and returns zero in case of success or a negative
2858  * error code in case of failure.
2859  */
2860 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2861 {
2862 	union ubifs_key key1, key2;
2863 	struct ubifs_dent_node *xent, *pxent = NULL;
2864 	struct fscrypt_name nm = {0};
2865 
2866 	dbg_tnc("ino %lu", (unsigned long)inum);
2867 
2868 	/*
2869 	 * Walk all extended attribute entries and remove them together with
2870 	 * corresponding extended attribute inodes.
2871 	 */
2872 	lowest_xent_key(c, &key1, inum);
2873 	while (1) {
2874 		ino_t xattr_inum;
2875 		int err;
2876 
2877 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2878 		if (IS_ERR(xent)) {
2879 			err = PTR_ERR(xent);
2880 			if (err == -ENOENT)
2881 				break;
2882 			return err;
2883 		}
2884 
2885 		xattr_inum = le64_to_cpu(xent->inum);
2886 		dbg_tnc("xent '%s', ino %lu", xent->name,
2887 			(unsigned long)xattr_inum);
2888 
2889 		ubifs_evict_xattr_inode(c, xattr_inum);
2890 
2891 		fname_name(&nm) = xent->name;
2892 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2893 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2894 		if (err) {
2895 			kfree(xent);
2896 			return err;
2897 		}
2898 
2899 		lowest_ino_key(c, &key1, xattr_inum);
2900 		highest_ino_key(c, &key2, xattr_inum);
2901 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2902 		if (err) {
2903 			kfree(xent);
2904 			return err;
2905 		}
2906 
2907 		kfree(pxent);
2908 		pxent = xent;
2909 		key_read(c, &xent->key, &key1);
2910 	}
2911 
2912 	kfree(pxent);
2913 	lowest_ino_key(c, &key1, inum);
2914 	highest_ino_key(c, &key2, inum);
2915 
2916 	return ubifs_tnc_remove_range(c, &key1, &key2);
2917 }
2918 
2919 /**
2920  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2921  * @c: UBIFS file-system description object
2922  * @key: key of last entry
2923  * @nm: name of last entry found or %NULL
2924  *
2925  * This function finds and reads the next directory or extended attribute entry
2926  * after the given key (@key) if there is one. @nm is used to resolve
2927  * collisions.
2928  *
2929  * If the name of the current entry is not known and only the key is known,
2930  * @nm->name has to be %NULL. In this case the semantics of this function is a
2931  * little bit different and it returns the entry corresponding to this key, not
2932  * the next one. If the key was not found, the closest "right" entry is
2933  * returned.
2934  *
2935  * If the fist entry has to be found, @key has to contain the lowest possible
2936  * key value for this inode and @name has to be %NULL.
2937  *
2938  * This function returns the found directory or extended attribute entry node
2939  * in case of success, %-ENOENT is returned if no entry was found, and a
2940  * negative error code is returned in case of failure.
2941  */
2942 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2943 					   union ubifs_key *key,
2944 					   const struct fscrypt_name *nm)
2945 {
2946 	int n, err, type = key_type(c, key);
2947 	struct ubifs_znode *znode;
2948 	struct ubifs_dent_node *dent;
2949 	struct ubifs_zbranch *zbr;
2950 	union ubifs_key *dkey;
2951 
2952 	dbg_tnck(key, "key ");
2953 	ubifs_assert(is_hash_key(c, key));
2954 
2955 	mutex_lock(&c->tnc_mutex);
2956 	err = ubifs_lookup_level0(c, key, &znode, &n);
2957 	if (unlikely(err < 0))
2958 		goto out_unlock;
2959 
2960 	if (fname_len(nm) > 0) {
2961 		if (err) {
2962 			/* Handle collisions */
2963 			if (c->replaying)
2964 				err = fallible_resolve_collision(c, key, &znode, &n,
2965 							 nm, 0);
2966 			else
2967 				err = resolve_collision(c, key, &znode, &n, nm);
2968 			dbg_tnc("rc returned %d, znode %p, n %d",
2969 				err, znode, n);
2970 			if (unlikely(err < 0))
2971 				goto out_unlock;
2972 		}
2973 
2974 		/* Now find next entry */
2975 		err = tnc_next(c, &znode, &n);
2976 		if (unlikely(err))
2977 			goto out_unlock;
2978 	} else {
2979 		/*
2980 		 * The full name of the entry was not given, in which case the
2981 		 * behavior of this function is a little different and it
2982 		 * returns current entry, not the next one.
2983 		 */
2984 		if (!err) {
2985 			/*
2986 			 * However, the given key does not exist in the TNC
2987 			 * tree and @znode/@n variables contain the closest
2988 			 * "preceding" element. Switch to the next one.
2989 			 */
2990 			err = tnc_next(c, &znode, &n);
2991 			if (err)
2992 				goto out_unlock;
2993 		}
2994 	}
2995 
2996 	zbr = &znode->zbranch[n];
2997 	dent = kmalloc(zbr->len, GFP_NOFS);
2998 	if (unlikely(!dent)) {
2999 		err = -ENOMEM;
3000 		goto out_unlock;
3001 	}
3002 
3003 	/*
3004 	 * The above 'tnc_next()' call could lead us to the next inode, check
3005 	 * this.
3006 	 */
3007 	dkey = &zbr->key;
3008 	if (key_inum(c, dkey) != key_inum(c, key) ||
3009 	    key_type(c, dkey) != type) {
3010 		err = -ENOENT;
3011 		goto out_free;
3012 	}
3013 
3014 	err = tnc_read_hashed_node(c, zbr, dent);
3015 	if (unlikely(err))
3016 		goto out_free;
3017 
3018 	mutex_unlock(&c->tnc_mutex);
3019 	return dent;
3020 
3021 out_free:
3022 	kfree(dent);
3023 out_unlock:
3024 	mutex_unlock(&c->tnc_mutex);
3025 	return ERR_PTR(err);
3026 }
3027 
3028 /**
3029  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3030  * @c: UBIFS file-system description object
3031  *
3032  * Destroy left-over obsolete znodes from a failed commit.
3033  */
3034 static void tnc_destroy_cnext(struct ubifs_info *c)
3035 {
3036 	struct ubifs_znode *cnext;
3037 
3038 	if (!c->cnext)
3039 		return;
3040 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
3041 	cnext = c->cnext;
3042 	do {
3043 		struct ubifs_znode *znode = cnext;
3044 
3045 		cnext = cnext->cnext;
3046 		if (ubifs_zn_obsolete(znode))
3047 			kfree(znode);
3048 	} while (cnext && cnext != c->cnext);
3049 }
3050 
3051 /**
3052  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3053  * @c: UBIFS file-system description object
3054  */
3055 void ubifs_tnc_close(struct ubifs_info *c)
3056 {
3057 	tnc_destroy_cnext(c);
3058 	if (c->zroot.znode) {
3059 		long n, freed;
3060 
3061 		n = atomic_long_read(&c->clean_zn_cnt);
3062 		freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
3063 		ubifs_assert(freed == n);
3064 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3065 	}
3066 	kfree(c->gap_lebs);
3067 	kfree(c->ilebs);
3068 	destroy_old_idx(c);
3069 }
3070 
3071 /**
3072  * left_znode - get the znode to the left.
3073  * @c: UBIFS file-system description object
3074  * @znode: znode
3075  *
3076  * This function returns a pointer to the znode to the left of @znode or NULL if
3077  * there is not one. A negative error code is returned on failure.
3078  */
3079 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3080 				      struct ubifs_znode *znode)
3081 {
3082 	int level = znode->level;
3083 
3084 	while (1) {
3085 		int n = znode->iip - 1;
3086 
3087 		/* Go up until we can go left */
3088 		znode = znode->parent;
3089 		if (!znode)
3090 			return NULL;
3091 		if (n >= 0) {
3092 			/* Now go down the rightmost branch to 'level' */
3093 			znode = get_znode(c, znode, n);
3094 			if (IS_ERR(znode))
3095 				return znode;
3096 			while (znode->level != level) {
3097 				n = znode->child_cnt - 1;
3098 				znode = get_znode(c, znode, n);
3099 				if (IS_ERR(znode))
3100 					return znode;
3101 			}
3102 			break;
3103 		}
3104 	}
3105 	return znode;
3106 }
3107 
3108 /**
3109  * right_znode - get the znode to the right.
3110  * @c: UBIFS file-system description object
3111  * @znode: znode
3112  *
3113  * This function returns a pointer to the znode to the right of @znode or NULL
3114  * if there is not one. A negative error code is returned on failure.
3115  */
3116 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3117 				       struct ubifs_znode *znode)
3118 {
3119 	int level = znode->level;
3120 
3121 	while (1) {
3122 		int n = znode->iip + 1;
3123 
3124 		/* Go up until we can go right */
3125 		znode = znode->parent;
3126 		if (!znode)
3127 			return NULL;
3128 		if (n < znode->child_cnt) {
3129 			/* Now go down the leftmost branch to 'level' */
3130 			znode = get_znode(c, znode, n);
3131 			if (IS_ERR(znode))
3132 				return znode;
3133 			while (znode->level != level) {
3134 				znode = get_znode(c, znode, 0);
3135 				if (IS_ERR(znode))
3136 					return znode;
3137 			}
3138 			break;
3139 		}
3140 	}
3141 	return znode;
3142 }
3143 
3144 /**
3145  * lookup_znode - find a particular indexing node from TNC.
3146  * @c: UBIFS file-system description object
3147  * @key: index node key to lookup
3148  * @level: index node level
3149  * @lnum: index node LEB number
3150  * @offs: index node offset
3151  *
3152  * This function searches an indexing node by its first key @key and its
3153  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3154  * nodes it traverses to TNC. This function is called for indexing nodes which
3155  * were found on the media by scanning, for example when garbage-collecting or
3156  * when doing in-the-gaps commit. This means that the indexing node which is
3157  * looked for does not have to have exactly the same leftmost key @key, because
3158  * the leftmost key may have been changed, in which case TNC will contain a
3159  * dirty znode which still refers the same @lnum:@offs. This function is clever
3160  * enough to recognize such indexing nodes.
3161  *
3162  * Note, if a znode was deleted or changed too much, then this function will
3163  * not find it. For situations like this UBIFS has the old index RB-tree
3164  * (indexed by @lnum:@offs).
3165  *
3166  * This function returns a pointer to the znode found or %NULL if it is not
3167  * found. A negative error code is returned on failure.
3168  */
3169 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3170 					union ubifs_key *key, int level,
3171 					int lnum, int offs)
3172 {
3173 	struct ubifs_znode *znode, *zn;
3174 	int n, nn;
3175 
3176 	ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3177 
3178 	/*
3179 	 * The arguments have probably been read off flash, so don't assume
3180 	 * they are valid.
3181 	 */
3182 	if (level < 0)
3183 		return ERR_PTR(-EINVAL);
3184 
3185 	/* Get the root znode */
3186 	znode = c->zroot.znode;
3187 	if (!znode) {
3188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3189 		if (IS_ERR(znode))
3190 			return znode;
3191 	}
3192 	/* Check if it is the one we are looking for */
3193 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3194 		return znode;
3195 	/* Descend to the parent level i.e. (level + 1) */
3196 	if (level >= znode->level)
3197 		return NULL;
3198 	while (1) {
3199 		ubifs_search_zbranch(c, znode, key, &n);
3200 		if (n < 0) {
3201 			/*
3202 			 * We reached a znode where the leftmost key is greater
3203 			 * than the key we are searching for. This is the same
3204 			 * situation as the one described in a huge comment at
3205 			 * the end of the 'ubifs_lookup_level0()' function. And
3206 			 * for exactly the same reasons we have to try to look
3207 			 * left before giving up.
3208 			 */
3209 			znode = left_znode(c, znode);
3210 			if (!znode)
3211 				return NULL;
3212 			if (IS_ERR(znode))
3213 				return znode;
3214 			ubifs_search_zbranch(c, znode, key, &n);
3215 			ubifs_assert(n >= 0);
3216 		}
3217 		if (znode->level == level + 1)
3218 			break;
3219 		znode = get_znode(c, znode, n);
3220 		if (IS_ERR(znode))
3221 			return znode;
3222 	}
3223 	/* Check if the child is the one we are looking for */
3224 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3225 		return get_znode(c, znode, n);
3226 	/* If the key is unique, there is nowhere else to look */
3227 	if (!is_hash_key(c, key))
3228 		return NULL;
3229 	/*
3230 	 * The key is not unique and so may be also in the znodes to either
3231 	 * side.
3232 	 */
3233 	zn = znode;
3234 	nn = n;
3235 	/* Look left */
3236 	while (1) {
3237 		/* Move one branch to the left */
3238 		if (n)
3239 			n -= 1;
3240 		else {
3241 			znode = left_znode(c, znode);
3242 			if (!znode)
3243 				break;
3244 			if (IS_ERR(znode))
3245 				return znode;
3246 			n = znode->child_cnt - 1;
3247 		}
3248 		/* Check it */
3249 		if (znode->zbranch[n].lnum == lnum &&
3250 		    znode->zbranch[n].offs == offs)
3251 			return get_znode(c, znode, n);
3252 		/* Stop if the key is less than the one we are looking for */
3253 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3254 			break;
3255 	}
3256 	/* Back to the middle */
3257 	znode = zn;
3258 	n = nn;
3259 	/* Look right */
3260 	while (1) {
3261 		/* Move one branch to the right */
3262 		if (++n >= znode->child_cnt) {
3263 			znode = right_znode(c, znode);
3264 			if (!znode)
3265 				break;
3266 			if (IS_ERR(znode))
3267 				return znode;
3268 			n = 0;
3269 		}
3270 		/* Check it */
3271 		if (znode->zbranch[n].lnum == lnum &&
3272 		    znode->zbranch[n].offs == offs)
3273 			return get_znode(c, znode, n);
3274 		/* Stop if the key is greater than the one we are looking for */
3275 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3276 			break;
3277 	}
3278 	return NULL;
3279 }
3280 
3281 /**
3282  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3283  * @c: UBIFS file-system description object
3284  * @key: key of index node
3285  * @level: index node level
3286  * @lnum: LEB number of index node
3287  * @offs: offset of index node
3288  *
3289  * This function returns %0 if the index node is not referred to in the TNC, %1
3290  * if the index node is referred to in the TNC and the corresponding znode is
3291  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3292  * znode is clean, and a negative error code in case of failure.
3293  *
3294  * Note, the @key argument has to be the key of the first child. Also note,
3295  * this function relies on the fact that 0:0 is never a valid LEB number and
3296  * offset for a main-area node.
3297  */
3298 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3299 		       int lnum, int offs)
3300 {
3301 	struct ubifs_znode *znode;
3302 
3303 	znode = lookup_znode(c, key, level, lnum, offs);
3304 	if (!znode)
3305 		return 0;
3306 	if (IS_ERR(znode))
3307 		return PTR_ERR(znode);
3308 
3309 	return ubifs_zn_dirty(znode) ? 1 : 2;
3310 }
3311 
3312 /**
3313  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3314  * @c: UBIFS file-system description object
3315  * @key: node key
3316  * @lnum: node LEB number
3317  * @offs: node offset
3318  *
3319  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3320  * not, and a negative error code in case of failure.
3321  *
3322  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3323  * and offset for a main-area node.
3324  */
3325 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3326 			       int lnum, int offs)
3327 {
3328 	struct ubifs_zbranch *zbr;
3329 	struct ubifs_znode *znode, *zn;
3330 	int n, found, err, nn;
3331 	const int unique = !is_hash_key(c, key);
3332 
3333 	found = ubifs_lookup_level0(c, key, &znode, &n);
3334 	if (found < 0)
3335 		return found; /* Error code */
3336 	if (!found)
3337 		return 0;
3338 	zbr = &znode->zbranch[n];
3339 	if (lnum == zbr->lnum && offs == zbr->offs)
3340 		return 1; /* Found it */
3341 	if (unique)
3342 		return 0;
3343 	/*
3344 	 * Because the key is not unique, we have to look left
3345 	 * and right as well
3346 	 */
3347 	zn = znode;
3348 	nn = n;
3349 	/* Look left */
3350 	while (1) {
3351 		err = tnc_prev(c, &znode, &n);
3352 		if (err == -ENOENT)
3353 			break;
3354 		if (err)
3355 			return err;
3356 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3357 			break;
3358 		zbr = &znode->zbranch[n];
3359 		if (lnum == zbr->lnum && offs == zbr->offs)
3360 			return 1; /* Found it */
3361 	}
3362 	/* Look right */
3363 	znode = zn;
3364 	n = nn;
3365 	while (1) {
3366 		err = tnc_next(c, &znode, &n);
3367 		if (err) {
3368 			if (err == -ENOENT)
3369 				return 0;
3370 			return err;
3371 		}
3372 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3373 			break;
3374 		zbr = &znode->zbranch[n];
3375 		if (lnum == zbr->lnum && offs == zbr->offs)
3376 			return 1; /* Found it */
3377 	}
3378 	return 0;
3379 }
3380 
3381 /**
3382  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3383  * @c: UBIFS file-system description object
3384  * @key: node key
3385  * @level: index node level (if it is an index node)
3386  * @lnum: node LEB number
3387  * @offs: node offset
3388  * @is_idx: non-zero if the node is an index node
3389  *
3390  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3391  * negative error code in case of failure. For index nodes, @key has to be the
3392  * key of the first child. An index node is considered to be in the TNC only if
3393  * the corresponding znode is clean or has not been loaded.
3394  */
3395 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3396 		       int lnum, int offs, int is_idx)
3397 {
3398 	int err;
3399 
3400 	mutex_lock(&c->tnc_mutex);
3401 	if (is_idx) {
3402 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3403 		if (err < 0)
3404 			goto out_unlock;
3405 		if (err == 1)
3406 			/* The index node was found but it was dirty */
3407 			err = 0;
3408 		else if (err == 2)
3409 			/* The index node was found and it was clean */
3410 			err = 1;
3411 		else
3412 			BUG_ON(err != 0);
3413 	} else
3414 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3415 
3416 out_unlock:
3417 	mutex_unlock(&c->tnc_mutex);
3418 	return err;
3419 }
3420 
3421 /**
3422  * ubifs_dirty_idx_node - dirty an index node.
3423  * @c: UBIFS file-system description object
3424  * @key: index node key
3425  * @level: index node level
3426  * @lnum: index node LEB number
3427  * @offs: index node offset
3428  *
3429  * This function loads and dirties an index node so that it can be garbage
3430  * collected. The @key argument has to be the key of the first child. This
3431  * function relies on the fact that 0:0 is never a valid LEB number and offset
3432  * for a main-area node. Returns %0 on success and a negative error code on
3433  * failure.
3434  */
3435 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3436 			 int lnum, int offs)
3437 {
3438 	struct ubifs_znode *znode;
3439 	int err = 0;
3440 
3441 	mutex_lock(&c->tnc_mutex);
3442 	znode = lookup_znode(c, key, level, lnum, offs);
3443 	if (!znode)
3444 		goto out_unlock;
3445 	if (IS_ERR(znode)) {
3446 		err = PTR_ERR(znode);
3447 		goto out_unlock;
3448 	}
3449 	znode = dirty_cow_bottom_up(c, znode);
3450 	if (IS_ERR(znode)) {
3451 		err = PTR_ERR(znode);
3452 		goto out_unlock;
3453 	}
3454 
3455 out_unlock:
3456 	mutex_unlock(&c->tnc_mutex);
3457 	return err;
3458 }
3459 
3460 /**
3461  * dbg_check_inode_size - check if inode size is correct.
3462  * @c: UBIFS file-system description object
3463  * @inum: inode number
3464  * @size: inode size
3465  *
3466  * This function makes sure that the inode size (@size) is correct and it does
3467  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3468  * if it has a data page beyond @size, and other negative error code in case of
3469  * other errors.
3470  */
3471 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3472 			 loff_t size)
3473 {
3474 	int err, n;
3475 	union ubifs_key from_key, to_key, *key;
3476 	struct ubifs_znode *znode;
3477 	unsigned int block;
3478 
3479 	if (!S_ISREG(inode->i_mode))
3480 		return 0;
3481 	if (!dbg_is_chk_gen(c))
3482 		return 0;
3483 
3484 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3485 	data_key_init(c, &from_key, inode->i_ino, block);
3486 	highest_data_key(c, &to_key, inode->i_ino);
3487 
3488 	mutex_lock(&c->tnc_mutex);
3489 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3490 	if (err < 0)
3491 		goto out_unlock;
3492 
3493 	if (err) {
3494 		key = &from_key;
3495 		goto out_dump;
3496 	}
3497 
3498 	err = tnc_next(c, &znode, &n);
3499 	if (err == -ENOENT) {
3500 		err = 0;
3501 		goto out_unlock;
3502 	}
3503 	if (err < 0)
3504 		goto out_unlock;
3505 
3506 	ubifs_assert(err == 0);
3507 	key = &znode->zbranch[n].key;
3508 	if (!key_in_range(c, key, &from_key, &to_key))
3509 		goto out_unlock;
3510 
3511 out_dump:
3512 	block = key_block(c, key);
3513 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3514 		  (unsigned long)inode->i_ino, size,
3515 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3516 	mutex_unlock(&c->tnc_mutex);
3517 	ubifs_dump_inode(c, inode);
3518 	dump_stack();
3519 	return -EINVAL;
3520 
3521 out_unlock:
3522 	mutex_unlock(&c->tnc_mutex);
3523 	return err;
3524 }
3525