1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/random.h> 34 #include <linux/kthread.h> 35 #include <linux/parser.h> 36 #include <linux/seq_file.h> 37 #include <linux/mount.h> 38 #include "ubifs.h" 39 40 /* Slab cache for UBIFS inodes */ 41 struct kmem_cache *ubifs_inode_slab; 42 43 /* UBIFS TNC shrinker description */ 44 static struct shrinker ubifs_shrinker_info = { 45 .shrink = ubifs_shrinker, 46 .seeks = DEFAULT_SEEKS, 47 }; 48 49 /** 50 * validate_inode - validate inode. 51 * @c: UBIFS file-system description object 52 * @inode: the inode to validate 53 * 54 * This is a helper function for 'ubifs_iget()' which validates various fields 55 * of a newly built inode to make sure they contain sane values and prevent 56 * possible vulnerabilities. Returns zero if the inode is all right and 57 * a non-zero error code if not. 58 */ 59 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 60 { 61 int err; 62 const struct ubifs_inode *ui = ubifs_inode(inode); 63 64 if (inode->i_size > c->max_inode_sz) { 65 ubifs_err("inode is too large (%lld)", 66 (long long)inode->i_size); 67 return 1; 68 } 69 70 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 71 ubifs_err("unknown compression type %d", ui->compr_type); 72 return 2; 73 } 74 75 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 76 return 3; 77 78 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 79 return 4; 80 81 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 82 return 5; 83 84 if (!ubifs_compr_present(ui->compr_type)) { 85 ubifs_warn("inode %lu uses '%s' compression, but it was not " 86 "compiled in", inode->i_ino, 87 ubifs_compr_name(ui->compr_type)); 88 } 89 90 err = dbg_check_dir_size(c, inode); 91 return err; 92 } 93 94 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 95 { 96 int err; 97 union ubifs_key key; 98 struct ubifs_ino_node *ino; 99 struct ubifs_info *c = sb->s_fs_info; 100 struct inode *inode; 101 struct ubifs_inode *ui; 102 103 dbg_gen("inode %lu", inum); 104 105 inode = iget_locked(sb, inum); 106 if (!inode) 107 return ERR_PTR(-ENOMEM); 108 if (!(inode->i_state & I_NEW)) 109 return inode; 110 ui = ubifs_inode(inode); 111 112 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 113 if (!ino) { 114 err = -ENOMEM; 115 goto out; 116 } 117 118 ino_key_init(c, &key, inode->i_ino); 119 120 err = ubifs_tnc_lookup(c, &key, ino); 121 if (err) 122 goto out_ino; 123 124 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 125 inode->i_nlink = le32_to_cpu(ino->nlink); 126 inode->i_uid = le32_to_cpu(ino->uid); 127 inode->i_gid = le32_to_cpu(ino->gid); 128 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 129 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 130 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 131 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 132 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 133 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 134 inode->i_mode = le32_to_cpu(ino->mode); 135 inode->i_size = le64_to_cpu(ino->size); 136 137 ui->data_len = le32_to_cpu(ino->data_len); 138 ui->flags = le32_to_cpu(ino->flags); 139 ui->compr_type = le16_to_cpu(ino->compr_type); 140 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 141 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 142 ui->xattr_size = le32_to_cpu(ino->xattr_size); 143 ui->xattr_names = le32_to_cpu(ino->xattr_names); 144 ui->synced_i_size = ui->ui_size = inode->i_size; 145 146 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 147 148 err = validate_inode(c, inode); 149 if (err) 150 goto out_invalid; 151 152 /* Disable readahead */ 153 inode->i_mapping->backing_dev_info = &c->bdi; 154 155 switch (inode->i_mode & S_IFMT) { 156 case S_IFREG: 157 inode->i_mapping->a_ops = &ubifs_file_address_operations; 158 inode->i_op = &ubifs_file_inode_operations; 159 inode->i_fop = &ubifs_file_operations; 160 if (ui->xattr) { 161 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 162 if (!ui->data) { 163 err = -ENOMEM; 164 goto out_ino; 165 } 166 memcpy(ui->data, ino->data, ui->data_len); 167 ((char *)ui->data)[ui->data_len] = '\0'; 168 } else if (ui->data_len != 0) { 169 err = 10; 170 goto out_invalid; 171 } 172 break; 173 case S_IFDIR: 174 inode->i_op = &ubifs_dir_inode_operations; 175 inode->i_fop = &ubifs_dir_operations; 176 if (ui->data_len != 0) { 177 err = 11; 178 goto out_invalid; 179 } 180 break; 181 case S_IFLNK: 182 inode->i_op = &ubifs_symlink_inode_operations; 183 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 184 err = 12; 185 goto out_invalid; 186 } 187 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 188 if (!ui->data) { 189 err = -ENOMEM; 190 goto out_ino; 191 } 192 memcpy(ui->data, ino->data, ui->data_len); 193 ((char *)ui->data)[ui->data_len] = '\0'; 194 break; 195 case S_IFBLK: 196 case S_IFCHR: 197 { 198 dev_t rdev; 199 union ubifs_dev_desc *dev; 200 201 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 202 if (!ui->data) { 203 err = -ENOMEM; 204 goto out_ino; 205 } 206 207 dev = (union ubifs_dev_desc *)ino->data; 208 if (ui->data_len == sizeof(dev->new)) 209 rdev = new_decode_dev(le32_to_cpu(dev->new)); 210 else if (ui->data_len == sizeof(dev->huge)) 211 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 212 else { 213 err = 13; 214 goto out_invalid; 215 } 216 memcpy(ui->data, ino->data, ui->data_len); 217 inode->i_op = &ubifs_file_inode_operations; 218 init_special_inode(inode, inode->i_mode, rdev); 219 break; 220 } 221 case S_IFSOCK: 222 case S_IFIFO: 223 inode->i_op = &ubifs_file_inode_operations; 224 init_special_inode(inode, inode->i_mode, 0); 225 if (ui->data_len != 0) { 226 err = 14; 227 goto out_invalid; 228 } 229 break; 230 default: 231 err = 15; 232 goto out_invalid; 233 } 234 235 kfree(ino); 236 ubifs_set_inode_flags(inode); 237 unlock_new_inode(inode); 238 return inode; 239 240 out_invalid: 241 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 242 dbg_dump_node(c, ino); 243 dbg_dump_inode(c, inode); 244 err = -EINVAL; 245 out_ino: 246 kfree(ino); 247 out: 248 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 249 iget_failed(inode); 250 return ERR_PTR(err); 251 } 252 253 static struct inode *ubifs_alloc_inode(struct super_block *sb) 254 { 255 struct ubifs_inode *ui; 256 257 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 258 if (!ui) 259 return NULL; 260 261 memset((void *)ui + sizeof(struct inode), 0, 262 sizeof(struct ubifs_inode) - sizeof(struct inode)); 263 mutex_init(&ui->ui_mutex); 264 spin_lock_init(&ui->ui_lock); 265 return &ui->vfs_inode; 266 }; 267 268 static void ubifs_destroy_inode(struct inode *inode) 269 { 270 struct ubifs_inode *ui = ubifs_inode(inode); 271 272 kfree(ui->data); 273 kmem_cache_free(ubifs_inode_slab, inode); 274 } 275 276 /* 277 * Note, Linux write-back code calls this without 'i_mutex'. 278 */ 279 static int ubifs_write_inode(struct inode *inode, int wait) 280 { 281 int err; 282 struct ubifs_info *c = inode->i_sb->s_fs_info; 283 struct ubifs_inode *ui = ubifs_inode(inode); 284 285 ubifs_assert(!ui->xattr); 286 if (is_bad_inode(inode)) 287 return 0; 288 289 mutex_lock(&ui->ui_mutex); 290 /* 291 * Due to races between write-back forced by budgeting 292 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 293 * have already been synchronized, do not do this again. This might 294 * also happen if it was synchronized in an VFS operation, e.g. 295 * 'ubifs_link()'. 296 */ 297 if (!ui->dirty) { 298 mutex_unlock(&ui->ui_mutex); 299 return 0; 300 } 301 302 dbg_gen("inode %lu", inode->i_ino); 303 err = ubifs_jnl_write_inode(c, inode, 0); 304 if (err) 305 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err); 306 307 ui->dirty = 0; 308 mutex_unlock(&ui->ui_mutex); 309 ubifs_release_dirty_inode_budget(c, ui); 310 return err; 311 } 312 313 static void ubifs_delete_inode(struct inode *inode) 314 { 315 int err; 316 struct ubifs_info *c = inode->i_sb->s_fs_info; 317 318 if (ubifs_inode(inode)->xattr) 319 /* 320 * Extended attribute inode deletions are fully handled in 321 * 'ubifs_removexattr()'. These inodes are special and have 322 * limited usage, so there is nothing to do here. 323 */ 324 goto out; 325 326 dbg_gen("inode %lu", inode->i_ino); 327 ubifs_assert(!atomic_read(&inode->i_count)); 328 ubifs_assert(inode->i_nlink == 0); 329 330 truncate_inode_pages(&inode->i_data, 0); 331 if (is_bad_inode(inode)) 332 goto out; 333 334 ubifs_inode(inode)->ui_size = inode->i_size = 0; 335 err = ubifs_jnl_write_inode(c, inode, 1); 336 if (err) 337 /* 338 * Worst case we have a lost orphan inode wasting space, so a 339 * simple error message is ok here. 340 */ 341 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err); 342 out: 343 clear_inode(inode); 344 } 345 346 static void ubifs_dirty_inode(struct inode *inode) 347 { 348 struct ubifs_inode *ui = ubifs_inode(inode); 349 350 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 351 if (!ui->dirty) { 352 ui->dirty = 1; 353 dbg_gen("inode %lu", inode->i_ino); 354 } 355 } 356 357 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 358 { 359 struct ubifs_info *c = dentry->d_sb->s_fs_info; 360 unsigned long long free; 361 362 free = ubifs_budg_get_free_space(c); 363 dbg_gen("free space %lld bytes (%lld blocks)", 364 free, free >> UBIFS_BLOCK_SHIFT); 365 366 buf->f_type = UBIFS_SUPER_MAGIC; 367 buf->f_bsize = UBIFS_BLOCK_SIZE; 368 buf->f_blocks = c->block_cnt; 369 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 370 if (free > c->report_rp_size) 371 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 372 else 373 buf->f_bavail = 0; 374 buf->f_files = 0; 375 buf->f_ffree = 0; 376 buf->f_namelen = UBIFS_MAX_NLEN; 377 378 return 0; 379 } 380 381 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 382 { 383 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 384 385 if (c->mount_opts.unmount_mode == 2) 386 seq_printf(s, ",fast_unmount"); 387 else if (c->mount_opts.unmount_mode == 1) 388 seq_printf(s, ",norm_unmount"); 389 390 return 0; 391 } 392 393 static int ubifs_sync_fs(struct super_block *sb, int wait) 394 { 395 struct ubifs_info *c = sb->s_fs_info; 396 int i, ret = 0, err; 397 398 if (c->jheads) 399 for (i = 0; i < c->jhead_cnt; i++) { 400 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 401 if (err && !ret) 402 ret = err; 403 } 404 /* 405 * We ought to call sync for c->ubi but it does not have one. If it had 406 * it would in turn call mtd->sync, however mtd operations are 407 * synchronous anyway, so we don't lose any sleep here. 408 */ 409 return ret; 410 } 411 412 /** 413 * init_constants_early - initialize UBIFS constants. 414 * @c: UBIFS file-system description object 415 * 416 * This function initialize UBIFS constants which do not need the superblock to 417 * be read. It also checks that the UBI volume satisfies basic UBIFS 418 * requirements. Returns zero in case of success and a negative error code in 419 * case of failure. 420 */ 421 static int init_constants_early(struct ubifs_info *c) 422 { 423 if (c->vi.corrupted) { 424 ubifs_warn("UBI volume is corrupted - read-only mode"); 425 c->ro_media = 1; 426 } 427 428 if (c->di.ro_mode) { 429 ubifs_msg("read-only UBI device"); 430 c->ro_media = 1; 431 } 432 433 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 434 ubifs_msg("static UBI volume - read-only mode"); 435 c->ro_media = 1; 436 } 437 438 c->leb_cnt = c->vi.size; 439 c->leb_size = c->vi.usable_leb_size; 440 c->half_leb_size = c->leb_size / 2; 441 c->min_io_size = c->di.min_io_size; 442 c->min_io_shift = fls(c->min_io_size) - 1; 443 444 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 445 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 446 c->leb_size, UBIFS_MIN_LEB_SZ); 447 return -EINVAL; 448 } 449 450 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 451 ubifs_err("too few LEBs (%d), min. is %d", 452 c->leb_cnt, UBIFS_MIN_LEB_CNT); 453 return -EINVAL; 454 } 455 456 if (!is_power_of_2(c->min_io_size)) { 457 ubifs_err("bad min. I/O size %d", c->min_io_size); 458 return -EINVAL; 459 } 460 461 /* 462 * UBIFS aligns all node to 8-byte boundary, so to make function in 463 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 464 * less than 8. 465 */ 466 if (c->min_io_size < 8) { 467 c->min_io_size = 8; 468 c->min_io_shift = 3; 469 } 470 471 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 472 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 473 474 /* 475 * Initialize node length ranges which are mostly needed for node 476 * length validation. 477 */ 478 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 479 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 480 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 481 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 482 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 483 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 484 485 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 486 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 487 c->ranges[UBIFS_ORPH_NODE].min_len = 488 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 489 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 490 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 491 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 492 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 493 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 494 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 495 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 496 /* 497 * Minimum indexing node size is amended later when superblock is 498 * read and the key length is known. 499 */ 500 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 501 /* 502 * Maximum indexing node size is amended later when superblock is 503 * read and the fanout is known. 504 */ 505 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 506 507 /* 508 * Initialize dead and dark LEB space watermarks. 509 * 510 * Dead space is the space which cannot be used. Its watermark is 511 * equivalent to min. I/O unit or minimum node size if it is greater 512 * then min. I/O unit. 513 * 514 * Dark space is the space which might be used, or might not, depending 515 * on which node should be written to the LEB. Its watermark is 516 * equivalent to maximum UBIFS node size. 517 */ 518 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 519 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 520 521 return 0; 522 } 523 524 /** 525 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 526 * @c: UBIFS file-system description object 527 * @lnum: LEB the write-buffer was synchronized to 528 * @free: how many free bytes left in this LEB 529 * @pad: how many bytes were padded 530 * 531 * This is a callback function which is called by the I/O unit when the 532 * write-buffer is synchronized. We need this to correctly maintain space 533 * accounting in bud logical eraseblocks. This function returns zero in case of 534 * success and a negative error code in case of failure. 535 * 536 * This function actually belongs to the journal, but we keep it here because 537 * we want to keep it static. 538 */ 539 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 540 { 541 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 542 } 543 544 /* 545 * init_constants_late - initialize UBIFS constants. 546 * @c: UBIFS file-system description object 547 * 548 * This is a helper function which initializes various UBIFS constants after 549 * the superblock has been read. It also checks various UBIFS parameters and 550 * makes sure they are all right. Returns zero in case of success and a 551 * negative error code in case of failure. 552 */ 553 static int init_constants_late(struct ubifs_info *c) 554 { 555 int tmp, err; 556 uint64_t tmp64; 557 558 c->main_bytes = (long long)c->main_lebs * c->leb_size; 559 c->max_znode_sz = sizeof(struct ubifs_znode) + 560 c->fanout * sizeof(struct ubifs_zbranch); 561 562 tmp = ubifs_idx_node_sz(c, 1); 563 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 564 c->min_idx_node_sz = ALIGN(tmp, 8); 565 566 tmp = ubifs_idx_node_sz(c, c->fanout); 567 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 568 c->max_idx_node_sz = ALIGN(tmp, 8); 569 570 /* Make sure LEB size is large enough to fit full commit */ 571 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 572 tmp = ALIGN(tmp, c->min_io_size); 573 if (tmp > c->leb_size) { 574 dbg_err("too small LEB size %d, at least %d needed", 575 c->leb_size, tmp); 576 return -EINVAL; 577 } 578 579 /* 580 * Make sure that the log is large enough to fit reference nodes for 581 * all buds plus one reserved LEB. 582 */ 583 tmp64 = c->max_bud_bytes; 584 tmp = do_div(tmp64, c->leb_size); 585 c->max_bud_cnt = tmp64 + !!tmp; 586 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 587 tmp /= c->leb_size; 588 tmp += 1; 589 if (c->log_lebs < tmp) { 590 dbg_err("too small log %d LEBs, required min. %d LEBs", 591 c->log_lebs, tmp); 592 return -EINVAL; 593 } 594 595 /* 596 * When budgeting we assume worst-case scenarios when the pages are not 597 * be compressed and direntries are of the maximum size. 598 * 599 * Note, data, which may be stored in inodes is budgeted separately, so 600 * it is not included into 'c->inode_budget'. 601 */ 602 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 603 c->inode_budget = UBIFS_INO_NODE_SZ; 604 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 605 606 /* 607 * When the amount of flash space used by buds becomes 608 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 609 * The writers are unblocked when the commit is finished. To avoid 610 * writers to be blocked UBIFS initiates background commit in advance, 611 * when number of bud bytes becomes above the limit defined below. 612 */ 613 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 614 615 /* 616 * Ensure minimum journal size. All the bytes in the journal heads are 617 * considered to be used, when calculating the current journal usage. 618 * Consequently, if the journal is too small, UBIFS will treat it as 619 * always full. 620 */ 621 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1; 622 if (c->bg_bud_bytes < tmp64) 623 c->bg_bud_bytes = tmp64; 624 if (c->max_bud_bytes < tmp64 + c->leb_size) 625 c->max_bud_bytes = tmp64 + c->leb_size; 626 627 err = ubifs_calc_lpt_geom(c); 628 if (err) 629 return err; 630 631 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 632 633 /* 634 * Calculate total amount of FS blocks. This number is not used 635 * internally because it does not make much sense for UBIFS, but it is 636 * necessary to report something for the 'statfs()' call. 637 * 638 * Subtract the LEB reserved for GC and the LEB which is reserved for 639 * deletions. 640 * 641 * Review 'ubifs_calc_available()' if changing this calculation. 642 */ 643 tmp64 = c->main_lebs - 2; 644 tmp64 *= (uint64_t)c->leb_size - c->dark_wm; 645 tmp64 = ubifs_reported_space(c, tmp64); 646 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 647 648 return 0; 649 } 650 651 /** 652 * take_gc_lnum - reserve GC LEB. 653 * @c: UBIFS file-system description object 654 * 655 * This function ensures that the LEB reserved for garbage collection is 656 * unmapped and is marked as "taken" in lprops. We also have to set free space 657 * to LEB size and dirty space to zero, because lprops may contain out-of-date 658 * information if the file-system was un-mounted before it has been committed. 659 * This function returns zero in case of success and a negative error code in 660 * case of failure. 661 */ 662 static int take_gc_lnum(struct ubifs_info *c) 663 { 664 int err; 665 666 if (c->gc_lnum == -1) { 667 ubifs_err("no LEB for GC"); 668 return -EINVAL; 669 } 670 671 err = ubifs_leb_unmap(c, c->gc_lnum); 672 if (err) 673 return err; 674 675 /* And we have to tell lprops that this LEB is taken */ 676 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 677 LPROPS_TAKEN, 0, 0); 678 return err; 679 } 680 681 /** 682 * alloc_wbufs - allocate write-buffers. 683 * @c: UBIFS file-system description object 684 * 685 * This helper function allocates and initializes UBIFS write-buffers. Returns 686 * zero in case of success and %-ENOMEM in case of failure. 687 */ 688 static int alloc_wbufs(struct ubifs_info *c) 689 { 690 int i, err; 691 692 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 693 GFP_KERNEL); 694 if (!c->jheads) 695 return -ENOMEM; 696 697 /* Initialize journal heads */ 698 for (i = 0; i < c->jhead_cnt; i++) { 699 INIT_LIST_HEAD(&c->jheads[i].buds_list); 700 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 701 if (err) 702 return err; 703 704 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 705 c->jheads[i].wbuf.jhead = i; 706 } 707 708 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 709 /* 710 * Garbage Collector head likely contains long-term data and 711 * does not need to be synchronized by timer. 712 */ 713 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 714 c->jheads[GCHD].wbuf.timeout = 0; 715 716 return 0; 717 } 718 719 /** 720 * free_wbufs - free write-buffers. 721 * @c: UBIFS file-system description object 722 */ 723 static void free_wbufs(struct ubifs_info *c) 724 { 725 int i; 726 727 if (c->jheads) { 728 for (i = 0; i < c->jhead_cnt; i++) { 729 kfree(c->jheads[i].wbuf.buf); 730 kfree(c->jheads[i].wbuf.inodes); 731 } 732 kfree(c->jheads); 733 c->jheads = NULL; 734 } 735 } 736 737 /** 738 * free_orphans - free orphans. 739 * @c: UBIFS file-system description object 740 */ 741 static void free_orphans(struct ubifs_info *c) 742 { 743 struct ubifs_orphan *orph; 744 745 while (c->orph_dnext) { 746 orph = c->orph_dnext; 747 c->orph_dnext = orph->dnext; 748 list_del(&orph->list); 749 kfree(orph); 750 } 751 752 while (!list_empty(&c->orph_list)) { 753 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 754 list_del(&orph->list); 755 kfree(orph); 756 dbg_err("orphan list not empty at unmount"); 757 } 758 759 vfree(c->orph_buf); 760 c->orph_buf = NULL; 761 } 762 763 /** 764 * free_buds - free per-bud objects. 765 * @c: UBIFS file-system description object 766 */ 767 static void free_buds(struct ubifs_info *c) 768 { 769 struct rb_node *this = c->buds.rb_node; 770 struct ubifs_bud *bud; 771 772 while (this) { 773 if (this->rb_left) 774 this = this->rb_left; 775 else if (this->rb_right) 776 this = this->rb_right; 777 else { 778 bud = rb_entry(this, struct ubifs_bud, rb); 779 this = rb_parent(this); 780 if (this) { 781 if (this->rb_left == &bud->rb) 782 this->rb_left = NULL; 783 else 784 this->rb_right = NULL; 785 } 786 kfree(bud); 787 } 788 } 789 } 790 791 /** 792 * check_volume_empty - check if the UBI volume is empty. 793 * @c: UBIFS file-system description object 794 * 795 * This function checks if the UBIFS volume is empty by looking if its LEBs are 796 * mapped or not. The result of checking is stored in the @c->empty variable. 797 * Returns zero in case of success and a negative error code in case of 798 * failure. 799 */ 800 static int check_volume_empty(struct ubifs_info *c) 801 { 802 int lnum, err; 803 804 c->empty = 1; 805 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 806 err = ubi_is_mapped(c->ubi, lnum); 807 if (unlikely(err < 0)) 808 return err; 809 if (err == 1) { 810 c->empty = 0; 811 break; 812 } 813 814 cond_resched(); 815 } 816 817 return 0; 818 } 819 820 /* 821 * UBIFS mount options. 822 * 823 * Opt_fast_unmount: do not run a journal commit before un-mounting 824 * Opt_norm_unmount: run a journal commit before un-mounting 825 * Opt_err: just end of array marker 826 */ 827 enum { 828 Opt_fast_unmount, 829 Opt_norm_unmount, 830 Opt_err, 831 }; 832 833 static match_table_t tokens = { 834 {Opt_fast_unmount, "fast_unmount"}, 835 {Opt_norm_unmount, "norm_unmount"}, 836 {Opt_err, NULL}, 837 }; 838 839 /** 840 * ubifs_parse_options - parse mount parameters. 841 * @c: UBIFS file-system description object 842 * @options: parameters to parse 843 * @is_remount: non-zero if this is FS re-mount 844 * 845 * This function parses UBIFS mount options and returns zero in case success 846 * and a negative error code in case of failure. 847 */ 848 static int ubifs_parse_options(struct ubifs_info *c, char *options, 849 int is_remount) 850 { 851 char *p; 852 substring_t args[MAX_OPT_ARGS]; 853 854 if (!options) 855 return 0; 856 857 while ((p = strsep(&options, ","))) { 858 int token; 859 860 if (!*p) 861 continue; 862 863 token = match_token(p, tokens, args); 864 switch (token) { 865 case Opt_fast_unmount: 866 c->mount_opts.unmount_mode = 2; 867 c->fast_unmount = 1; 868 break; 869 case Opt_norm_unmount: 870 c->mount_opts.unmount_mode = 1; 871 c->fast_unmount = 0; 872 break; 873 default: 874 ubifs_err("unrecognized mount option \"%s\" " 875 "or missing value", p); 876 return -EINVAL; 877 } 878 } 879 880 return 0; 881 } 882 883 /** 884 * destroy_journal - destroy journal data structures. 885 * @c: UBIFS file-system description object 886 * 887 * This function destroys journal data structures including those that may have 888 * been created by recovery functions. 889 */ 890 static void destroy_journal(struct ubifs_info *c) 891 { 892 while (!list_empty(&c->unclean_leb_list)) { 893 struct ubifs_unclean_leb *ucleb; 894 895 ucleb = list_entry(c->unclean_leb_list.next, 896 struct ubifs_unclean_leb, list); 897 list_del(&ucleb->list); 898 kfree(ucleb); 899 } 900 while (!list_empty(&c->old_buds)) { 901 struct ubifs_bud *bud; 902 903 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 904 list_del(&bud->list); 905 kfree(bud); 906 } 907 ubifs_destroy_idx_gc(c); 908 ubifs_destroy_size_tree(c); 909 ubifs_tnc_close(c); 910 free_buds(c); 911 } 912 913 /** 914 * mount_ubifs - mount UBIFS file-system. 915 * @c: UBIFS file-system description object 916 * 917 * This function mounts UBIFS file system. Returns zero in case of success and 918 * a negative error code in case of failure. 919 * 920 * Note, the function does not de-allocate resources it it fails half way 921 * through, and the caller has to do this instead. 922 */ 923 static int mount_ubifs(struct ubifs_info *c) 924 { 925 struct super_block *sb = c->vfs_sb; 926 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 927 long long x; 928 size_t sz; 929 930 err = init_constants_early(c); 931 if (err) 932 return err; 933 934 #ifdef CONFIG_UBIFS_FS_DEBUG 935 c->dbg_buf = vmalloc(c->leb_size); 936 if (!c->dbg_buf) 937 return -ENOMEM; 938 #endif 939 940 err = check_volume_empty(c); 941 if (err) 942 goto out_free; 943 944 if (c->empty && (mounted_read_only || c->ro_media)) { 945 /* 946 * This UBI volume is empty, and read-only, or the file system 947 * is mounted read-only - we cannot format it. 948 */ 949 ubifs_err("can't format empty UBI volume: read-only %s", 950 c->ro_media ? "UBI volume" : "mount"); 951 err = -EROFS; 952 goto out_free; 953 } 954 955 if (c->ro_media && !mounted_read_only) { 956 ubifs_err("cannot mount read-write - read-only media"); 957 err = -EROFS; 958 goto out_free; 959 } 960 961 /* 962 * The requirement for the buffer is that it should fit indexing B-tree 963 * height amount of integers. We assume the height if the TNC tree will 964 * never exceed 64. 965 */ 966 err = -ENOMEM; 967 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 968 if (!c->bottom_up_buf) 969 goto out_free; 970 971 c->sbuf = vmalloc(c->leb_size); 972 if (!c->sbuf) 973 goto out_free; 974 975 if (!mounted_read_only) { 976 c->ileb_buf = vmalloc(c->leb_size); 977 if (!c->ileb_buf) 978 goto out_free; 979 } 980 981 err = ubifs_read_superblock(c); 982 if (err) 983 goto out_free; 984 985 /* 986 * Make sure the compressor which is set as the default on in the 987 * superblock was actually compiled in. 988 */ 989 if (!ubifs_compr_present(c->default_compr)) { 990 ubifs_warn("'%s' compressor is set by superblock, but not " 991 "compiled in", ubifs_compr_name(c->default_compr)); 992 c->default_compr = UBIFS_COMPR_NONE; 993 } 994 995 dbg_failure_mode_registration(c); 996 997 err = init_constants_late(c); 998 if (err) 999 goto out_dereg; 1000 1001 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1002 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1003 c->cbuf = kmalloc(sz, GFP_NOFS); 1004 if (!c->cbuf) { 1005 err = -ENOMEM; 1006 goto out_dereg; 1007 } 1008 1009 if (!mounted_read_only) { 1010 err = alloc_wbufs(c); 1011 if (err) 1012 goto out_cbuf; 1013 1014 /* Create background thread */ 1015 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, 1016 c->vi.vol_id); 1017 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1018 if (!c->bgt) 1019 c->bgt = ERR_PTR(-EINVAL); 1020 if (IS_ERR(c->bgt)) { 1021 err = PTR_ERR(c->bgt); 1022 c->bgt = NULL; 1023 ubifs_err("cannot spawn \"%s\", error %d", 1024 c->bgt_name, err); 1025 goto out_wbufs; 1026 } 1027 wake_up_process(c->bgt); 1028 } 1029 1030 err = ubifs_read_master(c); 1031 if (err) 1032 goto out_master; 1033 1034 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1035 ubifs_msg("recovery needed"); 1036 c->need_recovery = 1; 1037 if (!mounted_read_only) { 1038 err = ubifs_recover_inl_heads(c, c->sbuf); 1039 if (err) 1040 goto out_master; 1041 } 1042 } else if (!mounted_read_only) { 1043 /* 1044 * Set the "dirty" flag so that if we reboot uncleanly we 1045 * will notice this immediately on the next mount. 1046 */ 1047 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1048 err = ubifs_write_master(c); 1049 if (err) 1050 goto out_master; 1051 } 1052 1053 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1054 if (err) 1055 goto out_lpt; 1056 1057 err = dbg_check_idx_size(c, c->old_idx_sz); 1058 if (err) 1059 goto out_lpt; 1060 1061 err = ubifs_replay_journal(c); 1062 if (err) 1063 goto out_journal; 1064 1065 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1066 if (err) 1067 goto out_orphans; 1068 1069 if (!mounted_read_only) { 1070 int lnum; 1071 1072 /* Check for enough free space */ 1073 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1074 ubifs_err("insufficient available space"); 1075 err = -EINVAL; 1076 goto out_orphans; 1077 } 1078 1079 /* Check for enough log space */ 1080 lnum = c->lhead_lnum + 1; 1081 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1082 lnum = UBIFS_LOG_LNUM; 1083 if (lnum == c->ltail_lnum) { 1084 err = ubifs_consolidate_log(c); 1085 if (err) 1086 goto out_orphans; 1087 } 1088 1089 if (c->need_recovery) { 1090 err = ubifs_recover_size(c); 1091 if (err) 1092 goto out_orphans; 1093 err = ubifs_rcvry_gc_commit(c); 1094 } else 1095 err = take_gc_lnum(c); 1096 if (err) 1097 goto out_orphans; 1098 1099 err = dbg_check_lprops(c); 1100 if (err) 1101 goto out_orphans; 1102 } else if (c->need_recovery) { 1103 err = ubifs_recover_size(c); 1104 if (err) 1105 goto out_orphans; 1106 } 1107 1108 spin_lock(&ubifs_infos_lock); 1109 list_add_tail(&c->infos_list, &ubifs_infos); 1110 spin_unlock(&ubifs_infos_lock); 1111 1112 if (c->need_recovery) { 1113 if (mounted_read_only) 1114 ubifs_msg("recovery deferred"); 1115 else { 1116 c->need_recovery = 0; 1117 ubifs_msg("recovery completed"); 1118 } 1119 } 1120 1121 err = dbg_check_filesystem(c); 1122 if (err) 1123 goto out_infos; 1124 1125 ubifs_msg("mounted UBI device %d, volume %d", c->vi.ubi_num, 1126 c->vi.vol_id); 1127 if (mounted_read_only) 1128 ubifs_msg("mounted read-only"); 1129 x = (long long)c->main_lebs * c->leb_size; 1130 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)", 1131 x, x >> 10, x >> 20, c->main_lebs); 1132 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1133 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)", 1134 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1135 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1136 ubifs_msg("media format %d, latest format %d", 1137 c->fmt_version, UBIFS_FORMAT_VERSION); 1138 1139 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1140 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1141 dbg_msg("LEB size: %d bytes (%d KiB)", 1142 c->leb_size, c->leb_size / 1024); 1143 dbg_msg("data journal heads: %d", 1144 c->jhead_cnt - NONDATA_JHEADS_CNT); 1145 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1146 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1147 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1148 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1149 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1150 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1151 dbg_msg("fast unmount: %d", c->fast_unmount); 1152 dbg_msg("big_lpt %d", c->big_lpt); 1153 dbg_msg("log LEBs: %d (%d - %d)", 1154 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1155 dbg_msg("LPT area LEBs: %d (%d - %d)", 1156 c->lpt_lebs, c->lpt_first, c->lpt_last); 1157 dbg_msg("orphan area LEBs: %d (%d - %d)", 1158 c->orph_lebs, c->orph_first, c->orph_last); 1159 dbg_msg("main area LEBs: %d (%d - %d)", 1160 c->main_lebs, c->main_first, c->leb_cnt - 1); 1161 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1162 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1163 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1164 dbg_msg("key hash type: %d", c->key_hash_type); 1165 dbg_msg("tree fanout: %d", c->fanout); 1166 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1167 dbg_msg("first main LEB: %d", c->main_first); 1168 dbg_msg("dead watermark: %d", c->dead_wm); 1169 dbg_msg("dark watermark: %d", c->dark_wm); 1170 x = (long long)c->main_lebs * c->dark_wm; 1171 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1172 x, x >> 10, x >> 20); 1173 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1174 c->max_bud_bytes, c->max_bud_bytes >> 10, 1175 c->max_bud_bytes >> 20); 1176 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1177 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1178 c->bg_bud_bytes >> 20); 1179 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1180 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1181 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1182 dbg_msg("commit number: %llu", c->cmt_no); 1183 1184 return 0; 1185 1186 out_infos: 1187 spin_lock(&ubifs_infos_lock); 1188 list_del(&c->infos_list); 1189 spin_unlock(&ubifs_infos_lock); 1190 out_orphans: 1191 free_orphans(c); 1192 out_journal: 1193 destroy_journal(c); 1194 out_lpt: 1195 ubifs_lpt_free(c, 0); 1196 out_master: 1197 kfree(c->mst_node); 1198 kfree(c->rcvrd_mst_node); 1199 if (c->bgt) 1200 kthread_stop(c->bgt); 1201 out_wbufs: 1202 free_wbufs(c); 1203 out_cbuf: 1204 kfree(c->cbuf); 1205 out_dereg: 1206 dbg_failure_mode_deregistration(c); 1207 out_free: 1208 vfree(c->ileb_buf); 1209 vfree(c->sbuf); 1210 kfree(c->bottom_up_buf); 1211 UBIFS_DBG(vfree(c->dbg_buf)); 1212 return err; 1213 } 1214 1215 /** 1216 * ubifs_umount - un-mount UBIFS file-system. 1217 * @c: UBIFS file-system description object 1218 * 1219 * Note, this function is called to free allocated resourced when un-mounting, 1220 * as well as free resources when an error occurred while we were half way 1221 * through mounting (error path cleanup function). So it has to make sure the 1222 * resource was actually allocated before freeing it. 1223 */ 1224 static void ubifs_umount(struct ubifs_info *c) 1225 { 1226 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1227 c->vi.vol_id); 1228 1229 spin_lock(&ubifs_infos_lock); 1230 list_del(&c->infos_list); 1231 spin_unlock(&ubifs_infos_lock); 1232 1233 if (c->bgt) 1234 kthread_stop(c->bgt); 1235 1236 destroy_journal(c); 1237 free_wbufs(c); 1238 free_orphans(c); 1239 ubifs_lpt_free(c, 0); 1240 1241 kfree(c->cbuf); 1242 kfree(c->rcvrd_mst_node); 1243 kfree(c->mst_node); 1244 vfree(c->sbuf); 1245 kfree(c->bottom_up_buf); 1246 UBIFS_DBG(vfree(c->dbg_buf)); 1247 vfree(c->ileb_buf); 1248 dbg_failure_mode_deregistration(c); 1249 } 1250 1251 /** 1252 * ubifs_remount_rw - re-mount in read-write mode. 1253 * @c: UBIFS file-system description object 1254 * 1255 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1256 * mode. This function allocates the needed resources and re-mounts UBIFS in 1257 * read-write mode. 1258 */ 1259 static int ubifs_remount_rw(struct ubifs_info *c) 1260 { 1261 int err, lnum; 1262 1263 if (c->ro_media) 1264 return -EINVAL; 1265 1266 mutex_lock(&c->umount_mutex); 1267 c->remounting_rw = 1; 1268 1269 /* Check for enough free space */ 1270 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1271 ubifs_err("insufficient available space"); 1272 err = -EINVAL; 1273 goto out; 1274 } 1275 1276 if (c->old_leb_cnt != c->leb_cnt) { 1277 struct ubifs_sb_node *sup; 1278 1279 sup = ubifs_read_sb_node(c); 1280 if (IS_ERR(sup)) { 1281 err = PTR_ERR(sup); 1282 goto out; 1283 } 1284 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1285 err = ubifs_write_sb_node(c, sup); 1286 if (err) 1287 goto out; 1288 } 1289 1290 if (c->need_recovery) { 1291 ubifs_msg("completing deferred recovery"); 1292 err = ubifs_write_rcvrd_mst_node(c); 1293 if (err) 1294 goto out; 1295 err = ubifs_recover_size(c); 1296 if (err) 1297 goto out; 1298 err = ubifs_clean_lebs(c, c->sbuf); 1299 if (err) 1300 goto out; 1301 err = ubifs_recover_inl_heads(c, c->sbuf); 1302 if (err) 1303 goto out; 1304 } 1305 1306 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1307 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1308 err = ubifs_write_master(c); 1309 if (err) 1310 goto out; 1311 } 1312 1313 c->ileb_buf = vmalloc(c->leb_size); 1314 if (!c->ileb_buf) { 1315 err = -ENOMEM; 1316 goto out; 1317 } 1318 1319 err = ubifs_lpt_init(c, 0, 1); 1320 if (err) 1321 goto out; 1322 1323 err = alloc_wbufs(c); 1324 if (err) 1325 goto out; 1326 1327 ubifs_create_buds_lists(c); 1328 1329 /* Create background thread */ 1330 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1331 if (!c->bgt) 1332 c->bgt = ERR_PTR(-EINVAL); 1333 if (IS_ERR(c->bgt)) { 1334 err = PTR_ERR(c->bgt); 1335 c->bgt = NULL; 1336 ubifs_err("cannot spawn \"%s\", error %d", 1337 c->bgt_name, err); 1338 return err; 1339 } 1340 wake_up_process(c->bgt); 1341 1342 c->orph_buf = vmalloc(c->leb_size); 1343 if (!c->orph_buf) 1344 return -ENOMEM; 1345 1346 /* Check for enough log space */ 1347 lnum = c->lhead_lnum + 1; 1348 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1349 lnum = UBIFS_LOG_LNUM; 1350 if (lnum == c->ltail_lnum) { 1351 err = ubifs_consolidate_log(c); 1352 if (err) 1353 goto out; 1354 } 1355 1356 if (c->need_recovery) 1357 err = ubifs_rcvry_gc_commit(c); 1358 else 1359 err = take_gc_lnum(c); 1360 if (err) 1361 goto out; 1362 1363 if (c->need_recovery) { 1364 c->need_recovery = 0; 1365 ubifs_msg("deferred recovery completed"); 1366 } 1367 1368 dbg_gen("re-mounted read-write"); 1369 c->vfs_sb->s_flags &= ~MS_RDONLY; 1370 c->remounting_rw = 0; 1371 mutex_unlock(&c->umount_mutex); 1372 return 0; 1373 1374 out: 1375 vfree(c->orph_buf); 1376 c->orph_buf = NULL; 1377 if (c->bgt) { 1378 kthread_stop(c->bgt); 1379 c->bgt = NULL; 1380 } 1381 free_wbufs(c); 1382 vfree(c->ileb_buf); 1383 c->ileb_buf = NULL; 1384 ubifs_lpt_free(c, 1); 1385 c->remounting_rw = 0; 1386 mutex_unlock(&c->umount_mutex); 1387 return err; 1388 } 1389 1390 /** 1391 * commit_on_unmount - commit the journal when un-mounting. 1392 * @c: UBIFS file-system description object 1393 * 1394 * This function is called during un-mounting and it commits the journal unless 1395 * the "fast unmount" mode is enabled. It also avoids committing the journal if 1396 * it contains too few data. 1397 * 1398 * Sometimes recovery requires the journal to be committed at least once, and 1399 * this function takes care about this. 1400 */ 1401 static void commit_on_unmount(struct ubifs_info *c) 1402 { 1403 if (!c->fast_unmount) { 1404 long long bud_bytes; 1405 1406 spin_lock(&c->buds_lock); 1407 bud_bytes = c->bud_bytes; 1408 spin_unlock(&c->buds_lock); 1409 if (bud_bytes > c->leb_size) 1410 ubifs_run_commit(c); 1411 } 1412 } 1413 1414 /** 1415 * ubifs_remount_ro - re-mount in read-only mode. 1416 * @c: UBIFS file-system description object 1417 * 1418 * We rely on VFS to have stopped writing. Possibly the background thread could 1419 * be running a commit, however kthread_stop will wait in that case. 1420 */ 1421 static void ubifs_remount_ro(struct ubifs_info *c) 1422 { 1423 int i, err; 1424 1425 ubifs_assert(!c->need_recovery); 1426 commit_on_unmount(c); 1427 1428 mutex_lock(&c->umount_mutex); 1429 if (c->bgt) { 1430 kthread_stop(c->bgt); 1431 c->bgt = NULL; 1432 } 1433 1434 for (i = 0; i < c->jhead_cnt; i++) { 1435 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1436 del_timer_sync(&c->jheads[i].wbuf.timer); 1437 } 1438 1439 if (!c->ro_media) { 1440 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1441 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1442 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1443 err = ubifs_write_master(c); 1444 if (err) 1445 ubifs_ro_mode(c, err); 1446 } 1447 1448 ubifs_destroy_idx_gc(c); 1449 free_wbufs(c); 1450 vfree(c->orph_buf); 1451 c->orph_buf = NULL; 1452 vfree(c->ileb_buf); 1453 c->ileb_buf = NULL; 1454 ubifs_lpt_free(c, 1); 1455 mutex_unlock(&c->umount_mutex); 1456 } 1457 1458 static void ubifs_put_super(struct super_block *sb) 1459 { 1460 int i; 1461 struct ubifs_info *c = sb->s_fs_info; 1462 1463 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1464 c->vi.vol_id); 1465 /* 1466 * The following asserts are only valid if there has not been a failure 1467 * of the media. For example, there will be dirty inodes if we failed 1468 * to write them back because of I/O errors. 1469 */ 1470 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1471 ubifs_assert(c->budg_idx_growth == 0); 1472 ubifs_assert(c->budg_data_growth == 0); 1473 1474 /* 1475 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1476 * and file system un-mount. Namely, it prevents the shrinker from 1477 * picking this superblock for shrinking - it will be just skipped if 1478 * the mutex is locked. 1479 */ 1480 mutex_lock(&c->umount_mutex); 1481 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1482 /* 1483 * First of all kill the background thread to make sure it does 1484 * not interfere with un-mounting and freeing resources. 1485 */ 1486 if (c->bgt) { 1487 kthread_stop(c->bgt); 1488 c->bgt = NULL; 1489 } 1490 1491 /* Synchronize write-buffers */ 1492 if (c->jheads) 1493 for (i = 0; i < c->jhead_cnt; i++) { 1494 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1495 del_timer_sync(&c->jheads[i].wbuf.timer); 1496 } 1497 1498 /* 1499 * On fatal errors c->ro_media is set to 1, in which case we do 1500 * not write the master node. 1501 */ 1502 if (!c->ro_media) { 1503 /* 1504 * We are being cleanly unmounted which means the 1505 * orphans were killed - indicate this in the master 1506 * node. Also save the reserved GC LEB number. 1507 */ 1508 int err; 1509 1510 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1511 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1512 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1513 err = ubifs_write_master(c); 1514 if (err) 1515 /* 1516 * Recovery will attempt to fix the master area 1517 * next mount, so we just print a message and 1518 * continue to unmount normally. 1519 */ 1520 ubifs_err("failed to write master node, " 1521 "error %d", err); 1522 } 1523 } 1524 1525 ubifs_umount(c); 1526 bdi_destroy(&c->bdi); 1527 ubi_close_volume(c->ubi); 1528 mutex_unlock(&c->umount_mutex); 1529 kfree(c); 1530 } 1531 1532 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1533 { 1534 int err; 1535 struct ubifs_info *c = sb->s_fs_info; 1536 1537 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1538 1539 err = ubifs_parse_options(c, data, 1); 1540 if (err) { 1541 ubifs_err("invalid or unknown remount parameter"); 1542 return err; 1543 } 1544 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1545 err = ubifs_remount_rw(c); 1546 if (err) 1547 return err; 1548 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 1549 ubifs_remount_ro(c); 1550 1551 return 0; 1552 } 1553 1554 struct super_operations ubifs_super_operations = { 1555 .alloc_inode = ubifs_alloc_inode, 1556 .destroy_inode = ubifs_destroy_inode, 1557 .put_super = ubifs_put_super, 1558 .write_inode = ubifs_write_inode, 1559 .delete_inode = ubifs_delete_inode, 1560 .statfs = ubifs_statfs, 1561 .dirty_inode = ubifs_dirty_inode, 1562 .remount_fs = ubifs_remount_fs, 1563 .show_options = ubifs_show_options, 1564 .sync_fs = ubifs_sync_fs, 1565 }; 1566 1567 /** 1568 * open_ubi - parse UBI device name string and open the UBI device. 1569 * @name: UBI volume name 1570 * @mode: UBI volume open mode 1571 * 1572 * There are several ways to specify UBI volumes when mounting UBIFS: 1573 * o ubiX_Y - UBI device number X, volume Y; 1574 * o ubiY - UBI device number 0, volume Y; 1575 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1576 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1577 * 1578 * Alternative '!' separator may be used instead of ':' (because some shells 1579 * like busybox may interpret ':' as an NFS host name separator). This function 1580 * returns ubi volume object in case of success and a negative error code in 1581 * case of failure. 1582 */ 1583 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1584 { 1585 int dev, vol; 1586 char *endptr; 1587 1588 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1589 return ERR_PTR(-EINVAL); 1590 1591 /* ubi:NAME method */ 1592 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1593 return ubi_open_volume_nm(0, name + 4, mode); 1594 1595 if (!isdigit(name[3])) 1596 return ERR_PTR(-EINVAL); 1597 1598 dev = simple_strtoul(name + 3, &endptr, 0); 1599 1600 /* ubiY method */ 1601 if (*endptr == '\0') 1602 return ubi_open_volume(0, dev, mode); 1603 1604 /* ubiX_Y method */ 1605 if (*endptr == '_' && isdigit(endptr[1])) { 1606 vol = simple_strtoul(endptr + 1, &endptr, 0); 1607 if (*endptr != '\0') 1608 return ERR_PTR(-EINVAL); 1609 return ubi_open_volume(dev, vol, mode); 1610 } 1611 1612 /* ubiX:NAME method */ 1613 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1614 return ubi_open_volume_nm(dev, ++endptr, mode); 1615 1616 return ERR_PTR(-EINVAL); 1617 } 1618 1619 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1620 { 1621 struct ubi_volume_desc *ubi = sb->s_fs_info; 1622 struct ubifs_info *c; 1623 struct inode *root; 1624 int err; 1625 1626 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1627 if (!c) 1628 return -ENOMEM; 1629 1630 spin_lock_init(&c->cnt_lock); 1631 spin_lock_init(&c->cs_lock); 1632 spin_lock_init(&c->buds_lock); 1633 spin_lock_init(&c->space_lock); 1634 spin_lock_init(&c->orphan_lock); 1635 init_rwsem(&c->commit_sem); 1636 mutex_init(&c->lp_mutex); 1637 mutex_init(&c->tnc_mutex); 1638 mutex_init(&c->log_mutex); 1639 mutex_init(&c->mst_mutex); 1640 mutex_init(&c->umount_mutex); 1641 init_waitqueue_head(&c->cmt_wq); 1642 c->buds = RB_ROOT; 1643 c->old_idx = RB_ROOT; 1644 c->size_tree = RB_ROOT; 1645 c->orph_tree = RB_ROOT; 1646 INIT_LIST_HEAD(&c->infos_list); 1647 INIT_LIST_HEAD(&c->idx_gc); 1648 INIT_LIST_HEAD(&c->replay_list); 1649 INIT_LIST_HEAD(&c->replay_buds); 1650 INIT_LIST_HEAD(&c->uncat_list); 1651 INIT_LIST_HEAD(&c->empty_list); 1652 INIT_LIST_HEAD(&c->freeable_list); 1653 INIT_LIST_HEAD(&c->frdi_idx_list); 1654 INIT_LIST_HEAD(&c->unclean_leb_list); 1655 INIT_LIST_HEAD(&c->old_buds); 1656 INIT_LIST_HEAD(&c->orph_list); 1657 INIT_LIST_HEAD(&c->orph_new); 1658 1659 c->highest_inum = UBIFS_FIRST_INO; 1660 get_random_bytes(&c->vfs_gen, sizeof(int)); 1661 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1662 1663 ubi_get_volume_info(ubi, &c->vi); 1664 ubi_get_device_info(c->vi.ubi_num, &c->di); 1665 1666 /* Re-open the UBI device in read-write mode */ 1667 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1668 if (IS_ERR(c->ubi)) { 1669 err = PTR_ERR(c->ubi); 1670 goto out_free; 1671 } 1672 1673 /* 1674 * UBIFS provids 'backing_dev_info' in order to disable readahead. For 1675 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1676 * which means the user would have to wait not just for their own I/O 1677 * but the readahead I/O as well i.e. completely pointless. 1678 * 1679 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1680 */ 1681 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1682 c->bdi.unplug_io_fn = default_unplug_io_fn; 1683 err = bdi_init(&c->bdi); 1684 if (err) 1685 goto out_close; 1686 1687 err = ubifs_parse_options(c, data, 0); 1688 if (err) 1689 goto out_bdi; 1690 1691 c->vfs_sb = sb; 1692 1693 sb->s_fs_info = c; 1694 sb->s_magic = UBIFS_SUPER_MAGIC; 1695 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1696 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1697 sb->s_dev = c->vi.cdev; 1698 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1699 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1700 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1701 sb->s_op = &ubifs_super_operations; 1702 1703 mutex_lock(&c->umount_mutex); 1704 err = mount_ubifs(c); 1705 if (err) { 1706 ubifs_assert(err < 0); 1707 goto out_unlock; 1708 } 1709 1710 /* Read the root inode */ 1711 root = ubifs_iget(sb, UBIFS_ROOT_INO); 1712 if (IS_ERR(root)) { 1713 err = PTR_ERR(root); 1714 goto out_umount; 1715 } 1716 1717 sb->s_root = d_alloc_root(root); 1718 if (!sb->s_root) 1719 goto out_iput; 1720 1721 mutex_unlock(&c->umount_mutex); 1722 1723 return 0; 1724 1725 out_iput: 1726 iput(root); 1727 out_umount: 1728 ubifs_umount(c); 1729 out_unlock: 1730 mutex_unlock(&c->umount_mutex); 1731 out_bdi: 1732 bdi_destroy(&c->bdi); 1733 out_close: 1734 ubi_close_volume(c->ubi); 1735 out_free: 1736 kfree(c); 1737 return err; 1738 } 1739 1740 static int sb_test(struct super_block *sb, void *data) 1741 { 1742 dev_t *dev = data; 1743 1744 return sb->s_dev == *dev; 1745 } 1746 1747 static int sb_set(struct super_block *sb, void *data) 1748 { 1749 dev_t *dev = data; 1750 1751 sb->s_dev = *dev; 1752 return 0; 1753 } 1754 1755 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 1756 const char *name, void *data, struct vfsmount *mnt) 1757 { 1758 struct ubi_volume_desc *ubi; 1759 struct ubi_volume_info vi; 1760 struct super_block *sb; 1761 int err; 1762 1763 dbg_gen("name %s, flags %#x", name, flags); 1764 1765 /* 1766 * Get UBI device number and volume ID. Mount it read-only so far 1767 * because this might be a new mount point, and UBI allows only one 1768 * read-write user at a time. 1769 */ 1770 ubi = open_ubi(name, UBI_READONLY); 1771 if (IS_ERR(ubi)) { 1772 ubifs_err("cannot open \"%s\", error %d", 1773 name, (int)PTR_ERR(ubi)); 1774 return PTR_ERR(ubi); 1775 } 1776 ubi_get_volume_info(ubi, &vi); 1777 1778 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 1779 1780 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); 1781 if (IS_ERR(sb)) { 1782 err = PTR_ERR(sb); 1783 goto out_close; 1784 } 1785 1786 if (sb->s_root) { 1787 /* A new mount point for already mounted UBIFS */ 1788 dbg_gen("this ubi volume is already mounted"); 1789 if ((flags ^ sb->s_flags) & MS_RDONLY) { 1790 err = -EBUSY; 1791 goto out_deact; 1792 } 1793 } else { 1794 sb->s_flags = flags; 1795 /* 1796 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 1797 * replaced by 'c'. 1798 */ 1799 sb->s_fs_info = ubi; 1800 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 1801 if (err) 1802 goto out_deact; 1803 /* We do not support atime */ 1804 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 1805 } 1806 1807 /* 'fill_super()' opens ubi again so we must close it here */ 1808 ubi_close_volume(ubi); 1809 1810 return simple_set_mnt(mnt, sb); 1811 1812 out_deact: 1813 up_write(&sb->s_umount); 1814 deactivate_super(sb); 1815 out_close: 1816 ubi_close_volume(ubi); 1817 return err; 1818 } 1819 1820 static void ubifs_kill_sb(struct super_block *sb) 1821 { 1822 struct ubifs_info *c = sb->s_fs_info; 1823 1824 /* 1825 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()' 1826 * in order to be outside BKL. 1827 */ 1828 if (sb->s_root && !(sb->s_flags & MS_RDONLY)) 1829 commit_on_unmount(c); 1830 /* The un-mount routine is actually done in put_super() */ 1831 generic_shutdown_super(sb); 1832 } 1833 1834 static struct file_system_type ubifs_fs_type = { 1835 .name = "ubifs", 1836 .owner = THIS_MODULE, 1837 .get_sb = ubifs_get_sb, 1838 .kill_sb = ubifs_kill_sb 1839 }; 1840 1841 /* 1842 * Inode slab cache constructor. 1843 */ 1844 static void inode_slab_ctor(void *obj) 1845 { 1846 struct ubifs_inode *ui = obj; 1847 inode_init_once(&ui->vfs_inode); 1848 } 1849 1850 static int __init ubifs_init(void) 1851 { 1852 int err; 1853 1854 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 1855 1856 /* Make sure node sizes are 8-byte aligned */ 1857 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 1858 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 1859 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 1860 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 1861 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 1862 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 1863 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 1864 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 1865 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 1866 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 1867 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 1868 1869 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 1870 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 1871 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 1872 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 1873 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 1874 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 1875 1876 /* Check min. node size */ 1877 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 1878 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 1879 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 1880 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 1881 1882 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1883 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1884 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 1885 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 1886 1887 /* Defined node sizes */ 1888 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 1889 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 1890 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 1891 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 1892 1893 /* 1894 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 1895 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 1896 */ 1897 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 1898 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 1899 " at least 4096 bytes", 1900 (unsigned int)PAGE_CACHE_SIZE); 1901 return -EINVAL; 1902 } 1903 1904 err = register_filesystem(&ubifs_fs_type); 1905 if (err) { 1906 ubifs_err("cannot register file system, error %d", err); 1907 return err; 1908 } 1909 1910 err = -ENOMEM; 1911 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 1912 sizeof(struct ubifs_inode), 0, 1913 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 1914 &inode_slab_ctor); 1915 if (!ubifs_inode_slab) 1916 goto out_reg; 1917 1918 register_shrinker(&ubifs_shrinker_info); 1919 1920 err = ubifs_compressors_init(); 1921 if (err) 1922 goto out_compr; 1923 1924 return 0; 1925 1926 out_compr: 1927 unregister_shrinker(&ubifs_shrinker_info); 1928 kmem_cache_destroy(ubifs_inode_slab); 1929 out_reg: 1930 unregister_filesystem(&ubifs_fs_type); 1931 return err; 1932 } 1933 /* late_initcall to let compressors initialize first */ 1934 late_initcall(ubifs_init); 1935 1936 static void __exit ubifs_exit(void) 1937 { 1938 ubifs_assert(list_empty(&ubifs_infos)); 1939 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 1940 1941 ubifs_compressors_exit(); 1942 unregister_shrinker(&ubifs_shrinker_info); 1943 kmem_cache_destroy(ubifs_inode_slab); 1944 unregister_filesystem(&ubifs_fs_type); 1945 } 1946 module_exit(ubifs_exit); 1947 1948 MODULE_LICENSE("GPL"); 1949 MODULE_VERSION(__stringify(UBIFS_VERSION)); 1950 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 1951 MODULE_DESCRIPTION("UBIFS - UBI File System"); 1952