xref: /openbmc/linux/fs/ubifs/super.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/random.h>
34 #include <linux/kthread.h>
35 #include <linux/parser.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "ubifs.h"
39 
40 /* Slab cache for UBIFS inodes */
41 struct kmem_cache *ubifs_inode_slab;
42 
43 /* UBIFS TNC shrinker description */
44 static struct shrinker ubifs_shrinker_info = {
45 	.shrink = ubifs_shrinker,
46 	.seeks = DEFAULT_SEEKS,
47 };
48 
49 /**
50  * validate_inode - validate inode.
51  * @c: UBIFS file-system description object
52  * @inode: the inode to validate
53  *
54  * This is a helper function for 'ubifs_iget()' which validates various fields
55  * of a newly built inode to make sure they contain sane values and prevent
56  * possible vulnerabilities. Returns zero if the inode is all right and
57  * a non-zero error code if not.
58  */
59 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
60 {
61 	int err;
62 	const struct ubifs_inode *ui = ubifs_inode(inode);
63 
64 	if (inode->i_size > c->max_inode_sz) {
65 		ubifs_err("inode is too large (%lld)",
66 			  (long long)inode->i_size);
67 		return 1;
68 	}
69 
70 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
71 		ubifs_err("unknown compression type %d", ui->compr_type);
72 		return 2;
73 	}
74 
75 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
76 		return 3;
77 
78 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
79 		return 4;
80 
81 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
82 		return 5;
83 
84 	if (!ubifs_compr_present(ui->compr_type)) {
85 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
86 			   "compiled in", inode->i_ino,
87 			   ubifs_compr_name(ui->compr_type));
88 	}
89 
90 	err = dbg_check_dir_size(c, inode);
91 	return err;
92 }
93 
94 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
95 {
96 	int err;
97 	union ubifs_key key;
98 	struct ubifs_ino_node *ino;
99 	struct ubifs_info *c = sb->s_fs_info;
100 	struct inode *inode;
101 	struct ubifs_inode *ui;
102 
103 	dbg_gen("inode %lu", inum);
104 
105 	inode = iget_locked(sb, inum);
106 	if (!inode)
107 		return ERR_PTR(-ENOMEM);
108 	if (!(inode->i_state & I_NEW))
109 		return inode;
110 	ui = ubifs_inode(inode);
111 
112 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
113 	if (!ino) {
114 		err = -ENOMEM;
115 		goto out;
116 	}
117 
118 	ino_key_init(c, &key, inode->i_ino);
119 
120 	err = ubifs_tnc_lookup(c, &key, ino);
121 	if (err)
122 		goto out_ino;
123 
124 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
125 	inode->i_nlink = le32_to_cpu(ino->nlink);
126 	inode->i_uid   = le32_to_cpu(ino->uid);
127 	inode->i_gid   = le32_to_cpu(ino->gid);
128 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
129 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
130 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
131 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
132 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
133 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
134 	inode->i_mode = le32_to_cpu(ino->mode);
135 	inode->i_size = le64_to_cpu(ino->size);
136 
137 	ui->data_len    = le32_to_cpu(ino->data_len);
138 	ui->flags       = le32_to_cpu(ino->flags);
139 	ui->compr_type  = le16_to_cpu(ino->compr_type);
140 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
141 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
142 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
143 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
144 	ui->synced_i_size = ui->ui_size = inode->i_size;
145 
146 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147 
148 	err = validate_inode(c, inode);
149 	if (err)
150 		goto out_invalid;
151 
152 	/* Disable readahead */
153 	inode->i_mapping->backing_dev_info = &c->bdi;
154 
155 	switch (inode->i_mode & S_IFMT) {
156 	case S_IFREG:
157 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
158 		inode->i_op = &ubifs_file_inode_operations;
159 		inode->i_fop = &ubifs_file_operations;
160 		if (ui->xattr) {
161 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
162 			if (!ui->data) {
163 				err = -ENOMEM;
164 				goto out_ino;
165 			}
166 			memcpy(ui->data, ino->data, ui->data_len);
167 			((char *)ui->data)[ui->data_len] = '\0';
168 		} else if (ui->data_len != 0) {
169 			err = 10;
170 			goto out_invalid;
171 		}
172 		break;
173 	case S_IFDIR:
174 		inode->i_op  = &ubifs_dir_inode_operations;
175 		inode->i_fop = &ubifs_dir_operations;
176 		if (ui->data_len != 0) {
177 			err = 11;
178 			goto out_invalid;
179 		}
180 		break;
181 	case S_IFLNK:
182 		inode->i_op = &ubifs_symlink_inode_operations;
183 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
184 			err = 12;
185 			goto out_invalid;
186 		}
187 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
188 		if (!ui->data) {
189 			err = -ENOMEM;
190 			goto out_ino;
191 		}
192 		memcpy(ui->data, ino->data, ui->data_len);
193 		((char *)ui->data)[ui->data_len] = '\0';
194 		break;
195 	case S_IFBLK:
196 	case S_IFCHR:
197 	{
198 		dev_t rdev;
199 		union ubifs_dev_desc *dev;
200 
201 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
202 		if (!ui->data) {
203 			err = -ENOMEM;
204 			goto out_ino;
205 		}
206 
207 		dev = (union ubifs_dev_desc *)ino->data;
208 		if (ui->data_len == sizeof(dev->new))
209 			rdev = new_decode_dev(le32_to_cpu(dev->new));
210 		else if (ui->data_len == sizeof(dev->huge))
211 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
212 		else {
213 			err = 13;
214 			goto out_invalid;
215 		}
216 		memcpy(ui->data, ino->data, ui->data_len);
217 		inode->i_op = &ubifs_file_inode_operations;
218 		init_special_inode(inode, inode->i_mode, rdev);
219 		break;
220 	}
221 	case S_IFSOCK:
222 	case S_IFIFO:
223 		inode->i_op = &ubifs_file_inode_operations;
224 		init_special_inode(inode, inode->i_mode, 0);
225 		if (ui->data_len != 0) {
226 			err = 14;
227 			goto out_invalid;
228 		}
229 		break;
230 	default:
231 		err = 15;
232 		goto out_invalid;
233 	}
234 
235 	kfree(ino);
236 	ubifs_set_inode_flags(inode);
237 	unlock_new_inode(inode);
238 	return inode;
239 
240 out_invalid:
241 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
242 	dbg_dump_node(c, ino);
243 	dbg_dump_inode(c, inode);
244 	err = -EINVAL;
245 out_ino:
246 	kfree(ino);
247 out:
248 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
249 	iget_failed(inode);
250 	return ERR_PTR(err);
251 }
252 
253 static struct inode *ubifs_alloc_inode(struct super_block *sb)
254 {
255 	struct ubifs_inode *ui;
256 
257 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
258 	if (!ui)
259 		return NULL;
260 
261 	memset((void *)ui + sizeof(struct inode), 0,
262 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
263 	mutex_init(&ui->ui_mutex);
264 	spin_lock_init(&ui->ui_lock);
265 	return &ui->vfs_inode;
266 };
267 
268 static void ubifs_destroy_inode(struct inode *inode)
269 {
270 	struct ubifs_inode *ui = ubifs_inode(inode);
271 
272 	kfree(ui->data);
273 	kmem_cache_free(ubifs_inode_slab, inode);
274 }
275 
276 /*
277  * Note, Linux write-back code calls this without 'i_mutex'.
278  */
279 static int ubifs_write_inode(struct inode *inode, int wait)
280 {
281 	int err;
282 	struct ubifs_info *c = inode->i_sb->s_fs_info;
283 	struct ubifs_inode *ui = ubifs_inode(inode);
284 
285 	ubifs_assert(!ui->xattr);
286 	if (is_bad_inode(inode))
287 		return 0;
288 
289 	mutex_lock(&ui->ui_mutex);
290 	/*
291 	 * Due to races between write-back forced by budgeting
292 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
293 	 * have already been synchronized, do not do this again. This might
294 	 * also happen if it was synchronized in an VFS operation, e.g.
295 	 * 'ubifs_link()'.
296 	 */
297 	if (!ui->dirty) {
298 		mutex_unlock(&ui->ui_mutex);
299 		return 0;
300 	}
301 
302 	dbg_gen("inode %lu", inode->i_ino);
303 	err = ubifs_jnl_write_inode(c, inode, 0);
304 	if (err)
305 		ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
306 
307 	ui->dirty = 0;
308 	mutex_unlock(&ui->ui_mutex);
309 	ubifs_release_dirty_inode_budget(c, ui);
310 	return err;
311 }
312 
313 static void ubifs_delete_inode(struct inode *inode)
314 {
315 	int err;
316 	struct ubifs_info *c = inode->i_sb->s_fs_info;
317 
318 	if (ubifs_inode(inode)->xattr)
319 		/*
320 		 * Extended attribute inode deletions are fully handled in
321 		 * 'ubifs_removexattr()'. These inodes are special and have
322 		 * limited usage, so there is nothing to do here.
323 		 */
324 		goto out;
325 
326 	dbg_gen("inode %lu", inode->i_ino);
327 	ubifs_assert(!atomic_read(&inode->i_count));
328 	ubifs_assert(inode->i_nlink == 0);
329 
330 	truncate_inode_pages(&inode->i_data, 0);
331 	if (is_bad_inode(inode))
332 		goto out;
333 
334 	ubifs_inode(inode)->ui_size = inode->i_size = 0;
335 	err = ubifs_jnl_write_inode(c, inode, 1);
336 	if (err)
337 		/*
338 		 * Worst case we have a lost orphan inode wasting space, so a
339 		 * simple error message is ok here.
340 		 */
341 		ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
342 out:
343 	clear_inode(inode);
344 }
345 
346 static void ubifs_dirty_inode(struct inode *inode)
347 {
348 	struct ubifs_inode *ui = ubifs_inode(inode);
349 
350 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
351 	if (!ui->dirty) {
352 		ui->dirty = 1;
353 		dbg_gen("inode %lu",  inode->i_ino);
354 	}
355 }
356 
357 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
358 {
359 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
360 	unsigned long long free;
361 
362 	free = ubifs_budg_get_free_space(c);
363 	dbg_gen("free space %lld bytes (%lld blocks)",
364 		free, free >> UBIFS_BLOCK_SHIFT);
365 
366 	buf->f_type = UBIFS_SUPER_MAGIC;
367 	buf->f_bsize = UBIFS_BLOCK_SIZE;
368 	buf->f_blocks = c->block_cnt;
369 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
370 	if (free > c->report_rp_size)
371 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
372 	else
373 		buf->f_bavail = 0;
374 	buf->f_files = 0;
375 	buf->f_ffree = 0;
376 	buf->f_namelen = UBIFS_MAX_NLEN;
377 
378 	return 0;
379 }
380 
381 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
382 {
383 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
384 
385 	if (c->mount_opts.unmount_mode == 2)
386 		seq_printf(s, ",fast_unmount");
387 	else if (c->mount_opts.unmount_mode == 1)
388 		seq_printf(s, ",norm_unmount");
389 
390 	return 0;
391 }
392 
393 static int ubifs_sync_fs(struct super_block *sb, int wait)
394 {
395 	struct ubifs_info *c = sb->s_fs_info;
396 	int i, ret = 0, err;
397 
398 	if (c->jheads)
399 		for (i = 0; i < c->jhead_cnt; i++) {
400 			err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
401 			if (err && !ret)
402 				ret = err;
403 		}
404 	/*
405 	 * We ought to call sync for c->ubi but it does not have one. If it had
406 	 * it would in turn call mtd->sync, however mtd operations are
407 	 * synchronous anyway, so we don't lose any sleep here.
408 	 */
409 	return ret;
410 }
411 
412 /**
413  * init_constants_early - initialize UBIFS constants.
414  * @c: UBIFS file-system description object
415  *
416  * This function initialize UBIFS constants which do not need the superblock to
417  * be read. It also checks that the UBI volume satisfies basic UBIFS
418  * requirements. Returns zero in case of success and a negative error code in
419  * case of failure.
420  */
421 static int init_constants_early(struct ubifs_info *c)
422 {
423 	if (c->vi.corrupted) {
424 		ubifs_warn("UBI volume is corrupted - read-only mode");
425 		c->ro_media = 1;
426 	}
427 
428 	if (c->di.ro_mode) {
429 		ubifs_msg("read-only UBI device");
430 		c->ro_media = 1;
431 	}
432 
433 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
434 		ubifs_msg("static UBI volume - read-only mode");
435 		c->ro_media = 1;
436 	}
437 
438 	c->leb_cnt = c->vi.size;
439 	c->leb_size = c->vi.usable_leb_size;
440 	c->half_leb_size = c->leb_size / 2;
441 	c->min_io_size = c->di.min_io_size;
442 	c->min_io_shift = fls(c->min_io_size) - 1;
443 
444 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
445 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
446 			  c->leb_size, UBIFS_MIN_LEB_SZ);
447 		return -EINVAL;
448 	}
449 
450 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
451 		ubifs_err("too few LEBs (%d), min. is %d",
452 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
453 		return -EINVAL;
454 	}
455 
456 	if (!is_power_of_2(c->min_io_size)) {
457 		ubifs_err("bad min. I/O size %d", c->min_io_size);
458 		return -EINVAL;
459 	}
460 
461 	/*
462 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
463 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
464 	 * less than 8.
465 	 */
466 	if (c->min_io_size < 8) {
467 		c->min_io_size = 8;
468 		c->min_io_shift = 3;
469 	}
470 
471 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
472 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
473 
474 	/*
475 	 * Initialize node length ranges which are mostly needed for node
476 	 * length validation.
477 	 */
478 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
479 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
480 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
481 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
482 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
483 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
484 
485 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
486 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
487 	c->ranges[UBIFS_ORPH_NODE].min_len =
488 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
489 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
490 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
491 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
492 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
493 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
494 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
495 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
496 	/*
497 	 * Minimum indexing node size is amended later when superblock is
498 	 * read and the key length is known.
499 	 */
500 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
501 	/*
502 	 * Maximum indexing node size is amended later when superblock is
503 	 * read and the fanout is known.
504 	 */
505 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
506 
507 	/*
508 	 * Initialize dead and dark LEB space watermarks.
509 	 *
510 	 * Dead space is the space which cannot be used. Its watermark is
511 	 * equivalent to min. I/O unit or minimum node size if it is greater
512 	 * then min. I/O unit.
513 	 *
514 	 * Dark space is the space which might be used, or might not, depending
515 	 * on which node should be written to the LEB. Its watermark is
516 	 * equivalent to maximum UBIFS node size.
517 	 */
518 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
519 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
520 
521 	return 0;
522 }
523 
524 /**
525  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
526  * @c: UBIFS file-system description object
527  * @lnum: LEB the write-buffer was synchronized to
528  * @free: how many free bytes left in this LEB
529  * @pad: how many bytes were padded
530  *
531  * This is a callback function which is called by the I/O unit when the
532  * write-buffer is synchronized. We need this to correctly maintain space
533  * accounting in bud logical eraseblocks. This function returns zero in case of
534  * success and a negative error code in case of failure.
535  *
536  * This function actually belongs to the journal, but we keep it here because
537  * we want to keep it static.
538  */
539 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
540 {
541 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
542 }
543 
544 /*
545  * init_constants_late - initialize UBIFS constants.
546  * @c: UBIFS file-system description object
547  *
548  * This is a helper function which initializes various UBIFS constants after
549  * the superblock has been read. It also checks various UBIFS parameters and
550  * makes sure they are all right. Returns zero in case of success and a
551  * negative error code in case of failure.
552  */
553 static int init_constants_late(struct ubifs_info *c)
554 {
555 	int tmp, err;
556 	uint64_t tmp64;
557 
558 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
559 	c->max_znode_sz = sizeof(struct ubifs_znode) +
560 				c->fanout * sizeof(struct ubifs_zbranch);
561 
562 	tmp = ubifs_idx_node_sz(c, 1);
563 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
564 	c->min_idx_node_sz = ALIGN(tmp, 8);
565 
566 	tmp = ubifs_idx_node_sz(c, c->fanout);
567 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
568 	c->max_idx_node_sz = ALIGN(tmp, 8);
569 
570 	/* Make sure LEB size is large enough to fit full commit */
571 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
572 	tmp = ALIGN(tmp, c->min_io_size);
573 	if (tmp > c->leb_size) {
574 		dbg_err("too small LEB size %d, at least %d needed",
575 			c->leb_size, tmp);
576 		return -EINVAL;
577 	}
578 
579 	/*
580 	 * Make sure that the log is large enough to fit reference nodes for
581 	 * all buds plus one reserved LEB.
582 	 */
583 	tmp64 = c->max_bud_bytes;
584 	tmp = do_div(tmp64, c->leb_size);
585 	c->max_bud_cnt = tmp64 + !!tmp;
586 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
587 	tmp /= c->leb_size;
588 	tmp += 1;
589 	if (c->log_lebs < tmp) {
590 		dbg_err("too small log %d LEBs, required min. %d LEBs",
591 			c->log_lebs, tmp);
592 		return -EINVAL;
593 	}
594 
595 	/*
596 	 * When budgeting we assume worst-case scenarios when the pages are not
597 	 * be compressed and direntries are of the maximum size.
598 	 *
599 	 * Note, data, which may be stored in inodes is budgeted separately, so
600 	 * it is not included into 'c->inode_budget'.
601 	 */
602 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
603 	c->inode_budget = UBIFS_INO_NODE_SZ;
604 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
605 
606 	/*
607 	 * When the amount of flash space used by buds becomes
608 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
609 	 * The writers are unblocked when the commit is finished. To avoid
610 	 * writers to be blocked UBIFS initiates background commit in advance,
611 	 * when number of bud bytes becomes above the limit defined below.
612 	 */
613 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
614 
615 	/*
616 	 * Ensure minimum journal size. All the bytes in the journal heads are
617 	 * considered to be used, when calculating the current journal usage.
618 	 * Consequently, if the journal is too small, UBIFS will treat it as
619 	 * always full.
620 	 */
621 	tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
622 	if (c->bg_bud_bytes < tmp64)
623 		c->bg_bud_bytes = tmp64;
624 	if (c->max_bud_bytes < tmp64 + c->leb_size)
625 		c->max_bud_bytes = tmp64 + c->leb_size;
626 
627 	err = ubifs_calc_lpt_geom(c);
628 	if (err)
629 		return err;
630 
631 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
632 
633 	/*
634 	 * Calculate total amount of FS blocks. This number is not used
635 	 * internally because it does not make much sense for UBIFS, but it is
636 	 * necessary to report something for the 'statfs()' call.
637 	 *
638 	 * Subtract the LEB reserved for GC and the LEB which is reserved for
639 	 * deletions.
640 	 *
641 	 * Review 'ubifs_calc_available()' if changing this calculation.
642 	 */
643 	tmp64 = c->main_lebs - 2;
644 	tmp64 *= (uint64_t)c->leb_size - c->dark_wm;
645 	tmp64 = ubifs_reported_space(c, tmp64);
646 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
647 
648 	return 0;
649 }
650 
651 /**
652  * take_gc_lnum - reserve GC LEB.
653  * @c: UBIFS file-system description object
654  *
655  * This function ensures that the LEB reserved for garbage collection is
656  * unmapped and is marked as "taken" in lprops. We also have to set free space
657  * to LEB size and dirty space to zero, because lprops may contain out-of-date
658  * information if the file-system was un-mounted before it has been committed.
659  * This function returns zero in case of success and a negative error code in
660  * case of failure.
661  */
662 static int take_gc_lnum(struct ubifs_info *c)
663 {
664 	int err;
665 
666 	if (c->gc_lnum == -1) {
667 		ubifs_err("no LEB for GC");
668 		return -EINVAL;
669 	}
670 
671 	err = ubifs_leb_unmap(c, c->gc_lnum);
672 	if (err)
673 		return err;
674 
675 	/* And we have to tell lprops that this LEB is taken */
676 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
677 				  LPROPS_TAKEN, 0, 0);
678 	return err;
679 }
680 
681 /**
682  * alloc_wbufs - allocate write-buffers.
683  * @c: UBIFS file-system description object
684  *
685  * This helper function allocates and initializes UBIFS write-buffers. Returns
686  * zero in case of success and %-ENOMEM in case of failure.
687  */
688 static int alloc_wbufs(struct ubifs_info *c)
689 {
690 	int i, err;
691 
692 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
693 			   GFP_KERNEL);
694 	if (!c->jheads)
695 		return -ENOMEM;
696 
697 	/* Initialize journal heads */
698 	for (i = 0; i < c->jhead_cnt; i++) {
699 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
700 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
701 		if (err)
702 			return err;
703 
704 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
705 		c->jheads[i].wbuf.jhead = i;
706 	}
707 
708 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
709 	/*
710 	 * Garbage Collector head likely contains long-term data and
711 	 * does not need to be synchronized by timer.
712 	 */
713 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
714 	c->jheads[GCHD].wbuf.timeout = 0;
715 
716 	return 0;
717 }
718 
719 /**
720  * free_wbufs - free write-buffers.
721  * @c: UBIFS file-system description object
722  */
723 static void free_wbufs(struct ubifs_info *c)
724 {
725 	int i;
726 
727 	if (c->jheads) {
728 		for (i = 0; i < c->jhead_cnt; i++) {
729 			kfree(c->jheads[i].wbuf.buf);
730 			kfree(c->jheads[i].wbuf.inodes);
731 		}
732 		kfree(c->jheads);
733 		c->jheads = NULL;
734 	}
735 }
736 
737 /**
738  * free_orphans - free orphans.
739  * @c: UBIFS file-system description object
740  */
741 static void free_orphans(struct ubifs_info *c)
742 {
743 	struct ubifs_orphan *orph;
744 
745 	while (c->orph_dnext) {
746 		orph = c->orph_dnext;
747 		c->orph_dnext = orph->dnext;
748 		list_del(&orph->list);
749 		kfree(orph);
750 	}
751 
752 	while (!list_empty(&c->orph_list)) {
753 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
754 		list_del(&orph->list);
755 		kfree(orph);
756 		dbg_err("orphan list not empty at unmount");
757 	}
758 
759 	vfree(c->orph_buf);
760 	c->orph_buf = NULL;
761 }
762 
763 /**
764  * free_buds - free per-bud objects.
765  * @c: UBIFS file-system description object
766  */
767 static void free_buds(struct ubifs_info *c)
768 {
769 	struct rb_node *this = c->buds.rb_node;
770 	struct ubifs_bud *bud;
771 
772 	while (this) {
773 		if (this->rb_left)
774 			this = this->rb_left;
775 		else if (this->rb_right)
776 			this = this->rb_right;
777 		else {
778 			bud = rb_entry(this, struct ubifs_bud, rb);
779 			this = rb_parent(this);
780 			if (this) {
781 				if (this->rb_left == &bud->rb)
782 					this->rb_left = NULL;
783 				else
784 					this->rb_right = NULL;
785 			}
786 			kfree(bud);
787 		}
788 	}
789 }
790 
791 /**
792  * check_volume_empty - check if the UBI volume is empty.
793  * @c: UBIFS file-system description object
794  *
795  * This function checks if the UBIFS volume is empty by looking if its LEBs are
796  * mapped or not. The result of checking is stored in the @c->empty variable.
797  * Returns zero in case of success and a negative error code in case of
798  * failure.
799  */
800 static int check_volume_empty(struct ubifs_info *c)
801 {
802 	int lnum, err;
803 
804 	c->empty = 1;
805 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
806 		err = ubi_is_mapped(c->ubi, lnum);
807 		if (unlikely(err < 0))
808 			return err;
809 		if (err == 1) {
810 			c->empty = 0;
811 			break;
812 		}
813 
814 		cond_resched();
815 	}
816 
817 	return 0;
818 }
819 
820 /*
821  * UBIFS mount options.
822  *
823  * Opt_fast_unmount: do not run a journal commit before un-mounting
824  * Opt_norm_unmount: run a journal commit before un-mounting
825  * Opt_err: just end of array marker
826  */
827 enum {
828 	Opt_fast_unmount,
829 	Opt_norm_unmount,
830 	Opt_err,
831 };
832 
833 static match_table_t tokens = {
834 	{Opt_fast_unmount, "fast_unmount"},
835 	{Opt_norm_unmount, "norm_unmount"},
836 	{Opt_err, NULL},
837 };
838 
839 /**
840  * ubifs_parse_options - parse mount parameters.
841  * @c: UBIFS file-system description object
842  * @options: parameters to parse
843  * @is_remount: non-zero if this is FS re-mount
844  *
845  * This function parses UBIFS mount options and returns zero in case success
846  * and a negative error code in case of failure.
847  */
848 static int ubifs_parse_options(struct ubifs_info *c, char *options,
849 			       int is_remount)
850 {
851 	char *p;
852 	substring_t args[MAX_OPT_ARGS];
853 
854 	if (!options)
855 		return 0;
856 
857 	while ((p = strsep(&options, ","))) {
858 		int token;
859 
860 		if (!*p)
861 			continue;
862 
863 		token = match_token(p, tokens, args);
864 		switch (token) {
865 		case Opt_fast_unmount:
866 			c->mount_opts.unmount_mode = 2;
867 			c->fast_unmount = 1;
868 			break;
869 		case Opt_norm_unmount:
870 			c->mount_opts.unmount_mode = 1;
871 			c->fast_unmount = 0;
872 			break;
873 		default:
874 			ubifs_err("unrecognized mount option \"%s\" "
875 				  "or missing value", p);
876 			return -EINVAL;
877 		}
878 	}
879 
880 	return 0;
881 }
882 
883 /**
884  * destroy_journal - destroy journal data structures.
885  * @c: UBIFS file-system description object
886  *
887  * This function destroys journal data structures including those that may have
888  * been created by recovery functions.
889  */
890 static void destroy_journal(struct ubifs_info *c)
891 {
892 	while (!list_empty(&c->unclean_leb_list)) {
893 		struct ubifs_unclean_leb *ucleb;
894 
895 		ucleb = list_entry(c->unclean_leb_list.next,
896 				   struct ubifs_unclean_leb, list);
897 		list_del(&ucleb->list);
898 		kfree(ucleb);
899 	}
900 	while (!list_empty(&c->old_buds)) {
901 		struct ubifs_bud *bud;
902 
903 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
904 		list_del(&bud->list);
905 		kfree(bud);
906 	}
907 	ubifs_destroy_idx_gc(c);
908 	ubifs_destroy_size_tree(c);
909 	ubifs_tnc_close(c);
910 	free_buds(c);
911 }
912 
913 /**
914  * mount_ubifs - mount UBIFS file-system.
915  * @c: UBIFS file-system description object
916  *
917  * This function mounts UBIFS file system. Returns zero in case of success and
918  * a negative error code in case of failure.
919  *
920  * Note, the function does not de-allocate resources it it fails half way
921  * through, and the caller has to do this instead.
922  */
923 static int mount_ubifs(struct ubifs_info *c)
924 {
925 	struct super_block *sb = c->vfs_sb;
926 	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
927 	long long x;
928 	size_t sz;
929 
930 	err = init_constants_early(c);
931 	if (err)
932 		return err;
933 
934 #ifdef CONFIG_UBIFS_FS_DEBUG
935 	c->dbg_buf = vmalloc(c->leb_size);
936 	if (!c->dbg_buf)
937 		return -ENOMEM;
938 #endif
939 
940 	err = check_volume_empty(c);
941 	if (err)
942 		goto out_free;
943 
944 	if (c->empty && (mounted_read_only || c->ro_media)) {
945 		/*
946 		 * This UBI volume is empty, and read-only, or the file system
947 		 * is mounted read-only - we cannot format it.
948 		 */
949 		ubifs_err("can't format empty UBI volume: read-only %s",
950 			  c->ro_media ? "UBI volume" : "mount");
951 		err = -EROFS;
952 		goto out_free;
953 	}
954 
955 	if (c->ro_media && !mounted_read_only) {
956 		ubifs_err("cannot mount read-write - read-only media");
957 		err = -EROFS;
958 		goto out_free;
959 	}
960 
961 	/*
962 	 * The requirement for the buffer is that it should fit indexing B-tree
963 	 * height amount of integers. We assume the height if the TNC tree will
964 	 * never exceed 64.
965 	 */
966 	err = -ENOMEM;
967 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
968 	if (!c->bottom_up_buf)
969 		goto out_free;
970 
971 	c->sbuf = vmalloc(c->leb_size);
972 	if (!c->sbuf)
973 		goto out_free;
974 
975 	if (!mounted_read_only) {
976 		c->ileb_buf = vmalloc(c->leb_size);
977 		if (!c->ileb_buf)
978 			goto out_free;
979 	}
980 
981 	err = ubifs_read_superblock(c);
982 	if (err)
983 		goto out_free;
984 
985 	/*
986 	 * Make sure the compressor which is set as the default on in the
987 	 * superblock was actually compiled in.
988 	 */
989 	if (!ubifs_compr_present(c->default_compr)) {
990 		ubifs_warn("'%s' compressor is set by superblock, but not "
991 			   "compiled in", ubifs_compr_name(c->default_compr));
992 		c->default_compr = UBIFS_COMPR_NONE;
993 	}
994 
995 	dbg_failure_mode_registration(c);
996 
997 	err = init_constants_late(c);
998 	if (err)
999 		goto out_dereg;
1000 
1001 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1002 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1003 	c->cbuf = kmalloc(sz, GFP_NOFS);
1004 	if (!c->cbuf) {
1005 		err = -ENOMEM;
1006 		goto out_dereg;
1007 	}
1008 
1009 	if (!mounted_read_only) {
1010 		err = alloc_wbufs(c);
1011 		if (err)
1012 			goto out_cbuf;
1013 
1014 		/* Create background thread */
1015 		sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1016 			c->vi.vol_id);
1017 		c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1018 		if (!c->bgt)
1019 			c->bgt = ERR_PTR(-EINVAL);
1020 		if (IS_ERR(c->bgt)) {
1021 			err = PTR_ERR(c->bgt);
1022 			c->bgt = NULL;
1023 			ubifs_err("cannot spawn \"%s\", error %d",
1024 				  c->bgt_name, err);
1025 			goto out_wbufs;
1026 		}
1027 		wake_up_process(c->bgt);
1028 	}
1029 
1030 	err = ubifs_read_master(c);
1031 	if (err)
1032 		goto out_master;
1033 
1034 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1035 		ubifs_msg("recovery needed");
1036 		c->need_recovery = 1;
1037 		if (!mounted_read_only) {
1038 			err = ubifs_recover_inl_heads(c, c->sbuf);
1039 			if (err)
1040 				goto out_master;
1041 		}
1042 	} else if (!mounted_read_only) {
1043 		/*
1044 		 * Set the "dirty" flag so that if we reboot uncleanly we
1045 		 * will notice this immediately on the next mount.
1046 		 */
1047 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1048 		err = ubifs_write_master(c);
1049 		if (err)
1050 			goto out_master;
1051 	}
1052 
1053 	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1054 	if (err)
1055 		goto out_lpt;
1056 
1057 	err = dbg_check_idx_size(c, c->old_idx_sz);
1058 	if (err)
1059 		goto out_lpt;
1060 
1061 	err = ubifs_replay_journal(c);
1062 	if (err)
1063 		goto out_journal;
1064 
1065 	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1066 	if (err)
1067 		goto out_orphans;
1068 
1069 	if (!mounted_read_only) {
1070 		int lnum;
1071 
1072 		/* Check for enough free space */
1073 		if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1074 			ubifs_err("insufficient available space");
1075 			err = -EINVAL;
1076 			goto out_orphans;
1077 		}
1078 
1079 		/* Check for enough log space */
1080 		lnum = c->lhead_lnum + 1;
1081 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1082 			lnum = UBIFS_LOG_LNUM;
1083 		if (lnum == c->ltail_lnum) {
1084 			err = ubifs_consolidate_log(c);
1085 			if (err)
1086 				goto out_orphans;
1087 		}
1088 
1089 		if (c->need_recovery) {
1090 			err = ubifs_recover_size(c);
1091 			if (err)
1092 				goto out_orphans;
1093 			err = ubifs_rcvry_gc_commit(c);
1094 		} else
1095 			err = take_gc_lnum(c);
1096 		if (err)
1097 			goto out_orphans;
1098 
1099 		err = dbg_check_lprops(c);
1100 		if (err)
1101 			goto out_orphans;
1102 	} else if (c->need_recovery) {
1103 		err = ubifs_recover_size(c);
1104 		if (err)
1105 			goto out_orphans;
1106 	}
1107 
1108 	spin_lock(&ubifs_infos_lock);
1109 	list_add_tail(&c->infos_list, &ubifs_infos);
1110 	spin_unlock(&ubifs_infos_lock);
1111 
1112 	if (c->need_recovery) {
1113 		if (mounted_read_only)
1114 			ubifs_msg("recovery deferred");
1115 		else {
1116 			c->need_recovery = 0;
1117 			ubifs_msg("recovery completed");
1118 		}
1119 	}
1120 
1121 	err = dbg_check_filesystem(c);
1122 	if (err)
1123 		goto out_infos;
1124 
1125 	ubifs_msg("mounted UBI device %d, volume %d", c->vi.ubi_num,
1126 		  c->vi.vol_id);
1127 	if (mounted_read_only)
1128 		ubifs_msg("mounted read-only");
1129 	x = (long long)c->main_lebs * c->leb_size;
1130 	ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1131 		  x, x >> 10, x >> 20, c->main_lebs);
1132 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1133 	ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1134 		  x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1135 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1136 	ubifs_msg("media format %d, latest format %d",
1137 		  c->fmt_version, UBIFS_FORMAT_VERSION);
1138 
1139 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1140 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1141 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1142 		c->leb_size, c->leb_size / 1024);
1143 	dbg_msg("data journal heads:  %d",
1144 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1145 	dbg_msg("UUID:                %02X%02X%02X%02X-%02X%02X"
1146 	       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1147 	       c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1148 	       c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1149 	       c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1150 	       c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1151 	dbg_msg("fast unmount:        %d", c->fast_unmount);
1152 	dbg_msg("big_lpt              %d", c->big_lpt);
1153 	dbg_msg("log LEBs:            %d (%d - %d)",
1154 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1155 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1156 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1157 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1158 		c->orph_lebs, c->orph_first, c->orph_last);
1159 	dbg_msg("main area LEBs:      %d (%d - %d)",
1160 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1161 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1162 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1163 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1164 	dbg_msg("key hash type:       %d", c->key_hash_type);
1165 	dbg_msg("tree fanout:         %d", c->fanout);
1166 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1167 	dbg_msg("first main LEB:      %d", c->main_first);
1168 	dbg_msg("dead watermark:      %d", c->dead_wm);
1169 	dbg_msg("dark watermark:      %d", c->dark_wm);
1170 	x = (long long)c->main_lebs * c->dark_wm;
1171 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1172 		x, x >> 10, x >> 20);
1173 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1174 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1175 		c->max_bud_bytes >> 20);
1176 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1177 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1178 		c->bg_bud_bytes >> 20);
1179 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1180 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1181 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1182 	dbg_msg("commit number:       %llu", c->cmt_no);
1183 
1184 	return 0;
1185 
1186 out_infos:
1187 	spin_lock(&ubifs_infos_lock);
1188 	list_del(&c->infos_list);
1189 	spin_unlock(&ubifs_infos_lock);
1190 out_orphans:
1191 	free_orphans(c);
1192 out_journal:
1193 	destroy_journal(c);
1194 out_lpt:
1195 	ubifs_lpt_free(c, 0);
1196 out_master:
1197 	kfree(c->mst_node);
1198 	kfree(c->rcvrd_mst_node);
1199 	if (c->bgt)
1200 		kthread_stop(c->bgt);
1201 out_wbufs:
1202 	free_wbufs(c);
1203 out_cbuf:
1204 	kfree(c->cbuf);
1205 out_dereg:
1206 	dbg_failure_mode_deregistration(c);
1207 out_free:
1208 	vfree(c->ileb_buf);
1209 	vfree(c->sbuf);
1210 	kfree(c->bottom_up_buf);
1211 	UBIFS_DBG(vfree(c->dbg_buf));
1212 	return err;
1213 }
1214 
1215 /**
1216  * ubifs_umount - un-mount UBIFS file-system.
1217  * @c: UBIFS file-system description object
1218  *
1219  * Note, this function is called to free allocated resourced when un-mounting,
1220  * as well as free resources when an error occurred while we were half way
1221  * through mounting (error path cleanup function). So it has to make sure the
1222  * resource was actually allocated before freeing it.
1223  */
1224 static void ubifs_umount(struct ubifs_info *c)
1225 {
1226 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1227 		c->vi.vol_id);
1228 
1229 	spin_lock(&ubifs_infos_lock);
1230 	list_del(&c->infos_list);
1231 	spin_unlock(&ubifs_infos_lock);
1232 
1233 	if (c->bgt)
1234 		kthread_stop(c->bgt);
1235 
1236 	destroy_journal(c);
1237 	free_wbufs(c);
1238 	free_orphans(c);
1239 	ubifs_lpt_free(c, 0);
1240 
1241 	kfree(c->cbuf);
1242 	kfree(c->rcvrd_mst_node);
1243 	kfree(c->mst_node);
1244 	vfree(c->sbuf);
1245 	kfree(c->bottom_up_buf);
1246 	UBIFS_DBG(vfree(c->dbg_buf));
1247 	vfree(c->ileb_buf);
1248 	dbg_failure_mode_deregistration(c);
1249 }
1250 
1251 /**
1252  * ubifs_remount_rw - re-mount in read-write mode.
1253  * @c: UBIFS file-system description object
1254  *
1255  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1256  * mode. This function allocates the needed resources and re-mounts UBIFS in
1257  * read-write mode.
1258  */
1259 static int ubifs_remount_rw(struct ubifs_info *c)
1260 {
1261 	int err, lnum;
1262 
1263 	if (c->ro_media)
1264 		return -EINVAL;
1265 
1266 	mutex_lock(&c->umount_mutex);
1267 	c->remounting_rw = 1;
1268 
1269 	/* Check for enough free space */
1270 	if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1271 		ubifs_err("insufficient available space");
1272 		err = -EINVAL;
1273 		goto out;
1274 	}
1275 
1276 	if (c->old_leb_cnt != c->leb_cnt) {
1277 		struct ubifs_sb_node *sup;
1278 
1279 		sup = ubifs_read_sb_node(c);
1280 		if (IS_ERR(sup)) {
1281 			err = PTR_ERR(sup);
1282 			goto out;
1283 		}
1284 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1285 		err = ubifs_write_sb_node(c, sup);
1286 		if (err)
1287 			goto out;
1288 	}
1289 
1290 	if (c->need_recovery) {
1291 		ubifs_msg("completing deferred recovery");
1292 		err = ubifs_write_rcvrd_mst_node(c);
1293 		if (err)
1294 			goto out;
1295 		err = ubifs_recover_size(c);
1296 		if (err)
1297 			goto out;
1298 		err = ubifs_clean_lebs(c, c->sbuf);
1299 		if (err)
1300 			goto out;
1301 		err = ubifs_recover_inl_heads(c, c->sbuf);
1302 		if (err)
1303 			goto out;
1304 	}
1305 
1306 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1307 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1308 		err = ubifs_write_master(c);
1309 		if (err)
1310 			goto out;
1311 	}
1312 
1313 	c->ileb_buf = vmalloc(c->leb_size);
1314 	if (!c->ileb_buf) {
1315 		err = -ENOMEM;
1316 		goto out;
1317 	}
1318 
1319 	err = ubifs_lpt_init(c, 0, 1);
1320 	if (err)
1321 		goto out;
1322 
1323 	err = alloc_wbufs(c);
1324 	if (err)
1325 		goto out;
1326 
1327 	ubifs_create_buds_lists(c);
1328 
1329 	/* Create background thread */
1330 	c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1331 	if (!c->bgt)
1332 		c->bgt = ERR_PTR(-EINVAL);
1333 	if (IS_ERR(c->bgt)) {
1334 		err = PTR_ERR(c->bgt);
1335 		c->bgt = NULL;
1336 		ubifs_err("cannot spawn \"%s\", error %d",
1337 			  c->bgt_name, err);
1338 		return err;
1339 	}
1340 	wake_up_process(c->bgt);
1341 
1342 	c->orph_buf = vmalloc(c->leb_size);
1343 	if (!c->orph_buf)
1344 		return -ENOMEM;
1345 
1346 	/* Check for enough log space */
1347 	lnum = c->lhead_lnum + 1;
1348 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1349 		lnum = UBIFS_LOG_LNUM;
1350 	if (lnum == c->ltail_lnum) {
1351 		err = ubifs_consolidate_log(c);
1352 		if (err)
1353 			goto out;
1354 	}
1355 
1356 	if (c->need_recovery)
1357 		err = ubifs_rcvry_gc_commit(c);
1358 	else
1359 		err = take_gc_lnum(c);
1360 	if (err)
1361 		goto out;
1362 
1363 	if (c->need_recovery) {
1364 		c->need_recovery = 0;
1365 		ubifs_msg("deferred recovery completed");
1366 	}
1367 
1368 	dbg_gen("re-mounted read-write");
1369 	c->vfs_sb->s_flags &= ~MS_RDONLY;
1370 	c->remounting_rw = 0;
1371 	mutex_unlock(&c->umount_mutex);
1372 	return 0;
1373 
1374 out:
1375 	vfree(c->orph_buf);
1376 	c->orph_buf = NULL;
1377 	if (c->bgt) {
1378 		kthread_stop(c->bgt);
1379 		c->bgt = NULL;
1380 	}
1381 	free_wbufs(c);
1382 	vfree(c->ileb_buf);
1383 	c->ileb_buf = NULL;
1384 	ubifs_lpt_free(c, 1);
1385 	c->remounting_rw = 0;
1386 	mutex_unlock(&c->umount_mutex);
1387 	return err;
1388 }
1389 
1390 /**
1391  * commit_on_unmount - commit the journal when un-mounting.
1392  * @c: UBIFS file-system description object
1393  *
1394  * This function is called during un-mounting and it commits the journal unless
1395  * the "fast unmount" mode is enabled. It also avoids committing the journal if
1396  * it contains too few data.
1397  *
1398  * Sometimes recovery requires the journal to be committed at least once, and
1399  * this function takes care about this.
1400  */
1401 static void commit_on_unmount(struct ubifs_info *c)
1402 {
1403 	if (!c->fast_unmount) {
1404 		long long bud_bytes;
1405 
1406 		spin_lock(&c->buds_lock);
1407 		bud_bytes = c->bud_bytes;
1408 		spin_unlock(&c->buds_lock);
1409 		if (bud_bytes > c->leb_size)
1410 			ubifs_run_commit(c);
1411 	}
1412 }
1413 
1414 /**
1415  * ubifs_remount_ro - re-mount in read-only mode.
1416  * @c: UBIFS file-system description object
1417  *
1418  * We rely on VFS to have stopped writing. Possibly the background thread could
1419  * be running a commit, however kthread_stop will wait in that case.
1420  */
1421 static void ubifs_remount_ro(struct ubifs_info *c)
1422 {
1423 	int i, err;
1424 
1425 	ubifs_assert(!c->need_recovery);
1426 	commit_on_unmount(c);
1427 
1428 	mutex_lock(&c->umount_mutex);
1429 	if (c->bgt) {
1430 		kthread_stop(c->bgt);
1431 		c->bgt = NULL;
1432 	}
1433 
1434 	for (i = 0; i < c->jhead_cnt; i++) {
1435 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1436 		del_timer_sync(&c->jheads[i].wbuf.timer);
1437 	}
1438 
1439 	if (!c->ro_media) {
1440 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1441 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1442 		c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1443 		err = ubifs_write_master(c);
1444 		if (err)
1445 			ubifs_ro_mode(c, err);
1446 	}
1447 
1448 	ubifs_destroy_idx_gc(c);
1449 	free_wbufs(c);
1450 	vfree(c->orph_buf);
1451 	c->orph_buf = NULL;
1452 	vfree(c->ileb_buf);
1453 	c->ileb_buf = NULL;
1454 	ubifs_lpt_free(c, 1);
1455 	mutex_unlock(&c->umount_mutex);
1456 }
1457 
1458 static void ubifs_put_super(struct super_block *sb)
1459 {
1460 	int i;
1461 	struct ubifs_info *c = sb->s_fs_info;
1462 
1463 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1464 		  c->vi.vol_id);
1465 	/*
1466 	 * The following asserts are only valid if there has not been a failure
1467 	 * of the media. For example, there will be dirty inodes if we failed
1468 	 * to write them back because of I/O errors.
1469 	 */
1470 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1471 	ubifs_assert(c->budg_idx_growth == 0);
1472 	ubifs_assert(c->budg_data_growth == 0);
1473 
1474 	/*
1475 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1476 	 * and file system un-mount. Namely, it prevents the shrinker from
1477 	 * picking this superblock for shrinking - it will be just skipped if
1478 	 * the mutex is locked.
1479 	 */
1480 	mutex_lock(&c->umount_mutex);
1481 	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1482 		/*
1483 		 * First of all kill the background thread to make sure it does
1484 		 * not interfere with un-mounting and freeing resources.
1485 		 */
1486 		if (c->bgt) {
1487 			kthread_stop(c->bgt);
1488 			c->bgt = NULL;
1489 		}
1490 
1491 		/* Synchronize write-buffers */
1492 		if (c->jheads)
1493 			for (i = 0; i < c->jhead_cnt; i++) {
1494 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1495 				del_timer_sync(&c->jheads[i].wbuf.timer);
1496 			}
1497 
1498 		/*
1499 		 * On fatal errors c->ro_media is set to 1, in which case we do
1500 		 * not write the master node.
1501 		 */
1502 		if (!c->ro_media) {
1503 			/*
1504 			 * We are being cleanly unmounted which means the
1505 			 * orphans were killed - indicate this in the master
1506 			 * node. Also save the reserved GC LEB number.
1507 			 */
1508 			int err;
1509 
1510 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1511 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1512 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1513 			err = ubifs_write_master(c);
1514 			if (err)
1515 				/*
1516 				 * Recovery will attempt to fix the master area
1517 				 * next mount, so we just print a message and
1518 				 * continue to unmount normally.
1519 				 */
1520 				ubifs_err("failed to write master node, "
1521 					  "error %d", err);
1522 		}
1523 	}
1524 
1525 	ubifs_umount(c);
1526 	bdi_destroy(&c->bdi);
1527 	ubi_close_volume(c->ubi);
1528 	mutex_unlock(&c->umount_mutex);
1529 	kfree(c);
1530 }
1531 
1532 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1533 {
1534 	int err;
1535 	struct ubifs_info *c = sb->s_fs_info;
1536 
1537 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1538 
1539 	err = ubifs_parse_options(c, data, 1);
1540 	if (err) {
1541 		ubifs_err("invalid or unknown remount parameter");
1542 		return err;
1543 	}
1544 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1545 		err = ubifs_remount_rw(c);
1546 		if (err)
1547 			return err;
1548 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1549 		ubifs_remount_ro(c);
1550 
1551 	return 0;
1552 }
1553 
1554 struct super_operations ubifs_super_operations = {
1555 	.alloc_inode   = ubifs_alloc_inode,
1556 	.destroy_inode = ubifs_destroy_inode,
1557 	.put_super     = ubifs_put_super,
1558 	.write_inode   = ubifs_write_inode,
1559 	.delete_inode  = ubifs_delete_inode,
1560 	.statfs        = ubifs_statfs,
1561 	.dirty_inode   = ubifs_dirty_inode,
1562 	.remount_fs    = ubifs_remount_fs,
1563 	.show_options  = ubifs_show_options,
1564 	.sync_fs       = ubifs_sync_fs,
1565 };
1566 
1567 /**
1568  * open_ubi - parse UBI device name string and open the UBI device.
1569  * @name: UBI volume name
1570  * @mode: UBI volume open mode
1571  *
1572  * There are several ways to specify UBI volumes when mounting UBIFS:
1573  * o ubiX_Y    - UBI device number X, volume Y;
1574  * o ubiY      - UBI device number 0, volume Y;
1575  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1576  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1577  *
1578  * Alternative '!' separator may be used instead of ':' (because some shells
1579  * like busybox may interpret ':' as an NFS host name separator). This function
1580  * returns ubi volume object in case of success and a negative error code in
1581  * case of failure.
1582  */
1583 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1584 {
1585 	int dev, vol;
1586 	char *endptr;
1587 
1588 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1589 		return ERR_PTR(-EINVAL);
1590 
1591 	/* ubi:NAME method */
1592 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1593 		return ubi_open_volume_nm(0, name + 4, mode);
1594 
1595 	if (!isdigit(name[3]))
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	dev = simple_strtoul(name + 3, &endptr, 0);
1599 
1600 	/* ubiY method */
1601 	if (*endptr == '\0')
1602 		return ubi_open_volume(0, dev, mode);
1603 
1604 	/* ubiX_Y method */
1605 	if (*endptr == '_' && isdigit(endptr[1])) {
1606 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1607 		if (*endptr != '\0')
1608 			return ERR_PTR(-EINVAL);
1609 		return ubi_open_volume(dev, vol, mode);
1610 	}
1611 
1612 	/* ubiX:NAME method */
1613 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1614 		return ubi_open_volume_nm(dev, ++endptr, mode);
1615 
1616 	return ERR_PTR(-EINVAL);
1617 }
1618 
1619 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1620 {
1621 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1622 	struct ubifs_info *c;
1623 	struct inode *root;
1624 	int err;
1625 
1626 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1627 	if (!c)
1628 		return -ENOMEM;
1629 
1630 	spin_lock_init(&c->cnt_lock);
1631 	spin_lock_init(&c->cs_lock);
1632 	spin_lock_init(&c->buds_lock);
1633 	spin_lock_init(&c->space_lock);
1634 	spin_lock_init(&c->orphan_lock);
1635 	init_rwsem(&c->commit_sem);
1636 	mutex_init(&c->lp_mutex);
1637 	mutex_init(&c->tnc_mutex);
1638 	mutex_init(&c->log_mutex);
1639 	mutex_init(&c->mst_mutex);
1640 	mutex_init(&c->umount_mutex);
1641 	init_waitqueue_head(&c->cmt_wq);
1642 	c->buds = RB_ROOT;
1643 	c->old_idx = RB_ROOT;
1644 	c->size_tree = RB_ROOT;
1645 	c->orph_tree = RB_ROOT;
1646 	INIT_LIST_HEAD(&c->infos_list);
1647 	INIT_LIST_HEAD(&c->idx_gc);
1648 	INIT_LIST_HEAD(&c->replay_list);
1649 	INIT_LIST_HEAD(&c->replay_buds);
1650 	INIT_LIST_HEAD(&c->uncat_list);
1651 	INIT_LIST_HEAD(&c->empty_list);
1652 	INIT_LIST_HEAD(&c->freeable_list);
1653 	INIT_LIST_HEAD(&c->frdi_idx_list);
1654 	INIT_LIST_HEAD(&c->unclean_leb_list);
1655 	INIT_LIST_HEAD(&c->old_buds);
1656 	INIT_LIST_HEAD(&c->orph_list);
1657 	INIT_LIST_HEAD(&c->orph_new);
1658 
1659 	c->highest_inum = UBIFS_FIRST_INO;
1660 	get_random_bytes(&c->vfs_gen, sizeof(int));
1661 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1662 
1663 	ubi_get_volume_info(ubi, &c->vi);
1664 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1665 
1666 	/* Re-open the UBI device in read-write mode */
1667 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1668 	if (IS_ERR(c->ubi)) {
1669 		err = PTR_ERR(c->ubi);
1670 		goto out_free;
1671 	}
1672 
1673 	/*
1674 	 * UBIFS provids 'backing_dev_info' in order to disable readahead. For
1675 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1676 	 * which means the user would have to wait not just for their own I/O
1677 	 * but the readahead I/O as well i.e. completely pointless.
1678 	 *
1679 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1680 	 */
1681 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1682 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1683 	err  = bdi_init(&c->bdi);
1684 	if (err)
1685 		goto out_close;
1686 
1687 	err = ubifs_parse_options(c, data, 0);
1688 	if (err)
1689 		goto out_bdi;
1690 
1691 	c->vfs_sb = sb;
1692 
1693 	sb->s_fs_info = c;
1694 	sb->s_magic = UBIFS_SUPER_MAGIC;
1695 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1696 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1697 	sb->s_dev = c->vi.cdev;
1698 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1699 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1700 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1701 	sb->s_op = &ubifs_super_operations;
1702 
1703 	mutex_lock(&c->umount_mutex);
1704 	err = mount_ubifs(c);
1705 	if (err) {
1706 		ubifs_assert(err < 0);
1707 		goto out_unlock;
1708 	}
1709 
1710 	/* Read the root inode */
1711 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
1712 	if (IS_ERR(root)) {
1713 		err = PTR_ERR(root);
1714 		goto out_umount;
1715 	}
1716 
1717 	sb->s_root = d_alloc_root(root);
1718 	if (!sb->s_root)
1719 		goto out_iput;
1720 
1721 	mutex_unlock(&c->umount_mutex);
1722 
1723 	return 0;
1724 
1725 out_iput:
1726 	iput(root);
1727 out_umount:
1728 	ubifs_umount(c);
1729 out_unlock:
1730 	mutex_unlock(&c->umount_mutex);
1731 out_bdi:
1732 	bdi_destroy(&c->bdi);
1733 out_close:
1734 	ubi_close_volume(c->ubi);
1735 out_free:
1736 	kfree(c);
1737 	return err;
1738 }
1739 
1740 static int sb_test(struct super_block *sb, void *data)
1741 {
1742 	dev_t *dev = data;
1743 
1744 	return sb->s_dev == *dev;
1745 }
1746 
1747 static int sb_set(struct super_block *sb, void *data)
1748 {
1749 	dev_t *dev = data;
1750 
1751 	sb->s_dev = *dev;
1752 	return 0;
1753 }
1754 
1755 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1756 			const char *name, void *data, struct vfsmount *mnt)
1757 {
1758 	struct ubi_volume_desc *ubi;
1759 	struct ubi_volume_info vi;
1760 	struct super_block *sb;
1761 	int err;
1762 
1763 	dbg_gen("name %s, flags %#x", name, flags);
1764 
1765 	/*
1766 	 * Get UBI device number and volume ID. Mount it read-only so far
1767 	 * because this might be a new mount point, and UBI allows only one
1768 	 * read-write user at a time.
1769 	 */
1770 	ubi = open_ubi(name, UBI_READONLY);
1771 	if (IS_ERR(ubi)) {
1772 		ubifs_err("cannot open \"%s\", error %d",
1773 			  name, (int)PTR_ERR(ubi));
1774 		return PTR_ERR(ubi);
1775 	}
1776 	ubi_get_volume_info(ubi, &vi);
1777 
1778 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1779 
1780 	sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1781 	if (IS_ERR(sb)) {
1782 		err = PTR_ERR(sb);
1783 		goto out_close;
1784 	}
1785 
1786 	if (sb->s_root) {
1787 		/* A new mount point for already mounted UBIFS */
1788 		dbg_gen("this ubi volume is already mounted");
1789 		if ((flags ^ sb->s_flags) & MS_RDONLY) {
1790 			err = -EBUSY;
1791 			goto out_deact;
1792 		}
1793 	} else {
1794 		sb->s_flags = flags;
1795 		/*
1796 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1797 		 * replaced by 'c'.
1798 		 */
1799 		sb->s_fs_info = ubi;
1800 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1801 		if (err)
1802 			goto out_deact;
1803 		/* We do not support atime */
1804 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1805 	}
1806 
1807 	/* 'fill_super()' opens ubi again so we must close it here */
1808 	ubi_close_volume(ubi);
1809 
1810 	return simple_set_mnt(mnt, sb);
1811 
1812 out_deact:
1813 	up_write(&sb->s_umount);
1814 	deactivate_super(sb);
1815 out_close:
1816 	ubi_close_volume(ubi);
1817 	return err;
1818 }
1819 
1820 static void ubifs_kill_sb(struct super_block *sb)
1821 {
1822 	struct ubifs_info *c = sb->s_fs_info;
1823 
1824 	/*
1825 	 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1826 	 * in order to be outside BKL.
1827 	 */
1828 	if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1829 		commit_on_unmount(c);
1830 	/* The un-mount routine is actually done in put_super() */
1831 	generic_shutdown_super(sb);
1832 }
1833 
1834 static struct file_system_type ubifs_fs_type = {
1835 	.name    = "ubifs",
1836 	.owner   = THIS_MODULE,
1837 	.get_sb  = ubifs_get_sb,
1838 	.kill_sb = ubifs_kill_sb
1839 };
1840 
1841 /*
1842  * Inode slab cache constructor.
1843  */
1844 static void inode_slab_ctor(void *obj)
1845 {
1846 	struct ubifs_inode *ui = obj;
1847 	inode_init_once(&ui->vfs_inode);
1848 }
1849 
1850 static int __init ubifs_init(void)
1851 {
1852 	int err;
1853 
1854 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1855 
1856 	/* Make sure node sizes are 8-byte aligned */
1857 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
1858 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
1859 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1860 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1861 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1862 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1863 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
1864 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
1865 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
1866 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
1867 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1868 
1869 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1870 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1871 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1872 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
1873 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
1874 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
1875 
1876 	/* Check min. node size */
1877 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
1878 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1879 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1880 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1881 
1882 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1883 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1884 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1885 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
1886 
1887 	/* Defined node sizes */
1888 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
1889 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1890 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1891 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1892 
1893 	/*
1894 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1895 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1896 	 */
1897 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1898 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1899 			  " at least 4096 bytes",
1900 			  (unsigned int)PAGE_CACHE_SIZE);
1901 		return -EINVAL;
1902 	}
1903 
1904 	err = register_filesystem(&ubifs_fs_type);
1905 	if (err) {
1906 		ubifs_err("cannot register file system, error %d", err);
1907 		return err;
1908 	}
1909 
1910 	err = -ENOMEM;
1911 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1912 				sizeof(struct ubifs_inode), 0,
1913 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1914 				&inode_slab_ctor);
1915 	if (!ubifs_inode_slab)
1916 		goto out_reg;
1917 
1918 	register_shrinker(&ubifs_shrinker_info);
1919 
1920 	err = ubifs_compressors_init();
1921 	if (err)
1922 		goto out_compr;
1923 
1924 	return 0;
1925 
1926 out_compr:
1927 	unregister_shrinker(&ubifs_shrinker_info);
1928 	kmem_cache_destroy(ubifs_inode_slab);
1929 out_reg:
1930 	unregister_filesystem(&ubifs_fs_type);
1931 	return err;
1932 }
1933 /* late_initcall to let compressors initialize first */
1934 late_initcall(ubifs_init);
1935 
1936 static void __exit ubifs_exit(void)
1937 {
1938 	ubifs_assert(list_empty(&ubifs_infos));
1939 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1940 
1941 	ubifs_compressors_exit();
1942 	unregister_shrinker(&ubifs_shrinker_info);
1943 	kmem_cache_destroy(ubifs_inode_slab);
1944 	unregister_filesystem(&ubifs_fs_type);
1945 }
1946 module_exit(ubifs_exit);
1947 
1948 MODULE_LICENSE("GPL");
1949 MODULE_VERSION(__stringify(UBIFS_VERSION));
1950 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1951 MODULE_DESCRIPTION("UBIFS - UBI File System");
1952