xref: /openbmc/linux/fs/ubifs/tnc.c (revision 1bffcea4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13  * the UBIFS B-tree.
14  *
15  * At the moment the locking rules of the TNC tree are quite simple and
16  * straightforward. We just have a mutex and lock it when we traverse the
17  * tree. If a znode is not in memory, we read it from flash while still having
18  * the mutex locked.
19  */
20 
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
23 #include "ubifs.h"
24 
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 			 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 			      struct ubifs_zbranch *zbr, void *node);
29 
30 /*
31  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32  * @NAME_LESS: name corresponding to the first argument is less than second
33  * @NAME_MATCHES: names match
34  * @NAME_GREATER: name corresponding to the second argument is greater than
35  *                first
36  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
37  *
38  * These constants were introduce to improve readability.
39  */
40 enum {
41 	NAME_LESS    = 0,
42 	NAME_MATCHES = 1,
43 	NAME_GREATER = 2,
44 	NOT_ON_MEDIA = 3,
45 };
46 
47 /**
48  * insert_old_idx - record an index node obsoleted since the last commit start.
49  * @c: UBIFS file-system description object
50  * @lnum: LEB number of obsoleted index node
51  * @offs: offset of obsoleted index node
52  *
53  * Returns %0 on success, and a negative error code on failure.
54  *
55  * For recovery, there must always be a complete intact version of the index on
56  * flash at all times. That is called the "old index". It is the index as at the
57  * time of the last successful commit. Many of the index nodes in the old index
58  * may be dirty, but they must not be erased until the next successful commit
59  * (at which point that index becomes the old index).
60  *
61  * That means that the garbage collection and the in-the-gaps method of
62  * committing must be able to determine if an index node is in the old index.
63  * Most of the old index nodes can be found by looking up the TNC using the
64  * 'lookup_znode()' function. However, some of the old index nodes may have
65  * been deleted from the current index or may have been changed so much that
66  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67  * That is what this function does. The RB-tree is ordered by LEB number and
68  * offset because they uniquely identify the old index node.
69  */
70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
71 {
72 	struct ubifs_old_idx *old_idx, *o;
73 	struct rb_node **p, *parent = NULL;
74 
75 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
76 	if (unlikely(!old_idx))
77 		return -ENOMEM;
78 	old_idx->lnum = lnum;
79 	old_idx->offs = offs;
80 
81 	p = &c->old_idx.rb_node;
82 	while (*p) {
83 		parent = *p;
84 		o = rb_entry(parent, struct ubifs_old_idx, rb);
85 		if (lnum < o->lnum)
86 			p = &(*p)->rb_left;
87 		else if (lnum > o->lnum)
88 			p = &(*p)->rb_right;
89 		else if (offs < o->offs)
90 			p = &(*p)->rb_left;
91 		else if (offs > o->offs)
92 			p = &(*p)->rb_right;
93 		else {
94 			ubifs_err(c, "old idx added twice!");
95 			kfree(old_idx);
96 			return 0;
97 		}
98 	}
99 	rb_link_node(&old_idx->rb, parent, p);
100 	rb_insert_color(&old_idx->rb, &c->old_idx);
101 	return 0;
102 }
103 
104 /**
105  * insert_old_idx_znode - record a znode obsoleted since last commit start.
106  * @c: UBIFS file-system description object
107  * @znode: znode of obsoleted index node
108  *
109  * Returns %0 on success, and a negative error code on failure.
110  */
111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
112 {
113 	if (znode->parent) {
114 		struct ubifs_zbranch *zbr;
115 
116 		zbr = &znode->parent->zbranch[znode->iip];
117 		if (zbr->len)
118 			return insert_old_idx(c, zbr->lnum, zbr->offs);
119 	} else
120 		if (c->zroot.len)
121 			return insert_old_idx(c, c->zroot.lnum,
122 					      c->zroot.offs);
123 	return 0;
124 }
125 
126 /**
127  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128  * @c: UBIFS file-system description object
129  * @znode: znode of obsoleted index node
130  *
131  * Returns %0 on success, and a negative error code on failure.
132  */
133 static int ins_clr_old_idx_znode(struct ubifs_info *c,
134 				 struct ubifs_znode *znode)
135 {
136 	int err;
137 
138 	if (znode->parent) {
139 		struct ubifs_zbranch *zbr;
140 
141 		zbr = &znode->parent->zbranch[znode->iip];
142 		if (zbr->len) {
143 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
144 			if (err)
145 				return err;
146 			zbr->lnum = 0;
147 			zbr->offs = 0;
148 			zbr->len = 0;
149 		}
150 	} else
151 		if (c->zroot.len) {
152 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
153 			if (err)
154 				return err;
155 			c->zroot.lnum = 0;
156 			c->zroot.offs = 0;
157 			c->zroot.len = 0;
158 		}
159 	return 0;
160 }
161 
162 /**
163  * destroy_old_idx - destroy the old_idx RB-tree.
164  * @c: UBIFS file-system description object
165  *
166  * During start commit, the old_idx RB-tree is used to avoid overwriting index
167  * nodes that were in the index last commit but have since been deleted.  This
168  * is necessary for recovery i.e. the old index must be kept intact until the
169  * new index is successfully written.  The old-idx RB-tree is used for the
170  * in-the-gaps method of writing index nodes and is destroyed every commit.
171  */
172 void destroy_old_idx(struct ubifs_info *c)
173 {
174 	struct ubifs_old_idx *old_idx, *n;
175 
176 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
177 		kfree(old_idx);
178 
179 	c->old_idx = RB_ROOT;
180 }
181 
182 /**
183  * copy_znode - copy a dirty znode.
184  * @c: UBIFS file-system description object
185  * @znode: znode to copy
186  *
187  * A dirty znode being committed may not be changed, so it is copied.
188  */
189 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
190 				      struct ubifs_znode *znode)
191 {
192 	struct ubifs_znode *zn;
193 
194 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
195 	if (unlikely(!zn))
196 		return ERR_PTR(-ENOMEM);
197 
198 	zn->cnext = NULL;
199 	__set_bit(DIRTY_ZNODE, &zn->flags);
200 	__clear_bit(COW_ZNODE, &zn->flags);
201 
202 	ubifs_assert(c, !ubifs_zn_obsolete(znode));
203 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
204 
205 	if (znode->level != 0) {
206 		int i;
207 		const int n = zn->child_cnt;
208 
209 		/* The children now have new parent */
210 		for (i = 0; i < n; i++) {
211 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
212 
213 			if (zbr->znode)
214 				zbr->znode->parent = zn;
215 		}
216 	}
217 
218 	atomic_long_inc(&c->dirty_zn_cnt);
219 	return zn;
220 }
221 
222 /**
223  * add_idx_dirt - add dirt due to a dirty znode.
224  * @c: UBIFS file-system description object
225  * @lnum: LEB number of index node
226  * @dirt: size of index node
227  *
228  * This function updates lprops dirty space and the new size of the index.
229  */
230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
231 {
232 	c->calc_idx_sz -= ALIGN(dirt, 8);
233 	return ubifs_add_dirt(c, lnum, dirt);
234 }
235 
236 /**
237  * dirty_cow_znode - ensure a znode is not being committed.
238  * @c: UBIFS file-system description object
239  * @zbr: branch of znode to check
240  *
241  * Returns dirtied znode on success or negative error code on failure.
242  */
243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
244 					   struct ubifs_zbranch *zbr)
245 {
246 	struct ubifs_znode *znode = zbr->znode;
247 	struct ubifs_znode *zn;
248 	int err;
249 
250 	if (!ubifs_zn_cow(znode)) {
251 		/* znode is not being committed */
252 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
253 			atomic_long_inc(&c->dirty_zn_cnt);
254 			atomic_long_dec(&c->clean_zn_cnt);
255 			atomic_long_dec(&ubifs_clean_zn_cnt);
256 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
257 			if (unlikely(err))
258 				return ERR_PTR(err);
259 		}
260 		return znode;
261 	}
262 
263 	zn = copy_znode(c, znode);
264 	if (IS_ERR(zn))
265 		return zn;
266 
267 	if (zbr->len) {
268 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
269 		if (unlikely(err))
270 			/*
271 			 * Obsolete znodes will be freed by tnc_destroy_cnext()
272 			 * or free_obsolete_znodes(), copied up znodes should
273 			 * be added back to tnc and freed by
274 			 * ubifs_destroy_tnc_subtree().
275 			 */
276 			goto out;
277 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
278 	} else
279 		err = 0;
280 
281 out:
282 	zbr->znode = zn;
283 	zbr->lnum = 0;
284 	zbr->offs = 0;
285 	zbr->len = 0;
286 
287 	if (unlikely(err))
288 		return ERR_PTR(err);
289 	return zn;
290 }
291 
292 /**
293  * lnc_add - add a leaf node to the leaf node cache.
294  * @c: UBIFS file-system description object
295  * @zbr: zbranch of leaf node
296  * @node: leaf node
297  *
298  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
299  * purpose of the leaf node cache is to save re-reading the same leaf node over
300  * and over again. Most things are cached by VFS, however the file system must
301  * cache directory entries for readdir and for resolving hash collisions. The
302  * present implementation of the leaf node cache is extremely simple, and
303  * allows for error returns that are not used but that may be needed if a more
304  * complex implementation is created.
305  *
306  * Note, this function does not add the @node object to LNC directly, but
307  * allocates a copy of the object and adds the copy to LNC. The reason for this
308  * is that @node has been allocated outside of the TNC subsystem and will be
309  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
310  * may be changed at any time, e.g. freed by the shrinker.
311  */
312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
313 		   const void *node)
314 {
315 	int err;
316 	void *lnc_node;
317 	const struct ubifs_dent_node *dent = node;
318 
319 	ubifs_assert(c, !zbr->leaf);
320 	ubifs_assert(c, zbr->len != 0);
321 	ubifs_assert(c, is_hash_key(c, &zbr->key));
322 
323 	err = ubifs_validate_entry(c, dent);
324 	if (err) {
325 		dump_stack();
326 		ubifs_dump_node(c, dent, zbr->len);
327 		return err;
328 	}
329 
330 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
331 	if (!lnc_node)
332 		/* We don't have to have the cache, so no error */
333 		return 0;
334 
335 	zbr->leaf = lnc_node;
336 	return 0;
337 }
338 
339  /**
340  * lnc_add_directly - add a leaf node to the leaf-node-cache.
341  * @c: UBIFS file-system description object
342  * @zbr: zbranch of leaf node
343  * @node: leaf node
344  *
345  * This function is similar to 'lnc_add()', but it does not create a copy of
346  * @node but inserts @node to TNC directly.
347  */
348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
349 			    void *node)
350 {
351 	int err;
352 
353 	ubifs_assert(c, !zbr->leaf);
354 	ubifs_assert(c, zbr->len != 0);
355 
356 	err = ubifs_validate_entry(c, node);
357 	if (err) {
358 		dump_stack();
359 		ubifs_dump_node(c, node, zbr->len);
360 		return err;
361 	}
362 
363 	zbr->leaf = node;
364 	return 0;
365 }
366 
367 /**
368  * lnc_free - remove a leaf node from the leaf node cache.
369  * @zbr: zbranch of leaf node
370  */
371 static void lnc_free(struct ubifs_zbranch *zbr)
372 {
373 	if (!zbr->leaf)
374 		return;
375 	kfree(zbr->leaf);
376 	zbr->leaf = NULL;
377 }
378 
379 /**
380  * tnc_read_hashed_node - read a "hashed" leaf node.
381  * @c: UBIFS file-system description object
382  * @zbr: key and position of the node
383  * @node: node is returned here
384  *
385  * This function reads a "hashed" node defined by @zbr from the leaf node cache
386  * (in it is there) or from the hash media, in which case the node is also
387  * added to LNC. Returns zero in case of success or a negative error
388  * code in case of failure.
389  */
390 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
391 				void *node)
392 {
393 	int err;
394 
395 	ubifs_assert(c, is_hash_key(c, &zbr->key));
396 
397 	if (zbr->leaf) {
398 		/* Read from the leaf node cache */
399 		ubifs_assert(c, zbr->len != 0);
400 		memcpy(node, zbr->leaf, zbr->len);
401 		return 0;
402 	}
403 
404 	if (c->replaying) {
405 		err = fallible_read_node(c, &zbr->key, zbr, node);
406 		/*
407 		 * When the node was not found, return -ENOENT, 0 otherwise.
408 		 * Negative return codes stay as-is.
409 		 */
410 		if (err == 0)
411 			err = -ENOENT;
412 		else if (err == 1)
413 			err = 0;
414 	} else {
415 		err = ubifs_tnc_read_node(c, zbr, node);
416 	}
417 	if (err)
418 		return err;
419 
420 	/* Add the node to the leaf node cache */
421 	err = lnc_add(c, zbr, node);
422 	return err;
423 }
424 
425 /**
426  * try_read_node - read a node if it is a node.
427  * @c: UBIFS file-system description object
428  * @buf: buffer to read to
429  * @type: node type
430  * @zbr: the zbranch describing the node to read
431  *
432  * This function tries to read a node of known type and length, checks it and
433  * stores it in @buf. This function returns %1 if a node is present and %0 if
434  * a node is not present. A negative error code is returned for I/O errors.
435  * This function performs that same function as ubifs_read_node except that
436  * it does not require that there is actually a node present and instead
437  * the return code indicates if a node was read.
438  *
439  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
440  * is true (it is controlled by corresponding mount option). However, if
441  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
442  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
443  * because during mounting or re-mounting from R/O mode to R/W mode we may read
444  * journal nodes (when replying the journal or doing the recovery) and the
445  * journal nodes may potentially be corrupted, so checking is required.
446  */
447 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 			 struct ubifs_zbranch *zbr)
449 {
450 	int len = zbr->len;
451 	int lnum = zbr->lnum;
452 	int offs = zbr->offs;
453 	int err, node_len;
454 	struct ubifs_ch *ch = buf;
455 	uint32_t crc, node_crc;
456 
457 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
458 
459 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
460 	if (err) {
461 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
462 			  type, lnum, offs, err);
463 		return err;
464 	}
465 
466 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
467 		return 0;
468 
469 	if (ch->node_type != type)
470 		return 0;
471 
472 	node_len = le32_to_cpu(ch->len);
473 	if (node_len != len)
474 		return 0;
475 
476 	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
477 	    c->remounting_rw) {
478 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
479 		node_crc = le32_to_cpu(ch->crc);
480 		if (crc != node_crc)
481 			return 0;
482 	}
483 
484 	err = ubifs_node_check_hash(c, buf, zbr->hash);
485 	if (err) {
486 		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
487 		return 0;
488 	}
489 
490 	return 1;
491 }
492 
493 /**
494  * fallible_read_node - try to read a leaf node.
495  * @c: UBIFS file-system description object
496  * @key:  key of node to read
497  * @zbr:  position of node
498  * @node: node returned
499  *
500  * This function tries to read a node and returns %1 if the node is read, %0
501  * if the node is not present, and a negative error code in the case of error.
502  */
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 			      struct ubifs_zbranch *zbr, void *node)
505 {
506 	int ret;
507 
508 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
509 
510 	ret = try_read_node(c, node, key_type(c, key), zbr);
511 	if (ret == 1) {
512 		union ubifs_key node_key;
513 		struct ubifs_dent_node *dent = node;
514 
515 		/* All nodes have key in the same place */
516 		key_read(c, &dent->key, &node_key);
517 		if (keys_cmp(c, key, &node_key) != 0)
518 			ret = 0;
519 	}
520 	if (ret == 0 && c->replaying)
521 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
522 			zbr->lnum, zbr->offs, zbr->len);
523 	return ret;
524 }
525 
526 /**
527  * matches_name - determine if a direntry or xattr entry matches a given name.
528  * @c: UBIFS file-system description object
529  * @zbr: zbranch of dent
530  * @nm: name to match
531  *
532  * This function checks if xentry/direntry referred by zbranch @zbr matches name
533  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
534  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
535  * of failure, a negative error code is returned.
536  */
537 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
538 			const struct fscrypt_name *nm)
539 {
540 	struct ubifs_dent_node *dent;
541 	int nlen, err;
542 
543 	/* If possible, match against the dent in the leaf node cache */
544 	if (!zbr->leaf) {
545 		dent = kmalloc(zbr->len, GFP_NOFS);
546 		if (!dent)
547 			return -ENOMEM;
548 
549 		err = ubifs_tnc_read_node(c, zbr, dent);
550 		if (err)
551 			goto out_free;
552 
553 		/* Add the node to the leaf node cache */
554 		err = lnc_add_directly(c, zbr, dent);
555 		if (err)
556 			goto out_free;
557 	} else
558 		dent = zbr->leaf;
559 
560 	nlen = le16_to_cpu(dent->nlen);
561 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
562 	if (err == 0) {
563 		if (nlen == fname_len(nm))
564 			return NAME_MATCHES;
565 		else if (nlen < fname_len(nm))
566 			return NAME_LESS;
567 		else
568 			return NAME_GREATER;
569 	} else if (err < 0)
570 		return NAME_LESS;
571 	else
572 		return NAME_GREATER;
573 
574 out_free:
575 	kfree(dent);
576 	return err;
577 }
578 
579 /**
580  * get_znode - get a TNC znode that may not be loaded yet.
581  * @c: UBIFS file-system description object
582  * @znode: parent znode
583  * @n: znode branch slot number
584  *
585  * This function returns the znode or a negative error code.
586  */
587 static struct ubifs_znode *get_znode(struct ubifs_info *c,
588 				     struct ubifs_znode *znode, int n)
589 {
590 	struct ubifs_zbranch *zbr;
591 
592 	zbr = &znode->zbranch[n];
593 	if (zbr->znode)
594 		znode = zbr->znode;
595 	else
596 		znode = ubifs_load_znode(c, zbr, znode, n);
597 	return znode;
598 }
599 
600 /**
601  * tnc_next - find next TNC entry.
602  * @c: UBIFS file-system description object
603  * @zn: znode is passed and returned here
604  * @n: znode branch slot number is passed and returned here
605  *
606  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
607  * no next entry, or a negative error code otherwise.
608  */
609 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
610 {
611 	struct ubifs_znode *znode = *zn;
612 	int nn = *n;
613 
614 	nn += 1;
615 	if (nn < znode->child_cnt) {
616 		*n = nn;
617 		return 0;
618 	}
619 	while (1) {
620 		struct ubifs_znode *zp;
621 
622 		zp = znode->parent;
623 		if (!zp)
624 			return -ENOENT;
625 		nn = znode->iip + 1;
626 		znode = zp;
627 		if (nn < znode->child_cnt) {
628 			znode = get_znode(c, znode, nn);
629 			if (IS_ERR(znode))
630 				return PTR_ERR(znode);
631 			while (znode->level != 0) {
632 				znode = get_znode(c, znode, 0);
633 				if (IS_ERR(znode))
634 					return PTR_ERR(znode);
635 			}
636 			nn = 0;
637 			break;
638 		}
639 	}
640 	*zn = znode;
641 	*n = nn;
642 	return 0;
643 }
644 
645 /**
646  * tnc_prev - find previous TNC entry.
647  * @c: UBIFS file-system description object
648  * @zn: znode is returned here
649  * @n: znode branch slot number is passed and returned here
650  *
651  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
652  * there is no next entry, or a negative error code otherwise.
653  */
654 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
655 {
656 	struct ubifs_znode *znode = *zn;
657 	int nn = *n;
658 
659 	if (nn > 0) {
660 		*n = nn - 1;
661 		return 0;
662 	}
663 	while (1) {
664 		struct ubifs_znode *zp;
665 
666 		zp = znode->parent;
667 		if (!zp)
668 			return -ENOENT;
669 		nn = znode->iip - 1;
670 		znode = zp;
671 		if (nn >= 0) {
672 			znode = get_znode(c, znode, nn);
673 			if (IS_ERR(znode))
674 				return PTR_ERR(znode);
675 			while (znode->level != 0) {
676 				nn = znode->child_cnt - 1;
677 				znode = get_znode(c, znode, nn);
678 				if (IS_ERR(znode))
679 					return PTR_ERR(znode);
680 			}
681 			nn = znode->child_cnt - 1;
682 			break;
683 		}
684 	}
685 	*zn = znode;
686 	*n = nn;
687 	return 0;
688 }
689 
690 /**
691  * resolve_collision - resolve a collision.
692  * @c: UBIFS file-system description object
693  * @key: key of a directory or extended attribute entry
694  * @zn: znode is returned here
695  * @n: zbranch number is passed and returned here
696  * @nm: name of the entry
697  *
698  * This function is called for "hashed" keys to make sure that the found key
699  * really corresponds to the looked up node (directory or extended attribute
700  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
701  * %0 is returned if @nm is not found and @zn and @n are set to the previous
702  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
703  * This means that @n may be set to %-1 if the leftmost key in @zn is the
704  * previous one. A negative error code is returned on failures.
705  */
706 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
707 			     struct ubifs_znode **zn, int *n,
708 			     const struct fscrypt_name *nm)
709 {
710 	int err;
711 
712 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
713 	if (unlikely(err < 0))
714 		return err;
715 	if (err == NAME_MATCHES)
716 		return 1;
717 
718 	if (err == NAME_GREATER) {
719 		/* Look left */
720 		while (1) {
721 			err = tnc_prev(c, zn, n);
722 			if (err == -ENOENT) {
723 				ubifs_assert(c, *n == 0);
724 				*n = -1;
725 				return 0;
726 			}
727 			if (err < 0)
728 				return err;
729 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
730 				/*
731 				 * We have found the branch after which we would
732 				 * like to insert, but inserting in this znode
733 				 * may still be wrong. Consider the following 3
734 				 * znodes, in the case where we are resolving a
735 				 * collision with Key2.
736 				 *
737 				 *                  znode zp
738 				 *            ----------------------
739 				 * level 1     |  Key0  |  Key1  |
740 				 *            -----------------------
741 				 *                 |            |
742 				 *       znode za  |            |  znode zb
743 				 *          ------------      ------------
744 				 * level 0  |  Key0  |        |  Key2  |
745 				 *          ------------      ------------
746 				 *
747 				 * The lookup finds Key2 in znode zb. Lets say
748 				 * there is no match and the name is greater so
749 				 * we look left. When we find Key0, we end up
750 				 * here. If we return now, we will insert into
751 				 * znode za at slot n = 1.  But that is invalid
752 				 * according to the parent's keys.  Key2 must
753 				 * be inserted into znode zb.
754 				 *
755 				 * Note, this problem is not relevant for the
756 				 * case when we go right, because
757 				 * 'tnc_insert()' would correct the parent key.
758 				 */
759 				if (*n == (*zn)->child_cnt - 1) {
760 					err = tnc_next(c, zn, n);
761 					if (err) {
762 						/* Should be impossible */
763 						ubifs_assert(c, 0);
764 						if (err == -ENOENT)
765 							err = -EINVAL;
766 						return err;
767 					}
768 					ubifs_assert(c, *n == 0);
769 					*n = -1;
770 				}
771 				return 0;
772 			}
773 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
774 			if (err < 0)
775 				return err;
776 			if (err == NAME_LESS)
777 				return 0;
778 			if (err == NAME_MATCHES)
779 				return 1;
780 			ubifs_assert(c, err == NAME_GREATER);
781 		}
782 	} else {
783 		int nn = *n;
784 		struct ubifs_znode *znode = *zn;
785 
786 		/* Look right */
787 		while (1) {
788 			err = tnc_next(c, &znode, &nn);
789 			if (err == -ENOENT)
790 				return 0;
791 			if (err < 0)
792 				return err;
793 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
794 				return 0;
795 			err = matches_name(c, &znode->zbranch[nn], nm);
796 			if (err < 0)
797 				return err;
798 			if (err == NAME_GREATER)
799 				return 0;
800 			*zn = znode;
801 			*n = nn;
802 			if (err == NAME_MATCHES)
803 				return 1;
804 			ubifs_assert(c, err == NAME_LESS);
805 		}
806 	}
807 }
808 
809 /**
810  * fallible_matches_name - determine if a dent matches a given name.
811  * @c: UBIFS file-system description object
812  * @zbr: zbranch of dent
813  * @nm: name to match
814  *
815  * This is a "fallible" version of 'matches_name()' function which does not
816  * panic if the direntry/xentry referred by @zbr does not exist on the media.
817  *
818  * This function checks if xentry/direntry referred by zbranch @zbr matches name
819  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
820  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
821  * if xentry/direntry referred by @zbr does not exist on the media. A negative
822  * error code is returned in case of failure.
823  */
824 static int fallible_matches_name(struct ubifs_info *c,
825 				 struct ubifs_zbranch *zbr,
826 				 const struct fscrypt_name *nm)
827 {
828 	struct ubifs_dent_node *dent;
829 	int nlen, err;
830 
831 	/* If possible, match against the dent in the leaf node cache */
832 	if (!zbr->leaf) {
833 		dent = kmalloc(zbr->len, GFP_NOFS);
834 		if (!dent)
835 			return -ENOMEM;
836 
837 		err = fallible_read_node(c, &zbr->key, zbr, dent);
838 		if (err < 0)
839 			goto out_free;
840 		if (err == 0) {
841 			/* The node was not present */
842 			err = NOT_ON_MEDIA;
843 			goto out_free;
844 		}
845 		ubifs_assert(c, err == 1);
846 
847 		err = lnc_add_directly(c, zbr, dent);
848 		if (err)
849 			goto out_free;
850 	} else
851 		dent = zbr->leaf;
852 
853 	nlen = le16_to_cpu(dent->nlen);
854 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
855 	if (err == 0) {
856 		if (nlen == fname_len(nm))
857 			return NAME_MATCHES;
858 		else if (nlen < fname_len(nm))
859 			return NAME_LESS;
860 		else
861 			return NAME_GREATER;
862 	} else if (err < 0)
863 		return NAME_LESS;
864 	else
865 		return NAME_GREATER;
866 
867 out_free:
868 	kfree(dent);
869 	return err;
870 }
871 
872 /**
873  * fallible_resolve_collision - resolve a collision even if nodes are missing.
874  * @c: UBIFS file-system description object
875  * @key: key
876  * @zn: znode is returned here
877  * @n: branch number is passed and returned here
878  * @nm: name of directory entry
879  * @adding: indicates caller is adding a key to the TNC
880  *
881  * This is a "fallible" version of the 'resolve_collision()' function which
882  * does not panic if one of the nodes referred to by TNC does not exist on the
883  * media. This may happen when replaying the journal if a deleted node was
884  * Garbage-collected and the commit was not done. A branch that refers to a node
885  * that is not present is called a dangling branch. The following are the return
886  * codes for this function:
887  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
888  *    branch;
889  *  o if we are @adding and @nm was not found, %0 is returned;
890  *  o if we are not @adding and @nm was not found, but a dangling branch was
891  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
892  *  o a negative error code is returned in case of failure.
893  */
894 static int fallible_resolve_collision(struct ubifs_info *c,
895 				      const union ubifs_key *key,
896 				      struct ubifs_znode **zn, int *n,
897 				      const struct fscrypt_name *nm,
898 				      int adding)
899 {
900 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
901 	int o_n, err, cmp, unsure = 0, nn = *n;
902 
903 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
904 	if (unlikely(cmp < 0))
905 		return cmp;
906 	if (cmp == NAME_MATCHES)
907 		return 1;
908 	if (cmp == NOT_ON_MEDIA) {
909 		o_znode = znode;
910 		o_n = nn;
911 		/*
912 		 * We are unlucky and hit a dangling branch straight away.
913 		 * Now we do not really know where to go to find the needed
914 		 * branch - to the left or to the right. Well, let's try left.
915 		 */
916 		unsure = 1;
917 	} else if (!adding)
918 		unsure = 1; /* Remove a dangling branch wherever it is */
919 
920 	if (cmp == NAME_GREATER || unsure) {
921 		/* Look left */
922 		while (1) {
923 			err = tnc_prev(c, zn, n);
924 			if (err == -ENOENT) {
925 				ubifs_assert(c, *n == 0);
926 				*n = -1;
927 				break;
928 			}
929 			if (err < 0)
930 				return err;
931 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
932 				/* See comments in 'resolve_collision()' */
933 				if (*n == (*zn)->child_cnt - 1) {
934 					err = tnc_next(c, zn, n);
935 					if (err) {
936 						/* Should be impossible */
937 						ubifs_assert(c, 0);
938 						if (err == -ENOENT)
939 							err = -EINVAL;
940 						return err;
941 					}
942 					ubifs_assert(c, *n == 0);
943 					*n = -1;
944 				}
945 				break;
946 			}
947 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
948 			if (err < 0)
949 				return err;
950 			if (err == NAME_MATCHES)
951 				return 1;
952 			if (err == NOT_ON_MEDIA) {
953 				o_znode = *zn;
954 				o_n = *n;
955 				continue;
956 			}
957 			if (!adding)
958 				continue;
959 			if (err == NAME_LESS)
960 				break;
961 			else
962 				unsure = 0;
963 		}
964 	}
965 
966 	if (cmp == NAME_LESS || unsure) {
967 		/* Look right */
968 		*zn = znode;
969 		*n = nn;
970 		while (1) {
971 			err = tnc_next(c, &znode, &nn);
972 			if (err == -ENOENT)
973 				break;
974 			if (err < 0)
975 				return err;
976 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
977 				break;
978 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
979 			if (err < 0)
980 				return err;
981 			if (err == NAME_GREATER)
982 				break;
983 			*zn = znode;
984 			*n = nn;
985 			if (err == NAME_MATCHES)
986 				return 1;
987 			if (err == NOT_ON_MEDIA) {
988 				o_znode = znode;
989 				o_n = nn;
990 			}
991 		}
992 	}
993 
994 	/* Never match a dangling branch when adding */
995 	if (adding || !o_znode)
996 		return 0;
997 
998 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
999 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1000 		o_znode->zbranch[o_n].len);
1001 	*zn = o_znode;
1002 	*n = o_n;
1003 	return 1;
1004 }
1005 
1006 /**
1007  * matches_position - determine if a zbranch matches a given position.
1008  * @zbr: zbranch of dent
1009  * @lnum: LEB number of dent to match
1010  * @offs: offset of dent to match
1011  *
1012  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1013  */
1014 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1015 {
1016 	if (zbr->lnum == lnum && zbr->offs == offs)
1017 		return 1;
1018 	else
1019 		return 0;
1020 }
1021 
1022 /**
1023  * resolve_collision_directly - resolve a collision directly.
1024  * @c: UBIFS file-system description object
1025  * @key: key of directory entry
1026  * @zn: znode is passed and returned here
1027  * @n: zbranch number is passed and returned here
1028  * @lnum: LEB number of dent node to match
1029  * @offs: offset of dent node to match
1030  *
1031  * This function is used for "hashed" keys to make sure the found directory or
1032  * extended attribute entry node is what was looked for. It is used when the
1033  * flash address of the right node is known (@lnum:@offs) which makes it much
1034  * easier to resolve collisions (no need to read entries and match full
1035  * names). This function returns %1 and sets @zn and @n if the collision is
1036  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1037  * previous directory entry. Otherwise a negative error code is returned.
1038  */
1039 static int resolve_collision_directly(struct ubifs_info *c,
1040 				      const union ubifs_key *key,
1041 				      struct ubifs_znode **zn, int *n,
1042 				      int lnum, int offs)
1043 {
1044 	struct ubifs_znode *znode;
1045 	int nn, err;
1046 
1047 	znode = *zn;
1048 	nn = *n;
1049 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1050 		return 1;
1051 
1052 	/* Look left */
1053 	while (1) {
1054 		err = tnc_prev(c, &znode, &nn);
1055 		if (err == -ENOENT)
1056 			break;
1057 		if (err < 0)
1058 			return err;
1059 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1060 			break;
1061 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1062 			*zn = znode;
1063 			*n = nn;
1064 			return 1;
1065 		}
1066 	}
1067 
1068 	/* Look right */
1069 	znode = *zn;
1070 	nn = *n;
1071 	while (1) {
1072 		err = tnc_next(c, &znode, &nn);
1073 		if (err == -ENOENT)
1074 			return 0;
1075 		if (err < 0)
1076 			return err;
1077 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1078 			return 0;
1079 		*zn = znode;
1080 		*n = nn;
1081 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1082 			return 1;
1083 	}
1084 }
1085 
1086 /**
1087  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1088  * @c: UBIFS file-system description object
1089  * @znode: znode to dirty
1090  *
1091  * If we do not have a unique key that resides in a znode, then we cannot
1092  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1093  * This function records the path back to the last dirty ancestor, and then
1094  * dirties the znodes on that path.
1095  */
1096 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1097 					       struct ubifs_znode *znode)
1098 {
1099 	struct ubifs_znode *zp;
1100 	int *path = c->bottom_up_buf, p = 0;
1101 
1102 	ubifs_assert(c, c->zroot.znode);
1103 	ubifs_assert(c, znode);
1104 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1105 		kfree(c->bottom_up_buf);
1106 		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1107 						 sizeof(int),
1108 						 GFP_NOFS);
1109 		if (!c->bottom_up_buf)
1110 			return ERR_PTR(-ENOMEM);
1111 		path = c->bottom_up_buf;
1112 	}
1113 	if (c->zroot.znode->level) {
1114 		/* Go up until parent is dirty */
1115 		while (1) {
1116 			int n;
1117 
1118 			zp = znode->parent;
1119 			if (!zp)
1120 				break;
1121 			n = znode->iip;
1122 			ubifs_assert(c, p < c->zroot.znode->level);
1123 			path[p++] = n;
1124 			if (!zp->cnext && ubifs_zn_dirty(znode))
1125 				break;
1126 			znode = zp;
1127 		}
1128 	}
1129 
1130 	/* Come back down, dirtying as we go */
1131 	while (1) {
1132 		struct ubifs_zbranch *zbr;
1133 
1134 		zp = znode->parent;
1135 		if (zp) {
1136 			ubifs_assert(c, path[p - 1] >= 0);
1137 			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1138 			zbr = &zp->zbranch[path[--p]];
1139 			znode = dirty_cow_znode(c, zbr);
1140 		} else {
1141 			ubifs_assert(c, znode == c->zroot.znode);
1142 			znode = dirty_cow_znode(c, &c->zroot);
1143 		}
1144 		if (IS_ERR(znode) || !p)
1145 			break;
1146 		ubifs_assert(c, path[p - 1] >= 0);
1147 		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1148 		znode = znode->zbranch[path[p - 1]].znode;
1149 	}
1150 
1151 	return znode;
1152 }
1153 
1154 /**
1155  * ubifs_lookup_level0 - search for zero-level znode.
1156  * @c: UBIFS file-system description object
1157  * @key:  key to lookup
1158  * @zn: znode is returned here
1159  * @n: znode branch slot number is returned here
1160  *
1161  * This function looks up the TNC tree and search for zero-level znode which
1162  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163  * cases:
1164  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1165  *     is returned and slot number of the matched branch is stored in @n;
1166  *   o not exact match, which means that zero-level znode does not contain
1167  *     @key, then %0 is returned and slot number of the closest branch or %-1
1168  *     is stored in @n; In this case calling tnc_next() is mandatory.
1169  *   o @key is so small that it is even less than the lowest key of the
1170  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171  *
1172  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173  * function reads corresponding indexing nodes and inserts them to TNC. In
1174  * case of failure, a negative error code is returned.
1175  */
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 			struct ubifs_znode **zn, int *n)
1178 {
1179 	int err, exact;
1180 	struct ubifs_znode *znode;
1181 	time64_t time = ktime_get_seconds();
1182 
1183 	dbg_tnck(key, "search key ");
1184 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1185 
1186 	znode = c->zroot.znode;
1187 	if (unlikely(!znode)) {
1188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 		if (IS_ERR(znode))
1190 			return PTR_ERR(znode);
1191 	}
1192 
1193 	znode->time = time;
1194 
1195 	while (1) {
1196 		struct ubifs_zbranch *zbr;
1197 
1198 		exact = ubifs_search_zbranch(c, znode, key, n);
1199 
1200 		if (znode->level == 0)
1201 			break;
1202 
1203 		if (*n < 0)
1204 			*n = 0;
1205 		zbr = &znode->zbranch[*n];
1206 
1207 		if (zbr->znode) {
1208 			znode->time = time;
1209 			znode = zbr->znode;
1210 			continue;
1211 		}
1212 
1213 		/* znode is not in TNC cache, load it from the media */
1214 		znode = ubifs_load_znode(c, zbr, znode, *n);
1215 		if (IS_ERR(znode))
1216 			return PTR_ERR(znode);
1217 	}
1218 
1219 	*zn = znode;
1220 	if (exact || !is_hash_key(c, key) || *n != -1) {
1221 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 		return exact;
1223 	}
1224 
1225 	/*
1226 	 * Here is a tricky place. We have not found the key and this is a
1227 	 * "hashed" key, which may collide. The rest of the code deals with
1228 	 * situations like this:
1229 	 *
1230 	 *                  | 3 | 5 |
1231 	 *                  /       \
1232 	 *          | 3 | 5 |      | 6 | 7 | (x)
1233 	 *
1234 	 * Or more a complex example:
1235 	 *
1236 	 *                | 1 | 5 |
1237 	 *                /       \
1238 	 *       | 1 | 3 |         | 5 | 8 |
1239 	 *              \           /
1240 	 *          | 5 | 5 |   | 6 | 7 | (x)
1241 	 *
1242 	 * In the examples, if we are looking for key "5", we may reach nodes
1243 	 * marked with "(x)". In this case what we have do is to look at the
1244 	 * left and see if there is "5" key there. If there is, we have to
1245 	 * return it.
1246 	 *
1247 	 * Note, this whole situation is possible because we allow to have
1248 	 * elements which are equivalent to the next key in the parent in the
1249 	 * children of current znode. For example, this happens if we split a
1250 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 	 * like this:
1252 	 *                      | 3 | 5 |
1253 	 *                       /     \
1254 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1255 	 *                              ^
1256 	 * And this becomes what is at the first "picture" after key "5" marked
1257 	 * with "^" is removed. What could be done is we could prohibit
1258 	 * splitting in the middle of the colliding sequence. Also, when
1259 	 * removing the leftmost key, we would have to correct the key of the
1260 	 * parent node, which would introduce additional complications. Namely,
1261 	 * if we changed the leftmost key of the parent znode, the garbage
1262 	 * collector would be unable to find it (GC is doing this when GC'ing
1263 	 * indexing LEBs). Although we already have an additional RB-tree where
1264 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 	 * after the commit. But anyway, this does not look easy to implement
1266 	 * so we did not try this.
1267 	 */
1268 	err = tnc_prev(c, &znode, n);
1269 	if (err == -ENOENT) {
1270 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 		*n = -1;
1272 		return 0;
1273 	}
1274 	if (unlikely(err < 0))
1275 		return err;
1276 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 		*n = -1;
1279 		return 0;
1280 	}
1281 
1282 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 	*zn = znode;
1284 	return 1;
1285 }
1286 
1287 /**
1288  * lookup_level0_dirty - search for zero-level znode dirtying.
1289  * @c: UBIFS file-system description object
1290  * @key:  key to lookup
1291  * @zn: znode is returned here
1292  * @n: znode branch slot number is returned here
1293  *
1294  * This function looks up the TNC tree and search for zero-level znode which
1295  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296  * cases:
1297  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1298  *     is returned and slot number of the matched branch is stored in @n;
1299  *   o not exact match, which means that zero-level znode does not contain @key
1300  *     then %0 is returned and slot number of the closed branch is stored in
1301  *     @n;
1302  *   o @key is so small that it is even less than the lowest key of the
1303  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304  *
1305  * Additionally all znodes in the path from the root to the located zero-level
1306  * znode are marked as dirty.
1307  *
1308  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309  * function reads corresponding indexing nodes and inserts them to TNC. In
1310  * case of failure, a negative error code is returned.
1311  */
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 			       struct ubifs_znode **zn, int *n)
1314 {
1315 	int err, exact;
1316 	struct ubifs_znode *znode;
1317 	time64_t time = ktime_get_seconds();
1318 
1319 	dbg_tnck(key, "search and dirty key ");
1320 
1321 	znode = c->zroot.znode;
1322 	if (unlikely(!znode)) {
1323 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 		if (IS_ERR(znode))
1325 			return PTR_ERR(znode);
1326 	}
1327 
1328 	znode = dirty_cow_znode(c, &c->zroot);
1329 	if (IS_ERR(znode))
1330 		return PTR_ERR(znode);
1331 
1332 	znode->time = time;
1333 
1334 	while (1) {
1335 		struct ubifs_zbranch *zbr;
1336 
1337 		exact = ubifs_search_zbranch(c, znode, key, n);
1338 
1339 		if (znode->level == 0)
1340 			break;
1341 
1342 		if (*n < 0)
1343 			*n = 0;
1344 		zbr = &znode->zbranch[*n];
1345 
1346 		if (zbr->znode) {
1347 			znode->time = time;
1348 			znode = dirty_cow_znode(c, zbr);
1349 			if (IS_ERR(znode))
1350 				return PTR_ERR(znode);
1351 			continue;
1352 		}
1353 
1354 		/* znode is not in TNC cache, load it from the media */
1355 		znode = ubifs_load_znode(c, zbr, znode, *n);
1356 		if (IS_ERR(znode))
1357 			return PTR_ERR(znode);
1358 		znode = dirty_cow_znode(c, zbr);
1359 		if (IS_ERR(znode))
1360 			return PTR_ERR(znode);
1361 	}
1362 
1363 	*zn = znode;
1364 	if (exact || !is_hash_key(c, key) || *n != -1) {
1365 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 		return exact;
1367 	}
1368 
1369 	/*
1370 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 	 * code.
1372 	 */
1373 	err = tnc_prev(c, &znode, n);
1374 	if (err == -ENOENT) {
1375 		*n = -1;
1376 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 		return 0;
1378 	}
1379 	if (unlikely(err < 0))
1380 		return err;
1381 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 		*n = -1;
1383 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 		return 0;
1385 	}
1386 
1387 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 		znode = dirty_cow_bottom_up(c, znode);
1389 		if (IS_ERR(znode))
1390 			return PTR_ERR(znode);
1391 	}
1392 
1393 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 	*zn = znode;
1395 	return 1;
1396 }
1397 
1398 /**
1399  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400  * @c: UBIFS file-system description object
1401  * @lnum: LEB number
1402  * @gc_seq1: garbage collection sequence number
1403  *
1404  * This function determines if @lnum may have been garbage collected since
1405  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406  * %0 is returned.
1407  */
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1409 {
1410 	int gc_seq2, gced_lnum;
1411 
1412 	gced_lnum = c->gced_lnum;
1413 	smp_rmb();
1414 	gc_seq2 = c->gc_seq;
1415 	/* Same seq means no GC */
1416 	if (gc_seq1 == gc_seq2)
1417 		return 0;
1418 	/* Different by more than 1 means we don't know */
1419 	if (gc_seq1 + 1 != gc_seq2)
1420 		return 1;
1421 	/*
1422 	 * We have seen the sequence number has increased by 1. Now we need to
1423 	 * be sure we read the right LEB number, so read it again.
1424 	 */
1425 	smp_rmb();
1426 	if (gced_lnum != c->gced_lnum)
1427 		return 1;
1428 	/* Finally we can check lnum */
1429 	if (gced_lnum == lnum)
1430 		return 1;
1431 	return 0;
1432 }
1433 
1434 /**
1435  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436  * @c: UBIFS file-system description object
1437  * @key: node key to lookup
1438  * @node: the node is returned here
1439  * @lnum: LEB number is returned here
1440  * @offs: offset is returned here
1441  *
1442  * This function looks up and reads node with key @key. The caller has to make
1443  * sure the @node buffer is large enough to fit the node. Returns zero in case
1444  * of success, %-ENOENT if the node was not found, and a negative error code in
1445  * case of failure. The node location can be returned in @lnum and @offs.
1446  */
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 		     void *node, int *lnum, int *offs)
1449 {
1450 	int found, n, err, safely = 0, gc_seq1;
1451 	struct ubifs_znode *znode;
1452 	struct ubifs_zbranch zbr, *zt;
1453 
1454 again:
1455 	mutex_lock(&c->tnc_mutex);
1456 	found = ubifs_lookup_level0(c, key, &znode, &n);
1457 	if (!found) {
1458 		err = -ENOENT;
1459 		goto out;
1460 	} else if (found < 0) {
1461 		err = found;
1462 		goto out;
1463 	}
1464 	zt = &znode->zbranch[n];
1465 	if (lnum) {
1466 		*lnum = zt->lnum;
1467 		*offs = zt->offs;
1468 	}
1469 	if (is_hash_key(c, key)) {
1470 		/*
1471 		 * In this case the leaf node cache gets used, so we pass the
1472 		 * address of the zbranch and keep the mutex locked
1473 		 */
1474 		err = tnc_read_hashed_node(c, zt, node);
1475 		goto out;
1476 	}
1477 	if (safely) {
1478 		err = ubifs_tnc_read_node(c, zt, node);
1479 		goto out;
1480 	}
1481 	/* Drop the TNC mutex prematurely and race with garbage collection */
1482 	zbr = znode->zbranch[n];
1483 	gc_seq1 = c->gc_seq;
1484 	mutex_unlock(&c->tnc_mutex);
1485 
1486 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 		/* We do not GC journal heads */
1488 		err = ubifs_tnc_read_node(c, &zbr, node);
1489 		return err;
1490 	}
1491 
1492 	err = fallible_read_node(c, key, &zbr, node);
1493 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1494 		/*
1495 		 * The node may have been GC'ed out from under us so try again
1496 		 * while keeping the TNC mutex locked.
1497 		 */
1498 		safely = 1;
1499 		goto again;
1500 	}
1501 	return 0;
1502 
1503 out:
1504 	mutex_unlock(&c->tnc_mutex);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510  * @c: UBIFS file-system description object
1511  * @bu: bulk-read parameters and results
1512  *
1513  * Lookup consecutive data node keys for the same inode that reside
1514  * consecutively in the same LEB. This function returns zero in case of success
1515  * and a negative error code in case of failure.
1516  *
1517  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519  * maximum possible amount of nodes for bulk-read.
1520  */
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522 {
1523 	int n, err = 0, lnum = -1, offs;
1524 	int len;
1525 	unsigned int block = key_block(c, &bu->key);
1526 	struct ubifs_znode *znode;
1527 
1528 	bu->cnt = 0;
1529 	bu->blk_cnt = 0;
1530 	bu->eof = 0;
1531 
1532 	mutex_lock(&c->tnc_mutex);
1533 	/* Find first key */
1534 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 	if (err < 0)
1536 		goto out;
1537 	if (err) {
1538 		/* Key found */
1539 		len = znode->zbranch[n].len;
1540 		/* The buffer must be big enough for at least 1 node */
1541 		if (len > bu->buf_len) {
1542 			err = -EINVAL;
1543 			goto out;
1544 		}
1545 		/* Add this key */
1546 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 		bu->blk_cnt += 1;
1548 		lnum = znode->zbranch[n].lnum;
1549 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 	}
1551 	while (1) {
1552 		struct ubifs_zbranch *zbr;
1553 		union ubifs_key *key;
1554 		unsigned int next_block;
1555 
1556 		/* Find next key */
1557 		err = tnc_next(c, &znode, &n);
1558 		if (err)
1559 			goto out;
1560 		zbr = &znode->zbranch[n];
1561 		key = &zbr->key;
1562 		/* See if there is another data key for this file */
1563 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 		    key_type(c, key) != UBIFS_DATA_KEY) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		if (lnum < 0) {
1569 			/* First key found */
1570 			lnum = zbr->lnum;
1571 			offs = ALIGN(zbr->offs + zbr->len, 8);
1572 			len = zbr->len;
1573 			if (len > bu->buf_len) {
1574 				err = -EINVAL;
1575 				goto out;
1576 			}
1577 		} else {
1578 			/*
1579 			 * The data nodes must be in consecutive positions in
1580 			 * the same LEB.
1581 			 */
1582 			if (zbr->lnum != lnum || zbr->offs != offs)
1583 				goto out;
1584 			offs += ALIGN(zbr->len, 8);
1585 			len = ALIGN(len, 8) + zbr->len;
1586 			/* Must not exceed buffer length */
1587 			if (len > bu->buf_len)
1588 				goto out;
1589 		}
1590 		/* Allow for holes */
1591 		next_block = key_block(c, key);
1592 		bu->blk_cnt += (next_block - block - 1);
1593 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 			goto out;
1595 		block = next_block;
1596 		/* Add this key */
1597 		bu->zbranch[bu->cnt++] = *zbr;
1598 		bu->blk_cnt += 1;
1599 		/* See if we have room for more */
1600 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 			goto out;
1602 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 			goto out;
1604 	}
1605 out:
1606 	if (err == -ENOENT) {
1607 		bu->eof = 1;
1608 		err = 0;
1609 	}
1610 	bu->gc_seq = c->gc_seq;
1611 	mutex_unlock(&c->tnc_mutex);
1612 	if (err)
1613 		return err;
1614 	/*
1615 	 * An enormous hole could cause bulk-read to encompass too many
1616 	 * page cache pages, so limit the number here.
1617 	 */
1618 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 	/*
1621 	 * Ensure that bulk-read covers a whole number of page cache
1622 	 * pages.
1623 	 */
1624 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 		return 0;
1627 	if (bu->eof) {
1628 		/* At the end of file we can round up */
1629 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 		return 0;
1631 	}
1632 	/* Exclude data nodes that do not make up a whole page cache page */
1633 	block = key_block(c, &bu->key) + bu->blk_cnt;
1634 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 	while (bu->cnt) {
1636 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 			break;
1638 		bu->cnt -= 1;
1639 	}
1640 	return 0;
1641 }
1642 
1643 /**
1644  * read_wbuf - bulk-read from a LEB with a wbuf.
1645  * @wbuf: wbuf that may overlap the read
1646  * @buf: buffer into which to read
1647  * @len: read length
1648  * @lnum: LEB number from which to read
1649  * @offs: offset from which to read
1650  *
1651  * This functions returns %0 on success or a negative error code on failure.
1652  */
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 		     int offs)
1655 {
1656 	const struct ubifs_info *c = wbuf->c;
1657 	int rlen, overlap;
1658 
1659 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1662 	ubifs_assert(c, offs + len <= c->leb_size);
1663 
1664 	spin_lock(&wbuf->lock);
1665 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 	if (!overlap) {
1667 		/* We may safely unlock the write-buffer and read the data */
1668 		spin_unlock(&wbuf->lock);
1669 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1670 	}
1671 
1672 	/* Don't read under wbuf */
1673 	rlen = wbuf->offs - offs;
1674 	if (rlen < 0)
1675 		rlen = 0;
1676 
1677 	/* Copy the rest from the write-buffer */
1678 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 	spin_unlock(&wbuf->lock);
1680 
1681 	if (rlen > 0)
1682 		/* Read everything that goes before write-buffer */
1683 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * validate_data_node - validate data nodes for bulk-read.
1690  * @c: UBIFS file-system description object
1691  * @buf: buffer containing data node to validate
1692  * @zbr: zbranch of data node to validate
1693  *
1694  * This functions returns %0 on success or a negative error code on failure.
1695  */
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 			      struct ubifs_zbranch *zbr)
1698 {
1699 	union ubifs_key key1;
1700 	struct ubifs_ch *ch = buf;
1701 	int err, len;
1702 
1703 	if (ch->node_type != UBIFS_DATA_NODE) {
1704 		ubifs_err(c, "bad node type (%d but expected %d)",
1705 			  ch->node_type, UBIFS_DATA_NODE);
1706 		goto out_err;
1707 	}
1708 
1709 	err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1710 	if (err) {
1711 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1712 		goto out;
1713 	}
1714 
1715 	err = ubifs_node_check_hash(c, buf, zbr->hash);
1716 	if (err) {
1717 		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1718 		return err;
1719 	}
1720 
1721 	len = le32_to_cpu(ch->len);
1722 	if (len != zbr->len) {
1723 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1724 		goto out_err;
1725 	}
1726 
1727 	/* Make sure the key of the read node is correct */
1728 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1729 	if (!keys_eq(c, &zbr->key, &key1)) {
1730 		ubifs_err(c, "bad key in node at LEB %d:%d",
1731 			  zbr->lnum, zbr->offs);
1732 		dbg_tnck(&zbr->key, "looked for key ");
1733 		dbg_tnck(&key1, "found node's key ");
1734 		goto out_err;
1735 	}
1736 
1737 	return 0;
1738 
1739 out_err:
1740 	err = -EINVAL;
1741 out:
1742 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1743 	ubifs_dump_node(c, buf, zbr->len);
1744 	dump_stack();
1745 	return err;
1746 }
1747 
1748 /**
1749  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1750  * @c: UBIFS file-system description object
1751  * @bu: bulk-read parameters and results
1752  *
1753  * This functions reads and validates the data nodes that were identified by the
1754  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1755  * -EAGAIN to indicate a race with GC, or another negative error code on
1756  * failure.
1757  */
1758 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1759 {
1760 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1761 	struct ubifs_wbuf *wbuf;
1762 	void *buf;
1763 
1764 	len = bu->zbranch[bu->cnt - 1].offs;
1765 	len += bu->zbranch[bu->cnt - 1].len - offs;
1766 	if (len > bu->buf_len) {
1767 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1768 		return -EINVAL;
1769 	}
1770 
1771 	/* Do the read */
1772 	wbuf = ubifs_get_wbuf(c, lnum);
1773 	if (wbuf)
1774 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1775 	else
1776 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1777 
1778 	/* Check for a race with GC */
1779 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1780 		return -EAGAIN;
1781 
1782 	if (err && err != -EBADMSG) {
1783 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1784 			  lnum, offs, err);
1785 		dump_stack();
1786 		dbg_tnck(&bu->key, "key ");
1787 		return err;
1788 	}
1789 
1790 	/* Validate the nodes read */
1791 	buf = bu->buf;
1792 	for (i = 0; i < bu->cnt; i++) {
1793 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1794 		if (err)
1795 			return err;
1796 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 /**
1803  * do_lookup_nm- look up a "hashed" node.
1804  * @c: UBIFS file-system description object
1805  * @key: node key to lookup
1806  * @node: the node is returned here
1807  * @nm: node name
1808  *
1809  * This function looks up and reads a node which contains name hash in the key.
1810  * Since the hash may have collisions, there may be many nodes with the same
1811  * key, so we have to sequentially look to all of them until the needed one is
1812  * found. This function returns zero in case of success, %-ENOENT if the node
1813  * was not found, and a negative error code in case of failure.
1814  */
1815 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1816 			void *node, const struct fscrypt_name *nm)
1817 {
1818 	int found, n, err;
1819 	struct ubifs_znode *znode;
1820 
1821 	dbg_tnck(key, "key ");
1822 	mutex_lock(&c->tnc_mutex);
1823 	found = ubifs_lookup_level0(c, key, &znode, &n);
1824 	if (!found) {
1825 		err = -ENOENT;
1826 		goto out_unlock;
1827 	} else if (found < 0) {
1828 		err = found;
1829 		goto out_unlock;
1830 	}
1831 
1832 	ubifs_assert(c, n >= 0);
1833 
1834 	err = resolve_collision(c, key, &znode, &n, nm);
1835 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1836 	if (unlikely(err < 0))
1837 		goto out_unlock;
1838 	if (err == 0) {
1839 		err = -ENOENT;
1840 		goto out_unlock;
1841 	}
1842 
1843 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1844 
1845 out_unlock:
1846 	mutex_unlock(&c->tnc_mutex);
1847 	return err;
1848 }
1849 
1850 /**
1851  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1852  * @c: UBIFS file-system description object
1853  * @key: node key to lookup
1854  * @node: the node is returned here
1855  * @nm: node name
1856  *
1857  * This function looks up and reads a node which contains name hash in the key.
1858  * Since the hash may have collisions, there may be many nodes with the same
1859  * key, so we have to sequentially look to all of them until the needed one is
1860  * found. This function returns zero in case of success, %-ENOENT if the node
1861  * was not found, and a negative error code in case of failure.
1862  */
1863 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1864 			void *node, const struct fscrypt_name *nm)
1865 {
1866 	int err, len;
1867 	const struct ubifs_dent_node *dent = node;
1868 
1869 	/*
1870 	 * We assume that in most of the cases there are no name collisions and
1871 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1872 	 */
1873 	err = ubifs_tnc_lookup(c, key, node);
1874 	if (err)
1875 		return err;
1876 
1877 	len = le16_to_cpu(dent->nlen);
1878 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1879 		return 0;
1880 
1881 	/*
1882 	 * Unluckily, there are hash collisions and we have to iterate over
1883 	 * them look at each direntry with colliding name hash sequentially.
1884 	 */
1885 
1886 	return do_lookup_nm(c, key, node, nm);
1887 }
1888 
1889 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1890 			    struct ubifs_dent_node *dent, uint32_t cookie,
1891 			    struct ubifs_znode **zn, int *n, int exact)
1892 {
1893 	int err;
1894 	struct ubifs_znode *znode = *zn;
1895 	struct ubifs_zbranch *zbr;
1896 	union ubifs_key *dkey;
1897 
1898 	if (!exact) {
1899 		err = tnc_next(c, &znode, n);
1900 		if (err)
1901 			return err;
1902 	}
1903 
1904 	for (;;) {
1905 		zbr = &znode->zbranch[*n];
1906 		dkey = &zbr->key;
1907 
1908 		if (key_inum(c, dkey) != key_inum(c, key) ||
1909 		    key_type(c, dkey) != key_type(c, key)) {
1910 			return -ENOENT;
1911 		}
1912 
1913 		err = tnc_read_hashed_node(c, zbr, dent);
1914 		if (err)
1915 			return err;
1916 
1917 		if (key_hash(c, key) == key_hash(c, dkey) &&
1918 		    le32_to_cpu(dent->cookie) == cookie) {
1919 			*zn = znode;
1920 			return 0;
1921 		}
1922 
1923 		err = tnc_next(c, &znode, n);
1924 		if (err)
1925 			return err;
1926 	}
1927 }
1928 
1929 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1930 			struct ubifs_dent_node *dent, uint32_t cookie)
1931 {
1932 	int n, err;
1933 	struct ubifs_znode *znode;
1934 	union ubifs_key start_key;
1935 
1936 	ubifs_assert(c, is_hash_key(c, key));
1937 
1938 	lowest_dent_key(c, &start_key, key_inum(c, key));
1939 
1940 	mutex_lock(&c->tnc_mutex);
1941 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1942 	if (unlikely(err < 0))
1943 		goto out_unlock;
1944 
1945 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1946 
1947 out_unlock:
1948 	mutex_unlock(&c->tnc_mutex);
1949 	return err;
1950 }
1951 
1952 /**
1953  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1954  * @c: UBIFS file-system description object
1955  * @key: node key to lookup
1956  * @node: the node is returned here
1957  * @cookie: node cookie for collision resolution
1958  *
1959  * This function looks up and reads a node which contains name hash in the key.
1960  * Since the hash may have collisions, there may be many nodes with the same
1961  * key, so we have to sequentially look to all of them until the needed one
1962  * with the same cookie value is found.
1963  * This function returns zero in case of success, %-ENOENT if the node
1964  * was not found, and a negative error code in case of failure.
1965  */
1966 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1967 			void *node, uint32_t cookie)
1968 {
1969 	int err;
1970 	const struct ubifs_dent_node *dent = node;
1971 
1972 	if (!c->double_hash)
1973 		return -EOPNOTSUPP;
1974 
1975 	/*
1976 	 * We assume that in most of the cases there are no name collisions and
1977 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1978 	 */
1979 	err = ubifs_tnc_lookup(c, key, node);
1980 	if (err)
1981 		return err;
1982 
1983 	if (le32_to_cpu(dent->cookie) == cookie)
1984 		return 0;
1985 
1986 	/*
1987 	 * Unluckily, there are hash collisions and we have to iterate over
1988 	 * them look at each direntry with colliding name hash sequentially.
1989 	 */
1990 	return do_lookup_dh(c, key, node, cookie);
1991 }
1992 
1993 /**
1994  * correct_parent_keys - correct parent znodes' keys.
1995  * @c: UBIFS file-system description object
1996  * @znode: znode to correct parent znodes for
1997  *
1998  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1999  * zbranch changes, keys of parent znodes have to be corrected. This helper
2000  * function is called in such situations and corrects the keys if needed.
2001  */
2002 static void correct_parent_keys(const struct ubifs_info *c,
2003 				struct ubifs_znode *znode)
2004 {
2005 	union ubifs_key *key, *key1;
2006 
2007 	ubifs_assert(c, znode->parent);
2008 	ubifs_assert(c, znode->iip == 0);
2009 
2010 	key = &znode->zbranch[0].key;
2011 	key1 = &znode->parent->zbranch[0].key;
2012 
2013 	while (keys_cmp(c, key, key1) < 0) {
2014 		key_copy(c, key, key1);
2015 		znode = znode->parent;
2016 		znode->alt = 1;
2017 		if (!znode->parent || znode->iip)
2018 			break;
2019 		key1 = &znode->parent->zbranch[0].key;
2020 	}
2021 }
2022 
2023 /**
2024  * insert_zbranch - insert a zbranch into a znode.
2025  * @c: UBIFS file-system description object
2026  * @znode: znode into which to insert
2027  * @zbr: zbranch to insert
2028  * @n: slot number to insert to
2029  *
2030  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2031  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2032  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2033  * slot, zbranches starting from @n have to be moved right.
2034  */
2035 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2036 			   const struct ubifs_zbranch *zbr, int n)
2037 {
2038 	int i;
2039 
2040 	ubifs_assert(c, ubifs_zn_dirty(znode));
2041 
2042 	if (znode->level) {
2043 		for (i = znode->child_cnt; i > n; i--) {
2044 			znode->zbranch[i] = znode->zbranch[i - 1];
2045 			if (znode->zbranch[i].znode)
2046 				znode->zbranch[i].znode->iip = i;
2047 		}
2048 		if (zbr->znode)
2049 			zbr->znode->iip = n;
2050 	} else
2051 		for (i = znode->child_cnt; i > n; i--)
2052 			znode->zbranch[i] = znode->zbranch[i - 1];
2053 
2054 	znode->zbranch[n] = *zbr;
2055 	znode->child_cnt += 1;
2056 
2057 	/*
2058 	 * After inserting at slot zero, the lower bound of the key range of
2059 	 * this znode may have changed. If this znode is subsequently split
2060 	 * then the upper bound of the key range may change, and furthermore
2061 	 * it could change to be lower than the original lower bound. If that
2062 	 * happens, then it will no longer be possible to find this znode in the
2063 	 * TNC using the key from the index node on flash. That is bad because
2064 	 * if it is not found, we will assume it is obsolete and may overwrite
2065 	 * it. Then if there is an unclean unmount, we will start using the
2066 	 * old index which will be broken.
2067 	 *
2068 	 * So we first mark znodes that have insertions at slot zero, and then
2069 	 * if they are split we add their lnum/offs to the old_idx tree.
2070 	 */
2071 	if (n == 0)
2072 		znode->alt = 1;
2073 }
2074 
2075 /**
2076  * tnc_insert - insert a node into TNC.
2077  * @c: UBIFS file-system description object
2078  * @znode: znode to insert into
2079  * @zbr: branch to insert
2080  * @n: slot number to insert new zbranch to
2081  *
2082  * This function inserts a new node described by @zbr into znode @znode. If
2083  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2084  * are splat as well if needed. Returns zero in case of success or a negative
2085  * error code in case of failure.
2086  */
2087 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2088 		      struct ubifs_zbranch *zbr, int n)
2089 {
2090 	struct ubifs_znode *zn, *zi, *zp;
2091 	int i, keep, move, appending = 0;
2092 	union ubifs_key *key = &zbr->key, *key1;
2093 
2094 	ubifs_assert(c, n >= 0 && n <= c->fanout);
2095 
2096 	/* Implement naive insert for now */
2097 again:
2098 	zp = znode->parent;
2099 	if (znode->child_cnt < c->fanout) {
2100 		ubifs_assert(c, n != c->fanout);
2101 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2102 
2103 		insert_zbranch(c, znode, zbr, n);
2104 
2105 		/* Ensure parent's key is correct */
2106 		if (n == 0 && zp && znode->iip == 0)
2107 			correct_parent_keys(c, znode);
2108 
2109 		return 0;
2110 	}
2111 
2112 	/*
2113 	 * Unfortunately, @znode does not have more empty slots and we have to
2114 	 * split it.
2115 	 */
2116 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2117 
2118 	if (znode->alt)
2119 		/*
2120 		 * We can no longer be sure of finding this znode by key, so we
2121 		 * record it in the old_idx tree.
2122 		 */
2123 		ins_clr_old_idx_znode(c, znode);
2124 
2125 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2126 	if (!zn)
2127 		return -ENOMEM;
2128 	zn->parent = zp;
2129 	zn->level = znode->level;
2130 
2131 	/* Decide where to split */
2132 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2133 		/* Try not to split consecutive data keys */
2134 		if (n == c->fanout) {
2135 			key1 = &znode->zbranch[n - 1].key;
2136 			if (key_inum(c, key1) == key_inum(c, key) &&
2137 			    key_type(c, key1) == UBIFS_DATA_KEY)
2138 				appending = 1;
2139 		} else
2140 			goto check_split;
2141 	} else if (appending && n != c->fanout) {
2142 		/* Try not to split consecutive data keys */
2143 		appending = 0;
2144 check_split:
2145 		if (n >= (c->fanout + 1) / 2) {
2146 			key1 = &znode->zbranch[0].key;
2147 			if (key_inum(c, key1) == key_inum(c, key) &&
2148 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2149 				key1 = &znode->zbranch[n].key;
2150 				if (key_inum(c, key1) != key_inum(c, key) ||
2151 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2152 					keep = n;
2153 					move = c->fanout - keep;
2154 					zi = znode;
2155 					goto do_split;
2156 				}
2157 			}
2158 		}
2159 	}
2160 
2161 	if (appending) {
2162 		keep = c->fanout;
2163 		move = 0;
2164 	} else {
2165 		keep = (c->fanout + 1) / 2;
2166 		move = c->fanout - keep;
2167 	}
2168 
2169 	/*
2170 	 * Although we don't at present, we could look at the neighbors and see
2171 	 * if we can move some zbranches there.
2172 	 */
2173 
2174 	if (n < keep) {
2175 		/* Insert into existing znode */
2176 		zi = znode;
2177 		move += 1;
2178 		keep -= 1;
2179 	} else {
2180 		/* Insert into new znode */
2181 		zi = zn;
2182 		n -= keep;
2183 		/* Re-parent */
2184 		if (zn->level != 0)
2185 			zbr->znode->parent = zn;
2186 	}
2187 
2188 do_split:
2189 
2190 	__set_bit(DIRTY_ZNODE, &zn->flags);
2191 	atomic_long_inc(&c->dirty_zn_cnt);
2192 
2193 	zn->child_cnt = move;
2194 	znode->child_cnt = keep;
2195 
2196 	dbg_tnc("moving %d, keeping %d", move, keep);
2197 
2198 	/* Move zbranch */
2199 	for (i = 0; i < move; i++) {
2200 		zn->zbranch[i] = znode->zbranch[keep + i];
2201 		/* Re-parent */
2202 		if (zn->level != 0)
2203 			if (zn->zbranch[i].znode) {
2204 				zn->zbranch[i].znode->parent = zn;
2205 				zn->zbranch[i].znode->iip = i;
2206 			}
2207 	}
2208 
2209 	/* Insert new key and branch */
2210 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2211 
2212 	insert_zbranch(c, zi, zbr, n);
2213 
2214 	/* Insert new znode (produced by spitting) into the parent */
2215 	if (zp) {
2216 		if (n == 0 && zi == znode && znode->iip == 0)
2217 			correct_parent_keys(c, znode);
2218 
2219 		/* Locate insertion point */
2220 		n = znode->iip + 1;
2221 
2222 		/* Tail recursion */
2223 		zbr->key = zn->zbranch[0].key;
2224 		zbr->znode = zn;
2225 		zbr->lnum = 0;
2226 		zbr->offs = 0;
2227 		zbr->len = 0;
2228 		znode = zp;
2229 
2230 		goto again;
2231 	}
2232 
2233 	/* We have to split root znode */
2234 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2235 
2236 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2237 	if (!zi)
2238 		return -ENOMEM;
2239 
2240 	zi->child_cnt = 2;
2241 	zi->level = znode->level + 1;
2242 
2243 	__set_bit(DIRTY_ZNODE, &zi->flags);
2244 	atomic_long_inc(&c->dirty_zn_cnt);
2245 
2246 	zi->zbranch[0].key = znode->zbranch[0].key;
2247 	zi->zbranch[0].znode = znode;
2248 	zi->zbranch[0].lnum = c->zroot.lnum;
2249 	zi->zbranch[0].offs = c->zroot.offs;
2250 	zi->zbranch[0].len = c->zroot.len;
2251 	zi->zbranch[1].key = zn->zbranch[0].key;
2252 	zi->zbranch[1].znode = zn;
2253 
2254 	c->zroot.lnum = 0;
2255 	c->zroot.offs = 0;
2256 	c->zroot.len = 0;
2257 	c->zroot.znode = zi;
2258 
2259 	zn->parent = zi;
2260 	zn->iip = 1;
2261 	znode->parent = zi;
2262 	znode->iip = 0;
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * ubifs_tnc_add - add a node to TNC.
2269  * @c: UBIFS file-system description object
2270  * @key: key to add
2271  * @lnum: LEB number of node
2272  * @offs: node offset
2273  * @len: node length
2274  * @hash: The hash over the node
2275  *
2276  * This function adds a node with key @key to TNC. The node may be new or it may
2277  * obsolete some existing one. Returns %0 on success or negative error code on
2278  * failure.
2279  */
2280 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2281 		  int offs, int len, const u8 *hash)
2282 {
2283 	int found, n, err = 0;
2284 	struct ubifs_znode *znode;
2285 
2286 	mutex_lock(&c->tnc_mutex);
2287 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2288 	found = lookup_level0_dirty(c, key, &znode, &n);
2289 	if (!found) {
2290 		struct ubifs_zbranch zbr;
2291 
2292 		zbr.znode = NULL;
2293 		zbr.lnum = lnum;
2294 		zbr.offs = offs;
2295 		zbr.len = len;
2296 		ubifs_copy_hash(c, hash, zbr.hash);
2297 		key_copy(c, key, &zbr.key);
2298 		err = tnc_insert(c, znode, &zbr, n + 1);
2299 	} else if (found == 1) {
2300 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2301 
2302 		lnc_free(zbr);
2303 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2304 		zbr->lnum = lnum;
2305 		zbr->offs = offs;
2306 		zbr->len = len;
2307 		ubifs_copy_hash(c, hash, zbr->hash);
2308 	} else
2309 		err = found;
2310 	if (!err)
2311 		err = dbg_check_tnc(c, 0);
2312 	mutex_unlock(&c->tnc_mutex);
2313 
2314 	return err;
2315 }
2316 
2317 /**
2318  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2319  * @c: UBIFS file-system description object
2320  * @key: key to add
2321  * @old_lnum: LEB number of old node
2322  * @old_offs: old node offset
2323  * @lnum: LEB number of node
2324  * @offs: node offset
2325  * @len: node length
2326  *
2327  * This function replaces a node with key @key in the TNC only if the old node
2328  * is found.  This function is called by garbage collection when node are moved.
2329  * Returns %0 on success or negative error code on failure.
2330  */
2331 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2332 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2333 {
2334 	int found, n, err = 0;
2335 	struct ubifs_znode *znode;
2336 
2337 	mutex_lock(&c->tnc_mutex);
2338 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2339 		 old_offs, lnum, offs, len);
2340 	found = lookup_level0_dirty(c, key, &znode, &n);
2341 	if (found < 0) {
2342 		err = found;
2343 		goto out_unlock;
2344 	}
2345 
2346 	if (found == 1) {
2347 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2348 
2349 		found = 0;
2350 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2351 			lnc_free(zbr);
2352 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2353 			if (err)
2354 				goto out_unlock;
2355 			zbr->lnum = lnum;
2356 			zbr->offs = offs;
2357 			zbr->len = len;
2358 			found = 1;
2359 		} else if (is_hash_key(c, key)) {
2360 			found = resolve_collision_directly(c, key, &znode, &n,
2361 							   old_lnum, old_offs);
2362 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2363 				found, znode, n, old_lnum, old_offs);
2364 			if (found < 0) {
2365 				err = found;
2366 				goto out_unlock;
2367 			}
2368 
2369 			if (found) {
2370 				/* Ensure the znode is dirtied */
2371 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2372 					znode = dirty_cow_bottom_up(c, znode);
2373 					if (IS_ERR(znode)) {
2374 						err = PTR_ERR(znode);
2375 						goto out_unlock;
2376 					}
2377 				}
2378 				zbr = &znode->zbranch[n];
2379 				lnc_free(zbr);
2380 				err = ubifs_add_dirt(c, zbr->lnum,
2381 						     zbr->len);
2382 				if (err)
2383 					goto out_unlock;
2384 				zbr->lnum = lnum;
2385 				zbr->offs = offs;
2386 				zbr->len = len;
2387 			}
2388 		}
2389 	}
2390 
2391 	if (!found)
2392 		err = ubifs_add_dirt(c, lnum, len);
2393 
2394 	if (!err)
2395 		err = dbg_check_tnc(c, 0);
2396 
2397 out_unlock:
2398 	mutex_unlock(&c->tnc_mutex);
2399 	return err;
2400 }
2401 
2402 /**
2403  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2404  * @c: UBIFS file-system description object
2405  * @key: key to add
2406  * @lnum: LEB number of node
2407  * @offs: node offset
2408  * @len: node length
2409  * @hash: The hash over the node
2410  * @nm: node name
2411  *
2412  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2413  * may have collisions, like directory entry keys.
2414  */
2415 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2416 		     int lnum, int offs, int len, const u8 *hash,
2417 		     const struct fscrypt_name *nm)
2418 {
2419 	int found, n, err = 0;
2420 	struct ubifs_znode *znode;
2421 
2422 	mutex_lock(&c->tnc_mutex);
2423 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2424 	found = lookup_level0_dirty(c, key, &znode, &n);
2425 	if (found < 0) {
2426 		err = found;
2427 		goto out_unlock;
2428 	}
2429 
2430 	if (found == 1) {
2431 		if (c->replaying)
2432 			found = fallible_resolve_collision(c, key, &znode, &n,
2433 							   nm, 1);
2434 		else
2435 			found = resolve_collision(c, key, &znode, &n, nm);
2436 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2437 		if (found < 0) {
2438 			err = found;
2439 			goto out_unlock;
2440 		}
2441 
2442 		/* Ensure the znode is dirtied */
2443 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2444 			znode = dirty_cow_bottom_up(c, znode);
2445 			if (IS_ERR(znode)) {
2446 				err = PTR_ERR(znode);
2447 				goto out_unlock;
2448 			}
2449 		}
2450 
2451 		if (found == 1) {
2452 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2453 
2454 			lnc_free(zbr);
2455 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2456 			zbr->lnum = lnum;
2457 			zbr->offs = offs;
2458 			zbr->len = len;
2459 			ubifs_copy_hash(c, hash, zbr->hash);
2460 			goto out_unlock;
2461 		}
2462 	}
2463 
2464 	if (!found) {
2465 		struct ubifs_zbranch zbr;
2466 
2467 		zbr.znode = NULL;
2468 		zbr.lnum = lnum;
2469 		zbr.offs = offs;
2470 		zbr.len = len;
2471 		ubifs_copy_hash(c, hash, zbr.hash);
2472 		key_copy(c, key, &zbr.key);
2473 		err = tnc_insert(c, znode, &zbr, n + 1);
2474 		if (err)
2475 			goto out_unlock;
2476 		if (c->replaying) {
2477 			/*
2478 			 * We did not find it in the index so there may be a
2479 			 * dangling branch still in the index. So we remove it
2480 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2481 			 * an unmatchable name.
2482 			 */
2483 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2484 
2485 			err = dbg_check_tnc(c, 0);
2486 			mutex_unlock(&c->tnc_mutex);
2487 			if (err)
2488 				return err;
2489 			return ubifs_tnc_remove_nm(c, key, &noname);
2490 		}
2491 	}
2492 
2493 out_unlock:
2494 	if (!err)
2495 		err = dbg_check_tnc(c, 0);
2496 	mutex_unlock(&c->tnc_mutex);
2497 	return err;
2498 }
2499 
2500 /**
2501  * tnc_delete - delete a znode form TNC.
2502  * @c: UBIFS file-system description object
2503  * @znode: znode to delete from
2504  * @n: zbranch slot number to delete
2505  *
2506  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2507  * case of success and a negative error code in case of failure.
2508  */
2509 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2510 {
2511 	struct ubifs_zbranch *zbr;
2512 	struct ubifs_znode *zp;
2513 	int i, err;
2514 
2515 	/* Delete without merge for now */
2516 	ubifs_assert(c, znode->level == 0);
2517 	ubifs_assert(c, n >= 0 && n < c->fanout);
2518 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2519 
2520 	zbr = &znode->zbranch[n];
2521 	lnc_free(zbr);
2522 
2523 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2524 	if (err) {
2525 		ubifs_dump_znode(c, znode);
2526 		return err;
2527 	}
2528 
2529 	/* We do not "gap" zbranch slots */
2530 	for (i = n; i < znode->child_cnt - 1; i++)
2531 		znode->zbranch[i] = znode->zbranch[i + 1];
2532 	znode->child_cnt -= 1;
2533 
2534 	if (znode->child_cnt > 0)
2535 		return 0;
2536 
2537 	/*
2538 	 * This was the last zbranch, we have to delete this znode from the
2539 	 * parent.
2540 	 */
2541 
2542 	do {
2543 		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2544 		ubifs_assert(c, ubifs_zn_dirty(znode));
2545 
2546 		zp = znode->parent;
2547 		n = znode->iip;
2548 
2549 		atomic_long_dec(&c->dirty_zn_cnt);
2550 
2551 		err = insert_old_idx_znode(c, znode);
2552 		if (err)
2553 			return err;
2554 
2555 		if (znode->cnext) {
2556 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2557 			atomic_long_inc(&c->clean_zn_cnt);
2558 			atomic_long_inc(&ubifs_clean_zn_cnt);
2559 		} else
2560 			kfree(znode);
2561 		znode = zp;
2562 	} while (znode->child_cnt == 1); /* while removing last child */
2563 
2564 	/* Remove from znode, entry n - 1 */
2565 	znode->child_cnt -= 1;
2566 	ubifs_assert(c, znode->level != 0);
2567 	for (i = n; i < znode->child_cnt; i++) {
2568 		znode->zbranch[i] = znode->zbranch[i + 1];
2569 		if (znode->zbranch[i].znode)
2570 			znode->zbranch[i].znode->iip = i;
2571 	}
2572 
2573 	/*
2574 	 * If this is the root and it has only 1 child then
2575 	 * collapse the tree.
2576 	 */
2577 	if (!znode->parent) {
2578 		while (znode->child_cnt == 1 && znode->level != 0) {
2579 			zp = znode;
2580 			zbr = &znode->zbranch[0];
2581 			znode = get_znode(c, znode, 0);
2582 			if (IS_ERR(znode))
2583 				return PTR_ERR(znode);
2584 			znode = dirty_cow_znode(c, zbr);
2585 			if (IS_ERR(znode))
2586 				return PTR_ERR(znode);
2587 			znode->parent = NULL;
2588 			znode->iip = 0;
2589 			if (c->zroot.len) {
2590 				err = insert_old_idx(c, c->zroot.lnum,
2591 						     c->zroot.offs);
2592 				if (err)
2593 					return err;
2594 			}
2595 			c->zroot.lnum = zbr->lnum;
2596 			c->zroot.offs = zbr->offs;
2597 			c->zroot.len = zbr->len;
2598 			c->zroot.znode = znode;
2599 			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2600 			ubifs_assert(c, ubifs_zn_dirty(zp));
2601 			atomic_long_dec(&c->dirty_zn_cnt);
2602 
2603 			if (zp->cnext) {
2604 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2605 				atomic_long_inc(&c->clean_zn_cnt);
2606 				atomic_long_inc(&ubifs_clean_zn_cnt);
2607 			} else
2608 				kfree(zp);
2609 		}
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * ubifs_tnc_remove - remove an index entry of a node.
2617  * @c: UBIFS file-system description object
2618  * @key: key of node
2619  *
2620  * Returns %0 on success or negative error code on failure.
2621  */
2622 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2623 {
2624 	int found, n, err = 0;
2625 	struct ubifs_znode *znode;
2626 
2627 	mutex_lock(&c->tnc_mutex);
2628 	dbg_tnck(key, "key ");
2629 	found = lookup_level0_dirty(c, key, &znode, &n);
2630 	if (found < 0) {
2631 		err = found;
2632 		goto out_unlock;
2633 	}
2634 	if (found == 1)
2635 		err = tnc_delete(c, znode, n);
2636 	if (!err)
2637 		err = dbg_check_tnc(c, 0);
2638 
2639 out_unlock:
2640 	mutex_unlock(&c->tnc_mutex);
2641 	return err;
2642 }
2643 
2644 /**
2645  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2646  * @c: UBIFS file-system description object
2647  * @key: key of node
2648  * @nm: directory entry name
2649  *
2650  * Returns %0 on success or negative error code on failure.
2651  */
2652 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2653 			const struct fscrypt_name *nm)
2654 {
2655 	int n, err;
2656 	struct ubifs_znode *znode;
2657 
2658 	mutex_lock(&c->tnc_mutex);
2659 	dbg_tnck(key, "key ");
2660 	err = lookup_level0_dirty(c, key, &znode, &n);
2661 	if (err < 0)
2662 		goto out_unlock;
2663 
2664 	if (err) {
2665 		if (c->replaying)
2666 			err = fallible_resolve_collision(c, key, &znode, &n,
2667 							 nm, 0);
2668 		else
2669 			err = resolve_collision(c, key, &znode, &n, nm);
2670 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2671 		if (err < 0)
2672 			goto out_unlock;
2673 		if (err) {
2674 			/* Ensure the znode is dirtied */
2675 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2676 				znode = dirty_cow_bottom_up(c, znode);
2677 				if (IS_ERR(znode)) {
2678 					err = PTR_ERR(znode);
2679 					goto out_unlock;
2680 				}
2681 			}
2682 			err = tnc_delete(c, znode, n);
2683 		}
2684 	}
2685 
2686 out_unlock:
2687 	if (!err)
2688 		err = dbg_check_tnc(c, 0);
2689 	mutex_unlock(&c->tnc_mutex);
2690 	return err;
2691 }
2692 
2693 /**
2694  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2695  * @c: UBIFS file-system description object
2696  * @key: key of node
2697  * @cookie: node cookie for collision resolution
2698  *
2699  * Returns %0 on success or negative error code on failure.
2700  */
2701 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2702 			uint32_t cookie)
2703 {
2704 	int n, err;
2705 	struct ubifs_znode *znode;
2706 	struct ubifs_dent_node *dent;
2707 	struct ubifs_zbranch *zbr;
2708 
2709 	if (!c->double_hash)
2710 		return -EOPNOTSUPP;
2711 
2712 	mutex_lock(&c->tnc_mutex);
2713 	err = lookup_level0_dirty(c, key, &znode, &n);
2714 	if (err <= 0)
2715 		goto out_unlock;
2716 
2717 	zbr = &znode->zbranch[n];
2718 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2719 	if (!dent) {
2720 		err = -ENOMEM;
2721 		goto out_unlock;
2722 	}
2723 
2724 	err = tnc_read_hashed_node(c, zbr, dent);
2725 	if (err)
2726 		goto out_free;
2727 
2728 	/* If the cookie does not match, we're facing a hash collision. */
2729 	if (le32_to_cpu(dent->cookie) != cookie) {
2730 		union ubifs_key start_key;
2731 
2732 		lowest_dent_key(c, &start_key, key_inum(c, key));
2733 
2734 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2735 		if (unlikely(err < 0))
2736 			goto out_free;
2737 
2738 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2739 		if (err)
2740 			goto out_free;
2741 	}
2742 
2743 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2744 		znode = dirty_cow_bottom_up(c, znode);
2745 		if (IS_ERR(znode)) {
2746 			err = PTR_ERR(znode);
2747 			goto out_free;
2748 		}
2749 	}
2750 	err = tnc_delete(c, znode, n);
2751 
2752 out_free:
2753 	kfree(dent);
2754 out_unlock:
2755 	if (!err)
2756 		err = dbg_check_tnc(c, 0);
2757 	mutex_unlock(&c->tnc_mutex);
2758 	return err;
2759 }
2760 
2761 /**
2762  * key_in_range - determine if a key falls within a range of keys.
2763  * @c: UBIFS file-system description object
2764  * @key: key to check
2765  * @from_key: lowest key in range
2766  * @to_key: highest key in range
2767  *
2768  * This function returns %1 if the key is in range and %0 otherwise.
2769  */
2770 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2771 			union ubifs_key *from_key, union ubifs_key *to_key)
2772 {
2773 	if (keys_cmp(c, key, from_key) < 0)
2774 		return 0;
2775 	if (keys_cmp(c, key, to_key) > 0)
2776 		return 0;
2777 	return 1;
2778 }
2779 
2780 /**
2781  * ubifs_tnc_remove_range - remove index entries in range.
2782  * @c: UBIFS file-system description object
2783  * @from_key: lowest key to remove
2784  * @to_key: highest key to remove
2785  *
2786  * This function removes index entries starting at @from_key and ending at
2787  * @to_key.  This function returns zero in case of success and a negative error
2788  * code in case of failure.
2789  */
2790 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2791 			   union ubifs_key *to_key)
2792 {
2793 	int i, n, k, err = 0;
2794 	struct ubifs_znode *znode;
2795 	union ubifs_key *key;
2796 
2797 	mutex_lock(&c->tnc_mutex);
2798 	while (1) {
2799 		/* Find first level 0 znode that contains keys to remove */
2800 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2801 		if (err < 0)
2802 			goto out_unlock;
2803 
2804 		if (err)
2805 			key = from_key;
2806 		else {
2807 			err = tnc_next(c, &znode, &n);
2808 			if (err == -ENOENT) {
2809 				err = 0;
2810 				goto out_unlock;
2811 			}
2812 			if (err < 0)
2813 				goto out_unlock;
2814 			key = &znode->zbranch[n].key;
2815 			if (!key_in_range(c, key, from_key, to_key)) {
2816 				err = 0;
2817 				goto out_unlock;
2818 			}
2819 		}
2820 
2821 		/* Ensure the znode is dirtied */
2822 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2823 			znode = dirty_cow_bottom_up(c, znode);
2824 			if (IS_ERR(znode)) {
2825 				err = PTR_ERR(znode);
2826 				goto out_unlock;
2827 			}
2828 		}
2829 
2830 		/* Remove all keys in range except the first */
2831 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2832 			key = &znode->zbranch[i].key;
2833 			if (!key_in_range(c, key, from_key, to_key))
2834 				break;
2835 			lnc_free(&znode->zbranch[i]);
2836 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2837 					     znode->zbranch[i].len);
2838 			if (err) {
2839 				ubifs_dump_znode(c, znode);
2840 				goto out_unlock;
2841 			}
2842 			dbg_tnck(key, "removing key ");
2843 		}
2844 		if (k) {
2845 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2846 				znode->zbranch[i - k] = znode->zbranch[i];
2847 			znode->child_cnt -= k;
2848 		}
2849 
2850 		/* Now delete the first */
2851 		err = tnc_delete(c, znode, n);
2852 		if (err)
2853 			goto out_unlock;
2854 	}
2855 
2856 out_unlock:
2857 	if (!err)
2858 		err = dbg_check_tnc(c, 0);
2859 	mutex_unlock(&c->tnc_mutex);
2860 	return err;
2861 }
2862 
2863 /**
2864  * ubifs_tnc_remove_ino - remove an inode from TNC.
2865  * @c: UBIFS file-system description object
2866  * @inum: inode number to remove
2867  *
2868  * This function remove inode @inum and all the extended attributes associated
2869  * with the anode from TNC and returns zero in case of success or a negative
2870  * error code in case of failure.
2871  */
2872 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2873 {
2874 	union ubifs_key key1, key2;
2875 	struct ubifs_dent_node *xent, *pxent = NULL;
2876 	struct fscrypt_name nm = {0};
2877 
2878 	dbg_tnc("ino %lu", (unsigned long)inum);
2879 
2880 	/*
2881 	 * Walk all extended attribute entries and remove them together with
2882 	 * corresponding extended attribute inodes.
2883 	 */
2884 	lowest_xent_key(c, &key1, inum);
2885 	while (1) {
2886 		ino_t xattr_inum;
2887 		int err;
2888 
2889 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2890 		if (IS_ERR(xent)) {
2891 			err = PTR_ERR(xent);
2892 			if (err == -ENOENT)
2893 				break;
2894 			kfree(pxent);
2895 			return err;
2896 		}
2897 
2898 		xattr_inum = le64_to_cpu(xent->inum);
2899 		dbg_tnc("xent '%s', ino %lu", xent->name,
2900 			(unsigned long)xattr_inum);
2901 
2902 		ubifs_evict_xattr_inode(c, xattr_inum);
2903 
2904 		fname_name(&nm) = xent->name;
2905 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2906 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2907 		if (err) {
2908 			kfree(pxent);
2909 			kfree(xent);
2910 			return err;
2911 		}
2912 
2913 		lowest_ino_key(c, &key1, xattr_inum);
2914 		highest_ino_key(c, &key2, xattr_inum);
2915 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2916 		if (err) {
2917 			kfree(pxent);
2918 			kfree(xent);
2919 			return err;
2920 		}
2921 
2922 		kfree(pxent);
2923 		pxent = xent;
2924 		key_read(c, &xent->key, &key1);
2925 	}
2926 
2927 	kfree(pxent);
2928 	lowest_ino_key(c, &key1, inum);
2929 	highest_ino_key(c, &key2, inum);
2930 
2931 	return ubifs_tnc_remove_range(c, &key1, &key2);
2932 }
2933 
2934 /**
2935  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2936  * @c: UBIFS file-system description object
2937  * @key: key of last entry
2938  * @nm: name of last entry found or %NULL
2939  *
2940  * This function finds and reads the next directory or extended attribute entry
2941  * after the given key (@key) if there is one. @nm is used to resolve
2942  * collisions.
2943  *
2944  * If the name of the current entry is not known and only the key is known,
2945  * @nm->name has to be %NULL. In this case the semantics of this function is a
2946  * little bit different and it returns the entry corresponding to this key, not
2947  * the next one. If the key was not found, the closest "right" entry is
2948  * returned.
2949  *
2950  * If the fist entry has to be found, @key has to contain the lowest possible
2951  * key value for this inode and @name has to be %NULL.
2952  *
2953  * This function returns the found directory or extended attribute entry node
2954  * in case of success, %-ENOENT is returned if no entry was found, and a
2955  * negative error code is returned in case of failure.
2956  */
2957 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2958 					   union ubifs_key *key,
2959 					   const struct fscrypt_name *nm)
2960 {
2961 	int n, err, type = key_type(c, key);
2962 	struct ubifs_znode *znode;
2963 	struct ubifs_dent_node *dent;
2964 	struct ubifs_zbranch *zbr;
2965 	union ubifs_key *dkey;
2966 
2967 	dbg_tnck(key, "key ");
2968 	ubifs_assert(c, is_hash_key(c, key));
2969 
2970 	mutex_lock(&c->tnc_mutex);
2971 	err = ubifs_lookup_level0(c, key, &znode, &n);
2972 	if (unlikely(err < 0))
2973 		goto out_unlock;
2974 
2975 	if (fname_len(nm) > 0) {
2976 		if (err) {
2977 			/* Handle collisions */
2978 			if (c->replaying)
2979 				err = fallible_resolve_collision(c, key, &znode, &n,
2980 							 nm, 0);
2981 			else
2982 				err = resolve_collision(c, key, &znode, &n, nm);
2983 			dbg_tnc("rc returned %d, znode %p, n %d",
2984 				err, znode, n);
2985 			if (unlikely(err < 0))
2986 				goto out_unlock;
2987 		}
2988 
2989 		/* Now find next entry */
2990 		err = tnc_next(c, &znode, &n);
2991 		if (unlikely(err))
2992 			goto out_unlock;
2993 	} else {
2994 		/*
2995 		 * The full name of the entry was not given, in which case the
2996 		 * behavior of this function is a little different and it
2997 		 * returns current entry, not the next one.
2998 		 */
2999 		if (!err) {
3000 			/*
3001 			 * However, the given key does not exist in the TNC
3002 			 * tree and @znode/@n variables contain the closest
3003 			 * "preceding" element. Switch to the next one.
3004 			 */
3005 			err = tnc_next(c, &znode, &n);
3006 			if (err)
3007 				goto out_unlock;
3008 		}
3009 	}
3010 
3011 	zbr = &znode->zbranch[n];
3012 	dent = kmalloc(zbr->len, GFP_NOFS);
3013 	if (unlikely(!dent)) {
3014 		err = -ENOMEM;
3015 		goto out_unlock;
3016 	}
3017 
3018 	/*
3019 	 * The above 'tnc_next()' call could lead us to the next inode, check
3020 	 * this.
3021 	 */
3022 	dkey = &zbr->key;
3023 	if (key_inum(c, dkey) != key_inum(c, key) ||
3024 	    key_type(c, dkey) != type) {
3025 		err = -ENOENT;
3026 		goto out_free;
3027 	}
3028 
3029 	err = tnc_read_hashed_node(c, zbr, dent);
3030 	if (unlikely(err))
3031 		goto out_free;
3032 
3033 	mutex_unlock(&c->tnc_mutex);
3034 	return dent;
3035 
3036 out_free:
3037 	kfree(dent);
3038 out_unlock:
3039 	mutex_unlock(&c->tnc_mutex);
3040 	return ERR_PTR(err);
3041 }
3042 
3043 /**
3044  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3045  * @c: UBIFS file-system description object
3046  *
3047  * Destroy left-over obsolete znodes from a failed commit.
3048  */
3049 static void tnc_destroy_cnext(struct ubifs_info *c)
3050 {
3051 	struct ubifs_znode *cnext;
3052 
3053 	if (!c->cnext)
3054 		return;
3055 	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3056 	cnext = c->cnext;
3057 	do {
3058 		struct ubifs_znode *znode = cnext;
3059 
3060 		cnext = cnext->cnext;
3061 		if (ubifs_zn_obsolete(znode))
3062 			kfree(znode);
3063 		else if (!ubifs_zn_cow(znode)) {
3064 			/*
3065 			 * Don't forget to update clean znode count after
3066 			 * committing failed, because ubifs will check this
3067 			 * count while closing tnc. Non-obsolete znode could
3068 			 * be re-dirtied during committing process, so dirty
3069 			 * flag is untrustable. The flag 'COW_ZNODE' is set
3070 			 * for each dirty znode before committing, and it is
3071 			 * cleared as long as the znode become clean, so we
3072 			 * can statistic clean znode count according to this
3073 			 * flag.
3074 			 */
3075 			atomic_long_inc(&c->clean_zn_cnt);
3076 			atomic_long_inc(&ubifs_clean_zn_cnt);
3077 		}
3078 	} while (cnext && cnext != c->cnext);
3079 }
3080 
3081 /**
3082  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3083  * @c: UBIFS file-system description object
3084  */
3085 void ubifs_tnc_close(struct ubifs_info *c)
3086 {
3087 	tnc_destroy_cnext(c);
3088 	if (c->zroot.znode) {
3089 		long n, freed;
3090 
3091 		n = atomic_long_read(&c->clean_zn_cnt);
3092 		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3093 		ubifs_assert(c, freed == n);
3094 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3095 	}
3096 	kfree(c->gap_lebs);
3097 	kfree(c->ilebs);
3098 	destroy_old_idx(c);
3099 }
3100 
3101 /**
3102  * left_znode - get the znode to the left.
3103  * @c: UBIFS file-system description object
3104  * @znode: znode
3105  *
3106  * This function returns a pointer to the znode to the left of @znode or NULL if
3107  * there is not one. A negative error code is returned on failure.
3108  */
3109 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3110 				      struct ubifs_znode *znode)
3111 {
3112 	int level = znode->level;
3113 
3114 	while (1) {
3115 		int n = znode->iip - 1;
3116 
3117 		/* Go up until we can go left */
3118 		znode = znode->parent;
3119 		if (!znode)
3120 			return NULL;
3121 		if (n >= 0) {
3122 			/* Now go down the rightmost branch to 'level' */
3123 			znode = get_znode(c, znode, n);
3124 			if (IS_ERR(znode))
3125 				return znode;
3126 			while (znode->level != level) {
3127 				n = znode->child_cnt - 1;
3128 				znode = get_znode(c, znode, n);
3129 				if (IS_ERR(znode))
3130 					return znode;
3131 			}
3132 			break;
3133 		}
3134 	}
3135 	return znode;
3136 }
3137 
3138 /**
3139  * right_znode - get the znode to the right.
3140  * @c: UBIFS file-system description object
3141  * @znode: znode
3142  *
3143  * This function returns a pointer to the znode to the right of @znode or NULL
3144  * if there is not one. A negative error code is returned on failure.
3145  */
3146 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3147 				       struct ubifs_znode *znode)
3148 {
3149 	int level = znode->level;
3150 
3151 	while (1) {
3152 		int n = znode->iip + 1;
3153 
3154 		/* Go up until we can go right */
3155 		znode = znode->parent;
3156 		if (!znode)
3157 			return NULL;
3158 		if (n < znode->child_cnt) {
3159 			/* Now go down the leftmost branch to 'level' */
3160 			znode = get_znode(c, znode, n);
3161 			if (IS_ERR(znode))
3162 				return znode;
3163 			while (znode->level != level) {
3164 				znode = get_znode(c, znode, 0);
3165 				if (IS_ERR(znode))
3166 					return znode;
3167 			}
3168 			break;
3169 		}
3170 	}
3171 	return znode;
3172 }
3173 
3174 /**
3175  * lookup_znode - find a particular indexing node from TNC.
3176  * @c: UBIFS file-system description object
3177  * @key: index node key to lookup
3178  * @level: index node level
3179  * @lnum: index node LEB number
3180  * @offs: index node offset
3181  *
3182  * This function searches an indexing node by its first key @key and its
3183  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3184  * nodes it traverses to TNC. This function is called for indexing nodes which
3185  * were found on the media by scanning, for example when garbage-collecting or
3186  * when doing in-the-gaps commit. This means that the indexing node which is
3187  * looked for does not have to have exactly the same leftmost key @key, because
3188  * the leftmost key may have been changed, in which case TNC will contain a
3189  * dirty znode which still refers the same @lnum:@offs. This function is clever
3190  * enough to recognize such indexing nodes.
3191  *
3192  * Note, if a znode was deleted or changed too much, then this function will
3193  * not find it. For situations like this UBIFS has the old index RB-tree
3194  * (indexed by @lnum:@offs).
3195  *
3196  * This function returns a pointer to the znode found or %NULL if it is not
3197  * found. A negative error code is returned on failure.
3198  */
3199 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3200 					union ubifs_key *key, int level,
3201 					int lnum, int offs)
3202 {
3203 	struct ubifs_znode *znode, *zn;
3204 	int n, nn;
3205 
3206 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3207 
3208 	/*
3209 	 * The arguments have probably been read off flash, so don't assume
3210 	 * they are valid.
3211 	 */
3212 	if (level < 0)
3213 		return ERR_PTR(-EINVAL);
3214 
3215 	/* Get the root znode */
3216 	znode = c->zroot.znode;
3217 	if (!znode) {
3218 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3219 		if (IS_ERR(znode))
3220 			return znode;
3221 	}
3222 	/* Check if it is the one we are looking for */
3223 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3224 		return znode;
3225 	/* Descend to the parent level i.e. (level + 1) */
3226 	if (level >= znode->level)
3227 		return NULL;
3228 	while (1) {
3229 		ubifs_search_zbranch(c, znode, key, &n);
3230 		if (n < 0) {
3231 			/*
3232 			 * We reached a znode where the leftmost key is greater
3233 			 * than the key we are searching for. This is the same
3234 			 * situation as the one described in a huge comment at
3235 			 * the end of the 'ubifs_lookup_level0()' function. And
3236 			 * for exactly the same reasons we have to try to look
3237 			 * left before giving up.
3238 			 */
3239 			znode = left_znode(c, znode);
3240 			if (!znode)
3241 				return NULL;
3242 			if (IS_ERR(znode))
3243 				return znode;
3244 			ubifs_search_zbranch(c, znode, key, &n);
3245 			ubifs_assert(c, n >= 0);
3246 		}
3247 		if (znode->level == level + 1)
3248 			break;
3249 		znode = get_znode(c, znode, n);
3250 		if (IS_ERR(znode))
3251 			return znode;
3252 	}
3253 	/* Check if the child is the one we are looking for */
3254 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3255 		return get_znode(c, znode, n);
3256 	/* If the key is unique, there is nowhere else to look */
3257 	if (!is_hash_key(c, key))
3258 		return NULL;
3259 	/*
3260 	 * The key is not unique and so may be also in the znodes to either
3261 	 * side.
3262 	 */
3263 	zn = znode;
3264 	nn = n;
3265 	/* Look left */
3266 	while (1) {
3267 		/* Move one branch to the left */
3268 		if (n)
3269 			n -= 1;
3270 		else {
3271 			znode = left_znode(c, znode);
3272 			if (!znode)
3273 				break;
3274 			if (IS_ERR(znode))
3275 				return znode;
3276 			n = znode->child_cnt - 1;
3277 		}
3278 		/* Check it */
3279 		if (znode->zbranch[n].lnum == lnum &&
3280 		    znode->zbranch[n].offs == offs)
3281 			return get_znode(c, znode, n);
3282 		/* Stop if the key is less than the one we are looking for */
3283 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3284 			break;
3285 	}
3286 	/* Back to the middle */
3287 	znode = zn;
3288 	n = nn;
3289 	/* Look right */
3290 	while (1) {
3291 		/* Move one branch to the right */
3292 		if (++n >= znode->child_cnt) {
3293 			znode = right_znode(c, znode);
3294 			if (!znode)
3295 				break;
3296 			if (IS_ERR(znode))
3297 				return znode;
3298 			n = 0;
3299 		}
3300 		/* Check it */
3301 		if (znode->zbranch[n].lnum == lnum &&
3302 		    znode->zbranch[n].offs == offs)
3303 			return get_znode(c, znode, n);
3304 		/* Stop if the key is greater than the one we are looking for */
3305 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3306 			break;
3307 	}
3308 	return NULL;
3309 }
3310 
3311 /**
3312  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3313  * @c: UBIFS file-system description object
3314  * @key: key of index node
3315  * @level: index node level
3316  * @lnum: LEB number of index node
3317  * @offs: offset of index node
3318  *
3319  * This function returns %0 if the index node is not referred to in the TNC, %1
3320  * if the index node is referred to in the TNC and the corresponding znode is
3321  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3322  * znode is clean, and a negative error code in case of failure.
3323  *
3324  * Note, the @key argument has to be the key of the first child. Also note,
3325  * this function relies on the fact that 0:0 is never a valid LEB number and
3326  * offset for a main-area node.
3327  */
3328 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3329 		       int lnum, int offs)
3330 {
3331 	struct ubifs_znode *znode;
3332 
3333 	znode = lookup_znode(c, key, level, lnum, offs);
3334 	if (!znode)
3335 		return 0;
3336 	if (IS_ERR(znode))
3337 		return PTR_ERR(znode);
3338 
3339 	return ubifs_zn_dirty(znode) ? 1 : 2;
3340 }
3341 
3342 /**
3343  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3344  * @c: UBIFS file-system description object
3345  * @key: node key
3346  * @lnum: node LEB number
3347  * @offs: node offset
3348  *
3349  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3350  * not, and a negative error code in case of failure.
3351  *
3352  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3353  * and offset for a main-area node.
3354  */
3355 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3356 			       int lnum, int offs)
3357 {
3358 	struct ubifs_zbranch *zbr;
3359 	struct ubifs_znode *znode, *zn;
3360 	int n, found, err, nn;
3361 	const int unique = !is_hash_key(c, key);
3362 
3363 	found = ubifs_lookup_level0(c, key, &znode, &n);
3364 	if (found < 0)
3365 		return found; /* Error code */
3366 	if (!found)
3367 		return 0;
3368 	zbr = &znode->zbranch[n];
3369 	if (lnum == zbr->lnum && offs == zbr->offs)
3370 		return 1; /* Found it */
3371 	if (unique)
3372 		return 0;
3373 	/*
3374 	 * Because the key is not unique, we have to look left
3375 	 * and right as well
3376 	 */
3377 	zn = znode;
3378 	nn = n;
3379 	/* Look left */
3380 	while (1) {
3381 		err = tnc_prev(c, &znode, &n);
3382 		if (err == -ENOENT)
3383 			break;
3384 		if (err)
3385 			return err;
3386 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3387 			break;
3388 		zbr = &znode->zbranch[n];
3389 		if (lnum == zbr->lnum && offs == zbr->offs)
3390 			return 1; /* Found it */
3391 	}
3392 	/* Look right */
3393 	znode = zn;
3394 	n = nn;
3395 	while (1) {
3396 		err = tnc_next(c, &znode, &n);
3397 		if (err) {
3398 			if (err == -ENOENT)
3399 				return 0;
3400 			return err;
3401 		}
3402 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3403 			break;
3404 		zbr = &znode->zbranch[n];
3405 		if (lnum == zbr->lnum && offs == zbr->offs)
3406 			return 1; /* Found it */
3407 	}
3408 	return 0;
3409 }
3410 
3411 /**
3412  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3413  * @c: UBIFS file-system description object
3414  * @key: node key
3415  * @level: index node level (if it is an index node)
3416  * @lnum: node LEB number
3417  * @offs: node offset
3418  * @is_idx: non-zero if the node is an index node
3419  *
3420  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3421  * negative error code in case of failure. For index nodes, @key has to be the
3422  * key of the first child. An index node is considered to be in the TNC only if
3423  * the corresponding znode is clean or has not been loaded.
3424  */
3425 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3426 		       int lnum, int offs, int is_idx)
3427 {
3428 	int err;
3429 
3430 	mutex_lock(&c->tnc_mutex);
3431 	if (is_idx) {
3432 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3433 		if (err < 0)
3434 			goto out_unlock;
3435 		if (err == 1)
3436 			/* The index node was found but it was dirty */
3437 			err = 0;
3438 		else if (err == 2)
3439 			/* The index node was found and it was clean */
3440 			err = 1;
3441 		else
3442 			BUG_ON(err != 0);
3443 	} else
3444 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3445 
3446 out_unlock:
3447 	mutex_unlock(&c->tnc_mutex);
3448 	return err;
3449 }
3450 
3451 /**
3452  * ubifs_dirty_idx_node - dirty an index node.
3453  * @c: UBIFS file-system description object
3454  * @key: index node key
3455  * @level: index node level
3456  * @lnum: index node LEB number
3457  * @offs: index node offset
3458  *
3459  * This function loads and dirties an index node so that it can be garbage
3460  * collected. The @key argument has to be the key of the first child. This
3461  * function relies on the fact that 0:0 is never a valid LEB number and offset
3462  * for a main-area node. Returns %0 on success and a negative error code on
3463  * failure.
3464  */
3465 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3466 			 int lnum, int offs)
3467 {
3468 	struct ubifs_znode *znode;
3469 	int err = 0;
3470 
3471 	mutex_lock(&c->tnc_mutex);
3472 	znode = lookup_znode(c, key, level, lnum, offs);
3473 	if (!znode)
3474 		goto out_unlock;
3475 	if (IS_ERR(znode)) {
3476 		err = PTR_ERR(znode);
3477 		goto out_unlock;
3478 	}
3479 	znode = dirty_cow_bottom_up(c, znode);
3480 	if (IS_ERR(znode)) {
3481 		err = PTR_ERR(znode);
3482 		goto out_unlock;
3483 	}
3484 
3485 out_unlock:
3486 	mutex_unlock(&c->tnc_mutex);
3487 	return err;
3488 }
3489 
3490 /**
3491  * dbg_check_inode_size - check if inode size is correct.
3492  * @c: UBIFS file-system description object
3493  * @inode: inode to check
3494  * @size: inode size
3495  *
3496  * This function makes sure that the inode size (@size) is correct and it does
3497  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3498  * if it has a data page beyond @size, and other negative error code in case of
3499  * other errors.
3500  */
3501 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3502 			 loff_t size)
3503 {
3504 	int err, n;
3505 	union ubifs_key from_key, to_key, *key;
3506 	struct ubifs_znode *znode;
3507 	unsigned int block;
3508 
3509 	if (!S_ISREG(inode->i_mode))
3510 		return 0;
3511 	if (!dbg_is_chk_gen(c))
3512 		return 0;
3513 
3514 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3515 	data_key_init(c, &from_key, inode->i_ino, block);
3516 	highest_data_key(c, &to_key, inode->i_ino);
3517 
3518 	mutex_lock(&c->tnc_mutex);
3519 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3520 	if (err < 0)
3521 		goto out_unlock;
3522 
3523 	if (err) {
3524 		key = &from_key;
3525 		goto out_dump;
3526 	}
3527 
3528 	err = tnc_next(c, &znode, &n);
3529 	if (err == -ENOENT) {
3530 		err = 0;
3531 		goto out_unlock;
3532 	}
3533 	if (err < 0)
3534 		goto out_unlock;
3535 
3536 	ubifs_assert(c, err == 0);
3537 	key = &znode->zbranch[n].key;
3538 	if (!key_in_range(c, key, &from_key, &to_key))
3539 		goto out_unlock;
3540 
3541 out_dump:
3542 	block = key_block(c, key);
3543 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3544 		  (unsigned long)inode->i_ino, size,
3545 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3546 	mutex_unlock(&c->tnc_mutex);
3547 	ubifs_dump_inode(c, inode);
3548 	dump_stack();
3549 	return -EINVAL;
3550 
3551 out_unlock:
3552 	mutex_unlock(&c->tnc_mutex);
3553 	return err;
3554 }
3555