1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /* 38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 39 * @NAME_LESS: name corresponding to the first argument is less than second 40 * @NAME_MATCHES: names match 41 * @NAME_GREATER: name corresponding to the second argument is greater than 42 * first 43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 44 * 45 * These constants were introduce to improve readability. 46 */ 47 enum { 48 NAME_LESS = 0, 49 NAME_MATCHES = 1, 50 NAME_GREATER = 2, 51 NOT_ON_MEDIA = 3, 52 }; 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err("old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct rb_node *this = c->old_idx.rb_node; 182 struct ubifs_old_idx *old_idx; 183 184 while (this) { 185 if (this->rb_left) { 186 this = this->rb_left; 187 continue; 188 } else if (this->rb_right) { 189 this = this->rb_right; 190 continue; 191 } 192 old_idx = rb_entry(this, struct ubifs_old_idx, rb); 193 this = rb_parent(this); 194 if (this) { 195 if (this->rb_left == &old_idx->rb) 196 this->rb_left = NULL; 197 else 198 this->rb_right = NULL; 199 } 200 kfree(old_idx); 201 } 202 c->old_idx = RB_ROOT; 203 } 204 205 /** 206 * copy_znode - copy a dirty znode. 207 * @c: UBIFS file-system description object 208 * @znode: znode to copy 209 * 210 * A dirty znode being committed may not be changed, so it is copied. 211 */ 212 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 213 struct ubifs_znode *znode) 214 { 215 struct ubifs_znode *zn; 216 217 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 218 if (unlikely(!zn)) 219 return ERR_PTR(-ENOMEM); 220 221 memcpy(zn, znode, c->max_znode_sz); 222 zn->cnext = NULL; 223 __set_bit(DIRTY_ZNODE, &zn->flags); 224 __clear_bit(COW_ZNODE, &zn->flags); 225 226 ubifs_assert(!ubifs_zn_obsolete(znode)); 227 __set_bit(OBSOLETE_ZNODE, &znode->flags); 228 229 if (znode->level != 0) { 230 int i; 231 const int n = zn->child_cnt; 232 233 /* The children now have new parent */ 234 for (i = 0; i < n; i++) { 235 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 236 237 if (zbr->znode) 238 zbr->znode->parent = zn; 239 } 240 } 241 242 atomic_long_inc(&c->dirty_zn_cnt); 243 return zn; 244 } 245 246 /** 247 * add_idx_dirt - add dirt due to a dirty znode. 248 * @c: UBIFS file-system description object 249 * @lnum: LEB number of index node 250 * @dirt: size of index node 251 * 252 * This function updates lprops dirty space and the new size of the index. 253 */ 254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 255 { 256 c->calc_idx_sz -= ALIGN(dirt, 8); 257 return ubifs_add_dirt(c, lnum, dirt); 258 } 259 260 /** 261 * dirty_cow_znode - ensure a znode is not being committed. 262 * @c: UBIFS file-system description object 263 * @zbr: branch of znode to check 264 * 265 * Returns dirtied znode on success or negative error code on failure. 266 */ 267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 268 struct ubifs_zbranch *zbr) 269 { 270 struct ubifs_znode *znode = zbr->znode; 271 struct ubifs_znode *zn; 272 int err; 273 274 if (!ubifs_zn_cow(znode)) { 275 /* znode is not being committed */ 276 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 277 atomic_long_inc(&c->dirty_zn_cnt); 278 atomic_long_dec(&c->clean_zn_cnt); 279 atomic_long_dec(&ubifs_clean_zn_cnt); 280 err = add_idx_dirt(c, zbr->lnum, zbr->len); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 } 284 return znode; 285 } 286 287 zn = copy_znode(c, znode); 288 if (IS_ERR(zn)) 289 return zn; 290 291 if (zbr->len) { 292 err = insert_old_idx(c, zbr->lnum, zbr->offs); 293 if (unlikely(err)) 294 return ERR_PTR(err); 295 err = add_idx_dirt(c, zbr->lnum, zbr->len); 296 } else 297 err = 0; 298 299 zbr->znode = zn; 300 zbr->lnum = 0; 301 zbr->offs = 0; 302 zbr->len = 0; 303 304 if (unlikely(err)) 305 return ERR_PTR(err); 306 return zn; 307 } 308 309 /** 310 * lnc_add - add a leaf node to the leaf node cache. 311 * @c: UBIFS file-system description object 312 * @zbr: zbranch of leaf node 313 * @node: leaf node 314 * 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 316 * purpose of the leaf node cache is to save re-reading the same leaf node over 317 * and over again. Most things are cached by VFS, however the file system must 318 * cache directory entries for readdir and for resolving hash collisions. The 319 * present implementation of the leaf node cache is extremely simple, and 320 * allows for error returns that are not used but that may be needed if a more 321 * complex implementation is created. 322 * 323 * Note, this function does not add the @node object to LNC directly, but 324 * allocates a copy of the object and adds the copy to LNC. The reason for this 325 * is that @node has been allocated outside of the TNC subsystem and will be 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 327 * may be changed at any time, e.g. freed by the shrinker. 328 */ 329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 330 const void *node) 331 { 332 int err; 333 void *lnc_node; 334 const struct ubifs_dent_node *dent = node; 335 336 ubifs_assert(!zbr->leaf); 337 ubifs_assert(zbr->len != 0); 338 ubifs_assert(is_hash_key(c, &zbr->key)); 339 340 err = ubifs_validate_entry(c, dent); 341 if (err) { 342 dbg_dump_stack(); 343 dbg_dump_node(c, dent); 344 return err; 345 } 346 347 lnc_node = kmalloc(zbr->len, GFP_NOFS); 348 if (!lnc_node) 349 /* We don't have to have the cache, so no error */ 350 return 0; 351 352 memcpy(lnc_node, node, zbr->len); 353 zbr->leaf = lnc_node; 354 return 0; 355 } 356 357 /** 358 * lnc_add_directly - add a leaf node to the leaf-node-cache. 359 * @c: UBIFS file-system description object 360 * @zbr: zbranch of leaf node 361 * @node: leaf node 362 * 363 * This function is similar to 'lnc_add()', but it does not create a copy of 364 * @node but inserts @node to TNC directly. 365 */ 366 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 367 void *node) 368 { 369 int err; 370 371 ubifs_assert(!zbr->leaf); 372 ubifs_assert(zbr->len != 0); 373 374 err = ubifs_validate_entry(c, node); 375 if (err) { 376 dbg_dump_stack(); 377 dbg_dump_node(c, node); 378 return err; 379 } 380 381 zbr->leaf = node; 382 return 0; 383 } 384 385 /** 386 * lnc_free - remove a leaf node from the leaf node cache. 387 * @zbr: zbranch of leaf node 388 * @node: leaf node 389 */ 390 static void lnc_free(struct ubifs_zbranch *zbr) 391 { 392 if (!zbr->leaf) 393 return; 394 kfree(zbr->leaf); 395 zbr->leaf = NULL; 396 } 397 398 /** 399 * tnc_read_node_nm - read a "hashed" leaf node. 400 * @c: UBIFS file-system description object 401 * @zbr: key and position of the node 402 * @node: node is returned here 403 * 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache 405 * (in it is there) or from the hash media, in which case the node is also 406 * added to LNC. Returns zero in case of success or a negative negative error 407 * code in case of failure. 408 */ 409 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 410 void *node) 411 { 412 int err; 413 414 ubifs_assert(is_hash_key(c, &zbr->key)); 415 416 if (zbr->leaf) { 417 /* Read from the leaf node cache */ 418 ubifs_assert(zbr->len != 0); 419 memcpy(node, zbr->leaf, zbr->len); 420 return 0; 421 } 422 423 err = ubifs_tnc_read_node(c, zbr, node); 424 if (err) 425 return err; 426 427 /* Add the node to the leaf node cache */ 428 err = lnc_add(c, zbr, node); 429 return err; 430 } 431 432 /** 433 * try_read_node - read a node if it is a node. 434 * @c: UBIFS file-system description object 435 * @buf: buffer to read to 436 * @type: node type 437 * @len: node length (not aligned) 438 * @lnum: LEB number of node to read 439 * @offs: offset of node to read 440 * 441 * This function tries to read a node of known type and length, checks it and 442 * stores it in @buf. This function returns %1 if a node is present and %0 if 443 * a node is not present. A negative error code is returned for I/O errors. 444 * This function performs that same function as ubifs_read_node except that 445 * it does not require that there is actually a node present and instead 446 * the return code indicates if a node was read. 447 * 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 449 * is true (it is controlled by corresponding mount option). However, if 450 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 451 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 452 * because during mounting or re-mounting from R/O mode to R/W mode we may read 453 * journal nodes (when replying the journal or doing the recovery) and the 454 * journal nodes may potentially be corrupted, so checking is required. 455 */ 456 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 457 int len, int lnum, int offs) 458 { 459 int err, node_len; 460 struct ubifs_ch *ch = buf; 461 uint32_t crc, node_crc; 462 463 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 464 465 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 466 if (err) { 467 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 468 type, lnum, offs, err); 469 return err; 470 } 471 472 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 473 return 0; 474 475 if (ch->node_type != type) 476 return 0; 477 478 node_len = le32_to_cpu(ch->len); 479 if (node_len != len) 480 return 0; 481 482 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 483 !c->remounting_rw) 484 return 1; 485 486 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 487 node_crc = le32_to_cpu(ch->crc); 488 if (crc != node_crc) 489 return 0; 490 491 return 1; 492 } 493 494 /** 495 * fallible_read_node - try to read a leaf node. 496 * @c: UBIFS file-system description object 497 * @key: key of node to read 498 * @zbr: position of node 499 * @node: node returned 500 * 501 * This function tries to read a node and returns %1 if the node is read, %0 502 * if the node is not present, and a negative error code in the case of error. 503 */ 504 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 505 struct ubifs_zbranch *zbr, void *node) 506 { 507 int ret; 508 509 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); 510 511 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 512 zbr->offs); 513 if (ret == 1) { 514 union ubifs_key node_key; 515 struct ubifs_dent_node *dent = node; 516 517 /* All nodes have key in the same place */ 518 key_read(c, &dent->key, &node_key); 519 if (keys_cmp(c, key, &node_key) != 0) 520 ret = 0; 521 } 522 if (ret == 0 && c->replaying) 523 dbg_mnt("dangling branch LEB %d:%d len %d, key %s", 524 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); 525 return ret; 526 } 527 528 /** 529 * matches_name - determine if a direntry or xattr entry matches a given name. 530 * @c: UBIFS file-system description object 531 * @zbr: zbranch of dent 532 * @nm: name to match 533 * 534 * This function checks if xentry/direntry referred by zbranch @zbr matches name 535 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 536 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 537 * of failure, a negative error code is returned. 538 */ 539 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 540 const struct qstr *nm) 541 { 542 struct ubifs_dent_node *dent; 543 int nlen, err; 544 545 /* If possible, match against the dent in the leaf node cache */ 546 if (!zbr->leaf) { 547 dent = kmalloc(zbr->len, GFP_NOFS); 548 if (!dent) 549 return -ENOMEM; 550 551 err = ubifs_tnc_read_node(c, zbr, dent); 552 if (err) 553 goto out_free; 554 555 /* Add the node to the leaf node cache */ 556 err = lnc_add_directly(c, zbr, dent); 557 if (err) 558 goto out_free; 559 } else 560 dent = zbr->leaf; 561 562 nlen = le16_to_cpu(dent->nlen); 563 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 564 if (err == 0) { 565 if (nlen == nm->len) 566 return NAME_MATCHES; 567 else if (nlen < nm->len) 568 return NAME_LESS; 569 else 570 return NAME_GREATER; 571 } else if (err < 0) 572 return NAME_LESS; 573 else 574 return NAME_GREATER; 575 576 out_free: 577 kfree(dent); 578 return err; 579 } 580 581 /** 582 * get_znode - get a TNC znode that may not be loaded yet. 583 * @c: UBIFS file-system description object 584 * @znode: parent znode 585 * @n: znode branch slot number 586 * 587 * This function returns the znode or a negative error code. 588 */ 589 static struct ubifs_znode *get_znode(struct ubifs_info *c, 590 struct ubifs_znode *znode, int n) 591 { 592 struct ubifs_zbranch *zbr; 593 594 zbr = &znode->zbranch[n]; 595 if (zbr->znode) 596 znode = zbr->znode; 597 else 598 znode = ubifs_load_znode(c, zbr, znode, n); 599 return znode; 600 } 601 602 /** 603 * tnc_next - find next TNC entry. 604 * @c: UBIFS file-system description object 605 * @zn: znode is passed and returned here 606 * @n: znode branch slot number is passed and returned here 607 * 608 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 609 * no next entry, or a negative error code otherwise. 610 */ 611 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 612 { 613 struct ubifs_znode *znode = *zn; 614 int nn = *n; 615 616 nn += 1; 617 if (nn < znode->child_cnt) { 618 *n = nn; 619 return 0; 620 } 621 while (1) { 622 struct ubifs_znode *zp; 623 624 zp = znode->parent; 625 if (!zp) 626 return -ENOENT; 627 nn = znode->iip + 1; 628 znode = zp; 629 if (nn < znode->child_cnt) { 630 znode = get_znode(c, znode, nn); 631 if (IS_ERR(znode)) 632 return PTR_ERR(znode); 633 while (znode->level != 0) { 634 znode = get_znode(c, znode, 0); 635 if (IS_ERR(znode)) 636 return PTR_ERR(znode); 637 } 638 nn = 0; 639 break; 640 } 641 } 642 *zn = znode; 643 *n = nn; 644 return 0; 645 } 646 647 /** 648 * tnc_prev - find previous TNC entry. 649 * @c: UBIFS file-system description object 650 * @zn: znode is returned here 651 * @n: znode branch slot number is passed and returned here 652 * 653 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 654 * there is no next entry, or a negative error code otherwise. 655 */ 656 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 657 { 658 struct ubifs_znode *znode = *zn; 659 int nn = *n; 660 661 if (nn > 0) { 662 *n = nn - 1; 663 return 0; 664 } 665 while (1) { 666 struct ubifs_znode *zp; 667 668 zp = znode->parent; 669 if (!zp) 670 return -ENOENT; 671 nn = znode->iip - 1; 672 znode = zp; 673 if (nn >= 0) { 674 znode = get_znode(c, znode, nn); 675 if (IS_ERR(znode)) 676 return PTR_ERR(znode); 677 while (znode->level != 0) { 678 nn = znode->child_cnt - 1; 679 znode = get_znode(c, znode, nn); 680 if (IS_ERR(znode)) 681 return PTR_ERR(znode); 682 } 683 nn = znode->child_cnt - 1; 684 break; 685 } 686 } 687 *zn = znode; 688 *n = nn; 689 return 0; 690 } 691 692 /** 693 * resolve_collision - resolve a collision. 694 * @c: UBIFS file-system description object 695 * @key: key of a directory or extended attribute entry 696 * @zn: znode is returned here 697 * @n: zbranch number is passed and returned here 698 * @nm: name of the entry 699 * 700 * This function is called for "hashed" keys to make sure that the found key 701 * really corresponds to the looked up node (directory or extended attribute 702 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 703 * %0 is returned if @nm is not found and @zn and @n are set to the previous 704 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 705 * This means that @n may be set to %-1 if the leftmost key in @zn is the 706 * previous one. A negative error code is returned on failures. 707 */ 708 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 709 struct ubifs_znode **zn, int *n, 710 const struct qstr *nm) 711 { 712 int err; 713 714 err = matches_name(c, &(*zn)->zbranch[*n], nm); 715 if (unlikely(err < 0)) 716 return err; 717 if (err == NAME_MATCHES) 718 return 1; 719 720 if (err == NAME_GREATER) { 721 /* Look left */ 722 while (1) { 723 err = tnc_prev(c, zn, n); 724 if (err == -ENOENT) { 725 ubifs_assert(*n == 0); 726 *n = -1; 727 return 0; 728 } 729 if (err < 0) 730 return err; 731 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 732 /* 733 * We have found the branch after which we would 734 * like to insert, but inserting in this znode 735 * may still be wrong. Consider the following 3 736 * znodes, in the case where we are resolving a 737 * collision with Key2. 738 * 739 * znode zp 740 * ---------------------- 741 * level 1 | Key0 | Key1 | 742 * ----------------------- 743 * | | 744 * znode za | | znode zb 745 * ------------ ------------ 746 * level 0 | Key0 | | Key2 | 747 * ------------ ------------ 748 * 749 * The lookup finds Key2 in znode zb. Lets say 750 * there is no match and the name is greater so 751 * we look left. When we find Key0, we end up 752 * here. If we return now, we will insert into 753 * znode za at slot n = 1. But that is invalid 754 * according to the parent's keys. Key2 must 755 * be inserted into znode zb. 756 * 757 * Note, this problem is not relevant for the 758 * case when we go right, because 759 * 'tnc_insert()' would correct the parent key. 760 */ 761 if (*n == (*zn)->child_cnt - 1) { 762 err = tnc_next(c, zn, n); 763 if (err) { 764 /* Should be impossible */ 765 ubifs_assert(0); 766 if (err == -ENOENT) 767 err = -EINVAL; 768 return err; 769 } 770 ubifs_assert(*n == 0); 771 *n = -1; 772 } 773 return 0; 774 } 775 err = matches_name(c, &(*zn)->zbranch[*n], nm); 776 if (err < 0) 777 return err; 778 if (err == NAME_LESS) 779 return 0; 780 if (err == NAME_MATCHES) 781 return 1; 782 ubifs_assert(err == NAME_GREATER); 783 } 784 } else { 785 int nn = *n; 786 struct ubifs_znode *znode = *zn; 787 788 /* Look right */ 789 while (1) { 790 err = tnc_next(c, &znode, &nn); 791 if (err == -ENOENT) 792 return 0; 793 if (err < 0) 794 return err; 795 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 796 return 0; 797 err = matches_name(c, &znode->zbranch[nn], nm); 798 if (err < 0) 799 return err; 800 if (err == NAME_GREATER) 801 return 0; 802 *zn = znode; 803 *n = nn; 804 if (err == NAME_MATCHES) 805 return 1; 806 ubifs_assert(err == NAME_LESS); 807 } 808 } 809 } 810 811 /** 812 * fallible_matches_name - determine if a dent matches a given name. 813 * @c: UBIFS file-system description object 814 * @zbr: zbranch of dent 815 * @nm: name to match 816 * 817 * This is a "fallible" version of 'matches_name()' function which does not 818 * panic if the direntry/xentry referred by @zbr does not exist on the media. 819 * 820 * This function checks if xentry/direntry referred by zbranch @zbr matches name 821 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 822 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 823 * if xentry/direntry referred by @zbr does not exist on the media. A negative 824 * error code is returned in case of failure. 825 */ 826 static int fallible_matches_name(struct ubifs_info *c, 827 struct ubifs_zbranch *zbr, 828 const struct qstr *nm) 829 { 830 struct ubifs_dent_node *dent; 831 int nlen, err; 832 833 /* If possible, match against the dent in the leaf node cache */ 834 if (!zbr->leaf) { 835 dent = kmalloc(zbr->len, GFP_NOFS); 836 if (!dent) 837 return -ENOMEM; 838 839 err = fallible_read_node(c, &zbr->key, zbr, dent); 840 if (err < 0) 841 goto out_free; 842 if (err == 0) { 843 /* The node was not present */ 844 err = NOT_ON_MEDIA; 845 goto out_free; 846 } 847 ubifs_assert(err == 1); 848 849 err = lnc_add_directly(c, zbr, dent); 850 if (err) 851 goto out_free; 852 } else 853 dent = zbr->leaf; 854 855 nlen = le16_to_cpu(dent->nlen); 856 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 857 if (err == 0) { 858 if (nlen == nm->len) 859 return NAME_MATCHES; 860 else if (nlen < nm->len) 861 return NAME_LESS; 862 else 863 return NAME_GREATER; 864 } else if (err < 0) 865 return NAME_LESS; 866 else 867 return NAME_GREATER; 868 869 out_free: 870 kfree(dent); 871 return err; 872 } 873 874 /** 875 * fallible_resolve_collision - resolve a collision even if nodes are missing. 876 * @c: UBIFS file-system description object 877 * @key: key 878 * @zn: znode is returned here 879 * @n: branch number is passed and returned here 880 * @nm: name of directory entry 881 * @adding: indicates caller is adding a key to the TNC 882 * 883 * This is a "fallible" version of the 'resolve_collision()' function which 884 * does not panic if one of the nodes referred to by TNC does not exist on the 885 * media. This may happen when replaying the journal if a deleted node was 886 * Garbage-collected and the commit was not done. A branch that refers to a node 887 * that is not present is called a dangling branch. The following are the return 888 * codes for this function: 889 * o if @nm was found, %1 is returned and @zn and @n are set to the found 890 * branch; 891 * o if we are @adding and @nm was not found, %0 is returned; 892 * o if we are not @adding and @nm was not found, but a dangling branch was 893 * found, then %1 is returned and @zn and @n are set to the dangling branch; 894 * o a negative error code is returned in case of failure. 895 */ 896 static int fallible_resolve_collision(struct ubifs_info *c, 897 const union ubifs_key *key, 898 struct ubifs_znode **zn, int *n, 899 const struct qstr *nm, int adding) 900 { 901 struct ubifs_znode *o_znode = NULL, *znode = *zn; 902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 903 904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 905 if (unlikely(cmp < 0)) 906 return cmp; 907 if (cmp == NAME_MATCHES) 908 return 1; 909 if (cmp == NOT_ON_MEDIA) { 910 o_znode = znode; 911 o_n = nn; 912 /* 913 * We are unlucky and hit a dangling branch straight away. 914 * Now we do not really know where to go to find the needed 915 * branch - to the left or to the right. Well, let's try left. 916 */ 917 unsure = 1; 918 } else if (!adding) 919 unsure = 1; /* Remove a dangling branch wherever it is */ 920 921 if (cmp == NAME_GREATER || unsure) { 922 /* Look left */ 923 while (1) { 924 err = tnc_prev(c, zn, n); 925 if (err == -ENOENT) { 926 ubifs_assert(*n == 0); 927 *n = -1; 928 break; 929 } 930 if (err < 0) 931 return err; 932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 933 /* See comments in 'resolve_collision()' */ 934 if (*n == (*zn)->child_cnt - 1) { 935 err = tnc_next(c, zn, n); 936 if (err) { 937 /* Should be impossible */ 938 ubifs_assert(0); 939 if (err == -ENOENT) 940 err = -EINVAL; 941 return err; 942 } 943 ubifs_assert(*n == 0); 944 *n = -1; 945 } 946 break; 947 } 948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 949 if (err < 0) 950 return err; 951 if (err == NAME_MATCHES) 952 return 1; 953 if (err == NOT_ON_MEDIA) { 954 o_znode = *zn; 955 o_n = *n; 956 continue; 957 } 958 if (!adding) 959 continue; 960 if (err == NAME_LESS) 961 break; 962 else 963 unsure = 0; 964 } 965 } 966 967 if (cmp == NAME_LESS || unsure) { 968 /* Look right */ 969 *zn = znode; 970 *n = nn; 971 while (1) { 972 err = tnc_next(c, &znode, &nn); 973 if (err == -ENOENT) 974 break; 975 if (err < 0) 976 return err; 977 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 978 break; 979 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 980 if (err < 0) 981 return err; 982 if (err == NAME_GREATER) 983 break; 984 *zn = znode; 985 *n = nn; 986 if (err == NAME_MATCHES) 987 return 1; 988 if (err == NOT_ON_MEDIA) { 989 o_znode = znode; 990 o_n = nn; 991 } 992 } 993 } 994 995 /* Never match a dangling branch when adding */ 996 if (adding || !o_znode) 997 return 0; 998 999 dbg_mnt("dangling match LEB %d:%d len %d %s", 1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1001 o_znode->zbranch[o_n].len, DBGKEY(key)); 1002 *zn = o_znode; 1003 *n = o_n; 1004 return 1; 1005 } 1006 1007 /** 1008 * matches_position - determine if a zbranch matches a given position. 1009 * @zbr: zbranch of dent 1010 * @lnum: LEB number of dent to match 1011 * @offs: offset of dent to match 1012 * 1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1014 */ 1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1016 { 1017 if (zbr->lnum == lnum && zbr->offs == offs) 1018 return 1; 1019 else 1020 return 0; 1021 } 1022 1023 /** 1024 * resolve_collision_directly - resolve a collision directly. 1025 * @c: UBIFS file-system description object 1026 * @key: key of directory entry 1027 * @zn: znode is passed and returned here 1028 * @n: zbranch number is passed and returned here 1029 * @lnum: LEB number of dent node to match 1030 * @offs: offset of dent node to match 1031 * 1032 * This function is used for "hashed" keys to make sure the found directory or 1033 * extended attribute entry node is what was looked for. It is used when the 1034 * flash address of the right node is known (@lnum:@offs) which makes it much 1035 * easier to resolve collisions (no need to read entries and match full 1036 * names). This function returns %1 and sets @zn and @n if the collision is 1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1038 * previous directory entry. Otherwise a negative error code is returned. 1039 */ 1040 static int resolve_collision_directly(struct ubifs_info *c, 1041 const union ubifs_key *key, 1042 struct ubifs_znode **zn, int *n, 1043 int lnum, int offs) 1044 { 1045 struct ubifs_znode *znode; 1046 int nn, err; 1047 1048 znode = *zn; 1049 nn = *n; 1050 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1051 return 1; 1052 1053 /* Look left */ 1054 while (1) { 1055 err = tnc_prev(c, &znode, &nn); 1056 if (err == -ENOENT) 1057 break; 1058 if (err < 0) 1059 return err; 1060 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1061 break; 1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1063 *zn = znode; 1064 *n = nn; 1065 return 1; 1066 } 1067 } 1068 1069 /* Look right */ 1070 znode = *zn; 1071 nn = *n; 1072 while (1) { 1073 err = tnc_next(c, &znode, &nn); 1074 if (err == -ENOENT) 1075 return 0; 1076 if (err < 0) 1077 return err; 1078 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1079 return 0; 1080 *zn = znode; 1081 *n = nn; 1082 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1083 return 1; 1084 } 1085 } 1086 1087 /** 1088 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1089 * @c: UBIFS file-system description object 1090 * @znode: znode to dirty 1091 * 1092 * If we do not have a unique key that resides in a znode, then we cannot 1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1094 * This function records the path back to the last dirty ancestor, and then 1095 * dirties the znodes on that path. 1096 */ 1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1098 struct ubifs_znode *znode) 1099 { 1100 struct ubifs_znode *zp; 1101 int *path = c->bottom_up_buf, p = 0; 1102 1103 ubifs_assert(c->zroot.znode); 1104 ubifs_assert(znode); 1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1106 kfree(c->bottom_up_buf); 1107 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1108 GFP_NOFS); 1109 if (!c->bottom_up_buf) 1110 return ERR_PTR(-ENOMEM); 1111 path = c->bottom_up_buf; 1112 } 1113 if (c->zroot.znode->level) { 1114 /* Go up until parent is dirty */ 1115 while (1) { 1116 int n; 1117 1118 zp = znode->parent; 1119 if (!zp) 1120 break; 1121 n = znode->iip; 1122 ubifs_assert(p < c->zroot.znode->level); 1123 path[p++] = n; 1124 if (!zp->cnext && ubifs_zn_dirty(znode)) 1125 break; 1126 znode = zp; 1127 } 1128 } 1129 1130 /* Come back down, dirtying as we go */ 1131 while (1) { 1132 struct ubifs_zbranch *zbr; 1133 1134 zp = znode->parent; 1135 if (zp) { 1136 ubifs_assert(path[p - 1] >= 0); 1137 ubifs_assert(path[p - 1] < zp->child_cnt); 1138 zbr = &zp->zbranch[path[--p]]; 1139 znode = dirty_cow_znode(c, zbr); 1140 } else { 1141 ubifs_assert(znode == c->zroot.znode); 1142 znode = dirty_cow_znode(c, &c->zroot); 1143 } 1144 if (IS_ERR(znode) || !p) 1145 break; 1146 ubifs_assert(path[p - 1] >= 0); 1147 ubifs_assert(path[p - 1] < znode->child_cnt); 1148 znode = znode->zbranch[path[p - 1]].znode; 1149 } 1150 1151 return znode; 1152 } 1153 1154 /** 1155 * ubifs_lookup_level0 - search for zero-level znode. 1156 * @c: UBIFS file-system description object 1157 * @key: key to lookup 1158 * @zn: znode is returned here 1159 * @n: znode branch slot number is returned here 1160 * 1161 * This function looks up the TNC tree and search for zero-level znode which 1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1163 * cases: 1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1165 * is returned and slot number of the matched branch is stored in @n; 1166 * o not exact match, which means that zero-level znode does not contain 1167 * @key, then %0 is returned and slot number of the closest branch is stored 1168 * in @n; 1169 * o @key is so small that it is even less than the lowest key of the 1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1171 * 1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1173 * function reads corresponding indexing nodes and inserts them to TNC. In 1174 * case of failure, a negative error code is returned. 1175 */ 1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1177 struct ubifs_znode **zn, int *n) 1178 { 1179 int err, exact; 1180 struct ubifs_znode *znode; 1181 unsigned long time = get_seconds(); 1182 1183 dbg_tnc("search key %s", DBGKEY(key)); 1184 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1185 1186 znode = c->zroot.znode; 1187 if (unlikely(!znode)) { 1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1189 if (IS_ERR(znode)) 1190 return PTR_ERR(znode); 1191 } 1192 1193 znode->time = time; 1194 1195 while (1) { 1196 struct ubifs_zbranch *zbr; 1197 1198 exact = ubifs_search_zbranch(c, znode, key, n); 1199 1200 if (znode->level == 0) 1201 break; 1202 1203 if (*n < 0) 1204 *n = 0; 1205 zbr = &znode->zbranch[*n]; 1206 1207 if (zbr->znode) { 1208 znode->time = time; 1209 znode = zbr->znode; 1210 continue; 1211 } 1212 1213 /* znode is not in TNC cache, load it from the media */ 1214 znode = ubifs_load_znode(c, zbr, znode, *n); 1215 if (IS_ERR(znode)) 1216 return PTR_ERR(znode); 1217 } 1218 1219 *zn = znode; 1220 if (exact || !is_hash_key(c, key) || *n != -1) { 1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1222 return exact; 1223 } 1224 1225 /* 1226 * Here is a tricky place. We have not found the key and this is a 1227 * "hashed" key, which may collide. The rest of the code deals with 1228 * situations like this: 1229 * 1230 * | 3 | 5 | 1231 * / \ 1232 * | 3 | 5 | | 6 | 7 | (x) 1233 * 1234 * Or more a complex example: 1235 * 1236 * | 1 | 5 | 1237 * / \ 1238 * | 1 | 3 | | 5 | 8 | 1239 * \ / 1240 * | 5 | 5 | | 6 | 7 | (x) 1241 * 1242 * In the examples, if we are looking for key "5", we may reach nodes 1243 * marked with "(x)". In this case what we have do is to look at the 1244 * left and see if there is "5" key there. If there is, we have to 1245 * return it. 1246 * 1247 * Note, this whole situation is possible because we allow to have 1248 * elements which are equivalent to the next key in the parent in the 1249 * children of current znode. For example, this happens if we split a 1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1251 * like this: 1252 * | 3 | 5 | 1253 * / \ 1254 * | 3 | 5 | | 5 | 6 | 7 | 1255 * ^ 1256 * And this becomes what is at the first "picture" after key "5" marked 1257 * with "^" is removed. What could be done is we could prohibit 1258 * splitting in the middle of the colliding sequence. Also, when 1259 * removing the leftmost key, we would have to correct the key of the 1260 * parent node, which would introduce additional complications. Namely, 1261 * if we changed the leftmost key of the parent znode, the garbage 1262 * collector would be unable to find it (GC is doing this when GC'ing 1263 * indexing LEBs). Although we already have an additional RB-tree where 1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1265 * after the commit. But anyway, this does not look easy to implement 1266 * so we did not try this. 1267 */ 1268 err = tnc_prev(c, &znode, n); 1269 if (err == -ENOENT) { 1270 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1271 *n = -1; 1272 return 0; 1273 } 1274 if (unlikely(err < 0)) 1275 return err; 1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1277 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1278 *n = -1; 1279 return 0; 1280 } 1281 1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1283 *zn = znode; 1284 return 1; 1285 } 1286 1287 /** 1288 * lookup_level0_dirty - search for zero-level znode dirtying. 1289 * @c: UBIFS file-system description object 1290 * @key: key to lookup 1291 * @zn: znode is returned here 1292 * @n: znode branch slot number is returned here 1293 * 1294 * This function looks up the TNC tree and search for zero-level znode which 1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1296 * cases: 1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1298 * is returned and slot number of the matched branch is stored in @n; 1299 * o not exact match, which means that zero-level znode does not contain @key 1300 * then %0 is returned and slot number of the closed branch is stored in 1301 * @n; 1302 * o @key is so small that it is even less than the lowest key of the 1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1304 * 1305 * Additionally all znodes in the path from the root to the located zero-level 1306 * znode are marked as dirty. 1307 * 1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1309 * function reads corresponding indexing nodes and inserts them to TNC. In 1310 * case of failure, a negative error code is returned. 1311 */ 1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1313 struct ubifs_znode **zn, int *n) 1314 { 1315 int err, exact; 1316 struct ubifs_znode *znode; 1317 unsigned long time = get_seconds(); 1318 1319 dbg_tnc("search and dirty key %s", DBGKEY(key)); 1320 1321 znode = c->zroot.znode; 1322 if (unlikely(!znode)) { 1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1324 if (IS_ERR(znode)) 1325 return PTR_ERR(znode); 1326 } 1327 1328 znode = dirty_cow_znode(c, &c->zroot); 1329 if (IS_ERR(znode)) 1330 return PTR_ERR(znode); 1331 1332 znode->time = time; 1333 1334 while (1) { 1335 struct ubifs_zbranch *zbr; 1336 1337 exact = ubifs_search_zbranch(c, znode, key, n); 1338 1339 if (znode->level == 0) 1340 break; 1341 1342 if (*n < 0) 1343 *n = 0; 1344 zbr = &znode->zbranch[*n]; 1345 1346 if (zbr->znode) { 1347 znode->time = time; 1348 znode = dirty_cow_znode(c, zbr); 1349 if (IS_ERR(znode)) 1350 return PTR_ERR(znode); 1351 continue; 1352 } 1353 1354 /* znode is not in TNC cache, load it from the media */ 1355 znode = ubifs_load_znode(c, zbr, znode, *n); 1356 if (IS_ERR(znode)) 1357 return PTR_ERR(znode); 1358 znode = dirty_cow_znode(c, zbr); 1359 if (IS_ERR(znode)) 1360 return PTR_ERR(znode); 1361 } 1362 1363 *zn = znode; 1364 if (exact || !is_hash_key(c, key) || *n != -1) { 1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1366 return exact; 1367 } 1368 1369 /* 1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1371 * code. 1372 */ 1373 err = tnc_prev(c, &znode, n); 1374 if (err == -ENOENT) { 1375 *n = -1; 1376 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1377 return 0; 1378 } 1379 if (unlikely(err < 0)) 1380 return err; 1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1382 *n = -1; 1383 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1384 return 0; 1385 } 1386 1387 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1388 znode = dirty_cow_bottom_up(c, znode); 1389 if (IS_ERR(znode)) 1390 return PTR_ERR(znode); 1391 } 1392 1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1394 *zn = znode; 1395 return 1; 1396 } 1397 1398 /** 1399 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1400 * @c: UBIFS file-system description object 1401 * @lnum: LEB number 1402 * @gc_seq1: garbage collection sequence number 1403 * 1404 * This function determines if @lnum may have been garbage collected since 1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1406 * %0 is returned. 1407 */ 1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1409 { 1410 int gc_seq2, gced_lnum; 1411 1412 gced_lnum = c->gced_lnum; 1413 smp_rmb(); 1414 gc_seq2 = c->gc_seq; 1415 /* Same seq means no GC */ 1416 if (gc_seq1 == gc_seq2) 1417 return 0; 1418 /* Different by more than 1 means we don't know */ 1419 if (gc_seq1 + 1 != gc_seq2) 1420 return 1; 1421 /* 1422 * We have seen the sequence number has increased by 1. Now we need to 1423 * be sure we read the right LEB number, so read it again. 1424 */ 1425 smp_rmb(); 1426 if (gced_lnum != c->gced_lnum) 1427 return 1; 1428 /* Finally we can check lnum */ 1429 if (gced_lnum == lnum) 1430 return 1; 1431 return 0; 1432 } 1433 1434 /** 1435 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1436 * @c: UBIFS file-system description object 1437 * @key: node key to lookup 1438 * @node: the node is returned here 1439 * @lnum: LEB number is returned here 1440 * @offs: offset is returned here 1441 * 1442 * This function looks up and reads node with key @key. The caller has to make 1443 * sure the @node buffer is large enough to fit the node. Returns zero in case 1444 * of success, %-ENOENT if the node was not found, and a negative error code in 1445 * case of failure. The node location can be returned in @lnum and @offs. 1446 */ 1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1448 void *node, int *lnum, int *offs) 1449 { 1450 int found, n, err, safely = 0, gc_seq1; 1451 struct ubifs_znode *znode; 1452 struct ubifs_zbranch zbr, *zt; 1453 1454 again: 1455 mutex_lock(&c->tnc_mutex); 1456 found = ubifs_lookup_level0(c, key, &znode, &n); 1457 if (!found) { 1458 err = -ENOENT; 1459 goto out; 1460 } else if (found < 0) { 1461 err = found; 1462 goto out; 1463 } 1464 zt = &znode->zbranch[n]; 1465 if (lnum) { 1466 *lnum = zt->lnum; 1467 *offs = zt->offs; 1468 } 1469 if (is_hash_key(c, key)) { 1470 /* 1471 * In this case the leaf node cache gets used, so we pass the 1472 * address of the zbranch and keep the mutex locked 1473 */ 1474 err = tnc_read_node_nm(c, zt, node); 1475 goto out; 1476 } 1477 if (safely) { 1478 err = ubifs_tnc_read_node(c, zt, node); 1479 goto out; 1480 } 1481 /* Drop the TNC mutex prematurely and race with garbage collection */ 1482 zbr = znode->zbranch[n]; 1483 gc_seq1 = c->gc_seq; 1484 mutex_unlock(&c->tnc_mutex); 1485 1486 if (ubifs_get_wbuf(c, zbr.lnum)) { 1487 /* We do not GC journal heads */ 1488 err = ubifs_tnc_read_node(c, &zbr, node); 1489 return err; 1490 } 1491 1492 err = fallible_read_node(c, key, &zbr, node); 1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1494 /* 1495 * The node may have been GC'ed out from under us so try again 1496 * while keeping the TNC mutex locked. 1497 */ 1498 safely = 1; 1499 goto again; 1500 } 1501 return 0; 1502 1503 out: 1504 mutex_unlock(&c->tnc_mutex); 1505 return err; 1506 } 1507 1508 /** 1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1510 * @c: UBIFS file-system description object 1511 * @bu: bulk-read parameters and results 1512 * 1513 * Lookup consecutive data node keys for the same inode that reside 1514 * consecutively in the same LEB. This function returns zero in case of success 1515 * and a negative error code in case of failure. 1516 * 1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1519 * maximum possible amount of nodes for bulk-read. 1520 */ 1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1522 { 1523 int n, err = 0, lnum = -1, uninitialized_var(offs); 1524 int uninitialized_var(len); 1525 unsigned int block = key_block(c, &bu->key); 1526 struct ubifs_znode *znode; 1527 1528 bu->cnt = 0; 1529 bu->blk_cnt = 0; 1530 bu->eof = 0; 1531 1532 mutex_lock(&c->tnc_mutex); 1533 /* Find first key */ 1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1535 if (err < 0) 1536 goto out; 1537 if (err) { 1538 /* Key found */ 1539 len = znode->zbranch[n].len; 1540 /* The buffer must be big enough for at least 1 node */ 1541 if (len > bu->buf_len) { 1542 err = -EINVAL; 1543 goto out; 1544 } 1545 /* Add this key */ 1546 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1547 bu->blk_cnt += 1; 1548 lnum = znode->zbranch[n].lnum; 1549 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1550 } 1551 while (1) { 1552 struct ubifs_zbranch *zbr; 1553 union ubifs_key *key; 1554 unsigned int next_block; 1555 1556 /* Find next key */ 1557 err = tnc_next(c, &znode, &n); 1558 if (err) 1559 goto out; 1560 zbr = &znode->zbranch[n]; 1561 key = &zbr->key; 1562 /* See if there is another data key for this file */ 1563 if (key_inum(c, key) != key_inum(c, &bu->key) || 1564 key_type(c, key) != UBIFS_DATA_KEY) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 if (lnum < 0) { 1569 /* First key found */ 1570 lnum = zbr->lnum; 1571 offs = ALIGN(zbr->offs + zbr->len, 8); 1572 len = zbr->len; 1573 if (len > bu->buf_len) { 1574 err = -EINVAL; 1575 goto out; 1576 } 1577 } else { 1578 /* 1579 * The data nodes must be in consecutive positions in 1580 * the same LEB. 1581 */ 1582 if (zbr->lnum != lnum || zbr->offs != offs) 1583 goto out; 1584 offs += ALIGN(zbr->len, 8); 1585 len = ALIGN(len, 8) + zbr->len; 1586 /* Must not exceed buffer length */ 1587 if (len > bu->buf_len) 1588 goto out; 1589 } 1590 /* Allow for holes */ 1591 next_block = key_block(c, key); 1592 bu->blk_cnt += (next_block - block - 1); 1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1594 goto out; 1595 block = next_block; 1596 /* Add this key */ 1597 bu->zbranch[bu->cnt++] = *zbr; 1598 bu->blk_cnt += 1; 1599 /* See if we have room for more */ 1600 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1601 goto out; 1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1603 goto out; 1604 } 1605 out: 1606 if (err == -ENOENT) { 1607 bu->eof = 1; 1608 err = 0; 1609 } 1610 bu->gc_seq = c->gc_seq; 1611 mutex_unlock(&c->tnc_mutex); 1612 if (err) 1613 return err; 1614 /* 1615 * An enormous hole could cause bulk-read to encompass too many 1616 * page cache pages, so limit the number here. 1617 */ 1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1619 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1620 /* 1621 * Ensure that bulk-read covers a whole number of page cache 1622 * pages. 1623 */ 1624 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1626 return 0; 1627 if (bu->eof) { 1628 /* At the end of file we can round up */ 1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1630 return 0; 1631 } 1632 /* Exclude data nodes that do not make up a whole page cache page */ 1633 block = key_block(c, &bu->key) + bu->blk_cnt; 1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1635 while (bu->cnt) { 1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1637 break; 1638 bu->cnt -= 1; 1639 } 1640 return 0; 1641 } 1642 1643 /** 1644 * read_wbuf - bulk-read from a LEB with a wbuf. 1645 * @wbuf: wbuf that may overlap the read 1646 * @buf: buffer into which to read 1647 * @len: read length 1648 * @lnum: LEB number from which to read 1649 * @offs: offset from which to read 1650 * 1651 * This functions returns %0 on success or a negative error code on failure. 1652 */ 1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1654 int offs) 1655 { 1656 const struct ubifs_info *c = wbuf->c; 1657 int rlen, overlap; 1658 1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1660 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1661 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1662 ubifs_assert(offs + len <= c->leb_size); 1663 1664 spin_lock(&wbuf->lock); 1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1666 if (!overlap) { 1667 /* We may safely unlock the write-buffer and read the data */ 1668 spin_unlock(&wbuf->lock); 1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1670 } 1671 1672 /* Don't read under wbuf */ 1673 rlen = wbuf->offs - offs; 1674 if (rlen < 0) 1675 rlen = 0; 1676 1677 /* Copy the rest from the write-buffer */ 1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1679 spin_unlock(&wbuf->lock); 1680 1681 if (rlen > 0) 1682 /* Read everything that goes before write-buffer */ 1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1684 1685 return 0; 1686 } 1687 1688 /** 1689 * validate_data_node - validate data nodes for bulk-read. 1690 * @c: UBIFS file-system description object 1691 * @buf: buffer containing data node to validate 1692 * @zbr: zbranch of data node to validate 1693 * 1694 * This functions returns %0 on success or a negative error code on failure. 1695 */ 1696 static int validate_data_node(struct ubifs_info *c, void *buf, 1697 struct ubifs_zbranch *zbr) 1698 { 1699 union ubifs_key key1; 1700 struct ubifs_ch *ch = buf; 1701 int err, len; 1702 1703 if (ch->node_type != UBIFS_DATA_NODE) { 1704 ubifs_err("bad node type (%d but expected %d)", 1705 ch->node_type, UBIFS_DATA_NODE); 1706 goto out_err; 1707 } 1708 1709 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1710 if (err) { 1711 ubifs_err("expected node type %d", UBIFS_DATA_NODE); 1712 goto out; 1713 } 1714 1715 len = le32_to_cpu(ch->len); 1716 if (len != zbr->len) { 1717 ubifs_err("bad node length %d, expected %d", len, zbr->len); 1718 goto out_err; 1719 } 1720 1721 /* Make sure the key of the read node is correct */ 1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1723 if (!keys_eq(c, &zbr->key, &key1)) { 1724 ubifs_err("bad key in node at LEB %d:%d", 1725 zbr->lnum, zbr->offs); 1726 dbg_tnc("looked for key %s found node's key %s", 1727 DBGKEY(&zbr->key), DBGKEY1(&key1)); 1728 goto out_err; 1729 } 1730 1731 return 0; 1732 1733 out_err: 1734 err = -EINVAL; 1735 out: 1736 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1737 dbg_dump_node(c, buf); 1738 dbg_dump_stack(); 1739 return err; 1740 } 1741 1742 /** 1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1744 * @c: UBIFS file-system description object 1745 * @bu: bulk-read parameters and results 1746 * 1747 * This functions reads and validates the data nodes that were identified by the 1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1749 * -EAGAIN to indicate a race with GC, or another negative error code on 1750 * failure. 1751 */ 1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1753 { 1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1755 struct ubifs_wbuf *wbuf; 1756 void *buf; 1757 1758 len = bu->zbranch[bu->cnt - 1].offs; 1759 len += bu->zbranch[bu->cnt - 1].len - offs; 1760 if (len > bu->buf_len) { 1761 ubifs_err("buffer too small %d vs %d", bu->buf_len, len); 1762 return -EINVAL; 1763 } 1764 1765 /* Do the read */ 1766 wbuf = ubifs_get_wbuf(c, lnum); 1767 if (wbuf) 1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1769 else 1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1771 1772 /* Check for a race with GC */ 1773 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1774 return -EAGAIN; 1775 1776 if (err && err != -EBADMSG) { 1777 ubifs_err("failed to read from LEB %d:%d, error %d", 1778 lnum, offs, err); 1779 dbg_dump_stack(); 1780 dbg_tnc("key %s", DBGKEY(&bu->key)); 1781 return err; 1782 } 1783 1784 /* Validate the nodes read */ 1785 buf = bu->buf; 1786 for (i = 0; i < bu->cnt; i++) { 1787 err = validate_data_node(c, buf, &bu->zbranch[i]); 1788 if (err) 1789 return err; 1790 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * do_lookup_nm- look up a "hashed" node. 1798 * @c: UBIFS file-system description object 1799 * @key: node key to lookup 1800 * @node: the node is returned here 1801 * @nm: node name 1802 * 1803 * This function look up and reads a node which contains name hash in the key. 1804 * Since the hash may have collisions, there may be many nodes with the same 1805 * key, so we have to sequentially look to all of them until the needed one is 1806 * found. This function returns zero in case of success, %-ENOENT if the node 1807 * was not found, and a negative error code in case of failure. 1808 */ 1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1810 void *node, const struct qstr *nm) 1811 { 1812 int found, n, err; 1813 struct ubifs_znode *znode; 1814 1815 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); 1816 mutex_lock(&c->tnc_mutex); 1817 found = ubifs_lookup_level0(c, key, &znode, &n); 1818 if (!found) { 1819 err = -ENOENT; 1820 goto out_unlock; 1821 } else if (found < 0) { 1822 err = found; 1823 goto out_unlock; 1824 } 1825 1826 ubifs_assert(n >= 0); 1827 1828 err = resolve_collision(c, key, &znode, &n, nm); 1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1830 if (unlikely(err < 0)) 1831 goto out_unlock; 1832 if (err == 0) { 1833 err = -ENOENT; 1834 goto out_unlock; 1835 } 1836 1837 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1838 1839 out_unlock: 1840 mutex_unlock(&c->tnc_mutex); 1841 return err; 1842 } 1843 1844 /** 1845 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1846 * @c: UBIFS file-system description object 1847 * @key: node key to lookup 1848 * @node: the node is returned here 1849 * @nm: node name 1850 * 1851 * This function look up and reads a node which contains name hash in the key. 1852 * Since the hash may have collisions, there may be many nodes with the same 1853 * key, so we have to sequentially look to all of them until the needed one is 1854 * found. This function returns zero in case of success, %-ENOENT if the node 1855 * was not found, and a negative error code in case of failure. 1856 */ 1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1858 void *node, const struct qstr *nm) 1859 { 1860 int err, len; 1861 const struct ubifs_dent_node *dent = node; 1862 1863 /* 1864 * We assume that in most of the cases there are no name collisions and 1865 * 'ubifs_tnc_lookup()' returns us the right direntry. 1866 */ 1867 err = ubifs_tnc_lookup(c, key, node); 1868 if (err) 1869 return err; 1870 1871 len = le16_to_cpu(dent->nlen); 1872 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1873 return 0; 1874 1875 /* 1876 * Unluckily, there are hash collisions and we have to iterate over 1877 * them look at each direntry with colliding name hash sequentially. 1878 */ 1879 return do_lookup_nm(c, key, node, nm); 1880 } 1881 1882 /** 1883 * correct_parent_keys - correct parent znodes' keys. 1884 * @c: UBIFS file-system description object 1885 * @znode: znode to correct parent znodes for 1886 * 1887 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1888 * zbranch changes, keys of parent znodes have to be corrected. This helper 1889 * function is called in such situations and corrects the keys if needed. 1890 */ 1891 static void correct_parent_keys(const struct ubifs_info *c, 1892 struct ubifs_znode *znode) 1893 { 1894 union ubifs_key *key, *key1; 1895 1896 ubifs_assert(znode->parent); 1897 ubifs_assert(znode->iip == 0); 1898 1899 key = &znode->zbranch[0].key; 1900 key1 = &znode->parent->zbranch[0].key; 1901 1902 while (keys_cmp(c, key, key1) < 0) { 1903 key_copy(c, key, key1); 1904 znode = znode->parent; 1905 znode->alt = 1; 1906 if (!znode->parent || znode->iip) 1907 break; 1908 key1 = &znode->parent->zbranch[0].key; 1909 } 1910 } 1911 1912 /** 1913 * insert_zbranch - insert a zbranch into a znode. 1914 * @znode: znode into which to insert 1915 * @zbr: zbranch to insert 1916 * @n: slot number to insert to 1917 * 1918 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1919 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1920 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1921 * slot, zbranches starting from @n have to be moved right. 1922 */ 1923 static void insert_zbranch(struct ubifs_znode *znode, 1924 const struct ubifs_zbranch *zbr, int n) 1925 { 1926 int i; 1927 1928 ubifs_assert(ubifs_zn_dirty(znode)); 1929 1930 if (znode->level) { 1931 for (i = znode->child_cnt; i > n; i--) { 1932 znode->zbranch[i] = znode->zbranch[i - 1]; 1933 if (znode->zbranch[i].znode) 1934 znode->zbranch[i].znode->iip = i; 1935 } 1936 if (zbr->znode) 1937 zbr->znode->iip = n; 1938 } else 1939 for (i = znode->child_cnt; i > n; i--) 1940 znode->zbranch[i] = znode->zbranch[i - 1]; 1941 1942 znode->zbranch[n] = *zbr; 1943 znode->child_cnt += 1; 1944 1945 /* 1946 * After inserting at slot zero, the lower bound of the key range of 1947 * this znode may have changed. If this znode is subsequently split 1948 * then the upper bound of the key range may change, and furthermore 1949 * it could change to be lower than the original lower bound. If that 1950 * happens, then it will no longer be possible to find this znode in the 1951 * TNC using the key from the index node on flash. That is bad because 1952 * if it is not found, we will assume it is obsolete and may overwrite 1953 * it. Then if there is an unclean unmount, we will start using the 1954 * old index which will be broken. 1955 * 1956 * So we first mark znodes that have insertions at slot zero, and then 1957 * if they are split we add their lnum/offs to the old_idx tree. 1958 */ 1959 if (n == 0) 1960 znode->alt = 1; 1961 } 1962 1963 /** 1964 * tnc_insert - insert a node into TNC. 1965 * @c: UBIFS file-system description object 1966 * @znode: znode to insert into 1967 * @zbr: branch to insert 1968 * @n: slot number to insert new zbranch to 1969 * 1970 * This function inserts a new node described by @zbr into znode @znode. If 1971 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1972 * are splat as well if needed. Returns zero in case of success or a negative 1973 * error code in case of failure. 1974 */ 1975 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1976 struct ubifs_zbranch *zbr, int n) 1977 { 1978 struct ubifs_znode *zn, *zi, *zp; 1979 int i, keep, move, appending = 0; 1980 union ubifs_key *key = &zbr->key, *key1; 1981 1982 ubifs_assert(n >= 0 && n <= c->fanout); 1983 1984 /* Implement naive insert for now */ 1985 again: 1986 zp = znode->parent; 1987 if (znode->child_cnt < c->fanout) { 1988 ubifs_assert(n != c->fanout); 1989 dbg_tnc("inserted at %d level %d, key %s", n, znode->level, 1990 DBGKEY(key)); 1991 1992 insert_zbranch(znode, zbr, n); 1993 1994 /* Ensure parent's key is correct */ 1995 if (n == 0 && zp && znode->iip == 0) 1996 correct_parent_keys(c, znode); 1997 1998 return 0; 1999 } 2000 2001 /* 2002 * Unfortunately, @znode does not have more empty slots and we have to 2003 * split it. 2004 */ 2005 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); 2006 2007 if (znode->alt) 2008 /* 2009 * We can no longer be sure of finding this znode by key, so we 2010 * record it in the old_idx tree. 2011 */ 2012 ins_clr_old_idx_znode(c, znode); 2013 2014 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2015 if (!zn) 2016 return -ENOMEM; 2017 zn->parent = zp; 2018 zn->level = znode->level; 2019 2020 /* Decide where to split */ 2021 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2022 /* Try not to split consecutive data keys */ 2023 if (n == c->fanout) { 2024 key1 = &znode->zbranch[n - 1].key; 2025 if (key_inum(c, key1) == key_inum(c, key) && 2026 key_type(c, key1) == UBIFS_DATA_KEY) 2027 appending = 1; 2028 } else 2029 goto check_split; 2030 } else if (appending && n != c->fanout) { 2031 /* Try not to split consecutive data keys */ 2032 appending = 0; 2033 check_split: 2034 if (n >= (c->fanout + 1) / 2) { 2035 key1 = &znode->zbranch[0].key; 2036 if (key_inum(c, key1) == key_inum(c, key) && 2037 key_type(c, key1) == UBIFS_DATA_KEY) { 2038 key1 = &znode->zbranch[n].key; 2039 if (key_inum(c, key1) != key_inum(c, key) || 2040 key_type(c, key1) != UBIFS_DATA_KEY) { 2041 keep = n; 2042 move = c->fanout - keep; 2043 zi = znode; 2044 goto do_split; 2045 } 2046 } 2047 } 2048 } 2049 2050 if (appending) { 2051 keep = c->fanout; 2052 move = 0; 2053 } else { 2054 keep = (c->fanout + 1) / 2; 2055 move = c->fanout - keep; 2056 } 2057 2058 /* 2059 * Although we don't at present, we could look at the neighbors and see 2060 * if we can move some zbranches there. 2061 */ 2062 2063 if (n < keep) { 2064 /* Insert into existing znode */ 2065 zi = znode; 2066 move += 1; 2067 keep -= 1; 2068 } else { 2069 /* Insert into new znode */ 2070 zi = zn; 2071 n -= keep; 2072 /* Re-parent */ 2073 if (zn->level != 0) 2074 zbr->znode->parent = zn; 2075 } 2076 2077 do_split: 2078 2079 __set_bit(DIRTY_ZNODE, &zn->flags); 2080 atomic_long_inc(&c->dirty_zn_cnt); 2081 2082 zn->child_cnt = move; 2083 znode->child_cnt = keep; 2084 2085 dbg_tnc("moving %d, keeping %d", move, keep); 2086 2087 /* Move zbranch */ 2088 for (i = 0; i < move; i++) { 2089 zn->zbranch[i] = znode->zbranch[keep + i]; 2090 /* Re-parent */ 2091 if (zn->level != 0) 2092 if (zn->zbranch[i].znode) { 2093 zn->zbranch[i].znode->parent = zn; 2094 zn->zbranch[i].znode->iip = i; 2095 } 2096 } 2097 2098 /* Insert new key and branch */ 2099 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); 2100 2101 insert_zbranch(zi, zbr, n); 2102 2103 /* Insert new znode (produced by spitting) into the parent */ 2104 if (zp) { 2105 if (n == 0 && zi == znode && znode->iip == 0) 2106 correct_parent_keys(c, znode); 2107 2108 /* Locate insertion point */ 2109 n = znode->iip + 1; 2110 2111 /* Tail recursion */ 2112 zbr->key = zn->zbranch[0].key; 2113 zbr->znode = zn; 2114 zbr->lnum = 0; 2115 zbr->offs = 0; 2116 zbr->len = 0; 2117 znode = zp; 2118 2119 goto again; 2120 } 2121 2122 /* We have to split root znode */ 2123 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2124 2125 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2126 if (!zi) 2127 return -ENOMEM; 2128 2129 zi->child_cnt = 2; 2130 zi->level = znode->level + 1; 2131 2132 __set_bit(DIRTY_ZNODE, &zi->flags); 2133 atomic_long_inc(&c->dirty_zn_cnt); 2134 2135 zi->zbranch[0].key = znode->zbranch[0].key; 2136 zi->zbranch[0].znode = znode; 2137 zi->zbranch[0].lnum = c->zroot.lnum; 2138 zi->zbranch[0].offs = c->zroot.offs; 2139 zi->zbranch[0].len = c->zroot.len; 2140 zi->zbranch[1].key = zn->zbranch[0].key; 2141 zi->zbranch[1].znode = zn; 2142 2143 c->zroot.lnum = 0; 2144 c->zroot.offs = 0; 2145 c->zroot.len = 0; 2146 c->zroot.znode = zi; 2147 2148 zn->parent = zi; 2149 zn->iip = 1; 2150 znode->parent = zi; 2151 znode->iip = 0; 2152 2153 return 0; 2154 } 2155 2156 /** 2157 * ubifs_tnc_add - add a node to TNC. 2158 * @c: UBIFS file-system description object 2159 * @key: key to add 2160 * @lnum: LEB number of node 2161 * @offs: node offset 2162 * @len: node length 2163 * 2164 * This function adds a node with key @key to TNC. The node may be new or it may 2165 * obsolete some existing one. Returns %0 on success or negative error code on 2166 * failure. 2167 */ 2168 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2169 int offs, int len) 2170 { 2171 int found, n, err = 0; 2172 struct ubifs_znode *znode; 2173 2174 mutex_lock(&c->tnc_mutex); 2175 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); 2176 found = lookup_level0_dirty(c, key, &znode, &n); 2177 if (!found) { 2178 struct ubifs_zbranch zbr; 2179 2180 zbr.znode = NULL; 2181 zbr.lnum = lnum; 2182 zbr.offs = offs; 2183 zbr.len = len; 2184 key_copy(c, key, &zbr.key); 2185 err = tnc_insert(c, znode, &zbr, n + 1); 2186 } else if (found == 1) { 2187 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2188 2189 lnc_free(zbr); 2190 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2191 zbr->lnum = lnum; 2192 zbr->offs = offs; 2193 zbr->len = len; 2194 } else 2195 err = found; 2196 if (!err) 2197 err = dbg_check_tnc(c, 0); 2198 mutex_unlock(&c->tnc_mutex); 2199 2200 return err; 2201 } 2202 2203 /** 2204 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2205 * @c: UBIFS file-system description object 2206 * @key: key to add 2207 * @old_lnum: LEB number of old node 2208 * @old_offs: old node offset 2209 * @lnum: LEB number of node 2210 * @offs: node offset 2211 * @len: node length 2212 * 2213 * This function replaces a node with key @key in the TNC only if the old node 2214 * is found. This function is called by garbage collection when node are moved. 2215 * Returns %0 on success or negative error code on failure. 2216 */ 2217 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2218 int old_lnum, int old_offs, int lnum, int offs, int len) 2219 { 2220 int found, n, err = 0; 2221 struct ubifs_znode *znode; 2222 2223 mutex_lock(&c->tnc_mutex); 2224 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, 2225 old_offs, lnum, offs, len, DBGKEY(key)); 2226 found = lookup_level0_dirty(c, key, &znode, &n); 2227 if (found < 0) { 2228 err = found; 2229 goto out_unlock; 2230 } 2231 2232 if (found == 1) { 2233 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2234 2235 found = 0; 2236 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2237 lnc_free(zbr); 2238 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2239 if (err) 2240 goto out_unlock; 2241 zbr->lnum = lnum; 2242 zbr->offs = offs; 2243 zbr->len = len; 2244 found = 1; 2245 } else if (is_hash_key(c, key)) { 2246 found = resolve_collision_directly(c, key, &znode, &n, 2247 old_lnum, old_offs); 2248 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2249 found, znode, n, old_lnum, old_offs); 2250 if (found < 0) { 2251 err = found; 2252 goto out_unlock; 2253 } 2254 2255 if (found) { 2256 /* Ensure the znode is dirtied */ 2257 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2258 znode = dirty_cow_bottom_up(c, znode); 2259 if (IS_ERR(znode)) { 2260 err = PTR_ERR(znode); 2261 goto out_unlock; 2262 } 2263 } 2264 zbr = &znode->zbranch[n]; 2265 lnc_free(zbr); 2266 err = ubifs_add_dirt(c, zbr->lnum, 2267 zbr->len); 2268 if (err) 2269 goto out_unlock; 2270 zbr->lnum = lnum; 2271 zbr->offs = offs; 2272 zbr->len = len; 2273 } 2274 } 2275 } 2276 2277 if (!found) 2278 err = ubifs_add_dirt(c, lnum, len); 2279 2280 if (!err) 2281 err = dbg_check_tnc(c, 0); 2282 2283 out_unlock: 2284 mutex_unlock(&c->tnc_mutex); 2285 return err; 2286 } 2287 2288 /** 2289 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2290 * @c: UBIFS file-system description object 2291 * @key: key to add 2292 * @lnum: LEB number of node 2293 * @offs: node offset 2294 * @len: node length 2295 * @nm: node name 2296 * 2297 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2298 * may have collisions, like directory entry keys. 2299 */ 2300 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2301 int lnum, int offs, int len, const struct qstr *nm) 2302 { 2303 int found, n, err = 0; 2304 struct ubifs_znode *znode; 2305 2306 mutex_lock(&c->tnc_mutex); 2307 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, 2308 DBGKEY(key)); 2309 found = lookup_level0_dirty(c, key, &znode, &n); 2310 if (found < 0) { 2311 err = found; 2312 goto out_unlock; 2313 } 2314 2315 if (found == 1) { 2316 if (c->replaying) 2317 found = fallible_resolve_collision(c, key, &znode, &n, 2318 nm, 1); 2319 else 2320 found = resolve_collision(c, key, &znode, &n, nm); 2321 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2322 if (found < 0) { 2323 err = found; 2324 goto out_unlock; 2325 } 2326 2327 /* Ensure the znode is dirtied */ 2328 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2329 znode = dirty_cow_bottom_up(c, znode); 2330 if (IS_ERR(znode)) { 2331 err = PTR_ERR(znode); 2332 goto out_unlock; 2333 } 2334 } 2335 2336 if (found == 1) { 2337 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2338 2339 lnc_free(zbr); 2340 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2341 zbr->lnum = lnum; 2342 zbr->offs = offs; 2343 zbr->len = len; 2344 goto out_unlock; 2345 } 2346 } 2347 2348 if (!found) { 2349 struct ubifs_zbranch zbr; 2350 2351 zbr.znode = NULL; 2352 zbr.lnum = lnum; 2353 zbr.offs = offs; 2354 zbr.len = len; 2355 key_copy(c, key, &zbr.key); 2356 err = tnc_insert(c, znode, &zbr, n + 1); 2357 if (err) 2358 goto out_unlock; 2359 if (c->replaying) { 2360 /* 2361 * We did not find it in the index so there may be a 2362 * dangling branch still in the index. So we remove it 2363 * by passing 'ubifs_tnc_remove_nm()' the same key but 2364 * an unmatchable name. 2365 */ 2366 struct qstr noname = { .len = 0, .name = "" }; 2367 2368 err = dbg_check_tnc(c, 0); 2369 mutex_unlock(&c->tnc_mutex); 2370 if (err) 2371 return err; 2372 return ubifs_tnc_remove_nm(c, key, &noname); 2373 } 2374 } 2375 2376 out_unlock: 2377 if (!err) 2378 err = dbg_check_tnc(c, 0); 2379 mutex_unlock(&c->tnc_mutex); 2380 return err; 2381 } 2382 2383 /** 2384 * tnc_delete - delete a znode form TNC. 2385 * @c: UBIFS file-system description object 2386 * @znode: znode to delete from 2387 * @n: zbranch slot number to delete 2388 * 2389 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2390 * case of success and a negative error code in case of failure. 2391 */ 2392 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2393 { 2394 struct ubifs_zbranch *zbr; 2395 struct ubifs_znode *zp; 2396 int i, err; 2397 2398 /* Delete without merge for now */ 2399 ubifs_assert(znode->level == 0); 2400 ubifs_assert(n >= 0 && n < c->fanout); 2401 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); 2402 2403 zbr = &znode->zbranch[n]; 2404 lnc_free(zbr); 2405 2406 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2407 if (err) { 2408 dbg_dump_znode(c, znode); 2409 return err; 2410 } 2411 2412 /* We do not "gap" zbranch slots */ 2413 for (i = n; i < znode->child_cnt - 1; i++) 2414 znode->zbranch[i] = znode->zbranch[i + 1]; 2415 znode->child_cnt -= 1; 2416 2417 if (znode->child_cnt > 0) 2418 return 0; 2419 2420 /* 2421 * This was the last zbranch, we have to delete this znode from the 2422 * parent. 2423 */ 2424 2425 do { 2426 ubifs_assert(!ubifs_zn_obsolete(znode)); 2427 ubifs_assert(ubifs_zn_dirty(znode)); 2428 2429 zp = znode->parent; 2430 n = znode->iip; 2431 2432 atomic_long_dec(&c->dirty_zn_cnt); 2433 2434 err = insert_old_idx_znode(c, znode); 2435 if (err) 2436 return err; 2437 2438 if (znode->cnext) { 2439 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2440 atomic_long_inc(&c->clean_zn_cnt); 2441 atomic_long_inc(&ubifs_clean_zn_cnt); 2442 } else 2443 kfree(znode); 2444 znode = zp; 2445 } while (znode->child_cnt == 1); /* while removing last child */ 2446 2447 /* Remove from znode, entry n - 1 */ 2448 znode->child_cnt -= 1; 2449 ubifs_assert(znode->level != 0); 2450 for (i = n; i < znode->child_cnt; i++) { 2451 znode->zbranch[i] = znode->zbranch[i + 1]; 2452 if (znode->zbranch[i].znode) 2453 znode->zbranch[i].znode->iip = i; 2454 } 2455 2456 /* 2457 * If this is the root and it has only 1 child then 2458 * collapse the tree. 2459 */ 2460 if (!znode->parent) { 2461 while (znode->child_cnt == 1 && znode->level != 0) { 2462 zp = znode; 2463 zbr = &znode->zbranch[0]; 2464 znode = get_znode(c, znode, 0); 2465 if (IS_ERR(znode)) 2466 return PTR_ERR(znode); 2467 znode = dirty_cow_znode(c, zbr); 2468 if (IS_ERR(znode)) 2469 return PTR_ERR(znode); 2470 znode->parent = NULL; 2471 znode->iip = 0; 2472 if (c->zroot.len) { 2473 err = insert_old_idx(c, c->zroot.lnum, 2474 c->zroot.offs); 2475 if (err) 2476 return err; 2477 } 2478 c->zroot.lnum = zbr->lnum; 2479 c->zroot.offs = zbr->offs; 2480 c->zroot.len = zbr->len; 2481 c->zroot.znode = znode; 2482 ubifs_assert(!ubifs_zn_obsolete(zp)); 2483 ubifs_assert(ubifs_zn_dirty(zp)); 2484 atomic_long_dec(&c->dirty_zn_cnt); 2485 2486 if (zp->cnext) { 2487 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2488 atomic_long_inc(&c->clean_zn_cnt); 2489 atomic_long_inc(&ubifs_clean_zn_cnt); 2490 } else 2491 kfree(zp); 2492 } 2493 } 2494 2495 return 0; 2496 } 2497 2498 /** 2499 * ubifs_tnc_remove - remove an index entry of a node. 2500 * @c: UBIFS file-system description object 2501 * @key: key of node 2502 * 2503 * Returns %0 on success or negative error code on failure. 2504 */ 2505 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2506 { 2507 int found, n, err = 0; 2508 struct ubifs_znode *znode; 2509 2510 mutex_lock(&c->tnc_mutex); 2511 dbg_tnc("key %s", DBGKEY(key)); 2512 found = lookup_level0_dirty(c, key, &znode, &n); 2513 if (found < 0) { 2514 err = found; 2515 goto out_unlock; 2516 } 2517 if (found == 1) 2518 err = tnc_delete(c, znode, n); 2519 if (!err) 2520 err = dbg_check_tnc(c, 0); 2521 2522 out_unlock: 2523 mutex_unlock(&c->tnc_mutex); 2524 return err; 2525 } 2526 2527 /** 2528 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2529 * @c: UBIFS file-system description object 2530 * @key: key of node 2531 * @nm: directory entry name 2532 * 2533 * Returns %0 on success or negative error code on failure. 2534 */ 2535 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2536 const struct qstr *nm) 2537 { 2538 int n, err; 2539 struct ubifs_znode *znode; 2540 2541 mutex_lock(&c->tnc_mutex); 2542 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); 2543 err = lookup_level0_dirty(c, key, &znode, &n); 2544 if (err < 0) 2545 goto out_unlock; 2546 2547 if (err) { 2548 if (c->replaying) 2549 err = fallible_resolve_collision(c, key, &znode, &n, 2550 nm, 0); 2551 else 2552 err = resolve_collision(c, key, &znode, &n, nm); 2553 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2554 if (err < 0) 2555 goto out_unlock; 2556 if (err) { 2557 /* Ensure the znode is dirtied */ 2558 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2559 znode = dirty_cow_bottom_up(c, znode); 2560 if (IS_ERR(znode)) { 2561 err = PTR_ERR(znode); 2562 goto out_unlock; 2563 } 2564 } 2565 err = tnc_delete(c, znode, n); 2566 } 2567 } 2568 2569 out_unlock: 2570 if (!err) 2571 err = dbg_check_tnc(c, 0); 2572 mutex_unlock(&c->tnc_mutex); 2573 return err; 2574 } 2575 2576 /** 2577 * key_in_range - determine if a key falls within a range of keys. 2578 * @c: UBIFS file-system description object 2579 * @key: key to check 2580 * @from_key: lowest key in range 2581 * @to_key: highest key in range 2582 * 2583 * This function returns %1 if the key is in range and %0 otherwise. 2584 */ 2585 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2586 union ubifs_key *from_key, union ubifs_key *to_key) 2587 { 2588 if (keys_cmp(c, key, from_key) < 0) 2589 return 0; 2590 if (keys_cmp(c, key, to_key) > 0) 2591 return 0; 2592 return 1; 2593 } 2594 2595 /** 2596 * ubifs_tnc_remove_range - remove index entries in range. 2597 * @c: UBIFS file-system description object 2598 * @from_key: lowest key to remove 2599 * @to_key: highest key to remove 2600 * 2601 * This function removes index entries starting at @from_key and ending at 2602 * @to_key. This function returns zero in case of success and a negative error 2603 * code in case of failure. 2604 */ 2605 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2606 union ubifs_key *to_key) 2607 { 2608 int i, n, k, err = 0; 2609 struct ubifs_znode *znode; 2610 union ubifs_key *key; 2611 2612 mutex_lock(&c->tnc_mutex); 2613 while (1) { 2614 /* Find first level 0 znode that contains keys to remove */ 2615 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2616 if (err < 0) 2617 goto out_unlock; 2618 2619 if (err) 2620 key = from_key; 2621 else { 2622 err = tnc_next(c, &znode, &n); 2623 if (err == -ENOENT) { 2624 err = 0; 2625 goto out_unlock; 2626 } 2627 if (err < 0) 2628 goto out_unlock; 2629 key = &znode->zbranch[n].key; 2630 if (!key_in_range(c, key, from_key, to_key)) { 2631 err = 0; 2632 goto out_unlock; 2633 } 2634 } 2635 2636 /* Ensure the znode is dirtied */ 2637 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2638 znode = dirty_cow_bottom_up(c, znode); 2639 if (IS_ERR(znode)) { 2640 err = PTR_ERR(znode); 2641 goto out_unlock; 2642 } 2643 } 2644 2645 /* Remove all keys in range except the first */ 2646 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2647 key = &znode->zbranch[i].key; 2648 if (!key_in_range(c, key, from_key, to_key)) 2649 break; 2650 lnc_free(&znode->zbranch[i]); 2651 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2652 znode->zbranch[i].len); 2653 if (err) { 2654 dbg_dump_znode(c, znode); 2655 goto out_unlock; 2656 } 2657 dbg_tnc("removing %s", DBGKEY(key)); 2658 } 2659 if (k) { 2660 for (i = n + 1 + k; i < znode->child_cnt; i++) 2661 znode->zbranch[i - k] = znode->zbranch[i]; 2662 znode->child_cnt -= k; 2663 } 2664 2665 /* Now delete the first */ 2666 err = tnc_delete(c, znode, n); 2667 if (err) 2668 goto out_unlock; 2669 } 2670 2671 out_unlock: 2672 if (!err) 2673 err = dbg_check_tnc(c, 0); 2674 mutex_unlock(&c->tnc_mutex); 2675 return err; 2676 } 2677 2678 /** 2679 * ubifs_tnc_remove_ino - remove an inode from TNC. 2680 * @c: UBIFS file-system description object 2681 * @inum: inode number to remove 2682 * 2683 * This function remove inode @inum and all the extended attributes associated 2684 * with the anode from TNC and returns zero in case of success or a negative 2685 * error code in case of failure. 2686 */ 2687 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2688 { 2689 union ubifs_key key1, key2; 2690 struct ubifs_dent_node *xent, *pxent = NULL; 2691 struct qstr nm = { .name = NULL }; 2692 2693 dbg_tnc("ino %lu", (unsigned long)inum); 2694 2695 /* 2696 * Walk all extended attribute entries and remove them together with 2697 * corresponding extended attribute inodes. 2698 */ 2699 lowest_xent_key(c, &key1, inum); 2700 while (1) { 2701 ino_t xattr_inum; 2702 int err; 2703 2704 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2705 if (IS_ERR(xent)) { 2706 err = PTR_ERR(xent); 2707 if (err == -ENOENT) 2708 break; 2709 return err; 2710 } 2711 2712 xattr_inum = le64_to_cpu(xent->inum); 2713 dbg_tnc("xent '%s', ino %lu", xent->name, 2714 (unsigned long)xattr_inum); 2715 2716 nm.name = xent->name; 2717 nm.len = le16_to_cpu(xent->nlen); 2718 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2719 if (err) { 2720 kfree(xent); 2721 return err; 2722 } 2723 2724 lowest_ino_key(c, &key1, xattr_inum); 2725 highest_ino_key(c, &key2, xattr_inum); 2726 err = ubifs_tnc_remove_range(c, &key1, &key2); 2727 if (err) { 2728 kfree(xent); 2729 return err; 2730 } 2731 2732 kfree(pxent); 2733 pxent = xent; 2734 key_read(c, &xent->key, &key1); 2735 } 2736 2737 kfree(pxent); 2738 lowest_ino_key(c, &key1, inum); 2739 highest_ino_key(c, &key2, inum); 2740 2741 return ubifs_tnc_remove_range(c, &key1, &key2); 2742 } 2743 2744 /** 2745 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2746 * @c: UBIFS file-system description object 2747 * @key: key of last entry 2748 * @nm: name of last entry found or %NULL 2749 * 2750 * This function finds and reads the next directory or extended attribute entry 2751 * after the given key (@key) if there is one. @nm is used to resolve 2752 * collisions. 2753 * 2754 * If the name of the current entry is not known and only the key is known, 2755 * @nm->name has to be %NULL. In this case the semantics of this function is a 2756 * little bit different and it returns the entry corresponding to this key, not 2757 * the next one. If the key was not found, the closest "right" entry is 2758 * returned. 2759 * 2760 * If the fist entry has to be found, @key has to contain the lowest possible 2761 * key value for this inode and @name has to be %NULL. 2762 * 2763 * This function returns the found directory or extended attribute entry node 2764 * in case of success, %-ENOENT is returned if no entry was found, and a 2765 * negative error code is returned in case of failure. 2766 */ 2767 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2768 union ubifs_key *key, 2769 const struct qstr *nm) 2770 { 2771 int n, err, type = key_type(c, key); 2772 struct ubifs_znode *znode; 2773 struct ubifs_dent_node *dent; 2774 struct ubifs_zbranch *zbr; 2775 union ubifs_key *dkey; 2776 2777 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); 2778 ubifs_assert(is_hash_key(c, key)); 2779 2780 mutex_lock(&c->tnc_mutex); 2781 err = ubifs_lookup_level0(c, key, &znode, &n); 2782 if (unlikely(err < 0)) 2783 goto out_unlock; 2784 2785 if (nm->name) { 2786 if (err) { 2787 /* Handle collisions */ 2788 err = resolve_collision(c, key, &znode, &n, nm); 2789 dbg_tnc("rc returned %d, znode %p, n %d", 2790 err, znode, n); 2791 if (unlikely(err < 0)) 2792 goto out_unlock; 2793 } 2794 2795 /* Now find next entry */ 2796 err = tnc_next(c, &znode, &n); 2797 if (unlikely(err)) 2798 goto out_unlock; 2799 } else { 2800 /* 2801 * The full name of the entry was not given, in which case the 2802 * behavior of this function is a little different and it 2803 * returns current entry, not the next one. 2804 */ 2805 if (!err) { 2806 /* 2807 * However, the given key does not exist in the TNC 2808 * tree and @znode/@n variables contain the closest 2809 * "preceding" element. Switch to the next one. 2810 */ 2811 err = tnc_next(c, &znode, &n); 2812 if (err) 2813 goto out_unlock; 2814 } 2815 } 2816 2817 zbr = &znode->zbranch[n]; 2818 dent = kmalloc(zbr->len, GFP_NOFS); 2819 if (unlikely(!dent)) { 2820 err = -ENOMEM; 2821 goto out_unlock; 2822 } 2823 2824 /* 2825 * The above 'tnc_next()' call could lead us to the next inode, check 2826 * this. 2827 */ 2828 dkey = &zbr->key; 2829 if (key_inum(c, dkey) != key_inum(c, key) || 2830 key_type(c, dkey) != type) { 2831 err = -ENOENT; 2832 goto out_free; 2833 } 2834 2835 err = tnc_read_node_nm(c, zbr, dent); 2836 if (unlikely(err)) 2837 goto out_free; 2838 2839 mutex_unlock(&c->tnc_mutex); 2840 return dent; 2841 2842 out_free: 2843 kfree(dent); 2844 out_unlock: 2845 mutex_unlock(&c->tnc_mutex); 2846 return ERR_PTR(err); 2847 } 2848 2849 /** 2850 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2851 * @c: UBIFS file-system description object 2852 * 2853 * Destroy left-over obsolete znodes from a failed commit. 2854 */ 2855 static void tnc_destroy_cnext(struct ubifs_info *c) 2856 { 2857 struct ubifs_znode *cnext; 2858 2859 if (!c->cnext) 2860 return; 2861 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2862 cnext = c->cnext; 2863 do { 2864 struct ubifs_znode *znode = cnext; 2865 2866 cnext = cnext->cnext; 2867 if (ubifs_zn_obsolete(znode)) 2868 kfree(znode); 2869 } while (cnext && cnext != c->cnext); 2870 } 2871 2872 /** 2873 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2874 * @c: UBIFS file-system description object 2875 */ 2876 void ubifs_tnc_close(struct ubifs_info *c) 2877 { 2878 tnc_destroy_cnext(c); 2879 if (c->zroot.znode) { 2880 long n; 2881 2882 ubifs_destroy_tnc_subtree(c->zroot.znode); 2883 n = atomic_long_read(&c->clean_zn_cnt); 2884 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2885 } 2886 kfree(c->gap_lebs); 2887 kfree(c->ilebs); 2888 destroy_old_idx(c); 2889 } 2890 2891 /** 2892 * left_znode - get the znode to the left. 2893 * @c: UBIFS file-system description object 2894 * @znode: znode 2895 * 2896 * This function returns a pointer to the znode to the left of @znode or NULL if 2897 * there is not one. A negative error code is returned on failure. 2898 */ 2899 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2900 struct ubifs_znode *znode) 2901 { 2902 int level = znode->level; 2903 2904 while (1) { 2905 int n = znode->iip - 1; 2906 2907 /* Go up until we can go left */ 2908 znode = znode->parent; 2909 if (!znode) 2910 return NULL; 2911 if (n >= 0) { 2912 /* Now go down the rightmost branch to 'level' */ 2913 znode = get_znode(c, znode, n); 2914 if (IS_ERR(znode)) 2915 return znode; 2916 while (znode->level != level) { 2917 n = znode->child_cnt - 1; 2918 znode = get_znode(c, znode, n); 2919 if (IS_ERR(znode)) 2920 return znode; 2921 } 2922 break; 2923 } 2924 } 2925 return znode; 2926 } 2927 2928 /** 2929 * right_znode - get the znode to the right. 2930 * @c: UBIFS file-system description object 2931 * @znode: znode 2932 * 2933 * This function returns a pointer to the znode to the right of @znode or NULL 2934 * if there is not one. A negative error code is returned on failure. 2935 */ 2936 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2937 struct ubifs_znode *znode) 2938 { 2939 int level = znode->level; 2940 2941 while (1) { 2942 int n = znode->iip + 1; 2943 2944 /* Go up until we can go right */ 2945 znode = znode->parent; 2946 if (!znode) 2947 return NULL; 2948 if (n < znode->child_cnt) { 2949 /* Now go down the leftmost branch to 'level' */ 2950 znode = get_znode(c, znode, n); 2951 if (IS_ERR(znode)) 2952 return znode; 2953 while (znode->level != level) { 2954 znode = get_znode(c, znode, 0); 2955 if (IS_ERR(znode)) 2956 return znode; 2957 } 2958 break; 2959 } 2960 } 2961 return znode; 2962 } 2963 2964 /** 2965 * lookup_znode - find a particular indexing node from TNC. 2966 * @c: UBIFS file-system description object 2967 * @key: index node key to lookup 2968 * @level: index node level 2969 * @lnum: index node LEB number 2970 * @offs: index node offset 2971 * 2972 * This function searches an indexing node by its first key @key and its 2973 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2974 * nodes it traverses to TNC. This function is called for indexing nodes which 2975 * were found on the media by scanning, for example when garbage-collecting or 2976 * when doing in-the-gaps commit. This means that the indexing node which is 2977 * looked for does not have to have exactly the same leftmost key @key, because 2978 * the leftmost key may have been changed, in which case TNC will contain a 2979 * dirty znode which still refers the same @lnum:@offs. This function is clever 2980 * enough to recognize such indexing nodes. 2981 * 2982 * Note, if a znode was deleted or changed too much, then this function will 2983 * not find it. For situations like this UBIFS has the old index RB-tree 2984 * (indexed by @lnum:@offs). 2985 * 2986 * This function returns a pointer to the znode found or %NULL if it is not 2987 * found. A negative error code is returned on failure. 2988 */ 2989 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2990 union ubifs_key *key, int level, 2991 int lnum, int offs) 2992 { 2993 struct ubifs_znode *znode, *zn; 2994 int n, nn; 2995 2996 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2997 2998 /* 2999 * The arguments have probably been read off flash, so don't assume 3000 * they are valid. 3001 */ 3002 if (level < 0) 3003 return ERR_PTR(-EINVAL); 3004 3005 /* Get the root znode */ 3006 znode = c->zroot.znode; 3007 if (!znode) { 3008 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3009 if (IS_ERR(znode)) 3010 return znode; 3011 } 3012 /* Check if it is the one we are looking for */ 3013 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3014 return znode; 3015 /* Descend to the parent level i.e. (level + 1) */ 3016 if (level >= znode->level) 3017 return NULL; 3018 while (1) { 3019 ubifs_search_zbranch(c, znode, key, &n); 3020 if (n < 0) { 3021 /* 3022 * We reached a znode where the leftmost key is greater 3023 * than the key we are searching for. This is the same 3024 * situation as the one described in a huge comment at 3025 * the end of the 'ubifs_lookup_level0()' function. And 3026 * for exactly the same reasons we have to try to look 3027 * left before giving up. 3028 */ 3029 znode = left_znode(c, znode); 3030 if (!znode) 3031 return NULL; 3032 if (IS_ERR(znode)) 3033 return znode; 3034 ubifs_search_zbranch(c, znode, key, &n); 3035 ubifs_assert(n >= 0); 3036 } 3037 if (znode->level == level + 1) 3038 break; 3039 znode = get_znode(c, znode, n); 3040 if (IS_ERR(znode)) 3041 return znode; 3042 } 3043 /* Check if the child is the one we are looking for */ 3044 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3045 return get_znode(c, znode, n); 3046 /* If the key is unique, there is nowhere else to look */ 3047 if (!is_hash_key(c, key)) 3048 return NULL; 3049 /* 3050 * The key is not unique and so may be also in the znodes to either 3051 * side. 3052 */ 3053 zn = znode; 3054 nn = n; 3055 /* Look left */ 3056 while (1) { 3057 /* Move one branch to the left */ 3058 if (n) 3059 n -= 1; 3060 else { 3061 znode = left_znode(c, znode); 3062 if (!znode) 3063 break; 3064 if (IS_ERR(znode)) 3065 return znode; 3066 n = znode->child_cnt - 1; 3067 } 3068 /* Check it */ 3069 if (znode->zbranch[n].lnum == lnum && 3070 znode->zbranch[n].offs == offs) 3071 return get_znode(c, znode, n); 3072 /* Stop if the key is less than the one we are looking for */ 3073 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3074 break; 3075 } 3076 /* Back to the middle */ 3077 znode = zn; 3078 n = nn; 3079 /* Look right */ 3080 while (1) { 3081 /* Move one branch to the right */ 3082 if (++n >= znode->child_cnt) { 3083 znode = right_znode(c, znode); 3084 if (!znode) 3085 break; 3086 if (IS_ERR(znode)) 3087 return znode; 3088 n = 0; 3089 } 3090 /* Check it */ 3091 if (znode->zbranch[n].lnum == lnum && 3092 znode->zbranch[n].offs == offs) 3093 return get_znode(c, znode, n); 3094 /* Stop if the key is greater than the one we are looking for */ 3095 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3096 break; 3097 } 3098 return NULL; 3099 } 3100 3101 /** 3102 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3103 * @c: UBIFS file-system description object 3104 * @key: key of index node 3105 * @level: index node level 3106 * @lnum: LEB number of index node 3107 * @offs: offset of index node 3108 * 3109 * This function returns %0 if the index node is not referred to in the TNC, %1 3110 * if the index node is referred to in the TNC and the corresponding znode is 3111 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3112 * znode is clean, and a negative error code in case of failure. 3113 * 3114 * Note, the @key argument has to be the key of the first child. Also note, 3115 * this function relies on the fact that 0:0 is never a valid LEB number and 3116 * offset for a main-area node. 3117 */ 3118 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3119 int lnum, int offs) 3120 { 3121 struct ubifs_znode *znode; 3122 3123 znode = lookup_znode(c, key, level, lnum, offs); 3124 if (!znode) 3125 return 0; 3126 if (IS_ERR(znode)) 3127 return PTR_ERR(znode); 3128 3129 return ubifs_zn_dirty(znode) ? 1 : 2; 3130 } 3131 3132 /** 3133 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3134 * @c: UBIFS file-system description object 3135 * @key: node key 3136 * @lnum: node LEB number 3137 * @offs: node offset 3138 * 3139 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3140 * not, and a negative error code in case of failure. 3141 * 3142 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3143 * and offset for a main-area node. 3144 */ 3145 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3146 int lnum, int offs) 3147 { 3148 struct ubifs_zbranch *zbr; 3149 struct ubifs_znode *znode, *zn; 3150 int n, found, err, nn; 3151 const int unique = !is_hash_key(c, key); 3152 3153 found = ubifs_lookup_level0(c, key, &znode, &n); 3154 if (found < 0) 3155 return found; /* Error code */ 3156 if (!found) 3157 return 0; 3158 zbr = &znode->zbranch[n]; 3159 if (lnum == zbr->lnum && offs == zbr->offs) 3160 return 1; /* Found it */ 3161 if (unique) 3162 return 0; 3163 /* 3164 * Because the key is not unique, we have to look left 3165 * and right as well 3166 */ 3167 zn = znode; 3168 nn = n; 3169 /* Look left */ 3170 while (1) { 3171 err = tnc_prev(c, &znode, &n); 3172 if (err == -ENOENT) 3173 break; 3174 if (err) 3175 return err; 3176 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3177 break; 3178 zbr = &znode->zbranch[n]; 3179 if (lnum == zbr->lnum && offs == zbr->offs) 3180 return 1; /* Found it */ 3181 } 3182 /* Look right */ 3183 znode = zn; 3184 n = nn; 3185 while (1) { 3186 err = tnc_next(c, &znode, &n); 3187 if (err) { 3188 if (err == -ENOENT) 3189 return 0; 3190 return err; 3191 } 3192 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3193 break; 3194 zbr = &znode->zbranch[n]; 3195 if (lnum == zbr->lnum && offs == zbr->offs) 3196 return 1; /* Found it */ 3197 } 3198 return 0; 3199 } 3200 3201 /** 3202 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3203 * @c: UBIFS file-system description object 3204 * @key: node key 3205 * @level: index node level (if it is an index node) 3206 * @lnum: node LEB number 3207 * @offs: node offset 3208 * @is_idx: non-zero if the node is an index node 3209 * 3210 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3211 * negative error code in case of failure. For index nodes, @key has to be the 3212 * key of the first child. An index node is considered to be in the TNC only if 3213 * the corresponding znode is clean or has not been loaded. 3214 */ 3215 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3216 int lnum, int offs, int is_idx) 3217 { 3218 int err; 3219 3220 mutex_lock(&c->tnc_mutex); 3221 if (is_idx) { 3222 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3223 if (err < 0) 3224 goto out_unlock; 3225 if (err == 1) 3226 /* The index node was found but it was dirty */ 3227 err = 0; 3228 else if (err == 2) 3229 /* The index node was found and it was clean */ 3230 err = 1; 3231 else 3232 BUG_ON(err != 0); 3233 } else 3234 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3235 3236 out_unlock: 3237 mutex_unlock(&c->tnc_mutex); 3238 return err; 3239 } 3240 3241 /** 3242 * ubifs_dirty_idx_node - dirty an index node. 3243 * @c: UBIFS file-system description object 3244 * @key: index node key 3245 * @level: index node level 3246 * @lnum: index node LEB number 3247 * @offs: index node offset 3248 * 3249 * This function loads and dirties an index node so that it can be garbage 3250 * collected. The @key argument has to be the key of the first child. This 3251 * function relies on the fact that 0:0 is never a valid LEB number and offset 3252 * for a main-area node. Returns %0 on success and a negative error code on 3253 * failure. 3254 */ 3255 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3256 int lnum, int offs) 3257 { 3258 struct ubifs_znode *znode; 3259 int err = 0; 3260 3261 mutex_lock(&c->tnc_mutex); 3262 znode = lookup_znode(c, key, level, lnum, offs); 3263 if (!znode) 3264 goto out_unlock; 3265 if (IS_ERR(znode)) { 3266 err = PTR_ERR(znode); 3267 goto out_unlock; 3268 } 3269 znode = dirty_cow_bottom_up(c, znode); 3270 if (IS_ERR(znode)) { 3271 err = PTR_ERR(znode); 3272 goto out_unlock; 3273 } 3274 3275 out_unlock: 3276 mutex_unlock(&c->tnc_mutex); 3277 return err; 3278 } 3279 3280 #ifdef CONFIG_UBIFS_FS_DEBUG 3281 3282 /** 3283 * dbg_check_inode_size - check if inode size is correct. 3284 * @c: UBIFS file-system description object 3285 * @inum: inode number 3286 * @size: inode size 3287 * 3288 * This function makes sure that the inode size (@size) is correct and it does 3289 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3290 * if it has a data page beyond @size, and other negative error code in case of 3291 * other errors. 3292 */ 3293 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3294 loff_t size) 3295 { 3296 int err, n; 3297 union ubifs_key from_key, to_key, *key; 3298 struct ubifs_znode *znode; 3299 unsigned int block; 3300 3301 if (!S_ISREG(inode->i_mode)) 3302 return 0; 3303 if (!dbg_is_chk_gen(c)) 3304 return 0; 3305 3306 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3307 data_key_init(c, &from_key, inode->i_ino, block); 3308 highest_data_key(c, &to_key, inode->i_ino); 3309 3310 mutex_lock(&c->tnc_mutex); 3311 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3312 if (err < 0) 3313 goto out_unlock; 3314 3315 if (err) { 3316 err = -EINVAL; 3317 key = &from_key; 3318 goto out_dump; 3319 } 3320 3321 err = tnc_next(c, &znode, &n); 3322 if (err == -ENOENT) { 3323 err = 0; 3324 goto out_unlock; 3325 } 3326 if (err < 0) 3327 goto out_unlock; 3328 3329 ubifs_assert(err == 0); 3330 key = &znode->zbranch[n].key; 3331 if (!key_in_range(c, key, &from_key, &to_key)) 3332 goto out_unlock; 3333 3334 out_dump: 3335 block = key_block(c, key); 3336 ubifs_err("inode %lu has size %lld, but there are data at offset %lld " 3337 "(data key %s)", (unsigned long)inode->i_ino, size, 3338 ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key)); 3339 mutex_unlock(&c->tnc_mutex); 3340 dbg_dump_inode(c, inode); 3341 dbg_dump_stack(); 3342 return -EINVAL; 3343 3344 out_unlock: 3345 mutex_unlock(&c->tnc_mutex); 3346 return err; 3347 } 3348 3349 #endif /* CONFIG_UBIFS_FS_DEBUG */ 3350