1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 13 * the UBIFS B-tree. 14 * 15 * At the moment the locking rules of the TNC tree are quite simple and 16 * straightforward. We just have a mutex and lock it when we traverse the 17 * tree. If a znode is not in memory, we read it from flash while still having 18 * the mutex locked. 19 */ 20 21 #include <linux/crc32.h> 22 #include <linux/slab.h> 23 #include "ubifs.h" 24 25 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 26 struct ubifs_zbranch *zbr); 27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 28 struct ubifs_zbranch *zbr, void *node); 29 30 /* 31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 32 * @NAME_LESS: name corresponding to the first argument is less than second 33 * @NAME_MATCHES: names match 34 * @NAME_GREATER: name corresponding to the second argument is greater than 35 * first 36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 37 * 38 * These constants were introduce to improve readability. 39 */ 40 enum { 41 NAME_LESS = 0, 42 NAME_MATCHES = 1, 43 NAME_GREATER = 2, 44 NOT_ON_MEDIA = 3, 45 }; 46 47 /** 48 * insert_old_idx - record an index node obsoleted since the last commit start. 49 * @c: UBIFS file-system description object 50 * @lnum: LEB number of obsoleted index node 51 * @offs: offset of obsoleted index node 52 * 53 * Returns %0 on success, and a negative error code on failure. 54 * 55 * For recovery, there must always be a complete intact version of the index on 56 * flash at all times. That is called the "old index". It is the index as at the 57 * time of the last successful commit. Many of the index nodes in the old index 58 * may be dirty, but they must not be erased until the next successful commit 59 * (at which point that index becomes the old index). 60 * 61 * That means that the garbage collection and the in-the-gaps method of 62 * committing must be able to determine if an index node is in the old index. 63 * Most of the old index nodes can be found by looking up the TNC using the 64 * 'lookup_znode()' function. However, some of the old index nodes may have 65 * been deleted from the current index or may have been changed so much that 66 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 67 * That is what this function does. The RB-tree is ordered by LEB number and 68 * offset because they uniquely identify the old index node. 69 */ 70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 71 { 72 struct ubifs_old_idx *old_idx, *o; 73 struct rb_node **p, *parent = NULL; 74 75 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 76 if (unlikely(!old_idx)) 77 return -ENOMEM; 78 old_idx->lnum = lnum; 79 old_idx->offs = offs; 80 81 p = &c->old_idx.rb_node; 82 while (*p) { 83 parent = *p; 84 o = rb_entry(parent, struct ubifs_old_idx, rb); 85 if (lnum < o->lnum) 86 p = &(*p)->rb_left; 87 else if (lnum > o->lnum) 88 p = &(*p)->rb_right; 89 else if (offs < o->offs) 90 p = &(*p)->rb_left; 91 else if (offs > o->offs) 92 p = &(*p)->rb_right; 93 else { 94 ubifs_err(c, "old idx added twice!"); 95 kfree(old_idx); 96 return 0; 97 } 98 } 99 rb_link_node(&old_idx->rb, parent, p); 100 rb_insert_color(&old_idx->rb, &c->old_idx); 101 return 0; 102 } 103 104 /** 105 * insert_old_idx_znode - record a znode obsoleted since last commit start. 106 * @c: UBIFS file-system description object 107 * @znode: znode of obsoleted index node 108 * 109 * Returns %0 on success, and a negative error code on failure. 110 */ 111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 112 { 113 if (znode->parent) { 114 struct ubifs_zbranch *zbr; 115 116 zbr = &znode->parent->zbranch[znode->iip]; 117 if (zbr->len) 118 return insert_old_idx(c, zbr->lnum, zbr->offs); 119 } else 120 if (c->zroot.len) 121 return insert_old_idx(c, c->zroot.lnum, 122 c->zroot.offs); 123 return 0; 124 } 125 126 /** 127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 128 * @c: UBIFS file-system description object 129 * @znode: znode of obsoleted index node 130 * 131 * Returns %0 on success, and a negative error code on failure. 132 */ 133 static int ins_clr_old_idx_znode(struct ubifs_info *c, 134 struct ubifs_znode *znode) 135 { 136 int err; 137 138 if (znode->parent) { 139 struct ubifs_zbranch *zbr; 140 141 zbr = &znode->parent->zbranch[znode->iip]; 142 if (zbr->len) { 143 err = insert_old_idx(c, zbr->lnum, zbr->offs); 144 if (err) 145 return err; 146 zbr->lnum = 0; 147 zbr->offs = 0; 148 zbr->len = 0; 149 } 150 } else 151 if (c->zroot.len) { 152 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 153 if (err) 154 return err; 155 c->zroot.lnum = 0; 156 c->zroot.offs = 0; 157 c->zroot.len = 0; 158 } 159 return 0; 160 } 161 162 /** 163 * destroy_old_idx - destroy the old_idx RB-tree. 164 * @c: UBIFS file-system description object 165 * 166 * During start commit, the old_idx RB-tree is used to avoid overwriting index 167 * nodes that were in the index last commit but have since been deleted. This 168 * is necessary for recovery i.e. the old index must be kept intact until the 169 * new index is successfully written. The old-idx RB-tree is used for the 170 * in-the-gaps method of writing index nodes and is destroyed every commit. 171 */ 172 void destroy_old_idx(struct ubifs_info *c) 173 { 174 struct ubifs_old_idx *old_idx, *n; 175 176 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 177 kfree(old_idx); 178 179 c->old_idx = RB_ROOT; 180 } 181 182 /** 183 * copy_znode - copy a dirty znode. 184 * @c: UBIFS file-system description object 185 * @znode: znode to copy 186 * 187 * A dirty znode being committed may not be changed, so it is copied. 188 */ 189 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 190 struct ubifs_znode *znode) 191 { 192 struct ubifs_znode *zn; 193 194 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 195 if (unlikely(!zn)) 196 return ERR_PTR(-ENOMEM); 197 198 zn->cnext = NULL; 199 __set_bit(DIRTY_ZNODE, &zn->flags); 200 __clear_bit(COW_ZNODE, &zn->flags); 201 202 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 203 __set_bit(OBSOLETE_ZNODE, &znode->flags); 204 205 if (znode->level != 0) { 206 int i; 207 const int n = zn->child_cnt; 208 209 /* The children now have new parent */ 210 for (i = 0; i < n; i++) { 211 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 212 213 if (zbr->znode) 214 zbr->znode->parent = zn; 215 } 216 } 217 218 atomic_long_inc(&c->dirty_zn_cnt); 219 return zn; 220 } 221 222 /** 223 * add_idx_dirt - add dirt due to a dirty znode. 224 * @c: UBIFS file-system description object 225 * @lnum: LEB number of index node 226 * @dirt: size of index node 227 * 228 * This function updates lprops dirty space and the new size of the index. 229 */ 230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 231 { 232 c->calc_idx_sz -= ALIGN(dirt, 8); 233 return ubifs_add_dirt(c, lnum, dirt); 234 } 235 236 /** 237 * dirty_cow_znode - ensure a znode is not being committed. 238 * @c: UBIFS file-system description object 239 * @zbr: branch of znode to check 240 * 241 * Returns dirtied znode on success or negative error code on failure. 242 */ 243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 244 struct ubifs_zbranch *zbr) 245 { 246 struct ubifs_znode *znode = zbr->znode; 247 struct ubifs_znode *zn; 248 int err; 249 250 if (!ubifs_zn_cow(znode)) { 251 /* znode is not being committed */ 252 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 253 atomic_long_inc(&c->dirty_zn_cnt); 254 atomic_long_dec(&c->clean_zn_cnt); 255 atomic_long_dec(&ubifs_clean_zn_cnt); 256 err = add_idx_dirt(c, zbr->lnum, zbr->len); 257 if (unlikely(err)) 258 return ERR_PTR(err); 259 } 260 return znode; 261 } 262 263 zn = copy_znode(c, znode); 264 if (IS_ERR(zn)) 265 return zn; 266 267 if (zbr->len) { 268 err = insert_old_idx(c, zbr->lnum, zbr->offs); 269 if (unlikely(err)) 270 /* 271 * Obsolete znodes will be freed by tnc_destroy_cnext() 272 * or free_obsolete_znodes(), copied up znodes should 273 * be added back to tnc and freed by 274 * ubifs_destroy_tnc_subtree(). 275 */ 276 goto out; 277 err = add_idx_dirt(c, zbr->lnum, zbr->len); 278 } else 279 err = 0; 280 281 out: 282 zbr->znode = zn; 283 zbr->lnum = 0; 284 zbr->offs = 0; 285 zbr->len = 0; 286 287 if (unlikely(err)) 288 return ERR_PTR(err); 289 return zn; 290 } 291 292 /** 293 * lnc_add - add a leaf node to the leaf node cache. 294 * @c: UBIFS file-system description object 295 * @zbr: zbranch of leaf node 296 * @node: leaf node 297 * 298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 299 * purpose of the leaf node cache is to save re-reading the same leaf node over 300 * and over again. Most things are cached by VFS, however the file system must 301 * cache directory entries for readdir and for resolving hash collisions. The 302 * present implementation of the leaf node cache is extremely simple, and 303 * allows for error returns that are not used but that may be needed if a more 304 * complex implementation is created. 305 * 306 * Note, this function does not add the @node object to LNC directly, but 307 * allocates a copy of the object and adds the copy to LNC. The reason for this 308 * is that @node has been allocated outside of the TNC subsystem and will be 309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 310 * may be changed at any time, e.g. freed by the shrinker. 311 */ 312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 313 const void *node) 314 { 315 int err; 316 void *lnc_node; 317 const struct ubifs_dent_node *dent = node; 318 319 ubifs_assert(c, !zbr->leaf); 320 ubifs_assert(c, zbr->len != 0); 321 ubifs_assert(c, is_hash_key(c, &zbr->key)); 322 323 err = ubifs_validate_entry(c, dent); 324 if (err) { 325 dump_stack(); 326 ubifs_dump_node(c, dent, zbr->len); 327 return err; 328 } 329 330 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 331 if (!lnc_node) 332 /* We don't have to have the cache, so no error */ 333 return 0; 334 335 zbr->leaf = lnc_node; 336 return 0; 337 } 338 339 /** 340 * lnc_add_directly - add a leaf node to the leaf-node-cache. 341 * @c: UBIFS file-system description object 342 * @zbr: zbranch of leaf node 343 * @node: leaf node 344 * 345 * This function is similar to 'lnc_add()', but it does not create a copy of 346 * @node but inserts @node to TNC directly. 347 */ 348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 349 void *node) 350 { 351 int err; 352 353 ubifs_assert(c, !zbr->leaf); 354 ubifs_assert(c, zbr->len != 0); 355 356 err = ubifs_validate_entry(c, node); 357 if (err) { 358 dump_stack(); 359 ubifs_dump_node(c, node, zbr->len); 360 return err; 361 } 362 363 zbr->leaf = node; 364 return 0; 365 } 366 367 /** 368 * lnc_free - remove a leaf node from the leaf node cache. 369 * @zbr: zbranch of leaf node 370 */ 371 static void lnc_free(struct ubifs_zbranch *zbr) 372 { 373 if (!zbr->leaf) 374 return; 375 kfree(zbr->leaf); 376 zbr->leaf = NULL; 377 } 378 379 /** 380 * tnc_read_hashed_node - read a "hashed" leaf node. 381 * @c: UBIFS file-system description object 382 * @zbr: key and position of the node 383 * @node: node is returned here 384 * 385 * This function reads a "hashed" node defined by @zbr from the leaf node cache 386 * (in it is there) or from the hash media, in which case the node is also 387 * added to LNC. Returns zero in case of success or a negative error 388 * code in case of failure. 389 */ 390 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 391 void *node) 392 { 393 int err; 394 395 ubifs_assert(c, is_hash_key(c, &zbr->key)); 396 397 if (zbr->leaf) { 398 /* Read from the leaf node cache */ 399 ubifs_assert(c, zbr->len != 0); 400 memcpy(node, zbr->leaf, zbr->len); 401 return 0; 402 } 403 404 if (c->replaying) { 405 err = fallible_read_node(c, &zbr->key, zbr, node); 406 /* 407 * When the node was not found, return -ENOENT, 0 otherwise. 408 * Negative return codes stay as-is. 409 */ 410 if (err == 0) 411 err = -ENOENT; 412 else if (err == 1) 413 err = 0; 414 } else { 415 err = ubifs_tnc_read_node(c, zbr, node); 416 } 417 if (err) 418 return err; 419 420 /* Add the node to the leaf node cache */ 421 err = lnc_add(c, zbr, node); 422 return err; 423 } 424 425 /** 426 * try_read_node - read a node if it is a node. 427 * @c: UBIFS file-system description object 428 * @buf: buffer to read to 429 * @type: node type 430 * @zbr: the zbranch describing the node to read 431 * 432 * This function tries to read a node of known type and length, checks it and 433 * stores it in @buf. This function returns %1 if a node is present and %0 if 434 * a node is not present. A negative error code is returned for I/O errors. 435 * This function performs that same function as ubifs_read_node except that 436 * it does not require that there is actually a node present and instead 437 * the return code indicates if a node was read. 438 * 439 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 440 * is true (it is controlled by corresponding mount option). However, if 441 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 442 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 443 * because during mounting or re-mounting from R/O mode to R/W mode we may read 444 * journal nodes (when replying the journal or doing the recovery) and the 445 * journal nodes may potentially be corrupted, so checking is required. 446 */ 447 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 448 struct ubifs_zbranch *zbr) 449 { 450 int len = zbr->len; 451 int lnum = zbr->lnum; 452 int offs = zbr->offs; 453 int err, node_len; 454 struct ubifs_ch *ch = buf; 455 uint32_t crc, node_crc; 456 457 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 458 459 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 460 if (err) { 461 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 462 type, lnum, offs, err); 463 return err; 464 } 465 466 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 467 return 0; 468 469 if (ch->node_type != type) 470 return 0; 471 472 node_len = le32_to_cpu(ch->len); 473 if (node_len != len) 474 return 0; 475 476 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting || 477 c->remounting_rw) { 478 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 479 node_crc = le32_to_cpu(ch->crc); 480 if (crc != node_crc) 481 return 0; 482 } 483 484 err = ubifs_node_check_hash(c, buf, zbr->hash); 485 if (err) { 486 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); 487 return 0; 488 } 489 490 return 1; 491 } 492 493 /** 494 * fallible_read_node - try to read a leaf node. 495 * @c: UBIFS file-system description object 496 * @key: key of node to read 497 * @zbr: position of node 498 * @node: node returned 499 * 500 * This function tries to read a node and returns %1 if the node is read, %0 501 * if the node is not present, and a negative error code in the case of error. 502 */ 503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 504 struct ubifs_zbranch *zbr, void *node) 505 { 506 int ret; 507 508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 509 510 ret = try_read_node(c, node, key_type(c, key), zbr); 511 if (ret == 1) { 512 union ubifs_key node_key; 513 struct ubifs_dent_node *dent = node; 514 515 /* All nodes have key in the same place */ 516 key_read(c, &dent->key, &node_key); 517 if (keys_cmp(c, key, &node_key) != 0) 518 ret = 0; 519 } 520 if (ret == 0 && c->replaying) 521 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 522 zbr->lnum, zbr->offs, zbr->len); 523 return ret; 524 } 525 526 /** 527 * matches_name - determine if a direntry or xattr entry matches a given name. 528 * @c: UBIFS file-system description object 529 * @zbr: zbranch of dent 530 * @nm: name to match 531 * 532 * This function checks if xentry/direntry referred by zbranch @zbr matches name 533 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 534 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 535 * of failure, a negative error code is returned. 536 */ 537 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 538 const struct fscrypt_name *nm) 539 { 540 struct ubifs_dent_node *dent; 541 int nlen, err; 542 543 /* If possible, match against the dent in the leaf node cache */ 544 if (!zbr->leaf) { 545 dent = kmalloc(zbr->len, GFP_NOFS); 546 if (!dent) 547 return -ENOMEM; 548 549 err = ubifs_tnc_read_node(c, zbr, dent); 550 if (err) 551 goto out_free; 552 553 /* Add the node to the leaf node cache */ 554 err = lnc_add_directly(c, zbr, dent); 555 if (err) 556 goto out_free; 557 } else 558 dent = zbr->leaf; 559 560 nlen = le16_to_cpu(dent->nlen); 561 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 562 if (err == 0) { 563 if (nlen == fname_len(nm)) 564 return NAME_MATCHES; 565 else if (nlen < fname_len(nm)) 566 return NAME_LESS; 567 else 568 return NAME_GREATER; 569 } else if (err < 0) 570 return NAME_LESS; 571 else 572 return NAME_GREATER; 573 574 out_free: 575 kfree(dent); 576 return err; 577 } 578 579 /** 580 * get_znode - get a TNC znode that may not be loaded yet. 581 * @c: UBIFS file-system description object 582 * @znode: parent znode 583 * @n: znode branch slot number 584 * 585 * This function returns the znode or a negative error code. 586 */ 587 static struct ubifs_znode *get_znode(struct ubifs_info *c, 588 struct ubifs_znode *znode, int n) 589 { 590 struct ubifs_zbranch *zbr; 591 592 zbr = &znode->zbranch[n]; 593 if (zbr->znode) 594 znode = zbr->znode; 595 else 596 znode = ubifs_load_znode(c, zbr, znode, n); 597 return znode; 598 } 599 600 /** 601 * tnc_next - find next TNC entry. 602 * @c: UBIFS file-system description object 603 * @zn: znode is passed and returned here 604 * @n: znode branch slot number is passed and returned here 605 * 606 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 607 * no next entry, or a negative error code otherwise. 608 */ 609 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 610 { 611 struct ubifs_znode *znode = *zn; 612 int nn = *n; 613 614 nn += 1; 615 if (nn < znode->child_cnt) { 616 *n = nn; 617 return 0; 618 } 619 while (1) { 620 struct ubifs_znode *zp; 621 622 zp = znode->parent; 623 if (!zp) 624 return -ENOENT; 625 nn = znode->iip + 1; 626 znode = zp; 627 if (nn < znode->child_cnt) { 628 znode = get_znode(c, znode, nn); 629 if (IS_ERR(znode)) 630 return PTR_ERR(znode); 631 while (znode->level != 0) { 632 znode = get_znode(c, znode, 0); 633 if (IS_ERR(znode)) 634 return PTR_ERR(znode); 635 } 636 nn = 0; 637 break; 638 } 639 } 640 *zn = znode; 641 *n = nn; 642 return 0; 643 } 644 645 /** 646 * tnc_prev - find previous TNC entry. 647 * @c: UBIFS file-system description object 648 * @zn: znode is returned here 649 * @n: znode branch slot number is passed and returned here 650 * 651 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 652 * there is no next entry, or a negative error code otherwise. 653 */ 654 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 655 { 656 struct ubifs_znode *znode = *zn; 657 int nn = *n; 658 659 if (nn > 0) { 660 *n = nn - 1; 661 return 0; 662 } 663 while (1) { 664 struct ubifs_znode *zp; 665 666 zp = znode->parent; 667 if (!zp) 668 return -ENOENT; 669 nn = znode->iip - 1; 670 znode = zp; 671 if (nn >= 0) { 672 znode = get_znode(c, znode, nn); 673 if (IS_ERR(znode)) 674 return PTR_ERR(znode); 675 while (znode->level != 0) { 676 nn = znode->child_cnt - 1; 677 znode = get_znode(c, znode, nn); 678 if (IS_ERR(znode)) 679 return PTR_ERR(znode); 680 } 681 nn = znode->child_cnt - 1; 682 break; 683 } 684 } 685 *zn = znode; 686 *n = nn; 687 return 0; 688 } 689 690 /** 691 * resolve_collision - resolve a collision. 692 * @c: UBIFS file-system description object 693 * @key: key of a directory or extended attribute entry 694 * @zn: znode is returned here 695 * @n: zbranch number is passed and returned here 696 * @nm: name of the entry 697 * 698 * This function is called for "hashed" keys to make sure that the found key 699 * really corresponds to the looked up node (directory or extended attribute 700 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 701 * %0 is returned if @nm is not found and @zn and @n are set to the previous 702 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 703 * This means that @n may be set to %-1 if the leftmost key in @zn is the 704 * previous one. A negative error code is returned on failures. 705 */ 706 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 707 struct ubifs_znode **zn, int *n, 708 const struct fscrypt_name *nm) 709 { 710 int err; 711 712 err = matches_name(c, &(*zn)->zbranch[*n], nm); 713 if (unlikely(err < 0)) 714 return err; 715 if (err == NAME_MATCHES) 716 return 1; 717 718 if (err == NAME_GREATER) { 719 /* Look left */ 720 while (1) { 721 err = tnc_prev(c, zn, n); 722 if (err == -ENOENT) { 723 ubifs_assert(c, *n == 0); 724 *n = -1; 725 return 0; 726 } 727 if (err < 0) 728 return err; 729 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 730 /* 731 * We have found the branch after which we would 732 * like to insert, but inserting in this znode 733 * may still be wrong. Consider the following 3 734 * znodes, in the case where we are resolving a 735 * collision with Key2. 736 * 737 * znode zp 738 * ---------------------- 739 * level 1 | Key0 | Key1 | 740 * ----------------------- 741 * | | 742 * znode za | | znode zb 743 * ------------ ------------ 744 * level 0 | Key0 | | Key2 | 745 * ------------ ------------ 746 * 747 * The lookup finds Key2 in znode zb. Lets say 748 * there is no match and the name is greater so 749 * we look left. When we find Key0, we end up 750 * here. If we return now, we will insert into 751 * znode za at slot n = 1. But that is invalid 752 * according to the parent's keys. Key2 must 753 * be inserted into znode zb. 754 * 755 * Note, this problem is not relevant for the 756 * case when we go right, because 757 * 'tnc_insert()' would correct the parent key. 758 */ 759 if (*n == (*zn)->child_cnt - 1) { 760 err = tnc_next(c, zn, n); 761 if (err) { 762 /* Should be impossible */ 763 ubifs_assert(c, 0); 764 if (err == -ENOENT) 765 err = -EINVAL; 766 return err; 767 } 768 ubifs_assert(c, *n == 0); 769 *n = -1; 770 } 771 return 0; 772 } 773 err = matches_name(c, &(*zn)->zbranch[*n], nm); 774 if (err < 0) 775 return err; 776 if (err == NAME_LESS) 777 return 0; 778 if (err == NAME_MATCHES) 779 return 1; 780 ubifs_assert(c, err == NAME_GREATER); 781 } 782 } else { 783 int nn = *n; 784 struct ubifs_znode *znode = *zn; 785 786 /* Look right */ 787 while (1) { 788 err = tnc_next(c, &znode, &nn); 789 if (err == -ENOENT) 790 return 0; 791 if (err < 0) 792 return err; 793 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 794 return 0; 795 err = matches_name(c, &znode->zbranch[nn], nm); 796 if (err < 0) 797 return err; 798 if (err == NAME_GREATER) 799 return 0; 800 *zn = znode; 801 *n = nn; 802 if (err == NAME_MATCHES) 803 return 1; 804 ubifs_assert(c, err == NAME_LESS); 805 } 806 } 807 } 808 809 /** 810 * fallible_matches_name - determine if a dent matches a given name. 811 * @c: UBIFS file-system description object 812 * @zbr: zbranch of dent 813 * @nm: name to match 814 * 815 * This is a "fallible" version of 'matches_name()' function which does not 816 * panic if the direntry/xentry referred by @zbr does not exist on the media. 817 * 818 * This function checks if xentry/direntry referred by zbranch @zbr matches name 819 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 820 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 821 * if xentry/direntry referred by @zbr does not exist on the media. A negative 822 * error code is returned in case of failure. 823 */ 824 static int fallible_matches_name(struct ubifs_info *c, 825 struct ubifs_zbranch *zbr, 826 const struct fscrypt_name *nm) 827 { 828 struct ubifs_dent_node *dent; 829 int nlen, err; 830 831 /* If possible, match against the dent in the leaf node cache */ 832 if (!zbr->leaf) { 833 dent = kmalloc(zbr->len, GFP_NOFS); 834 if (!dent) 835 return -ENOMEM; 836 837 err = fallible_read_node(c, &zbr->key, zbr, dent); 838 if (err < 0) 839 goto out_free; 840 if (err == 0) { 841 /* The node was not present */ 842 err = NOT_ON_MEDIA; 843 goto out_free; 844 } 845 ubifs_assert(c, err == 1); 846 847 err = lnc_add_directly(c, zbr, dent); 848 if (err) 849 goto out_free; 850 } else 851 dent = zbr->leaf; 852 853 nlen = le16_to_cpu(dent->nlen); 854 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 855 if (err == 0) { 856 if (nlen == fname_len(nm)) 857 return NAME_MATCHES; 858 else if (nlen < fname_len(nm)) 859 return NAME_LESS; 860 else 861 return NAME_GREATER; 862 } else if (err < 0) 863 return NAME_LESS; 864 else 865 return NAME_GREATER; 866 867 out_free: 868 kfree(dent); 869 return err; 870 } 871 872 /** 873 * fallible_resolve_collision - resolve a collision even if nodes are missing. 874 * @c: UBIFS file-system description object 875 * @key: key 876 * @zn: znode is returned here 877 * @n: branch number is passed and returned here 878 * @nm: name of directory entry 879 * @adding: indicates caller is adding a key to the TNC 880 * 881 * This is a "fallible" version of the 'resolve_collision()' function which 882 * does not panic if one of the nodes referred to by TNC does not exist on the 883 * media. This may happen when replaying the journal if a deleted node was 884 * Garbage-collected and the commit was not done. A branch that refers to a node 885 * that is not present is called a dangling branch. The following are the return 886 * codes for this function: 887 * o if @nm was found, %1 is returned and @zn and @n are set to the found 888 * branch; 889 * o if we are @adding and @nm was not found, %0 is returned; 890 * o if we are not @adding and @nm was not found, but a dangling branch was 891 * found, then %1 is returned and @zn and @n are set to the dangling branch; 892 * o a negative error code is returned in case of failure. 893 */ 894 static int fallible_resolve_collision(struct ubifs_info *c, 895 const union ubifs_key *key, 896 struct ubifs_znode **zn, int *n, 897 const struct fscrypt_name *nm, 898 int adding) 899 { 900 struct ubifs_znode *o_znode = NULL, *znode = *zn; 901 int o_n, err, cmp, unsure = 0, nn = *n; 902 903 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 904 if (unlikely(cmp < 0)) 905 return cmp; 906 if (cmp == NAME_MATCHES) 907 return 1; 908 if (cmp == NOT_ON_MEDIA) { 909 o_znode = znode; 910 o_n = nn; 911 /* 912 * We are unlucky and hit a dangling branch straight away. 913 * Now we do not really know where to go to find the needed 914 * branch - to the left or to the right. Well, let's try left. 915 */ 916 unsure = 1; 917 } else if (!adding) 918 unsure = 1; /* Remove a dangling branch wherever it is */ 919 920 if (cmp == NAME_GREATER || unsure) { 921 /* Look left */ 922 while (1) { 923 err = tnc_prev(c, zn, n); 924 if (err == -ENOENT) { 925 ubifs_assert(c, *n == 0); 926 *n = -1; 927 break; 928 } 929 if (err < 0) 930 return err; 931 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 932 /* See comments in 'resolve_collision()' */ 933 if (*n == (*zn)->child_cnt - 1) { 934 err = tnc_next(c, zn, n); 935 if (err) { 936 /* Should be impossible */ 937 ubifs_assert(c, 0); 938 if (err == -ENOENT) 939 err = -EINVAL; 940 return err; 941 } 942 ubifs_assert(c, *n == 0); 943 *n = -1; 944 } 945 break; 946 } 947 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 948 if (err < 0) 949 return err; 950 if (err == NAME_MATCHES) 951 return 1; 952 if (err == NOT_ON_MEDIA) { 953 o_znode = *zn; 954 o_n = *n; 955 continue; 956 } 957 if (!adding) 958 continue; 959 if (err == NAME_LESS) 960 break; 961 else 962 unsure = 0; 963 } 964 } 965 966 if (cmp == NAME_LESS || unsure) { 967 /* Look right */ 968 *zn = znode; 969 *n = nn; 970 while (1) { 971 err = tnc_next(c, &znode, &nn); 972 if (err == -ENOENT) 973 break; 974 if (err < 0) 975 return err; 976 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 977 break; 978 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 979 if (err < 0) 980 return err; 981 if (err == NAME_GREATER) 982 break; 983 *zn = znode; 984 *n = nn; 985 if (err == NAME_MATCHES) 986 return 1; 987 if (err == NOT_ON_MEDIA) { 988 o_znode = znode; 989 o_n = nn; 990 } 991 } 992 } 993 994 /* Never match a dangling branch when adding */ 995 if (adding || !o_znode) 996 return 0; 997 998 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 999 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1000 o_znode->zbranch[o_n].len); 1001 *zn = o_znode; 1002 *n = o_n; 1003 return 1; 1004 } 1005 1006 /** 1007 * matches_position - determine if a zbranch matches a given position. 1008 * @zbr: zbranch of dent 1009 * @lnum: LEB number of dent to match 1010 * @offs: offset of dent to match 1011 * 1012 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1013 */ 1014 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1015 { 1016 if (zbr->lnum == lnum && zbr->offs == offs) 1017 return 1; 1018 else 1019 return 0; 1020 } 1021 1022 /** 1023 * resolve_collision_directly - resolve a collision directly. 1024 * @c: UBIFS file-system description object 1025 * @key: key of directory entry 1026 * @zn: znode is passed and returned here 1027 * @n: zbranch number is passed and returned here 1028 * @lnum: LEB number of dent node to match 1029 * @offs: offset of dent node to match 1030 * 1031 * This function is used for "hashed" keys to make sure the found directory or 1032 * extended attribute entry node is what was looked for. It is used when the 1033 * flash address of the right node is known (@lnum:@offs) which makes it much 1034 * easier to resolve collisions (no need to read entries and match full 1035 * names). This function returns %1 and sets @zn and @n if the collision is 1036 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1037 * previous directory entry. Otherwise a negative error code is returned. 1038 */ 1039 static int resolve_collision_directly(struct ubifs_info *c, 1040 const union ubifs_key *key, 1041 struct ubifs_znode **zn, int *n, 1042 int lnum, int offs) 1043 { 1044 struct ubifs_znode *znode; 1045 int nn, err; 1046 1047 znode = *zn; 1048 nn = *n; 1049 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1050 return 1; 1051 1052 /* Look left */ 1053 while (1) { 1054 err = tnc_prev(c, &znode, &nn); 1055 if (err == -ENOENT) 1056 break; 1057 if (err < 0) 1058 return err; 1059 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1060 break; 1061 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1062 *zn = znode; 1063 *n = nn; 1064 return 1; 1065 } 1066 } 1067 1068 /* Look right */ 1069 znode = *zn; 1070 nn = *n; 1071 while (1) { 1072 err = tnc_next(c, &znode, &nn); 1073 if (err == -ENOENT) 1074 return 0; 1075 if (err < 0) 1076 return err; 1077 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1078 return 0; 1079 *zn = znode; 1080 *n = nn; 1081 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1082 return 1; 1083 } 1084 } 1085 1086 /** 1087 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1088 * @c: UBIFS file-system description object 1089 * @znode: znode to dirty 1090 * 1091 * If we do not have a unique key that resides in a znode, then we cannot 1092 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1093 * This function records the path back to the last dirty ancestor, and then 1094 * dirties the znodes on that path. 1095 */ 1096 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1097 struct ubifs_znode *znode) 1098 { 1099 struct ubifs_znode *zp; 1100 int *path = c->bottom_up_buf, p = 0; 1101 1102 ubifs_assert(c, c->zroot.znode); 1103 ubifs_assert(c, znode); 1104 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1105 kfree(c->bottom_up_buf); 1106 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1107 sizeof(int), 1108 GFP_NOFS); 1109 if (!c->bottom_up_buf) 1110 return ERR_PTR(-ENOMEM); 1111 path = c->bottom_up_buf; 1112 } 1113 if (c->zroot.znode->level) { 1114 /* Go up until parent is dirty */ 1115 while (1) { 1116 int n; 1117 1118 zp = znode->parent; 1119 if (!zp) 1120 break; 1121 n = znode->iip; 1122 ubifs_assert(c, p < c->zroot.znode->level); 1123 path[p++] = n; 1124 if (!zp->cnext && ubifs_zn_dirty(znode)) 1125 break; 1126 znode = zp; 1127 } 1128 } 1129 1130 /* Come back down, dirtying as we go */ 1131 while (1) { 1132 struct ubifs_zbranch *zbr; 1133 1134 zp = znode->parent; 1135 if (zp) { 1136 ubifs_assert(c, path[p - 1] >= 0); 1137 ubifs_assert(c, path[p - 1] < zp->child_cnt); 1138 zbr = &zp->zbranch[path[--p]]; 1139 znode = dirty_cow_znode(c, zbr); 1140 } else { 1141 ubifs_assert(c, znode == c->zroot.znode); 1142 znode = dirty_cow_znode(c, &c->zroot); 1143 } 1144 if (IS_ERR(znode) || !p) 1145 break; 1146 ubifs_assert(c, path[p - 1] >= 0); 1147 ubifs_assert(c, path[p - 1] < znode->child_cnt); 1148 znode = znode->zbranch[path[p - 1]].znode; 1149 } 1150 1151 return znode; 1152 } 1153 1154 /** 1155 * ubifs_lookup_level0 - search for zero-level znode. 1156 * @c: UBIFS file-system description object 1157 * @key: key to lookup 1158 * @zn: znode is returned here 1159 * @n: znode branch slot number is returned here 1160 * 1161 * This function looks up the TNC tree and search for zero-level znode which 1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1163 * cases: 1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1165 * is returned and slot number of the matched branch is stored in @n; 1166 * o not exact match, which means that zero-level znode does not contain 1167 * @key, then %0 is returned and slot number of the closest branch or %-1 1168 * is stored in @n; In this case calling tnc_next() is mandatory. 1169 * o @key is so small that it is even less than the lowest key of the 1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1171 * 1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1173 * function reads corresponding indexing nodes and inserts them to TNC. In 1174 * case of failure, a negative error code is returned. 1175 */ 1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1177 struct ubifs_znode **zn, int *n) 1178 { 1179 int err, exact; 1180 struct ubifs_znode *znode; 1181 time64_t time = ktime_get_seconds(); 1182 1183 dbg_tnck(key, "search key "); 1184 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 1185 1186 znode = c->zroot.znode; 1187 if (unlikely(!znode)) { 1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1189 if (IS_ERR(znode)) 1190 return PTR_ERR(znode); 1191 } 1192 1193 znode->time = time; 1194 1195 while (1) { 1196 struct ubifs_zbranch *zbr; 1197 1198 exact = ubifs_search_zbranch(c, znode, key, n); 1199 1200 if (znode->level == 0) 1201 break; 1202 1203 if (*n < 0) 1204 *n = 0; 1205 zbr = &znode->zbranch[*n]; 1206 1207 if (zbr->znode) { 1208 znode->time = time; 1209 znode = zbr->znode; 1210 continue; 1211 } 1212 1213 /* znode is not in TNC cache, load it from the media */ 1214 znode = ubifs_load_znode(c, zbr, znode, *n); 1215 if (IS_ERR(znode)) 1216 return PTR_ERR(znode); 1217 } 1218 1219 *zn = znode; 1220 if (exact || !is_hash_key(c, key) || *n != -1) { 1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1222 return exact; 1223 } 1224 1225 /* 1226 * Here is a tricky place. We have not found the key and this is a 1227 * "hashed" key, which may collide. The rest of the code deals with 1228 * situations like this: 1229 * 1230 * | 3 | 5 | 1231 * / \ 1232 * | 3 | 5 | | 6 | 7 | (x) 1233 * 1234 * Or more a complex example: 1235 * 1236 * | 1 | 5 | 1237 * / \ 1238 * | 1 | 3 | | 5 | 8 | 1239 * \ / 1240 * | 5 | 5 | | 6 | 7 | (x) 1241 * 1242 * In the examples, if we are looking for key "5", we may reach nodes 1243 * marked with "(x)". In this case what we have do is to look at the 1244 * left and see if there is "5" key there. If there is, we have to 1245 * return it. 1246 * 1247 * Note, this whole situation is possible because we allow to have 1248 * elements which are equivalent to the next key in the parent in the 1249 * children of current znode. For example, this happens if we split a 1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1251 * like this: 1252 * | 3 | 5 | 1253 * / \ 1254 * | 3 | 5 | | 5 | 6 | 7 | 1255 * ^ 1256 * And this becomes what is at the first "picture" after key "5" marked 1257 * with "^" is removed. What could be done is we could prohibit 1258 * splitting in the middle of the colliding sequence. Also, when 1259 * removing the leftmost key, we would have to correct the key of the 1260 * parent node, which would introduce additional complications. Namely, 1261 * if we changed the leftmost key of the parent znode, the garbage 1262 * collector would be unable to find it (GC is doing this when GC'ing 1263 * indexing LEBs). Although we already have an additional RB-tree where 1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1265 * after the commit. But anyway, this does not look easy to implement 1266 * so we did not try this. 1267 */ 1268 err = tnc_prev(c, &znode, n); 1269 if (err == -ENOENT) { 1270 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1271 *n = -1; 1272 return 0; 1273 } 1274 if (unlikely(err < 0)) 1275 return err; 1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1277 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1278 *n = -1; 1279 return 0; 1280 } 1281 1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1283 *zn = znode; 1284 return 1; 1285 } 1286 1287 /** 1288 * lookup_level0_dirty - search for zero-level znode dirtying. 1289 * @c: UBIFS file-system description object 1290 * @key: key to lookup 1291 * @zn: znode is returned here 1292 * @n: znode branch slot number is returned here 1293 * 1294 * This function looks up the TNC tree and search for zero-level znode which 1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1296 * cases: 1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1298 * is returned and slot number of the matched branch is stored in @n; 1299 * o not exact match, which means that zero-level znode does not contain @key 1300 * then %0 is returned and slot number of the closed branch is stored in 1301 * @n; 1302 * o @key is so small that it is even less than the lowest key of the 1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1304 * 1305 * Additionally all znodes in the path from the root to the located zero-level 1306 * znode are marked as dirty. 1307 * 1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1309 * function reads corresponding indexing nodes and inserts them to TNC. In 1310 * case of failure, a negative error code is returned. 1311 */ 1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1313 struct ubifs_znode **zn, int *n) 1314 { 1315 int err, exact; 1316 struct ubifs_znode *znode; 1317 time64_t time = ktime_get_seconds(); 1318 1319 dbg_tnck(key, "search and dirty key "); 1320 1321 znode = c->zroot.znode; 1322 if (unlikely(!znode)) { 1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1324 if (IS_ERR(znode)) 1325 return PTR_ERR(znode); 1326 } 1327 1328 znode = dirty_cow_znode(c, &c->zroot); 1329 if (IS_ERR(znode)) 1330 return PTR_ERR(znode); 1331 1332 znode->time = time; 1333 1334 while (1) { 1335 struct ubifs_zbranch *zbr; 1336 1337 exact = ubifs_search_zbranch(c, znode, key, n); 1338 1339 if (znode->level == 0) 1340 break; 1341 1342 if (*n < 0) 1343 *n = 0; 1344 zbr = &znode->zbranch[*n]; 1345 1346 if (zbr->znode) { 1347 znode->time = time; 1348 znode = dirty_cow_znode(c, zbr); 1349 if (IS_ERR(znode)) 1350 return PTR_ERR(znode); 1351 continue; 1352 } 1353 1354 /* znode is not in TNC cache, load it from the media */ 1355 znode = ubifs_load_znode(c, zbr, znode, *n); 1356 if (IS_ERR(znode)) 1357 return PTR_ERR(znode); 1358 znode = dirty_cow_znode(c, zbr); 1359 if (IS_ERR(znode)) 1360 return PTR_ERR(znode); 1361 } 1362 1363 *zn = znode; 1364 if (exact || !is_hash_key(c, key) || *n != -1) { 1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1366 return exact; 1367 } 1368 1369 /* 1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1371 * code. 1372 */ 1373 err = tnc_prev(c, &znode, n); 1374 if (err == -ENOENT) { 1375 *n = -1; 1376 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1377 return 0; 1378 } 1379 if (unlikely(err < 0)) 1380 return err; 1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1382 *n = -1; 1383 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1384 return 0; 1385 } 1386 1387 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1388 znode = dirty_cow_bottom_up(c, znode); 1389 if (IS_ERR(znode)) 1390 return PTR_ERR(znode); 1391 } 1392 1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1394 *zn = znode; 1395 return 1; 1396 } 1397 1398 /** 1399 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1400 * @c: UBIFS file-system description object 1401 * @lnum: LEB number 1402 * @gc_seq1: garbage collection sequence number 1403 * 1404 * This function determines if @lnum may have been garbage collected since 1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1406 * %0 is returned. 1407 */ 1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1409 { 1410 int gc_seq2, gced_lnum; 1411 1412 gced_lnum = c->gced_lnum; 1413 smp_rmb(); 1414 gc_seq2 = c->gc_seq; 1415 /* Same seq means no GC */ 1416 if (gc_seq1 == gc_seq2) 1417 return 0; 1418 /* Different by more than 1 means we don't know */ 1419 if (gc_seq1 + 1 != gc_seq2) 1420 return 1; 1421 /* 1422 * We have seen the sequence number has increased by 1. Now we need to 1423 * be sure we read the right LEB number, so read it again. 1424 */ 1425 smp_rmb(); 1426 if (gced_lnum != c->gced_lnum) 1427 return 1; 1428 /* Finally we can check lnum */ 1429 if (gced_lnum == lnum) 1430 return 1; 1431 return 0; 1432 } 1433 1434 /** 1435 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1436 * @c: UBIFS file-system description object 1437 * @key: node key to lookup 1438 * @node: the node is returned here 1439 * @lnum: LEB number is returned here 1440 * @offs: offset is returned here 1441 * 1442 * This function looks up and reads node with key @key. The caller has to make 1443 * sure the @node buffer is large enough to fit the node. Returns zero in case 1444 * of success, %-ENOENT if the node was not found, and a negative error code in 1445 * case of failure. The node location can be returned in @lnum and @offs. 1446 */ 1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1448 void *node, int *lnum, int *offs) 1449 { 1450 int found, n, err, safely = 0, gc_seq1; 1451 struct ubifs_znode *znode; 1452 struct ubifs_zbranch zbr, *zt; 1453 1454 again: 1455 mutex_lock(&c->tnc_mutex); 1456 found = ubifs_lookup_level0(c, key, &znode, &n); 1457 if (!found) { 1458 err = -ENOENT; 1459 goto out; 1460 } else if (found < 0) { 1461 err = found; 1462 goto out; 1463 } 1464 zt = &znode->zbranch[n]; 1465 if (lnum) { 1466 *lnum = zt->lnum; 1467 *offs = zt->offs; 1468 } 1469 if (is_hash_key(c, key)) { 1470 /* 1471 * In this case the leaf node cache gets used, so we pass the 1472 * address of the zbranch and keep the mutex locked 1473 */ 1474 err = tnc_read_hashed_node(c, zt, node); 1475 goto out; 1476 } 1477 if (safely) { 1478 err = ubifs_tnc_read_node(c, zt, node); 1479 goto out; 1480 } 1481 /* Drop the TNC mutex prematurely and race with garbage collection */ 1482 zbr = znode->zbranch[n]; 1483 gc_seq1 = c->gc_seq; 1484 mutex_unlock(&c->tnc_mutex); 1485 1486 if (ubifs_get_wbuf(c, zbr.lnum)) { 1487 /* We do not GC journal heads */ 1488 err = ubifs_tnc_read_node(c, &zbr, node); 1489 return err; 1490 } 1491 1492 err = fallible_read_node(c, key, &zbr, node); 1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1494 /* 1495 * The node may have been GC'ed out from under us so try again 1496 * while keeping the TNC mutex locked. 1497 */ 1498 safely = 1; 1499 goto again; 1500 } 1501 return 0; 1502 1503 out: 1504 mutex_unlock(&c->tnc_mutex); 1505 return err; 1506 } 1507 1508 /** 1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1510 * @c: UBIFS file-system description object 1511 * @bu: bulk-read parameters and results 1512 * 1513 * Lookup consecutive data node keys for the same inode that reside 1514 * consecutively in the same LEB. This function returns zero in case of success 1515 * and a negative error code in case of failure. 1516 * 1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1519 * maximum possible amount of nodes for bulk-read. 1520 */ 1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1522 { 1523 int n, err = 0, lnum = -1, offs; 1524 int len; 1525 unsigned int block = key_block(c, &bu->key); 1526 struct ubifs_znode *znode; 1527 1528 bu->cnt = 0; 1529 bu->blk_cnt = 0; 1530 bu->eof = 0; 1531 1532 mutex_lock(&c->tnc_mutex); 1533 /* Find first key */ 1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1535 if (err < 0) 1536 goto out; 1537 if (err) { 1538 /* Key found */ 1539 len = znode->zbranch[n].len; 1540 /* The buffer must be big enough for at least 1 node */ 1541 if (len > bu->buf_len) { 1542 err = -EINVAL; 1543 goto out; 1544 } 1545 /* Add this key */ 1546 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1547 bu->blk_cnt += 1; 1548 lnum = znode->zbranch[n].lnum; 1549 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1550 } 1551 while (1) { 1552 struct ubifs_zbranch *zbr; 1553 union ubifs_key *key; 1554 unsigned int next_block; 1555 1556 /* Find next key */ 1557 err = tnc_next(c, &znode, &n); 1558 if (err) 1559 goto out; 1560 zbr = &znode->zbranch[n]; 1561 key = &zbr->key; 1562 /* See if there is another data key for this file */ 1563 if (key_inum(c, key) != key_inum(c, &bu->key) || 1564 key_type(c, key) != UBIFS_DATA_KEY) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 if (lnum < 0) { 1569 /* First key found */ 1570 lnum = zbr->lnum; 1571 offs = ALIGN(zbr->offs + zbr->len, 8); 1572 len = zbr->len; 1573 if (len > bu->buf_len) { 1574 err = -EINVAL; 1575 goto out; 1576 } 1577 } else { 1578 /* 1579 * The data nodes must be in consecutive positions in 1580 * the same LEB. 1581 */ 1582 if (zbr->lnum != lnum || zbr->offs != offs) 1583 goto out; 1584 offs += ALIGN(zbr->len, 8); 1585 len = ALIGN(len, 8) + zbr->len; 1586 /* Must not exceed buffer length */ 1587 if (len > bu->buf_len) 1588 goto out; 1589 } 1590 /* Allow for holes */ 1591 next_block = key_block(c, key); 1592 bu->blk_cnt += (next_block - block - 1); 1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1594 goto out; 1595 block = next_block; 1596 /* Add this key */ 1597 bu->zbranch[bu->cnt++] = *zbr; 1598 bu->blk_cnt += 1; 1599 /* See if we have room for more */ 1600 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1601 goto out; 1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1603 goto out; 1604 } 1605 out: 1606 if (err == -ENOENT) { 1607 bu->eof = 1; 1608 err = 0; 1609 } 1610 bu->gc_seq = c->gc_seq; 1611 mutex_unlock(&c->tnc_mutex); 1612 if (err) 1613 return err; 1614 /* 1615 * An enormous hole could cause bulk-read to encompass too many 1616 * page cache pages, so limit the number here. 1617 */ 1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1619 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1620 /* 1621 * Ensure that bulk-read covers a whole number of page cache 1622 * pages. 1623 */ 1624 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1626 return 0; 1627 if (bu->eof) { 1628 /* At the end of file we can round up */ 1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1630 return 0; 1631 } 1632 /* Exclude data nodes that do not make up a whole page cache page */ 1633 block = key_block(c, &bu->key) + bu->blk_cnt; 1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1635 while (bu->cnt) { 1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1637 break; 1638 bu->cnt -= 1; 1639 } 1640 return 0; 1641 } 1642 1643 /** 1644 * read_wbuf - bulk-read from a LEB with a wbuf. 1645 * @wbuf: wbuf that may overlap the read 1646 * @buf: buffer into which to read 1647 * @len: read length 1648 * @lnum: LEB number from which to read 1649 * @offs: offset from which to read 1650 * 1651 * This functions returns %0 on success or a negative error code on failure. 1652 */ 1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1654 int offs) 1655 { 1656 const struct ubifs_info *c = wbuf->c; 1657 int rlen, overlap; 1658 1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1660 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1661 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1662 ubifs_assert(c, offs + len <= c->leb_size); 1663 1664 spin_lock(&wbuf->lock); 1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1666 if (!overlap) { 1667 /* We may safely unlock the write-buffer and read the data */ 1668 spin_unlock(&wbuf->lock); 1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1670 } 1671 1672 /* Don't read under wbuf */ 1673 rlen = wbuf->offs - offs; 1674 if (rlen < 0) 1675 rlen = 0; 1676 1677 /* Copy the rest from the write-buffer */ 1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1679 spin_unlock(&wbuf->lock); 1680 1681 if (rlen > 0) 1682 /* Read everything that goes before write-buffer */ 1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * validate_data_node - validate data nodes for bulk-read. 1690 * @c: UBIFS file-system description object 1691 * @buf: buffer containing data node to validate 1692 * @zbr: zbranch of data node to validate 1693 * 1694 * This functions returns %0 on success or a negative error code on failure. 1695 */ 1696 static int validate_data_node(struct ubifs_info *c, void *buf, 1697 struct ubifs_zbranch *zbr) 1698 { 1699 union ubifs_key key1; 1700 struct ubifs_ch *ch = buf; 1701 int err, len; 1702 1703 if (ch->node_type != UBIFS_DATA_NODE) { 1704 ubifs_err(c, "bad node type (%d but expected %d)", 1705 ch->node_type, UBIFS_DATA_NODE); 1706 goto out_err; 1707 } 1708 1709 err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0); 1710 if (err) { 1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1712 goto out; 1713 } 1714 1715 err = ubifs_node_check_hash(c, buf, zbr->hash); 1716 if (err) { 1717 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); 1718 return err; 1719 } 1720 1721 len = le32_to_cpu(ch->len); 1722 if (len != zbr->len) { 1723 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1724 goto out_err; 1725 } 1726 1727 /* Make sure the key of the read node is correct */ 1728 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1729 if (!keys_eq(c, &zbr->key, &key1)) { 1730 ubifs_err(c, "bad key in node at LEB %d:%d", 1731 zbr->lnum, zbr->offs); 1732 dbg_tnck(&zbr->key, "looked for key "); 1733 dbg_tnck(&key1, "found node's key "); 1734 goto out_err; 1735 } 1736 1737 return 0; 1738 1739 out_err: 1740 err = -EINVAL; 1741 out: 1742 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1743 ubifs_dump_node(c, buf, zbr->len); 1744 dump_stack(); 1745 return err; 1746 } 1747 1748 /** 1749 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1750 * @c: UBIFS file-system description object 1751 * @bu: bulk-read parameters and results 1752 * 1753 * This functions reads and validates the data nodes that were identified by the 1754 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1755 * -EAGAIN to indicate a race with GC, or another negative error code on 1756 * failure. 1757 */ 1758 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1759 { 1760 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1761 struct ubifs_wbuf *wbuf; 1762 void *buf; 1763 1764 len = bu->zbranch[bu->cnt - 1].offs; 1765 len += bu->zbranch[bu->cnt - 1].len - offs; 1766 if (len > bu->buf_len) { 1767 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1768 return -EINVAL; 1769 } 1770 1771 /* Do the read */ 1772 wbuf = ubifs_get_wbuf(c, lnum); 1773 if (wbuf) 1774 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1775 else 1776 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1777 1778 /* Check for a race with GC */ 1779 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1780 return -EAGAIN; 1781 1782 if (err && err != -EBADMSG) { 1783 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1784 lnum, offs, err); 1785 dump_stack(); 1786 dbg_tnck(&bu->key, "key "); 1787 return err; 1788 } 1789 1790 /* Validate the nodes read */ 1791 buf = bu->buf; 1792 for (i = 0; i < bu->cnt; i++) { 1793 err = validate_data_node(c, buf, &bu->zbranch[i]); 1794 if (err) 1795 return err; 1796 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1797 } 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * do_lookup_nm- look up a "hashed" node. 1804 * @c: UBIFS file-system description object 1805 * @key: node key to lookup 1806 * @node: the node is returned here 1807 * @nm: node name 1808 * 1809 * This function looks up and reads a node which contains name hash in the key. 1810 * Since the hash may have collisions, there may be many nodes with the same 1811 * key, so we have to sequentially look to all of them until the needed one is 1812 * found. This function returns zero in case of success, %-ENOENT if the node 1813 * was not found, and a negative error code in case of failure. 1814 */ 1815 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1816 void *node, const struct fscrypt_name *nm) 1817 { 1818 int found, n, err; 1819 struct ubifs_znode *znode; 1820 1821 dbg_tnck(key, "key "); 1822 mutex_lock(&c->tnc_mutex); 1823 found = ubifs_lookup_level0(c, key, &znode, &n); 1824 if (!found) { 1825 err = -ENOENT; 1826 goto out_unlock; 1827 } else if (found < 0) { 1828 err = found; 1829 goto out_unlock; 1830 } 1831 1832 ubifs_assert(c, n >= 0); 1833 1834 err = resolve_collision(c, key, &znode, &n, nm); 1835 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1836 if (unlikely(err < 0)) 1837 goto out_unlock; 1838 if (err == 0) { 1839 err = -ENOENT; 1840 goto out_unlock; 1841 } 1842 1843 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1844 1845 out_unlock: 1846 mutex_unlock(&c->tnc_mutex); 1847 return err; 1848 } 1849 1850 /** 1851 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1852 * @c: UBIFS file-system description object 1853 * @key: node key to lookup 1854 * @node: the node is returned here 1855 * @nm: node name 1856 * 1857 * This function looks up and reads a node which contains name hash in the key. 1858 * Since the hash may have collisions, there may be many nodes with the same 1859 * key, so we have to sequentially look to all of them until the needed one is 1860 * found. This function returns zero in case of success, %-ENOENT if the node 1861 * was not found, and a negative error code in case of failure. 1862 */ 1863 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1864 void *node, const struct fscrypt_name *nm) 1865 { 1866 int err, len; 1867 const struct ubifs_dent_node *dent = node; 1868 1869 /* 1870 * We assume that in most of the cases there are no name collisions and 1871 * 'ubifs_tnc_lookup()' returns us the right direntry. 1872 */ 1873 err = ubifs_tnc_lookup(c, key, node); 1874 if (err) 1875 return err; 1876 1877 len = le16_to_cpu(dent->nlen); 1878 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1879 return 0; 1880 1881 /* 1882 * Unluckily, there are hash collisions and we have to iterate over 1883 * them look at each direntry with colliding name hash sequentially. 1884 */ 1885 1886 return do_lookup_nm(c, key, node, nm); 1887 } 1888 1889 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1890 struct ubifs_dent_node *dent, uint32_t cookie, 1891 struct ubifs_znode **zn, int *n, int exact) 1892 { 1893 int err; 1894 struct ubifs_znode *znode = *zn; 1895 struct ubifs_zbranch *zbr; 1896 union ubifs_key *dkey; 1897 1898 if (!exact) { 1899 err = tnc_next(c, &znode, n); 1900 if (err) 1901 return err; 1902 } 1903 1904 for (;;) { 1905 zbr = &znode->zbranch[*n]; 1906 dkey = &zbr->key; 1907 1908 if (key_inum(c, dkey) != key_inum(c, key) || 1909 key_type(c, dkey) != key_type(c, key)) { 1910 return -ENOENT; 1911 } 1912 1913 err = tnc_read_hashed_node(c, zbr, dent); 1914 if (err) 1915 return err; 1916 1917 if (key_hash(c, key) == key_hash(c, dkey) && 1918 le32_to_cpu(dent->cookie) == cookie) { 1919 *zn = znode; 1920 return 0; 1921 } 1922 1923 err = tnc_next(c, &znode, n); 1924 if (err) 1925 return err; 1926 } 1927 } 1928 1929 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1930 struct ubifs_dent_node *dent, uint32_t cookie) 1931 { 1932 int n, err; 1933 struct ubifs_znode *znode; 1934 union ubifs_key start_key; 1935 1936 ubifs_assert(c, is_hash_key(c, key)); 1937 1938 lowest_dent_key(c, &start_key, key_inum(c, key)); 1939 1940 mutex_lock(&c->tnc_mutex); 1941 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1942 if (unlikely(err < 0)) 1943 goto out_unlock; 1944 1945 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); 1946 1947 out_unlock: 1948 mutex_unlock(&c->tnc_mutex); 1949 return err; 1950 } 1951 1952 /** 1953 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1954 * @c: UBIFS file-system description object 1955 * @key: node key to lookup 1956 * @node: the node is returned here 1957 * @cookie: node cookie for collision resolution 1958 * 1959 * This function looks up and reads a node which contains name hash in the key. 1960 * Since the hash may have collisions, there may be many nodes with the same 1961 * key, so we have to sequentially look to all of them until the needed one 1962 * with the same cookie value is found. 1963 * This function returns zero in case of success, %-ENOENT if the node 1964 * was not found, and a negative error code in case of failure. 1965 */ 1966 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1967 void *node, uint32_t cookie) 1968 { 1969 int err; 1970 const struct ubifs_dent_node *dent = node; 1971 1972 if (!c->double_hash) 1973 return -EOPNOTSUPP; 1974 1975 /* 1976 * We assume that in most of the cases there are no name collisions and 1977 * 'ubifs_tnc_lookup()' returns us the right direntry. 1978 */ 1979 err = ubifs_tnc_lookup(c, key, node); 1980 if (err) 1981 return err; 1982 1983 if (le32_to_cpu(dent->cookie) == cookie) 1984 return 0; 1985 1986 /* 1987 * Unluckily, there are hash collisions and we have to iterate over 1988 * them look at each direntry with colliding name hash sequentially. 1989 */ 1990 return do_lookup_dh(c, key, node, cookie); 1991 } 1992 1993 /** 1994 * correct_parent_keys - correct parent znodes' keys. 1995 * @c: UBIFS file-system description object 1996 * @znode: znode to correct parent znodes for 1997 * 1998 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1999 * zbranch changes, keys of parent znodes have to be corrected. This helper 2000 * function is called in such situations and corrects the keys if needed. 2001 */ 2002 static void correct_parent_keys(const struct ubifs_info *c, 2003 struct ubifs_znode *znode) 2004 { 2005 union ubifs_key *key, *key1; 2006 2007 ubifs_assert(c, znode->parent); 2008 ubifs_assert(c, znode->iip == 0); 2009 2010 key = &znode->zbranch[0].key; 2011 key1 = &znode->parent->zbranch[0].key; 2012 2013 while (keys_cmp(c, key, key1) < 0) { 2014 key_copy(c, key, key1); 2015 znode = znode->parent; 2016 znode->alt = 1; 2017 if (!znode->parent || znode->iip) 2018 break; 2019 key1 = &znode->parent->zbranch[0].key; 2020 } 2021 } 2022 2023 /** 2024 * insert_zbranch - insert a zbranch into a znode. 2025 * @c: UBIFS file-system description object 2026 * @znode: znode into which to insert 2027 * @zbr: zbranch to insert 2028 * @n: slot number to insert to 2029 * 2030 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2031 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2032 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2033 * slot, zbranches starting from @n have to be moved right. 2034 */ 2035 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, 2036 const struct ubifs_zbranch *zbr, int n) 2037 { 2038 int i; 2039 2040 ubifs_assert(c, ubifs_zn_dirty(znode)); 2041 2042 if (znode->level) { 2043 for (i = znode->child_cnt; i > n; i--) { 2044 znode->zbranch[i] = znode->zbranch[i - 1]; 2045 if (znode->zbranch[i].znode) 2046 znode->zbranch[i].znode->iip = i; 2047 } 2048 if (zbr->znode) 2049 zbr->znode->iip = n; 2050 } else 2051 for (i = znode->child_cnt; i > n; i--) 2052 znode->zbranch[i] = znode->zbranch[i - 1]; 2053 2054 znode->zbranch[n] = *zbr; 2055 znode->child_cnt += 1; 2056 2057 /* 2058 * After inserting at slot zero, the lower bound of the key range of 2059 * this znode may have changed. If this znode is subsequently split 2060 * then the upper bound of the key range may change, and furthermore 2061 * it could change to be lower than the original lower bound. If that 2062 * happens, then it will no longer be possible to find this znode in the 2063 * TNC using the key from the index node on flash. That is bad because 2064 * if it is not found, we will assume it is obsolete and may overwrite 2065 * it. Then if there is an unclean unmount, we will start using the 2066 * old index which will be broken. 2067 * 2068 * So we first mark znodes that have insertions at slot zero, and then 2069 * if they are split we add their lnum/offs to the old_idx tree. 2070 */ 2071 if (n == 0) 2072 znode->alt = 1; 2073 } 2074 2075 /** 2076 * tnc_insert - insert a node into TNC. 2077 * @c: UBIFS file-system description object 2078 * @znode: znode to insert into 2079 * @zbr: branch to insert 2080 * @n: slot number to insert new zbranch to 2081 * 2082 * This function inserts a new node described by @zbr into znode @znode. If 2083 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2084 * are splat as well if needed. Returns zero in case of success or a negative 2085 * error code in case of failure. 2086 */ 2087 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2088 struct ubifs_zbranch *zbr, int n) 2089 { 2090 struct ubifs_znode *zn, *zi, *zp; 2091 int i, keep, move, appending = 0; 2092 union ubifs_key *key = &zbr->key, *key1; 2093 2094 ubifs_assert(c, n >= 0 && n <= c->fanout); 2095 2096 /* Implement naive insert for now */ 2097 again: 2098 zp = znode->parent; 2099 if (znode->child_cnt < c->fanout) { 2100 ubifs_assert(c, n != c->fanout); 2101 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2102 2103 insert_zbranch(c, znode, zbr, n); 2104 2105 /* Ensure parent's key is correct */ 2106 if (n == 0 && zp && znode->iip == 0) 2107 correct_parent_keys(c, znode); 2108 2109 return 0; 2110 } 2111 2112 /* 2113 * Unfortunately, @znode does not have more empty slots and we have to 2114 * split it. 2115 */ 2116 dbg_tnck(key, "splitting level %d, key ", znode->level); 2117 2118 if (znode->alt) 2119 /* 2120 * We can no longer be sure of finding this znode by key, so we 2121 * record it in the old_idx tree. 2122 */ 2123 ins_clr_old_idx_znode(c, znode); 2124 2125 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2126 if (!zn) 2127 return -ENOMEM; 2128 zn->parent = zp; 2129 zn->level = znode->level; 2130 2131 /* Decide where to split */ 2132 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2133 /* Try not to split consecutive data keys */ 2134 if (n == c->fanout) { 2135 key1 = &znode->zbranch[n - 1].key; 2136 if (key_inum(c, key1) == key_inum(c, key) && 2137 key_type(c, key1) == UBIFS_DATA_KEY) 2138 appending = 1; 2139 } else 2140 goto check_split; 2141 } else if (appending && n != c->fanout) { 2142 /* Try not to split consecutive data keys */ 2143 appending = 0; 2144 check_split: 2145 if (n >= (c->fanout + 1) / 2) { 2146 key1 = &znode->zbranch[0].key; 2147 if (key_inum(c, key1) == key_inum(c, key) && 2148 key_type(c, key1) == UBIFS_DATA_KEY) { 2149 key1 = &znode->zbranch[n].key; 2150 if (key_inum(c, key1) != key_inum(c, key) || 2151 key_type(c, key1) != UBIFS_DATA_KEY) { 2152 keep = n; 2153 move = c->fanout - keep; 2154 zi = znode; 2155 goto do_split; 2156 } 2157 } 2158 } 2159 } 2160 2161 if (appending) { 2162 keep = c->fanout; 2163 move = 0; 2164 } else { 2165 keep = (c->fanout + 1) / 2; 2166 move = c->fanout - keep; 2167 } 2168 2169 /* 2170 * Although we don't at present, we could look at the neighbors and see 2171 * if we can move some zbranches there. 2172 */ 2173 2174 if (n < keep) { 2175 /* Insert into existing znode */ 2176 zi = znode; 2177 move += 1; 2178 keep -= 1; 2179 } else { 2180 /* Insert into new znode */ 2181 zi = zn; 2182 n -= keep; 2183 /* Re-parent */ 2184 if (zn->level != 0) 2185 zbr->znode->parent = zn; 2186 } 2187 2188 do_split: 2189 2190 __set_bit(DIRTY_ZNODE, &zn->flags); 2191 atomic_long_inc(&c->dirty_zn_cnt); 2192 2193 zn->child_cnt = move; 2194 znode->child_cnt = keep; 2195 2196 dbg_tnc("moving %d, keeping %d", move, keep); 2197 2198 /* Move zbranch */ 2199 for (i = 0; i < move; i++) { 2200 zn->zbranch[i] = znode->zbranch[keep + i]; 2201 /* Re-parent */ 2202 if (zn->level != 0) 2203 if (zn->zbranch[i].znode) { 2204 zn->zbranch[i].znode->parent = zn; 2205 zn->zbranch[i].znode->iip = i; 2206 } 2207 } 2208 2209 /* Insert new key and branch */ 2210 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2211 2212 insert_zbranch(c, zi, zbr, n); 2213 2214 /* Insert new znode (produced by spitting) into the parent */ 2215 if (zp) { 2216 if (n == 0 && zi == znode && znode->iip == 0) 2217 correct_parent_keys(c, znode); 2218 2219 /* Locate insertion point */ 2220 n = znode->iip + 1; 2221 2222 /* Tail recursion */ 2223 zbr->key = zn->zbranch[0].key; 2224 zbr->znode = zn; 2225 zbr->lnum = 0; 2226 zbr->offs = 0; 2227 zbr->len = 0; 2228 znode = zp; 2229 2230 goto again; 2231 } 2232 2233 /* We have to split root znode */ 2234 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2235 2236 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2237 if (!zi) 2238 return -ENOMEM; 2239 2240 zi->child_cnt = 2; 2241 zi->level = znode->level + 1; 2242 2243 __set_bit(DIRTY_ZNODE, &zi->flags); 2244 atomic_long_inc(&c->dirty_zn_cnt); 2245 2246 zi->zbranch[0].key = znode->zbranch[0].key; 2247 zi->zbranch[0].znode = znode; 2248 zi->zbranch[0].lnum = c->zroot.lnum; 2249 zi->zbranch[0].offs = c->zroot.offs; 2250 zi->zbranch[0].len = c->zroot.len; 2251 zi->zbranch[1].key = zn->zbranch[0].key; 2252 zi->zbranch[1].znode = zn; 2253 2254 c->zroot.lnum = 0; 2255 c->zroot.offs = 0; 2256 c->zroot.len = 0; 2257 c->zroot.znode = zi; 2258 2259 zn->parent = zi; 2260 zn->iip = 1; 2261 znode->parent = zi; 2262 znode->iip = 0; 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * ubifs_tnc_add - add a node to TNC. 2269 * @c: UBIFS file-system description object 2270 * @key: key to add 2271 * @lnum: LEB number of node 2272 * @offs: node offset 2273 * @len: node length 2274 * @hash: The hash over the node 2275 * 2276 * This function adds a node with key @key to TNC. The node may be new or it may 2277 * obsolete some existing one. Returns %0 on success or negative error code on 2278 * failure. 2279 */ 2280 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2281 int offs, int len, const u8 *hash) 2282 { 2283 int found, n, err = 0; 2284 struct ubifs_znode *znode; 2285 2286 mutex_lock(&c->tnc_mutex); 2287 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2288 found = lookup_level0_dirty(c, key, &znode, &n); 2289 if (!found) { 2290 struct ubifs_zbranch zbr; 2291 2292 zbr.znode = NULL; 2293 zbr.lnum = lnum; 2294 zbr.offs = offs; 2295 zbr.len = len; 2296 ubifs_copy_hash(c, hash, zbr.hash); 2297 key_copy(c, key, &zbr.key); 2298 err = tnc_insert(c, znode, &zbr, n + 1); 2299 } else if (found == 1) { 2300 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2301 2302 lnc_free(zbr); 2303 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2304 zbr->lnum = lnum; 2305 zbr->offs = offs; 2306 zbr->len = len; 2307 ubifs_copy_hash(c, hash, zbr->hash); 2308 } else 2309 err = found; 2310 if (!err) 2311 err = dbg_check_tnc(c, 0); 2312 mutex_unlock(&c->tnc_mutex); 2313 2314 return err; 2315 } 2316 2317 /** 2318 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2319 * @c: UBIFS file-system description object 2320 * @key: key to add 2321 * @old_lnum: LEB number of old node 2322 * @old_offs: old node offset 2323 * @lnum: LEB number of node 2324 * @offs: node offset 2325 * @len: node length 2326 * 2327 * This function replaces a node with key @key in the TNC only if the old node 2328 * is found. This function is called by garbage collection when node are moved. 2329 * Returns %0 on success or negative error code on failure. 2330 */ 2331 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2332 int old_lnum, int old_offs, int lnum, int offs, int len) 2333 { 2334 int found, n, err = 0; 2335 struct ubifs_znode *znode; 2336 2337 mutex_lock(&c->tnc_mutex); 2338 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2339 old_offs, lnum, offs, len); 2340 found = lookup_level0_dirty(c, key, &znode, &n); 2341 if (found < 0) { 2342 err = found; 2343 goto out_unlock; 2344 } 2345 2346 if (found == 1) { 2347 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2348 2349 found = 0; 2350 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2351 lnc_free(zbr); 2352 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2353 if (err) 2354 goto out_unlock; 2355 zbr->lnum = lnum; 2356 zbr->offs = offs; 2357 zbr->len = len; 2358 found = 1; 2359 } else if (is_hash_key(c, key)) { 2360 found = resolve_collision_directly(c, key, &znode, &n, 2361 old_lnum, old_offs); 2362 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2363 found, znode, n, old_lnum, old_offs); 2364 if (found < 0) { 2365 err = found; 2366 goto out_unlock; 2367 } 2368 2369 if (found) { 2370 /* Ensure the znode is dirtied */ 2371 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2372 znode = dirty_cow_bottom_up(c, znode); 2373 if (IS_ERR(znode)) { 2374 err = PTR_ERR(znode); 2375 goto out_unlock; 2376 } 2377 } 2378 zbr = &znode->zbranch[n]; 2379 lnc_free(zbr); 2380 err = ubifs_add_dirt(c, zbr->lnum, 2381 zbr->len); 2382 if (err) 2383 goto out_unlock; 2384 zbr->lnum = lnum; 2385 zbr->offs = offs; 2386 zbr->len = len; 2387 } 2388 } 2389 } 2390 2391 if (!found) 2392 err = ubifs_add_dirt(c, lnum, len); 2393 2394 if (!err) 2395 err = dbg_check_tnc(c, 0); 2396 2397 out_unlock: 2398 mutex_unlock(&c->tnc_mutex); 2399 return err; 2400 } 2401 2402 /** 2403 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2404 * @c: UBIFS file-system description object 2405 * @key: key to add 2406 * @lnum: LEB number of node 2407 * @offs: node offset 2408 * @len: node length 2409 * @hash: The hash over the node 2410 * @nm: node name 2411 * 2412 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2413 * may have collisions, like directory entry keys. 2414 */ 2415 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2416 int lnum, int offs, int len, const u8 *hash, 2417 const struct fscrypt_name *nm) 2418 { 2419 int found, n, err = 0; 2420 struct ubifs_znode *znode; 2421 2422 mutex_lock(&c->tnc_mutex); 2423 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2424 found = lookup_level0_dirty(c, key, &znode, &n); 2425 if (found < 0) { 2426 err = found; 2427 goto out_unlock; 2428 } 2429 2430 if (found == 1) { 2431 if (c->replaying) 2432 found = fallible_resolve_collision(c, key, &znode, &n, 2433 nm, 1); 2434 else 2435 found = resolve_collision(c, key, &znode, &n, nm); 2436 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2437 if (found < 0) { 2438 err = found; 2439 goto out_unlock; 2440 } 2441 2442 /* Ensure the znode is dirtied */ 2443 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2444 znode = dirty_cow_bottom_up(c, znode); 2445 if (IS_ERR(znode)) { 2446 err = PTR_ERR(znode); 2447 goto out_unlock; 2448 } 2449 } 2450 2451 if (found == 1) { 2452 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2453 2454 lnc_free(zbr); 2455 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2456 zbr->lnum = lnum; 2457 zbr->offs = offs; 2458 zbr->len = len; 2459 ubifs_copy_hash(c, hash, zbr->hash); 2460 goto out_unlock; 2461 } 2462 } 2463 2464 if (!found) { 2465 struct ubifs_zbranch zbr; 2466 2467 zbr.znode = NULL; 2468 zbr.lnum = lnum; 2469 zbr.offs = offs; 2470 zbr.len = len; 2471 ubifs_copy_hash(c, hash, zbr.hash); 2472 key_copy(c, key, &zbr.key); 2473 err = tnc_insert(c, znode, &zbr, n + 1); 2474 if (err) 2475 goto out_unlock; 2476 if (c->replaying) { 2477 /* 2478 * We did not find it in the index so there may be a 2479 * dangling branch still in the index. So we remove it 2480 * by passing 'ubifs_tnc_remove_nm()' the same key but 2481 * an unmatchable name. 2482 */ 2483 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2484 2485 err = dbg_check_tnc(c, 0); 2486 mutex_unlock(&c->tnc_mutex); 2487 if (err) 2488 return err; 2489 return ubifs_tnc_remove_nm(c, key, &noname); 2490 } 2491 } 2492 2493 out_unlock: 2494 if (!err) 2495 err = dbg_check_tnc(c, 0); 2496 mutex_unlock(&c->tnc_mutex); 2497 return err; 2498 } 2499 2500 /** 2501 * tnc_delete - delete a znode form TNC. 2502 * @c: UBIFS file-system description object 2503 * @znode: znode to delete from 2504 * @n: zbranch slot number to delete 2505 * 2506 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2507 * case of success and a negative error code in case of failure. 2508 */ 2509 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2510 { 2511 struct ubifs_zbranch *zbr; 2512 struct ubifs_znode *zp; 2513 int i, err; 2514 2515 /* Delete without merge for now */ 2516 ubifs_assert(c, znode->level == 0); 2517 ubifs_assert(c, n >= 0 && n < c->fanout); 2518 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2519 2520 zbr = &znode->zbranch[n]; 2521 lnc_free(zbr); 2522 2523 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2524 if (err) { 2525 ubifs_dump_znode(c, znode); 2526 return err; 2527 } 2528 2529 /* We do not "gap" zbranch slots */ 2530 for (i = n; i < znode->child_cnt - 1; i++) 2531 znode->zbranch[i] = znode->zbranch[i + 1]; 2532 znode->child_cnt -= 1; 2533 2534 if (znode->child_cnt > 0) 2535 return 0; 2536 2537 /* 2538 * This was the last zbranch, we have to delete this znode from the 2539 * parent. 2540 */ 2541 2542 do { 2543 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 2544 ubifs_assert(c, ubifs_zn_dirty(znode)); 2545 2546 zp = znode->parent; 2547 n = znode->iip; 2548 2549 atomic_long_dec(&c->dirty_zn_cnt); 2550 2551 err = insert_old_idx_znode(c, znode); 2552 if (err) 2553 return err; 2554 2555 if (znode->cnext) { 2556 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2557 atomic_long_inc(&c->clean_zn_cnt); 2558 atomic_long_inc(&ubifs_clean_zn_cnt); 2559 } else 2560 kfree(znode); 2561 znode = zp; 2562 } while (znode->child_cnt == 1); /* while removing last child */ 2563 2564 /* Remove from znode, entry n - 1 */ 2565 znode->child_cnt -= 1; 2566 ubifs_assert(c, znode->level != 0); 2567 for (i = n; i < znode->child_cnt; i++) { 2568 znode->zbranch[i] = znode->zbranch[i + 1]; 2569 if (znode->zbranch[i].znode) 2570 znode->zbranch[i].znode->iip = i; 2571 } 2572 2573 /* 2574 * If this is the root and it has only 1 child then 2575 * collapse the tree. 2576 */ 2577 if (!znode->parent) { 2578 while (znode->child_cnt == 1 && znode->level != 0) { 2579 zp = znode; 2580 zbr = &znode->zbranch[0]; 2581 znode = get_znode(c, znode, 0); 2582 if (IS_ERR(znode)) 2583 return PTR_ERR(znode); 2584 znode = dirty_cow_znode(c, zbr); 2585 if (IS_ERR(znode)) 2586 return PTR_ERR(znode); 2587 znode->parent = NULL; 2588 znode->iip = 0; 2589 if (c->zroot.len) { 2590 err = insert_old_idx(c, c->zroot.lnum, 2591 c->zroot.offs); 2592 if (err) 2593 return err; 2594 } 2595 c->zroot.lnum = zbr->lnum; 2596 c->zroot.offs = zbr->offs; 2597 c->zroot.len = zbr->len; 2598 c->zroot.znode = znode; 2599 ubifs_assert(c, !ubifs_zn_obsolete(zp)); 2600 ubifs_assert(c, ubifs_zn_dirty(zp)); 2601 atomic_long_dec(&c->dirty_zn_cnt); 2602 2603 if (zp->cnext) { 2604 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2605 atomic_long_inc(&c->clean_zn_cnt); 2606 atomic_long_inc(&ubifs_clean_zn_cnt); 2607 } else 2608 kfree(zp); 2609 } 2610 } 2611 2612 return 0; 2613 } 2614 2615 /** 2616 * ubifs_tnc_remove - remove an index entry of a node. 2617 * @c: UBIFS file-system description object 2618 * @key: key of node 2619 * 2620 * Returns %0 on success or negative error code on failure. 2621 */ 2622 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2623 { 2624 int found, n, err = 0; 2625 struct ubifs_znode *znode; 2626 2627 mutex_lock(&c->tnc_mutex); 2628 dbg_tnck(key, "key "); 2629 found = lookup_level0_dirty(c, key, &znode, &n); 2630 if (found < 0) { 2631 err = found; 2632 goto out_unlock; 2633 } 2634 if (found == 1) 2635 err = tnc_delete(c, znode, n); 2636 if (!err) 2637 err = dbg_check_tnc(c, 0); 2638 2639 out_unlock: 2640 mutex_unlock(&c->tnc_mutex); 2641 return err; 2642 } 2643 2644 /** 2645 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2646 * @c: UBIFS file-system description object 2647 * @key: key of node 2648 * @nm: directory entry name 2649 * 2650 * Returns %0 on success or negative error code on failure. 2651 */ 2652 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2653 const struct fscrypt_name *nm) 2654 { 2655 int n, err; 2656 struct ubifs_znode *znode; 2657 2658 mutex_lock(&c->tnc_mutex); 2659 dbg_tnck(key, "key "); 2660 err = lookup_level0_dirty(c, key, &znode, &n); 2661 if (err < 0) 2662 goto out_unlock; 2663 2664 if (err) { 2665 if (c->replaying) 2666 err = fallible_resolve_collision(c, key, &znode, &n, 2667 nm, 0); 2668 else 2669 err = resolve_collision(c, key, &znode, &n, nm); 2670 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2671 if (err < 0) 2672 goto out_unlock; 2673 if (err) { 2674 /* Ensure the znode is dirtied */ 2675 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2676 znode = dirty_cow_bottom_up(c, znode); 2677 if (IS_ERR(znode)) { 2678 err = PTR_ERR(znode); 2679 goto out_unlock; 2680 } 2681 } 2682 err = tnc_delete(c, znode, n); 2683 } 2684 } 2685 2686 out_unlock: 2687 if (!err) 2688 err = dbg_check_tnc(c, 0); 2689 mutex_unlock(&c->tnc_mutex); 2690 return err; 2691 } 2692 2693 /** 2694 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2695 * @c: UBIFS file-system description object 2696 * @key: key of node 2697 * @cookie: node cookie for collision resolution 2698 * 2699 * Returns %0 on success or negative error code on failure. 2700 */ 2701 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2702 uint32_t cookie) 2703 { 2704 int n, err; 2705 struct ubifs_znode *znode; 2706 struct ubifs_dent_node *dent; 2707 struct ubifs_zbranch *zbr; 2708 2709 if (!c->double_hash) 2710 return -EOPNOTSUPP; 2711 2712 mutex_lock(&c->tnc_mutex); 2713 err = lookup_level0_dirty(c, key, &znode, &n); 2714 if (err <= 0) 2715 goto out_unlock; 2716 2717 zbr = &znode->zbranch[n]; 2718 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2719 if (!dent) { 2720 err = -ENOMEM; 2721 goto out_unlock; 2722 } 2723 2724 err = tnc_read_hashed_node(c, zbr, dent); 2725 if (err) 2726 goto out_free; 2727 2728 /* If the cookie does not match, we're facing a hash collision. */ 2729 if (le32_to_cpu(dent->cookie) != cookie) { 2730 union ubifs_key start_key; 2731 2732 lowest_dent_key(c, &start_key, key_inum(c, key)); 2733 2734 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2735 if (unlikely(err < 0)) 2736 goto out_free; 2737 2738 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err); 2739 if (err) 2740 goto out_free; 2741 } 2742 2743 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2744 znode = dirty_cow_bottom_up(c, znode); 2745 if (IS_ERR(znode)) { 2746 err = PTR_ERR(znode); 2747 goto out_free; 2748 } 2749 } 2750 err = tnc_delete(c, znode, n); 2751 2752 out_free: 2753 kfree(dent); 2754 out_unlock: 2755 if (!err) 2756 err = dbg_check_tnc(c, 0); 2757 mutex_unlock(&c->tnc_mutex); 2758 return err; 2759 } 2760 2761 /** 2762 * key_in_range - determine if a key falls within a range of keys. 2763 * @c: UBIFS file-system description object 2764 * @key: key to check 2765 * @from_key: lowest key in range 2766 * @to_key: highest key in range 2767 * 2768 * This function returns %1 if the key is in range and %0 otherwise. 2769 */ 2770 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2771 union ubifs_key *from_key, union ubifs_key *to_key) 2772 { 2773 if (keys_cmp(c, key, from_key) < 0) 2774 return 0; 2775 if (keys_cmp(c, key, to_key) > 0) 2776 return 0; 2777 return 1; 2778 } 2779 2780 /** 2781 * ubifs_tnc_remove_range - remove index entries in range. 2782 * @c: UBIFS file-system description object 2783 * @from_key: lowest key to remove 2784 * @to_key: highest key to remove 2785 * 2786 * This function removes index entries starting at @from_key and ending at 2787 * @to_key. This function returns zero in case of success and a negative error 2788 * code in case of failure. 2789 */ 2790 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2791 union ubifs_key *to_key) 2792 { 2793 int i, n, k, err = 0; 2794 struct ubifs_znode *znode; 2795 union ubifs_key *key; 2796 2797 mutex_lock(&c->tnc_mutex); 2798 while (1) { 2799 /* Find first level 0 znode that contains keys to remove */ 2800 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2801 if (err < 0) 2802 goto out_unlock; 2803 2804 if (err) 2805 key = from_key; 2806 else { 2807 err = tnc_next(c, &znode, &n); 2808 if (err == -ENOENT) { 2809 err = 0; 2810 goto out_unlock; 2811 } 2812 if (err < 0) 2813 goto out_unlock; 2814 key = &znode->zbranch[n].key; 2815 if (!key_in_range(c, key, from_key, to_key)) { 2816 err = 0; 2817 goto out_unlock; 2818 } 2819 } 2820 2821 /* Ensure the znode is dirtied */ 2822 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2823 znode = dirty_cow_bottom_up(c, znode); 2824 if (IS_ERR(znode)) { 2825 err = PTR_ERR(znode); 2826 goto out_unlock; 2827 } 2828 } 2829 2830 /* Remove all keys in range except the first */ 2831 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2832 key = &znode->zbranch[i].key; 2833 if (!key_in_range(c, key, from_key, to_key)) 2834 break; 2835 lnc_free(&znode->zbranch[i]); 2836 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2837 znode->zbranch[i].len); 2838 if (err) { 2839 ubifs_dump_znode(c, znode); 2840 goto out_unlock; 2841 } 2842 dbg_tnck(key, "removing key "); 2843 } 2844 if (k) { 2845 for (i = n + 1 + k; i < znode->child_cnt; i++) 2846 znode->zbranch[i - k] = znode->zbranch[i]; 2847 znode->child_cnt -= k; 2848 } 2849 2850 /* Now delete the first */ 2851 err = tnc_delete(c, znode, n); 2852 if (err) 2853 goto out_unlock; 2854 } 2855 2856 out_unlock: 2857 if (!err) 2858 err = dbg_check_tnc(c, 0); 2859 mutex_unlock(&c->tnc_mutex); 2860 return err; 2861 } 2862 2863 /** 2864 * ubifs_tnc_remove_ino - remove an inode from TNC. 2865 * @c: UBIFS file-system description object 2866 * @inum: inode number to remove 2867 * 2868 * This function remove inode @inum and all the extended attributes associated 2869 * with the anode from TNC and returns zero in case of success or a negative 2870 * error code in case of failure. 2871 */ 2872 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2873 { 2874 union ubifs_key key1, key2; 2875 struct ubifs_dent_node *xent, *pxent = NULL; 2876 struct fscrypt_name nm = {0}; 2877 2878 dbg_tnc("ino %lu", (unsigned long)inum); 2879 2880 /* 2881 * Walk all extended attribute entries and remove them together with 2882 * corresponding extended attribute inodes. 2883 */ 2884 lowest_xent_key(c, &key1, inum); 2885 while (1) { 2886 ino_t xattr_inum; 2887 int err; 2888 2889 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2890 if (IS_ERR(xent)) { 2891 err = PTR_ERR(xent); 2892 if (err == -ENOENT) 2893 break; 2894 kfree(pxent); 2895 return err; 2896 } 2897 2898 xattr_inum = le64_to_cpu(xent->inum); 2899 dbg_tnc("xent '%s', ino %lu", xent->name, 2900 (unsigned long)xattr_inum); 2901 2902 ubifs_evict_xattr_inode(c, xattr_inum); 2903 2904 fname_name(&nm) = xent->name; 2905 fname_len(&nm) = le16_to_cpu(xent->nlen); 2906 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2907 if (err) { 2908 kfree(pxent); 2909 kfree(xent); 2910 return err; 2911 } 2912 2913 lowest_ino_key(c, &key1, xattr_inum); 2914 highest_ino_key(c, &key2, xattr_inum); 2915 err = ubifs_tnc_remove_range(c, &key1, &key2); 2916 if (err) { 2917 kfree(pxent); 2918 kfree(xent); 2919 return err; 2920 } 2921 2922 kfree(pxent); 2923 pxent = xent; 2924 key_read(c, &xent->key, &key1); 2925 } 2926 2927 kfree(pxent); 2928 lowest_ino_key(c, &key1, inum); 2929 highest_ino_key(c, &key2, inum); 2930 2931 return ubifs_tnc_remove_range(c, &key1, &key2); 2932 } 2933 2934 /** 2935 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2936 * @c: UBIFS file-system description object 2937 * @key: key of last entry 2938 * @nm: name of last entry found or %NULL 2939 * 2940 * This function finds and reads the next directory or extended attribute entry 2941 * after the given key (@key) if there is one. @nm is used to resolve 2942 * collisions. 2943 * 2944 * If the name of the current entry is not known and only the key is known, 2945 * @nm->name has to be %NULL. In this case the semantics of this function is a 2946 * little bit different and it returns the entry corresponding to this key, not 2947 * the next one. If the key was not found, the closest "right" entry is 2948 * returned. 2949 * 2950 * If the fist entry has to be found, @key has to contain the lowest possible 2951 * key value for this inode and @name has to be %NULL. 2952 * 2953 * This function returns the found directory or extended attribute entry node 2954 * in case of success, %-ENOENT is returned if no entry was found, and a 2955 * negative error code is returned in case of failure. 2956 */ 2957 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2958 union ubifs_key *key, 2959 const struct fscrypt_name *nm) 2960 { 2961 int n, err, type = key_type(c, key); 2962 struct ubifs_znode *znode; 2963 struct ubifs_dent_node *dent; 2964 struct ubifs_zbranch *zbr; 2965 union ubifs_key *dkey; 2966 2967 dbg_tnck(key, "key "); 2968 ubifs_assert(c, is_hash_key(c, key)); 2969 2970 mutex_lock(&c->tnc_mutex); 2971 err = ubifs_lookup_level0(c, key, &znode, &n); 2972 if (unlikely(err < 0)) 2973 goto out_unlock; 2974 2975 if (fname_len(nm) > 0) { 2976 if (err) { 2977 /* Handle collisions */ 2978 if (c->replaying) 2979 err = fallible_resolve_collision(c, key, &znode, &n, 2980 nm, 0); 2981 else 2982 err = resolve_collision(c, key, &znode, &n, nm); 2983 dbg_tnc("rc returned %d, znode %p, n %d", 2984 err, znode, n); 2985 if (unlikely(err < 0)) 2986 goto out_unlock; 2987 } 2988 2989 /* Now find next entry */ 2990 err = tnc_next(c, &znode, &n); 2991 if (unlikely(err)) 2992 goto out_unlock; 2993 } else { 2994 /* 2995 * The full name of the entry was not given, in which case the 2996 * behavior of this function is a little different and it 2997 * returns current entry, not the next one. 2998 */ 2999 if (!err) { 3000 /* 3001 * However, the given key does not exist in the TNC 3002 * tree and @znode/@n variables contain the closest 3003 * "preceding" element. Switch to the next one. 3004 */ 3005 err = tnc_next(c, &znode, &n); 3006 if (err) 3007 goto out_unlock; 3008 } 3009 } 3010 3011 zbr = &znode->zbranch[n]; 3012 dent = kmalloc(zbr->len, GFP_NOFS); 3013 if (unlikely(!dent)) { 3014 err = -ENOMEM; 3015 goto out_unlock; 3016 } 3017 3018 /* 3019 * The above 'tnc_next()' call could lead us to the next inode, check 3020 * this. 3021 */ 3022 dkey = &zbr->key; 3023 if (key_inum(c, dkey) != key_inum(c, key) || 3024 key_type(c, dkey) != type) { 3025 err = -ENOENT; 3026 goto out_free; 3027 } 3028 3029 err = tnc_read_hashed_node(c, zbr, dent); 3030 if (unlikely(err)) 3031 goto out_free; 3032 3033 mutex_unlock(&c->tnc_mutex); 3034 return dent; 3035 3036 out_free: 3037 kfree(dent); 3038 out_unlock: 3039 mutex_unlock(&c->tnc_mutex); 3040 return ERR_PTR(err); 3041 } 3042 3043 /** 3044 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3045 * @c: UBIFS file-system description object 3046 * 3047 * Destroy left-over obsolete znodes from a failed commit. 3048 */ 3049 static void tnc_destroy_cnext(struct ubifs_info *c) 3050 { 3051 struct ubifs_znode *cnext; 3052 3053 if (!c->cnext) 3054 return; 3055 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); 3056 cnext = c->cnext; 3057 do { 3058 struct ubifs_znode *znode = cnext; 3059 3060 cnext = cnext->cnext; 3061 if (ubifs_zn_obsolete(znode)) 3062 kfree(znode); 3063 else if (!ubifs_zn_cow(znode)) { 3064 /* 3065 * Don't forget to update clean znode count after 3066 * committing failed, because ubifs will check this 3067 * count while closing tnc. Non-obsolete znode could 3068 * be re-dirtied during committing process, so dirty 3069 * flag is untrustable. The flag 'COW_ZNODE' is set 3070 * for each dirty znode before committing, and it is 3071 * cleared as long as the znode become clean, so we 3072 * can statistic clean znode count according to this 3073 * flag. 3074 */ 3075 atomic_long_inc(&c->clean_zn_cnt); 3076 atomic_long_inc(&ubifs_clean_zn_cnt); 3077 } 3078 } while (cnext && cnext != c->cnext); 3079 } 3080 3081 /** 3082 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3083 * @c: UBIFS file-system description object 3084 */ 3085 void ubifs_tnc_close(struct ubifs_info *c) 3086 { 3087 tnc_destroy_cnext(c); 3088 if (c->zroot.znode) { 3089 long n, freed; 3090 3091 n = atomic_long_read(&c->clean_zn_cnt); 3092 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 3093 ubifs_assert(c, freed == n); 3094 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3095 } 3096 kfree(c->gap_lebs); 3097 kfree(c->ilebs); 3098 destroy_old_idx(c); 3099 } 3100 3101 /** 3102 * left_znode - get the znode to the left. 3103 * @c: UBIFS file-system description object 3104 * @znode: znode 3105 * 3106 * This function returns a pointer to the znode to the left of @znode or NULL if 3107 * there is not one. A negative error code is returned on failure. 3108 */ 3109 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3110 struct ubifs_znode *znode) 3111 { 3112 int level = znode->level; 3113 3114 while (1) { 3115 int n = znode->iip - 1; 3116 3117 /* Go up until we can go left */ 3118 znode = znode->parent; 3119 if (!znode) 3120 return NULL; 3121 if (n >= 0) { 3122 /* Now go down the rightmost branch to 'level' */ 3123 znode = get_znode(c, znode, n); 3124 if (IS_ERR(znode)) 3125 return znode; 3126 while (znode->level != level) { 3127 n = znode->child_cnt - 1; 3128 znode = get_znode(c, znode, n); 3129 if (IS_ERR(znode)) 3130 return znode; 3131 } 3132 break; 3133 } 3134 } 3135 return znode; 3136 } 3137 3138 /** 3139 * right_znode - get the znode to the right. 3140 * @c: UBIFS file-system description object 3141 * @znode: znode 3142 * 3143 * This function returns a pointer to the znode to the right of @znode or NULL 3144 * if there is not one. A negative error code is returned on failure. 3145 */ 3146 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3147 struct ubifs_znode *znode) 3148 { 3149 int level = znode->level; 3150 3151 while (1) { 3152 int n = znode->iip + 1; 3153 3154 /* Go up until we can go right */ 3155 znode = znode->parent; 3156 if (!znode) 3157 return NULL; 3158 if (n < znode->child_cnt) { 3159 /* Now go down the leftmost branch to 'level' */ 3160 znode = get_znode(c, znode, n); 3161 if (IS_ERR(znode)) 3162 return znode; 3163 while (znode->level != level) { 3164 znode = get_znode(c, znode, 0); 3165 if (IS_ERR(znode)) 3166 return znode; 3167 } 3168 break; 3169 } 3170 } 3171 return znode; 3172 } 3173 3174 /** 3175 * lookup_znode - find a particular indexing node from TNC. 3176 * @c: UBIFS file-system description object 3177 * @key: index node key to lookup 3178 * @level: index node level 3179 * @lnum: index node LEB number 3180 * @offs: index node offset 3181 * 3182 * This function searches an indexing node by its first key @key and its 3183 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3184 * nodes it traverses to TNC. This function is called for indexing nodes which 3185 * were found on the media by scanning, for example when garbage-collecting or 3186 * when doing in-the-gaps commit. This means that the indexing node which is 3187 * looked for does not have to have exactly the same leftmost key @key, because 3188 * the leftmost key may have been changed, in which case TNC will contain a 3189 * dirty znode which still refers the same @lnum:@offs. This function is clever 3190 * enough to recognize such indexing nodes. 3191 * 3192 * Note, if a znode was deleted or changed too much, then this function will 3193 * not find it. For situations like this UBIFS has the old index RB-tree 3194 * (indexed by @lnum:@offs). 3195 * 3196 * This function returns a pointer to the znode found or %NULL if it is not 3197 * found. A negative error code is returned on failure. 3198 */ 3199 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3200 union ubifs_key *key, int level, 3201 int lnum, int offs) 3202 { 3203 struct ubifs_znode *znode, *zn; 3204 int n, nn; 3205 3206 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 3207 3208 /* 3209 * The arguments have probably been read off flash, so don't assume 3210 * they are valid. 3211 */ 3212 if (level < 0) 3213 return ERR_PTR(-EINVAL); 3214 3215 /* Get the root znode */ 3216 znode = c->zroot.znode; 3217 if (!znode) { 3218 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3219 if (IS_ERR(znode)) 3220 return znode; 3221 } 3222 /* Check if it is the one we are looking for */ 3223 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3224 return znode; 3225 /* Descend to the parent level i.e. (level + 1) */ 3226 if (level >= znode->level) 3227 return NULL; 3228 while (1) { 3229 ubifs_search_zbranch(c, znode, key, &n); 3230 if (n < 0) { 3231 /* 3232 * We reached a znode where the leftmost key is greater 3233 * than the key we are searching for. This is the same 3234 * situation as the one described in a huge comment at 3235 * the end of the 'ubifs_lookup_level0()' function. And 3236 * for exactly the same reasons we have to try to look 3237 * left before giving up. 3238 */ 3239 znode = left_znode(c, znode); 3240 if (!znode) 3241 return NULL; 3242 if (IS_ERR(znode)) 3243 return znode; 3244 ubifs_search_zbranch(c, znode, key, &n); 3245 ubifs_assert(c, n >= 0); 3246 } 3247 if (znode->level == level + 1) 3248 break; 3249 znode = get_znode(c, znode, n); 3250 if (IS_ERR(znode)) 3251 return znode; 3252 } 3253 /* Check if the child is the one we are looking for */ 3254 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3255 return get_znode(c, znode, n); 3256 /* If the key is unique, there is nowhere else to look */ 3257 if (!is_hash_key(c, key)) 3258 return NULL; 3259 /* 3260 * The key is not unique and so may be also in the znodes to either 3261 * side. 3262 */ 3263 zn = znode; 3264 nn = n; 3265 /* Look left */ 3266 while (1) { 3267 /* Move one branch to the left */ 3268 if (n) 3269 n -= 1; 3270 else { 3271 znode = left_znode(c, znode); 3272 if (!znode) 3273 break; 3274 if (IS_ERR(znode)) 3275 return znode; 3276 n = znode->child_cnt - 1; 3277 } 3278 /* Check it */ 3279 if (znode->zbranch[n].lnum == lnum && 3280 znode->zbranch[n].offs == offs) 3281 return get_znode(c, znode, n); 3282 /* Stop if the key is less than the one we are looking for */ 3283 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3284 break; 3285 } 3286 /* Back to the middle */ 3287 znode = zn; 3288 n = nn; 3289 /* Look right */ 3290 while (1) { 3291 /* Move one branch to the right */ 3292 if (++n >= znode->child_cnt) { 3293 znode = right_znode(c, znode); 3294 if (!znode) 3295 break; 3296 if (IS_ERR(znode)) 3297 return znode; 3298 n = 0; 3299 } 3300 /* Check it */ 3301 if (znode->zbranch[n].lnum == lnum && 3302 znode->zbranch[n].offs == offs) 3303 return get_znode(c, znode, n); 3304 /* Stop if the key is greater than the one we are looking for */ 3305 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3306 break; 3307 } 3308 return NULL; 3309 } 3310 3311 /** 3312 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3313 * @c: UBIFS file-system description object 3314 * @key: key of index node 3315 * @level: index node level 3316 * @lnum: LEB number of index node 3317 * @offs: offset of index node 3318 * 3319 * This function returns %0 if the index node is not referred to in the TNC, %1 3320 * if the index node is referred to in the TNC and the corresponding znode is 3321 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3322 * znode is clean, and a negative error code in case of failure. 3323 * 3324 * Note, the @key argument has to be the key of the first child. Also note, 3325 * this function relies on the fact that 0:0 is never a valid LEB number and 3326 * offset for a main-area node. 3327 */ 3328 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3329 int lnum, int offs) 3330 { 3331 struct ubifs_znode *znode; 3332 3333 znode = lookup_znode(c, key, level, lnum, offs); 3334 if (!znode) 3335 return 0; 3336 if (IS_ERR(znode)) 3337 return PTR_ERR(znode); 3338 3339 return ubifs_zn_dirty(znode) ? 1 : 2; 3340 } 3341 3342 /** 3343 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3344 * @c: UBIFS file-system description object 3345 * @key: node key 3346 * @lnum: node LEB number 3347 * @offs: node offset 3348 * 3349 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3350 * not, and a negative error code in case of failure. 3351 * 3352 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3353 * and offset for a main-area node. 3354 */ 3355 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3356 int lnum, int offs) 3357 { 3358 struct ubifs_zbranch *zbr; 3359 struct ubifs_znode *znode, *zn; 3360 int n, found, err, nn; 3361 const int unique = !is_hash_key(c, key); 3362 3363 found = ubifs_lookup_level0(c, key, &znode, &n); 3364 if (found < 0) 3365 return found; /* Error code */ 3366 if (!found) 3367 return 0; 3368 zbr = &znode->zbranch[n]; 3369 if (lnum == zbr->lnum && offs == zbr->offs) 3370 return 1; /* Found it */ 3371 if (unique) 3372 return 0; 3373 /* 3374 * Because the key is not unique, we have to look left 3375 * and right as well 3376 */ 3377 zn = znode; 3378 nn = n; 3379 /* Look left */ 3380 while (1) { 3381 err = tnc_prev(c, &znode, &n); 3382 if (err == -ENOENT) 3383 break; 3384 if (err) 3385 return err; 3386 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3387 break; 3388 zbr = &znode->zbranch[n]; 3389 if (lnum == zbr->lnum && offs == zbr->offs) 3390 return 1; /* Found it */ 3391 } 3392 /* Look right */ 3393 znode = zn; 3394 n = nn; 3395 while (1) { 3396 err = tnc_next(c, &znode, &n); 3397 if (err) { 3398 if (err == -ENOENT) 3399 return 0; 3400 return err; 3401 } 3402 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3403 break; 3404 zbr = &znode->zbranch[n]; 3405 if (lnum == zbr->lnum && offs == zbr->offs) 3406 return 1; /* Found it */ 3407 } 3408 return 0; 3409 } 3410 3411 /** 3412 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3413 * @c: UBIFS file-system description object 3414 * @key: node key 3415 * @level: index node level (if it is an index node) 3416 * @lnum: node LEB number 3417 * @offs: node offset 3418 * @is_idx: non-zero if the node is an index node 3419 * 3420 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3421 * negative error code in case of failure. For index nodes, @key has to be the 3422 * key of the first child. An index node is considered to be in the TNC only if 3423 * the corresponding znode is clean or has not been loaded. 3424 */ 3425 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3426 int lnum, int offs, int is_idx) 3427 { 3428 int err; 3429 3430 mutex_lock(&c->tnc_mutex); 3431 if (is_idx) { 3432 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3433 if (err < 0) 3434 goto out_unlock; 3435 if (err == 1) 3436 /* The index node was found but it was dirty */ 3437 err = 0; 3438 else if (err == 2) 3439 /* The index node was found and it was clean */ 3440 err = 1; 3441 else 3442 BUG_ON(err != 0); 3443 } else 3444 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3445 3446 out_unlock: 3447 mutex_unlock(&c->tnc_mutex); 3448 return err; 3449 } 3450 3451 /** 3452 * ubifs_dirty_idx_node - dirty an index node. 3453 * @c: UBIFS file-system description object 3454 * @key: index node key 3455 * @level: index node level 3456 * @lnum: index node LEB number 3457 * @offs: index node offset 3458 * 3459 * This function loads and dirties an index node so that it can be garbage 3460 * collected. The @key argument has to be the key of the first child. This 3461 * function relies on the fact that 0:0 is never a valid LEB number and offset 3462 * for a main-area node. Returns %0 on success and a negative error code on 3463 * failure. 3464 */ 3465 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3466 int lnum, int offs) 3467 { 3468 struct ubifs_znode *znode; 3469 int err = 0; 3470 3471 mutex_lock(&c->tnc_mutex); 3472 znode = lookup_znode(c, key, level, lnum, offs); 3473 if (!znode) 3474 goto out_unlock; 3475 if (IS_ERR(znode)) { 3476 err = PTR_ERR(znode); 3477 goto out_unlock; 3478 } 3479 znode = dirty_cow_bottom_up(c, znode); 3480 if (IS_ERR(znode)) { 3481 err = PTR_ERR(znode); 3482 goto out_unlock; 3483 } 3484 3485 out_unlock: 3486 mutex_unlock(&c->tnc_mutex); 3487 return err; 3488 } 3489 3490 /** 3491 * dbg_check_inode_size - check if inode size is correct. 3492 * @c: UBIFS file-system description object 3493 * @inode: inode to check 3494 * @size: inode size 3495 * 3496 * This function makes sure that the inode size (@size) is correct and it does 3497 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3498 * if it has a data page beyond @size, and other negative error code in case of 3499 * other errors. 3500 */ 3501 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3502 loff_t size) 3503 { 3504 int err, n; 3505 union ubifs_key from_key, to_key, *key; 3506 struct ubifs_znode *znode; 3507 unsigned int block; 3508 3509 if (!S_ISREG(inode->i_mode)) 3510 return 0; 3511 if (!dbg_is_chk_gen(c)) 3512 return 0; 3513 3514 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3515 data_key_init(c, &from_key, inode->i_ino, block); 3516 highest_data_key(c, &to_key, inode->i_ino); 3517 3518 mutex_lock(&c->tnc_mutex); 3519 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3520 if (err < 0) 3521 goto out_unlock; 3522 3523 if (err) { 3524 key = &from_key; 3525 goto out_dump; 3526 } 3527 3528 err = tnc_next(c, &znode, &n); 3529 if (err == -ENOENT) { 3530 err = 0; 3531 goto out_unlock; 3532 } 3533 if (err < 0) 3534 goto out_unlock; 3535 3536 ubifs_assert(c, err == 0); 3537 key = &znode->zbranch[n].key; 3538 if (!key_in_range(c, key, &from_key, &to_key)) 3539 goto out_unlock; 3540 3541 out_dump: 3542 block = key_block(c, key); 3543 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3544 (unsigned long)inode->i_ino, size, 3545 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3546 mutex_unlock(&c->tnc_mutex); 3547 ubifs_dump_inode(c, inode); 3548 dump_stack(); 3549 return -EINVAL; 3550 3551 out_unlock: 3552 mutex_unlock(&c->tnc_mutex); 3553 return err; 3554 } 3555