xref: /openbmc/linux/fs/ubifs/super.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 /*
30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31  * allocating too much.
32  */
33 #define UBIFS_KMALLOC_OK (128*1024)
34 
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37 
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 	.scan_objects = ubifs_shrink_scan,
41 	.count_objects = ubifs_shrink_count,
42 	.seeks = DEFAULT_SEEKS,
43 };
44 
45 /**
46  * validate_inode - validate inode.
47  * @c: UBIFS file-system description object
48  * @inode: the inode to validate
49  *
50  * This is a helper function for 'ubifs_iget()' which validates various fields
51  * of a newly built inode to make sure they contain sane values and prevent
52  * possible vulnerabilities. Returns zero if the inode is all right and
53  * a non-zero error code if not.
54  */
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 	int err;
58 	const struct ubifs_inode *ui = ubifs_inode(inode);
59 
60 	if (inode->i_size > c->max_inode_sz) {
61 		ubifs_err(c, "inode is too large (%lld)",
62 			  (long long)inode->i_size);
63 		return 1;
64 	}
65 
66 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 		return 2;
69 	}
70 
71 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 		return 3;
73 
74 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 		return 4;
76 
77 	if (ui->xattr && !S_ISREG(inode->i_mode))
78 		return 5;
79 
80 	if (!ubifs_compr_present(c, ui->compr_type)) {
81 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 	}
84 
85 	err = dbg_check_dir(c, inode);
86 	return err;
87 }
88 
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 	int err;
92 	union ubifs_key key;
93 	struct ubifs_ino_node *ino;
94 	struct ubifs_info *c = sb->s_fs_info;
95 	struct inode *inode;
96 	struct ubifs_inode *ui;
97 
98 	dbg_gen("inode %lu", inum);
99 
100 	inode = iget_locked(sb, inum);
101 	if (!inode)
102 		return ERR_PTR(-ENOMEM);
103 	if (!(inode->i_state & I_NEW))
104 		return inode;
105 	ui = ubifs_inode(inode);
106 
107 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 	if (!ino) {
109 		err = -ENOMEM;
110 		goto out;
111 	}
112 
113 	ino_key_init(c, &key, inode->i_ino);
114 
115 	err = ubifs_tnc_lookup(c, &key, ino);
116 	if (err)
117 		goto out_ino;
118 
119 	inode->i_flags |= S_NOCMTIME;
120 
121 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 		inode->i_flags |= S_NOATIME;
123 
124 	set_nlink(inode, le32_to_cpu(ino->nlink));
125 	i_uid_write(inode, le32_to_cpu(ino->uid));
126 	i_gid_write(inode, le32_to_cpu(ino->gid));
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	switch (inode->i_mode & S_IFMT) {
152 	case S_IFREG:
153 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 		inode->i_op = &ubifs_file_inode_operations;
155 		inode->i_fop = &ubifs_file_operations;
156 		if (ui->xattr) {
157 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 			if (!ui->data) {
159 				err = -ENOMEM;
160 				goto out_ino;
161 			}
162 			memcpy(ui->data, ino->data, ui->data_len);
163 			((char *)ui->data)[ui->data_len] = '\0';
164 		} else if (ui->data_len != 0) {
165 			err = 10;
166 			goto out_invalid;
167 		}
168 		break;
169 	case S_IFDIR:
170 		inode->i_op  = &ubifs_dir_inode_operations;
171 		inode->i_fop = &ubifs_dir_operations;
172 		if (ui->data_len != 0) {
173 			err = 11;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFLNK:
178 		inode->i_op = &ubifs_symlink_inode_operations;
179 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 			err = 12;
181 			goto out_invalid;
182 		}
183 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 		if (!ui->data) {
185 			err = -ENOMEM;
186 			goto out_ino;
187 		}
188 		memcpy(ui->data, ino->data, ui->data_len);
189 		((char *)ui->data)[ui->data_len] = '\0';
190 		break;
191 	case S_IFBLK:
192 	case S_IFCHR:
193 	{
194 		dev_t rdev;
195 		union ubifs_dev_desc *dev;
196 
197 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 
203 		dev = (union ubifs_dev_desc *)ino->data;
204 		if (ui->data_len == sizeof(dev->new))
205 			rdev = new_decode_dev(le32_to_cpu(dev->new));
206 		else if (ui->data_len == sizeof(dev->huge))
207 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 		else {
209 			err = 13;
210 			goto out_invalid;
211 		}
212 		memcpy(ui->data, ino->data, ui->data_len);
213 		inode->i_op = &ubifs_file_inode_operations;
214 		init_special_inode(inode, inode->i_mode, rdev);
215 		break;
216 	}
217 	case S_IFSOCK:
218 	case S_IFIFO:
219 		inode->i_op = &ubifs_file_inode_operations;
220 		init_special_inode(inode, inode->i_mode, 0);
221 		if (ui->data_len != 0) {
222 			err = 14;
223 			goto out_invalid;
224 		}
225 		break;
226 	default:
227 		err = 15;
228 		goto out_invalid;
229 	}
230 
231 	kfree(ino);
232 	ubifs_set_inode_flags(inode);
233 	unlock_new_inode(inode);
234 	return inode;
235 
236 out_invalid:
237 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 	ubifs_dump_node(c, ino);
239 	ubifs_dump_inode(c, inode);
240 	err = -EINVAL;
241 out_ino:
242 	kfree(ino);
243 out:
244 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 	iget_failed(inode);
246 	return ERR_PTR(err);
247 }
248 
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 	struct ubifs_inode *ui;
252 
253 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 	if (!ui)
255 		return NULL;
256 
257 	memset((void *)ui + sizeof(struct inode), 0,
258 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
259 	mutex_init(&ui->ui_mutex);
260 	spin_lock_init(&ui->ui_lock);
261 	return &ui->vfs_inode;
262 };
263 
264 static void ubifs_free_inode(struct inode *inode)
265 {
266 	struct ubifs_inode *ui = ubifs_inode(inode);
267 
268 	kfree(ui->data);
269 	fscrypt_free_inode(inode);
270 
271 	kmem_cache_free(ubifs_inode_slab, ui);
272 }
273 
274 /*
275  * Note, Linux write-back code calls this without 'i_mutex'.
276  */
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278 {
279 	int err = 0;
280 	struct ubifs_info *c = inode->i_sb->s_fs_info;
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	ubifs_assert(c, !ui->xattr);
284 	if (is_bad_inode(inode))
285 		return 0;
286 
287 	mutex_lock(&ui->ui_mutex);
288 	/*
289 	 * Due to races between write-back forced by budgeting
290 	 * (see 'sync_some_inodes()') and background write-back, the inode may
291 	 * have already been synchronized, do not do this again. This might
292 	 * also happen if it was synchronized in an VFS operation, e.g.
293 	 * 'ubifs_link()'.
294 	 */
295 	if (!ui->dirty) {
296 		mutex_unlock(&ui->ui_mutex);
297 		return 0;
298 	}
299 
300 	/*
301 	 * As an optimization, do not write orphan inodes to the media just
302 	 * because this is not needed.
303 	 */
304 	dbg_gen("inode %lu, mode %#x, nlink %u",
305 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 	if (inode->i_nlink) {
307 		err = ubifs_jnl_write_inode(c, inode);
308 		if (err)
309 			ubifs_err(c, "can't write inode %lu, error %d",
310 				  inode->i_ino, err);
311 		else
312 			err = dbg_check_inode_size(c, inode, ui->ui_size);
313 	}
314 
315 	ui->dirty = 0;
316 	mutex_unlock(&ui->ui_mutex);
317 	ubifs_release_dirty_inode_budget(c, ui);
318 	return err;
319 }
320 
321 static int ubifs_drop_inode(struct inode *inode)
322 {
323 	int drop = generic_drop_inode(inode);
324 
325 	if (!drop)
326 		drop = fscrypt_drop_inode(inode);
327 
328 	return drop;
329 }
330 
331 static void ubifs_evict_inode(struct inode *inode)
332 {
333 	int err;
334 	struct ubifs_info *c = inode->i_sb->s_fs_info;
335 	struct ubifs_inode *ui = ubifs_inode(inode);
336 
337 	if (ui->xattr)
338 		/*
339 		 * Extended attribute inode deletions are fully handled in
340 		 * 'ubifs_removexattr()'. These inodes are special and have
341 		 * limited usage, so there is nothing to do here.
342 		 */
343 		goto out;
344 
345 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
346 	ubifs_assert(c, !atomic_read(&inode->i_count));
347 
348 	truncate_inode_pages_final(&inode->i_data);
349 
350 	if (inode->i_nlink)
351 		goto done;
352 
353 	if (is_bad_inode(inode))
354 		goto out;
355 
356 	ui->ui_size = inode->i_size = 0;
357 	err = ubifs_jnl_delete_inode(c, inode);
358 	if (err)
359 		/*
360 		 * Worst case we have a lost orphan inode wasting space, so a
361 		 * simple error message is OK here.
362 		 */
363 		ubifs_err(c, "can't delete inode %lu, error %d",
364 			  inode->i_ino, err);
365 
366 out:
367 	if (ui->dirty)
368 		ubifs_release_dirty_inode_budget(c, ui);
369 	else {
370 		/* We've deleted something - clean the "no space" flags */
371 		c->bi.nospace = c->bi.nospace_rp = 0;
372 		smp_wmb();
373 	}
374 done:
375 	clear_inode(inode);
376 	fscrypt_put_encryption_info(inode);
377 }
378 
379 static void ubifs_dirty_inode(struct inode *inode, int flags)
380 {
381 	struct ubifs_info *c = inode->i_sb->s_fs_info;
382 	struct ubifs_inode *ui = ubifs_inode(inode);
383 
384 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
385 	if (!ui->dirty) {
386 		ui->dirty = 1;
387 		dbg_gen("inode %lu",  inode->i_ino);
388 	}
389 }
390 
391 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
392 {
393 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
394 	unsigned long long free;
395 	__le32 *uuid = (__le32 *)c->uuid;
396 
397 	free = ubifs_get_free_space(c);
398 	dbg_gen("free space %lld bytes (%lld blocks)",
399 		free, free >> UBIFS_BLOCK_SHIFT);
400 
401 	buf->f_type = UBIFS_SUPER_MAGIC;
402 	buf->f_bsize = UBIFS_BLOCK_SIZE;
403 	buf->f_blocks = c->block_cnt;
404 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
405 	if (free > c->report_rp_size)
406 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
407 	else
408 		buf->f_bavail = 0;
409 	buf->f_files = 0;
410 	buf->f_ffree = 0;
411 	buf->f_namelen = UBIFS_MAX_NLEN;
412 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
413 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
414 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
415 	return 0;
416 }
417 
418 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
419 {
420 	struct ubifs_info *c = root->d_sb->s_fs_info;
421 
422 	if (c->mount_opts.unmount_mode == 2)
423 		seq_puts(s, ",fast_unmount");
424 	else if (c->mount_opts.unmount_mode == 1)
425 		seq_puts(s, ",norm_unmount");
426 
427 	if (c->mount_opts.bulk_read == 2)
428 		seq_puts(s, ",bulk_read");
429 	else if (c->mount_opts.bulk_read == 1)
430 		seq_puts(s, ",no_bulk_read");
431 
432 	if (c->mount_opts.chk_data_crc == 2)
433 		seq_puts(s, ",chk_data_crc");
434 	else if (c->mount_opts.chk_data_crc == 1)
435 		seq_puts(s, ",no_chk_data_crc");
436 
437 	if (c->mount_opts.override_compr) {
438 		seq_printf(s, ",compr=%s",
439 			   ubifs_compr_name(c, c->mount_opts.compr_type));
440 	}
441 
442 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
443 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
444 
445 	return 0;
446 }
447 
448 static int ubifs_sync_fs(struct super_block *sb, int wait)
449 {
450 	int i, err;
451 	struct ubifs_info *c = sb->s_fs_info;
452 
453 	/*
454 	 * Zero @wait is just an advisory thing to help the file system shove
455 	 * lots of data into the queues, and there will be the second
456 	 * '->sync_fs()' call, with non-zero @wait.
457 	 */
458 	if (!wait)
459 		return 0;
460 
461 	/*
462 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 	 * do this if it waits for an already running commit.
464 	 */
465 	for (i = 0; i < c->jhead_cnt; i++) {
466 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 		if (err)
468 			return err;
469 	}
470 
471 	/*
472 	 * Strictly speaking, it is not necessary to commit the journal here,
473 	 * synchronizing write-buffers would be enough. But committing makes
474 	 * UBIFS free space predictions much more accurate, so we want to let
475 	 * the user be able to get more accurate results of 'statfs()' after
476 	 * they synchronize the file system.
477 	 */
478 	err = ubifs_run_commit(c);
479 	if (err)
480 		return err;
481 
482 	return ubi_sync(c->vi.ubi_num);
483 }
484 
485 /**
486  * init_constants_early - initialize UBIFS constants.
487  * @c: UBIFS file-system description object
488  *
489  * This function initialize UBIFS constants which do not need the superblock to
490  * be read. It also checks that the UBI volume satisfies basic UBIFS
491  * requirements. Returns zero in case of success and a negative error code in
492  * case of failure.
493  */
494 static int init_constants_early(struct ubifs_info *c)
495 {
496 	if (c->vi.corrupted) {
497 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
498 		c->ro_media = 1;
499 	}
500 
501 	if (c->di.ro_mode) {
502 		ubifs_msg(c, "read-only UBI device");
503 		c->ro_media = 1;
504 	}
505 
506 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507 		ubifs_msg(c, "static UBI volume - read-only mode");
508 		c->ro_media = 1;
509 	}
510 
511 	c->leb_cnt = c->vi.size;
512 	c->leb_size = c->vi.usable_leb_size;
513 	c->leb_start = c->di.leb_start;
514 	c->half_leb_size = c->leb_size / 2;
515 	c->min_io_size = c->di.min_io_size;
516 	c->min_io_shift = fls(c->min_io_size) - 1;
517 	c->max_write_size = c->di.max_write_size;
518 	c->max_write_shift = fls(c->max_write_size) - 1;
519 
520 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
522 			   c->leb_size, UBIFS_MIN_LEB_SZ);
523 		return -EINVAL;
524 	}
525 
526 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
528 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
529 		return -EINVAL;
530 	}
531 
532 	if (!is_power_of_2(c->min_io_size)) {
533 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
534 		return -EINVAL;
535 	}
536 
537 	/*
538 	 * Maximum write size has to be greater or equivalent to min. I/O
539 	 * size, and be multiple of min. I/O size.
540 	 */
541 	if (c->max_write_size < c->min_io_size ||
542 	    c->max_write_size % c->min_io_size ||
543 	    !is_power_of_2(c->max_write_size)) {
544 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
545 			   c->max_write_size, c->min_io_size);
546 		return -EINVAL;
547 	}
548 
549 	/*
550 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 	 * less than 8.
553 	 */
554 	if (c->min_io_size < 8) {
555 		c->min_io_size = 8;
556 		c->min_io_shift = 3;
557 		if (c->max_write_size < c->min_io_size) {
558 			c->max_write_size = c->min_io_size;
559 			c->max_write_shift = c->min_io_shift;
560 		}
561 	}
562 
563 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
564 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
565 
566 	/*
567 	 * Initialize node length ranges which are mostly needed for node
568 	 * length validation.
569 	 */
570 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
571 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
572 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
573 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
574 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
575 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
576 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
577 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
578 				UBIFS_MAX_HMAC_LEN;
579 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
580 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
581 
582 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
583 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
584 	c->ranges[UBIFS_ORPH_NODE].min_len =
585 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
586 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
587 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
588 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
589 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
590 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
591 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
592 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
593 	/*
594 	 * Minimum indexing node size is amended later when superblock is
595 	 * read and the key length is known.
596 	 */
597 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
598 	/*
599 	 * Maximum indexing node size is amended later when superblock is
600 	 * read and the fanout is known.
601 	 */
602 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
603 
604 	/*
605 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
606 	 * about these values.
607 	 */
608 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
609 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
610 
611 	/*
612 	 * Calculate how many bytes would be wasted at the end of LEB if it was
613 	 * fully filled with data nodes of maximum size. This is used in
614 	 * calculations when reporting free space.
615 	 */
616 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
617 
618 	/* Buffer size for bulk-reads */
619 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
620 	if (c->max_bu_buf_len > c->leb_size)
621 		c->max_bu_buf_len = c->leb_size;
622 
623 	/* Log is ready, preserve one LEB for commits. */
624 	c->min_log_bytes = c->leb_size;
625 
626 	return 0;
627 }
628 
629 /**
630  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631  * @c: UBIFS file-system description object
632  * @lnum: LEB the write-buffer was synchronized to
633  * @free: how many free bytes left in this LEB
634  * @pad: how many bytes were padded
635  *
636  * This is a callback function which is called by the I/O unit when the
637  * write-buffer is synchronized. We need this to correctly maintain space
638  * accounting in bud logical eraseblocks. This function returns zero in case of
639  * success and a negative error code in case of failure.
640  *
641  * This function actually belongs to the journal, but we keep it here because
642  * we want to keep it static.
643  */
644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
645 {
646 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
647 }
648 
649 /*
650  * init_constants_sb - initialize UBIFS constants.
651  * @c: UBIFS file-system description object
652  *
653  * This is a helper function which initializes various UBIFS constants after
654  * the superblock has been read. It also checks various UBIFS parameters and
655  * makes sure they are all right. Returns zero in case of success and a
656  * negative error code in case of failure.
657  */
658 static int init_constants_sb(struct ubifs_info *c)
659 {
660 	int tmp, err;
661 	long long tmp64;
662 
663 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
664 	c->max_znode_sz = sizeof(struct ubifs_znode) +
665 				c->fanout * sizeof(struct ubifs_zbranch);
666 
667 	tmp = ubifs_idx_node_sz(c, 1);
668 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
669 	c->min_idx_node_sz = ALIGN(tmp, 8);
670 
671 	tmp = ubifs_idx_node_sz(c, c->fanout);
672 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
673 	c->max_idx_node_sz = ALIGN(tmp, 8);
674 
675 	/* Make sure LEB size is large enough to fit full commit */
676 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
677 	tmp = ALIGN(tmp, c->min_io_size);
678 	if (tmp > c->leb_size) {
679 		ubifs_err(c, "too small LEB size %d, at least %d needed",
680 			  c->leb_size, tmp);
681 		return -EINVAL;
682 	}
683 
684 	/*
685 	 * Make sure that the log is large enough to fit reference nodes for
686 	 * all buds plus one reserved LEB.
687 	 */
688 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
689 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
690 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
691 	tmp /= c->leb_size;
692 	tmp += 1;
693 	if (c->log_lebs < tmp) {
694 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
695 			  c->log_lebs, tmp);
696 		return -EINVAL;
697 	}
698 
699 	/*
700 	 * When budgeting we assume worst-case scenarios when the pages are not
701 	 * be compressed and direntries are of the maximum size.
702 	 *
703 	 * Note, data, which may be stored in inodes is budgeted separately, so
704 	 * it is not included into 'c->bi.inode_budget'.
705 	 */
706 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
707 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
708 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
709 
710 	/*
711 	 * When the amount of flash space used by buds becomes
712 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 	 * The writers are unblocked when the commit is finished. To avoid
714 	 * writers to be blocked UBIFS initiates background commit in advance,
715 	 * when number of bud bytes becomes above the limit defined below.
716 	 */
717 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
718 
719 	/*
720 	 * Ensure minimum journal size. All the bytes in the journal heads are
721 	 * considered to be used, when calculating the current journal usage.
722 	 * Consequently, if the journal is too small, UBIFS will treat it as
723 	 * always full.
724 	 */
725 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
726 	if (c->bg_bud_bytes < tmp64)
727 		c->bg_bud_bytes = tmp64;
728 	if (c->max_bud_bytes < tmp64 + c->leb_size)
729 		c->max_bud_bytes = tmp64 + c->leb_size;
730 
731 	err = ubifs_calc_lpt_geom(c);
732 	if (err)
733 		return err;
734 
735 	/* Initialize effective LEB size used in budgeting calculations */
736 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
737 	return 0;
738 }
739 
740 /*
741  * init_constants_master - initialize UBIFS constants.
742  * @c: UBIFS file-system description object
743  *
744  * This is a helper function which initializes various UBIFS constants after
745  * the master node has been read. It also checks various UBIFS parameters and
746  * makes sure they are all right.
747  */
748 static void init_constants_master(struct ubifs_info *c)
749 {
750 	long long tmp64;
751 
752 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
753 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
754 
755 	/*
756 	 * Calculate total amount of FS blocks. This number is not used
757 	 * internally because it does not make much sense for UBIFS, but it is
758 	 * necessary to report something for the 'statfs()' call.
759 	 *
760 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 	 * deletions, minimum LEBs for the index, and assume only one journal
762 	 * head is available.
763 	 */
764 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
765 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
766 	tmp64 = ubifs_reported_space(c, tmp64);
767 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
768 }
769 
770 /**
771  * take_gc_lnum - reserve GC LEB.
772  * @c: UBIFS file-system description object
773  *
774  * This function ensures that the LEB reserved for garbage collection is marked
775  * as "taken" in lprops. We also have to set free space to LEB size and dirty
776  * space to zero, because lprops may contain out-of-date information if the
777  * file-system was un-mounted before it has been committed. This function
778  * returns zero in case of success and a negative error code in case of
779  * failure.
780  */
781 static int take_gc_lnum(struct ubifs_info *c)
782 {
783 	int err;
784 
785 	if (c->gc_lnum == -1) {
786 		ubifs_err(c, "no LEB for GC");
787 		return -EINVAL;
788 	}
789 
790 	/* And we have to tell lprops that this LEB is taken */
791 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
792 				  LPROPS_TAKEN, 0, 0);
793 	return err;
794 }
795 
796 /**
797  * alloc_wbufs - allocate write-buffers.
798  * @c: UBIFS file-system description object
799  *
800  * This helper function allocates and initializes UBIFS write-buffers. Returns
801  * zero in case of success and %-ENOMEM in case of failure.
802  */
803 static int alloc_wbufs(struct ubifs_info *c)
804 {
805 	int i, err;
806 
807 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
808 			    GFP_KERNEL);
809 	if (!c->jheads)
810 		return -ENOMEM;
811 
812 	/* Initialize journal heads */
813 	for (i = 0; i < c->jhead_cnt; i++) {
814 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
815 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
816 		if (err)
817 			return err;
818 
819 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
820 		c->jheads[i].wbuf.jhead = i;
821 		c->jheads[i].grouped = 1;
822 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
823 		if (IS_ERR(c->jheads[i].log_hash))
824 			goto out;
825 	}
826 
827 	/*
828 	 * Garbage Collector head does not need to be synchronized by timer.
829 	 * Also GC head nodes are not grouped.
830 	 */
831 	c->jheads[GCHD].wbuf.no_timer = 1;
832 	c->jheads[GCHD].grouped = 0;
833 
834 	return 0;
835 
836 out:
837 	while (i--)
838 		kfree(c->jheads[i].log_hash);
839 
840 	return err;
841 }
842 
843 /**
844  * free_wbufs - free write-buffers.
845  * @c: UBIFS file-system description object
846  */
847 static void free_wbufs(struct ubifs_info *c)
848 {
849 	int i;
850 
851 	if (c->jheads) {
852 		for (i = 0; i < c->jhead_cnt; i++) {
853 			kfree(c->jheads[i].wbuf.buf);
854 			kfree(c->jheads[i].wbuf.inodes);
855 			kfree(c->jheads[i].log_hash);
856 		}
857 		kfree(c->jheads);
858 		c->jheads = NULL;
859 	}
860 }
861 
862 /**
863  * free_orphans - free orphans.
864  * @c: UBIFS file-system description object
865  */
866 static void free_orphans(struct ubifs_info *c)
867 {
868 	struct ubifs_orphan *orph;
869 
870 	while (c->orph_dnext) {
871 		orph = c->orph_dnext;
872 		c->orph_dnext = orph->dnext;
873 		list_del(&orph->list);
874 		kfree(orph);
875 	}
876 
877 	while (!list_empty(&c->orph_list)) {
878 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
879 		list_del(&orph->list);
880 		kfree(orph);
881 		ubifs_err(c, "orphan list not empty at unmount");
882 	}
883 
884 	vfree(c->orph_buf);
885 	c->orph_buf = NULL;
886 }
887 
888 /**
889  * free_buds - free per-bud objects.
890  * @c: UBIFS file-system description object
891  */
892 static void free_buds(struct ubifs_info *c)
893 {
894 	struct ubifs_bud *bud, *n;
895 
896 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
897 		kfree(bud);
898 }
899 
900 /**
901  * check_volume_empty - check if the UBI volume is empty.
902  * @c: UBIFS file-system description object
903  *
904  * This function checks if the UBIFS volume is empty by looking if its LEBs are
905  * mapped or not. The result of checking is stored in the @c->empty variable.
906  * Returns zero in case of success and a negative error code in case of
907  * failure.
908  */
909 static int check_volume_empty(struct ubifs_info *c)
910 {
911 	int lnum, err;
912 
913 	c->empty = 1;
914 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
915 		err = ubifs_is_mapped(c, lnum);
916 		if (unlikely(err < 0))
917 			return err;
918 		if (err == 1) {
919 			c->empty = 0;
920 			break;
921 		}
922 
923 		cond_resched();
924 	}
925 
926 	return 0;
927 }
928 
929 /*
930  * UBIFS mount options.
931  *
932  * Opt_fast_unmount: do not run a journal commit before un-mounting
933  * Opt_norm_unmount: run a journal commit before un-mounting
934  * Opt_bulk_read: enable bulk-reads
935  * Opt_no_bulk_read: disable bulk-reads
936  * Opt_chk_data_crc: check CRCs when reading data nodes
937  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938  * Opt_override_compr: override default compressor
939  * Opt_assert: set ubifs_assert() action
940  * Opt_auth_key: The key name used for authentication
941  * Opt_auth_hash_name: The hash type used for authentication
942  * Opt_err: just end of array marker
943  */
944 enum {
945 	Opt_fast_unmount,
946 	Opt_norm_unmount,
947 	Opt_bulk_read,
948 	Opt_no_bulk_read,
949 	Opt_chk_data_crc,
950 	Opt_no_chk_data_crc,
951 	Opt_override_compr,
952 	Opt_assert,
953 	Opt_auth_key,
954 	Opt_auth_hash_name,
955 	Opt_ignore,
956 	Opt_err,
957 };
958 
959 static const match_table_t tokens = {
960 	{Opt_fast_unmount, "fast_unmount"},
961 	{Opt_norm_unmount, "norm_unmount"},
962 	{Opt_bulk_read, "bulk_read"},
963 	{Opt_no_bulk_read, "no_bulk_read"},
964 	{Opt_chk_data_crc, "chk_data_crc"},
965 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
966 	{Opt_override_compr, "compr=%s"},
967 	{Opt_auth_key, "auth_key=%s"},
968 	{Opt_auth_hash_name, "auth_hash_name=%s"},
969 	{Opt_ignore, "ubi=%s"},
970 	{Opt_ignore, "vol=%s"},
971 	{Opt_assert, "assert=%s"},
972 	{Opt_err, NULL},
973 };
974 
975 /**
976  * parse_standard_option - parse a standard mount option.
977  * @option: the option to parse
978  *
979  * Normally, standard mount options like "sync" are passed to file-systems as
980  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981  * be present in the options string. This function tries to deal with this
982  * situation and parse standard options. Returns 0 if the option was not
983  * recognized, and the corresponding integer flag if it was.
984  *
985  * UBIFS is only interested in the "sync" option, so do not check for anything
986  * else.
987  */
988 static int parse_standard_option(const char *option)
989 {
990 
991 	pr_notice("UBIFS: parse %s\n", option);
992 	if (!strcmp(option, "sync"))
993 		return SB_SYNCHRONOUS;
994 	return 0;
995 }
996 
997 /**
998  * ubifs_parse_options - parse mount parameters.
999  * @c: UBIFS file-system description object
1000  * @options: parameters to parse
1001  * @is_remount: non-zero if this is FS re-mount
1002  *
1003  * This function parses UBIFS mount options and returns zero in case success
1004  * and a negative error code in case of failure.
1005  */
1006 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007 			       int is_remount)
1008 {
1009 	char *p;
1010 	substring_t args[MAX_OPT_ARGS];
1011 
1012 	if (!options)
1013 		return 0;
1014 
1015 	while ((p = strsep(&options, ","))) {
1016 		int token;
1017 
1018 		if (!*p)
1019 			continue;
1020 
1021 		token = match_token(p, tokens, args);
1022 		switch (token) {
1023 		/*
1024 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 		 * We accept them in order to be backward-compatible. But this
1026 		 * should be removed at some point.
1027 		 */
1028 		case Opt_fast_unmount:
1029 			c->mount_opts.unmount_mode = 2;
1030 			break;
1031 		case Opt_norm_unmount:
1032 			c->mount_opts.unmount_mode = 1;
1033 			break;
1034 		case Opt_bulk_read:
1035 			c->mount_opts.bulk_read = 2;
1036 			c->bulk_read = 1;
1037 			break;
1038 		case Opt_no_bulk_read:
1039 			c->mount_opts.bulk_read = 1;
1040 			c->bulk_read = 0;
1041 			break;
1042 		case Opt_chk_data_crc:
1043 			c->mount_opts.chk_data_crc = 2;
1044 			c->no_chk_data_crc = 0;
1045 			break;
1046 		case Opt_no_chk_data_crc:
1047 			c->mount_opts.chk_data_crc = 1;
1048 			c->no_chk_data_crc = 1;
1049 			break;
1050 		case Opt_override_compr:
1051 		{
1052 			char *name = match_strdup(&args[0]);
1053 
1054 			if (!name)
1055 				return -ENOMEM;
1056 			if (!strcmp(name, "none"))
1057 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058 			else if (!strcmp(name, "lzo"))
1059 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060 			else if (!strcmp(name, "zlib"))
1061 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062 			else if (!strcmp(name, "zstd"))
1063 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1064 			else {
1065 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1066 				kfree(name);
1067 				return -EINVAL;
1068 			}
1069 			kfree(name);
1070 			c->mount_opts.override_compr = 1;
1071 			c->default_compr = c->mount_opts.compr_type;
1072 			break;
1073 		}
1074 		case Opt_assert:
1075 		{
1076 			char *act = match_strdup(&args[0]);
1077 
1078 			if (!act)
1079 				return -ENOMEM;
1080 			if (!strcmp(act, "report"))
1081 				c->assert_action = ASSACT_REPORT;
1082 			else if (!strcmp(act, "read-only"))
1083 				c->assert_action = ASSACT_RO;
1084 			else if (!strcmp(act, "panic"))
1085 				c->assert_action = ASSACT_PANIC;
1086 			else {
1087 				ubifs_err(c, "unknown assert action \"%s\"", act);
1088 				kfree(act);
1089 				return -EINVAL;
1090 			}
1091 			kfree(act);
1092 			break;
1093 		}
1094 		case Opt_auth_key:
1095 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1096 			if (!c->auth_key_name)
1097 				return -ENOMEM;
1098 			break;
1099 		case Opt_auth_hash_name:
1100 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1101 			if (!c->auth_hash_name)
1102 				return -ENOMEM;
1103 			break;
1104 		case Opt_ignore:
1105 			break;
1106 		default:
1107 		{
1108 			unsigned long flag;
1109 			struct super_block *sb = c->vfs_sb;
1110 
1111 			flag = parse_standard_option(p);
1112 			if (!flag) {
1113 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1114 					  p);
1115 				return -EINVAL;
1116 			}
1117 			sb->s_flags |= flag;
1118 			break;
1119 		}
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  * destroy_journal - destroy journal data structures.
1128  * @c: UBIFS file-system description object
1129  *
1130  * This function destroys journal data structures including those that may have
1131  * been created by recovery functions.
1132  */
1133 static void destroy_journal(struct ubifs_info *c)
1134 {
1135 	while (!list_empty(&c->unclean_leb_list)) {
1136 		struct ubifs_unclean_leb *ucleb;
1137 
1138 		ucleb = list_entry(c->unclean_leb_list.next,
1139 				   struct ubifs_unclean_leb, list);
1140 		list_del(&ucleb->list);
1141 		kfree(ucleb);
1142 	}
1143 	while (!list_empty(&c->old_buds)) {
1144 		struct ubifs_bud *bud;
1145 
1146 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1147 		list_del(&bud->list);
1148 		kfree(bud);
1149 	}
1150 	ubifs_destroy_idx_gc(c);
1151 	ubifs_destroy_size_tree(c);
1152 	ubifs_tnc_close(c);
1153 	free_buds(c);
1154 }
1155 
1156 /**
1157  * bu_init - initialize bulk-read information.
1158  * @c: UBIFS file-system description object
1159  */
1160 static void bu_init(struct ubifs_info *c)
1161 {
1162 	ubifs_assert(c, c->bulk_read == 1);
1163 
1164 	if (c->bu.buf)
1165 		return; /* Already initialized */
1166 
1167 again:
1168 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1169 	if (!c->bu.buf) {
1170 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1171 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1172 			goto again;
1173 		}
1174 
1175 		/* Just disable bulk-read */
1176 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1177 			   c->max_bu_buf_len);
1178 		c->mount_opts.bulk_read = 1;
1179 		c->bulk_read = 0;
1180 		return;
1181 	}
1182 }
1183 
1184 /**
1185  * check_free_space - check if there is enough free space to mount.
1186  * @c: UBIFS file-system description object
1187  *
1188  * This function makes sure UBIFS has enough free space to be mounted in
1189  * read/write mode. UBIFS must always have some free space to allow deletions.
1190  */
1191 static int check_free_space(struct ubifs_info *c)
1192 {
1193 	ubifs_assert(c, c->dark_wm > 0);
1194 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1195 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1196 		ubifs_dump_budg(c, &c->bi);
1197 		ubifs_dump_lprops(c);
1198 		return -ENOSPC;
1199 	}
1200 	return 0;
1201 }
1202 
1203 /**
1204  * mount_ubifs - mount UBIFS file-system.
1205  * @c: UBIFS file-system description object
1206  *
1207  * This function mounts UBIFS file system. Returns zero in case of success and
1208  * a negative error code in case of failure.
1209  */
1210 static int mount_ubifs(struct ubifs_info *c)
1211 {
1212 	int err;
1213 	long long x, y;
1214 	size_t sz;
1215 
1216 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1217 	/* Suppress error messages while probing if SB_SILENT is set */
1218 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1219 
1220 	err = init_constants_early(c);
1221 	if (err)
1222 		return err;
1223 
1224 	err = ubifs_debugging_init(c);
1225 	if (err)
1226 		return err;
1227 
1228 	err = check_volume_empty(c);
1229 	if (err)
1230 		goto out_free;
1231 
1232 	if (c->empty && (c->ro_mount || c->ro_media)) {
1233 		/*
1234 		 * This UBI volume is empty, and read-only, or the file system
1235 		 * is mounted read-only - we cannot format it.
1236 		 */
1237 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1238 			  c->ro_media ? "UBI volume" : "mount");
1239 		err = -EROFS;
1240 		goto out_free;
1241 	}
1242 
1243 	if (c->ro_media && !c->ro_mount) {
1244 		ubifs_err(c, "cannot mount read-write - read-only media");
1245 		err = -EROFS;
1246 		goto out_free;
1247 	}
1248 
1249 	/*
1250 	 * The requirement for the buffer is that it should fit indexing B-tree
1251 	 * height amount of integers. We assume the height if the TNC tree will
1252 	 * never exceed 64.
1253 	 */
1254 	err = -ENOMEM;
1255 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1256 					 GFP_KERNEL);
1257 	if (!c->bottom_up_buf)
1258 		goto out_free;
1259 
1260 	c->sbuf = vmalloc(c->leb_size);
1261 	if (!c->sbuf)
1262 		goto out_free;
1263 
1264 	if (!c->ro_mount) {
1265 		c->ileb_buf = vmalloc(c->leb_size);
1266 		if (!c->ileb_buf)
1267 			goto out_free;
1268 	}
1269 
1270 	if (c->bulk_read == 1)
1271 		bu_init(c);
1272 
1273 	if (!c->ro_mount) {
1274 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1275 					       UBIFS_CIPHER_BLOCK_SIZE,
1276 					       GFP_KERNEL);
1277 		if (!c->write_reserve_buf)
1278 			goto out_free;
1279 	}
1280 
1281 	c->mounting = 1;
1282 
1283 	if (c->auth_key_name) {
1284 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1285 			err = ubifs_init_authentication(c);
1286 			if (err)
1287 				goto out_free;
1288 		} else {
1289 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1290 				  " authentication support");
1291 			err = -EINVAL;
1292 			goto out_free;
1293 		}
1294 	}
1295 
1296 	err = ubifs_read_superblock(c);
1297 	if (err)
1298 		goto out_free;
1299 
1300 	c->probing = 0;
1301 
1302 	/*
1303 	 * Make sure the compressor which is set as default in the superblock
1304 	 * or overridden by mount options is actually compiled in.
1305 	 */
1306 	if (!ubifs_compr_present(c, c->default_compr)) {
1307 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1308 			  ubifs_compr_name(c, c->default_compr));
1309 		err = -ENOTSUPP;
1310 		goto out_free;
1311 	}
1312 
1313 	err = init_constants_sb(c);
1314 	if (err)
1315 		goto out_free;
1316 
1317 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1318 	c->cbuf = kmalloc(sz, GFP_NOFS);
1319 	if (!c->cbuf) {
1320 		err = -ENOMEM;
1321 		goto out_free;
1322 	}
1323 
1324 	err = alloc_wbufs(c);
1325 	if (err)
1326 		goto out_cbuf;
1327 
1328 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1329 	if (!c->ro_mount) {
1330 		/* Create background thread */
1331 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1332 		if (IS_ERR(c->bgt)) {
1333 			err = PTR_ERR(c->bgt);
1334 			c->bgt = NULL;
1335 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1336 				  c->bgt_name, err);
1337 			goto out_wbufs;
1338 		}
1339 		wake_up_process(c->bgt);
1340 	}
1341 
1342 	err = ubifs_read_master(c);
1343 	if (err)
1344 		goto out_master;
1345 
1346 	init_constants_master(c);
1347 
1348 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1349 		ubifs_msg(c, "recovery needed");
1350 		c->need_recovery = 1;
1351 	}
1352 
1353 	if (c->need_recovery && !c->ro_mount) {
1354 		err = ubifs_recover_inl_heads(c, c->sbuf);
1355 		if (err)
1356 			goto out_master;
1357 	}
1358 
1359 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1360 	if (err)
1361 		goto out_master;
1362 
1363 	if (!c->ro_mount && c->space_fixup) {
1364 		err = ubifs_fixup_free_space(c);
1365 		if (err)
1366 			goto out_lpt;
1367 	}
1368 
1369 	if (!c->ro_mount && !c->need_recovery) {
1370 		/*
1371 		 * Set the "dirty" flag so that if we reboot uncleanly we
1372 		 * will notice this immediately on the next mount.
1373 		 */
1374 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1375 		err = ubifs_write_master(c);
1376 		if (err)
1377 			goto out_lpt;
1378 	}
1379 
1380 	/*
1381 	 * Handle offline signed images: Now that the master node is
1382 	 * written and its validation no longer depends on the hash
1383 	 * in the superblock, we can update the offline signed
1384 	 * superblock with a HMAC version,
1385 	 */
1386 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1387 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1388 		if (err)
1389 			goto out_lpt;
1390 		c->superblock_need_write = 1;
1391 	}
1392 
1393 	if (!c->ro_mount && c->superblock_need_write) {
1394 		err = ubifs_write_sb_node(c, c->sup_node);
1395 		if (err)
1396 			goto out_lpt;
1397 		c->superblock_need_write = 0;
1398 	}
1399 
1400 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1401 	if (err)
1402 		goto out_lpt;
1403 
1404 	err = ubifs_replay_journal(c);
1405 	if (err)
1406 		goto out_journal;
1407 
1408 	/* Calculate 'min_idx_lebs' after journal replay */
1409 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1410 
1411 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1412 	if (err)
1413 		goto out_orphans;
1414 
1415 	if (!c->ro_mount) {
1416 		int lnum;
1417 
1418 		err = check_free_space(c);
1419 		if (err)
1420 			goto out_orphans;
1421 
1422 		/* Check for enough log space */
1423 		lnum = c->lhead_lnum + 1;
1424 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1425 			lnum = UBIFS_LOG_LNUM;
1426 		if (lnum == c->ltail_lnum) {
1427 			err = ubifs_consolidate_log(c);
1428 			if (err)
1429 				goto out_orphans;
1430 		}
1431 
1432 		if (c->need_recovery) {
1433 			if (!ubifs_authenticated(c)) {
1434 				err = ubifs_recover_size(c, true);
1435 				if (err)
1436 					goto out_orphans;
1437 			}
1438 
1439 			err = ubifs_rcvry_gc_commit(c);
1440 			if (err)
1441 				goto out_orphans;
1442 
1443 			if (ubifs_authenticated(c)) {
1444 				err = ubifs_recover_size(c, false);
1445 				if (err)
1446 					goto out_orphans;
1447 			}
1448 		} else {
1449 			err = take_gc_lnum(c);
1450 			if (err)
1451 				goto out_orphans;
1452 
1453 			/*
1454 			 * GC LEB may contain garbage if there was an unclean
1455 			 * reboot, and it should be un-mapped.
1456 			 */
1457 			err = ubifs_leb_unmap(c, c->gc_lnum);
1458 			if (err)
1459 				goto out_orphans;
1460 		}
1461 
1462 		err = dbg_check_lprops(c);
1463 		if (err)
1464 			goto out_orphans;
1465 	} else if (c->need_recovery) {
1466 		err = ubifs_recover_size(c, false);
1467 		if (err)
1468 			goto out_orphans;
1469 	} else {
1470 		/*
1471 		 * Even if we mount read-only, we have to set space in GC LEB
1472 		 * to proper value because this affects UBIFS free space
1473 		 * reporting. We do not want to have a situation when
1474 		 * re-mounting from R/O to R/W changes amount of free space.
1475 		 */
1476 		err = take_gc_lnum(c);
1477 		if (err)
1478 			goto out_orphans;
1479 	}
1480 
1481 	spin_lock(&ubifs_infos_lock);
1482 	list_add_tail(&c->infos_list, &ubifs_infos);
1483 	spin_unlock(&ubifs_infos_lock);
1484 
1485 	if (c->need_recovery) {
1486 		if (c->ro_mount)
1487 			ubifs_msg(c, "recovery deferred");
1488 		else {
1489 			c->need_recovery = 0;
1490 			ubifs_msg(c, "recovery completed");
1491 			/*
1492 			 * GC LEB has to be empty and taken at this point. But
1493 			 * the journal head LEBs may also be accounted as
1494 			 * "empty taken" if they are empty.
1495 			 */
1496 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1497 		}
1498 	} else
1499 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1500 
1501 	err = dbg_check_filesystem(c);
1502 	if (err)
1503 		goto out_infos;
1504 
1505 	dbg_debugfs_init_fs(c);
1506 
1507 	c->mounting = 0;
1508 
1509 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1510 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1511 		  c->ro_mount ? ", R/O mode" : "");
1512 	x = (long long)c->main_lebs * c->leb_size;
1513 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1514 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1515 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1516 		  c->max_write_size);
1517 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1518 		  x, x >> 20, c->main_lebs,
1519 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1520 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1521 		  c->report_rp_size, c->report_rp_size >> 10);
1522 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1523 		  c->fmt_version, c->ro_compat_version,
1524 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1525 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1526 
1527 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1528 	dbg_gen("data journal heads:  %d",
1529 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1530 	dbg_gen("log LEBs:            %d (%d - %d)",
1531 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1532 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1533 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1534 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1535 		c->orph_lebs, c->orph_first, c->orph_last);
1536 	dbg_gen("main area LEBs:      %d (%d - %d)",
1537 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1538 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1539 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1540 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1541 		c->bi.old_idx_sz >> 20);
1542 	dbg_gen("key hash type:       %d", c->key_hash_type);
1543 	dbg_gen("tree fanout:         %d", c->fanout);
1544 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1545 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1546 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1547 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1548 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1549 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1550 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1551 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1552 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1553 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1554 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1555 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1556 	dbg_gen("dead watermark:      %d", c->dead_wm);
1557 	dbg_gen("dark watermark:      %d", c->dark_wm);
1558 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1559 	x = (long long)c->main_lebs * c->dark_wm;
1560 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1561 		x, x >> 10, x >> 20);
1562 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1563 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1564 		c->max_bud_bytes >> 20);
1565 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1566 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1567 		c->bg_bud_bytes >> 20);
1568 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1569 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1570 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1571 	dbg_gen("commit number:       %llu", c->cmt_no);
1572 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1573 	dbg_gen("max orphans:           %d", c->max_orphans);
1574 
1575 	return 0;
1576 
1577 out_infos:
1578 	spin_lock(&ubifs_infos_lock);
1579 	list_del(&c->infos_list);
1580 	spin_unlock(&ubifs_infos_lock);
1581 out_orphans:
1582 	free_orphans(c);
1583 out_journal:
1584 	destroy_journal(c);
1585 out_lpt:
1586 	ubifs_lpt_free(c, 0);
1587 out_master:
1588 	kfree(c->mst_node);
1589 	kfree(c->rcvrd_mst_node);
1590 	if (c->bgt)
1591 		kthread_stop(c->bgt);
1592 out_wbufs:
1593 	free_wbufs(c);
1594 out_cbuf:
1595 	kfree(c->cbuf);
1596 out_free:
1597 	kfree(c->write_reserve_buf);
1598 	kfree(c->bu.buf);
1599 	vfree(c->ileb_buf);
1600 	vfree(c->sbuf);
1601 	kfree(c->bottom_up_buf);
1602 	kfree(c->sup_node);
1603 	ubifs_debugging_exit(c);
1604 	return err;
1605 }
1606 
1607 /**
1608  * ubifs_umount - un-mount UBIFS file-system.
1609  * @c: UBIFS file-system description object
1610  *
1611  * Note, this function is called to free allocated resourced when un-mounting,
1612  * as well as free resources when an error occurred while we were half way
1613  * through mounting (error path cleanup function). So it has to make sure the
1614  * resource was actually allocated before freeing it.
1615  */
1616 static void ubifs_umount(struct ubifs_info *c)
1617 {
1618 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1619 		c->vi.vol_id);
1620 
1621 	dbg_debugfs_exit_fs(c);
1622 	spin_lock(&ubifs_infos_lock);
1623 	list_del(&c->infos_list);
1624 	spin_unlock(&ubifs_infos_lock);
1625 
1626 	if (c->bgt)
1627 		kthread_stop(c->bgt);
1628 
1629 	destroy_journal(c);
1630 	free_wbufs(c);
1631 	free_orphans(c);
1632 	ubifs_lpt_free(c, 0);
1633 	ubifs_exit_authentication(c);
1634 
1635 	kfree(c->auth_key_name);
1636 	kfree(c->auth_hash_name);
1637 	kfree(c->cbuf);
1638 	kfree(c->rcvrd_mst_node);
1639 	kfree(c->mst_node);
1640 	kfree(c->write_reserve_buf);
1641 	kfree(c->bu.buf);
1642 	vfree(c->ileb_buf);
1643 	vfree(c->sbuf);
1644 	kfree(c->bottom_up_buf);
1645 	kfree(c->sup_node);
1646 	ubifs_debugging_exit(c);
1647 }
1648 
1649 /**
1650  * ubifs_remount_rw - re-mount in read-write mode.
1651  * @c: UBIFS file-system description object
1652  *
1653  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1654  * mode. This function allocates the needed resources and re-mounts UBIFS in
1655  * read-write mode.
1656  */
1657 static int ubifs_remount_rw(struct ubifs_info *c)
1658 {
1659 	int err, lnum;
1660 
1661 	if (c->rw_incompat) {
1662 		ubifs_err(c, "the file-system is not R/W-compatible");
1663 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1664 			  c->fmt_version, c->ro_compat_version,
1665 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1666 		return -EROFS;
1667 	}
1668 
1669 	mutex_lock(&c->umount_mutex);
1670 	dbg_save_space_info(c);
1671 	c->remounting_rw = 1;
1672 	c->ro_mount = 0;
1673 
1674 	if (c->space_fixup) {
1675 		err = ubifs_fixup_free_space(c);
1676 		if (err)
1677 			goto out;
1678 	}
1679 
1680 	err = check_free_space(c);
1681 	if (err)
1682 		goto out;
1683 
1684 	if (c->need_recovery) {
1685 		ubifs_msg(c, "completing deferred recovery");
1686 		err = ubifs_write_rcvrd_mst_node(c);
1687 		if (err)
1688 			goto out;
1689 		if (!ubifs_authenticated(c)) {
1690 			err = ubifs_recover_size(c, true);
1691 			if (err)
1692 				goto out;
1693 		}
1694 		err = ubifs_clean_lebs(c, c->sbuf);
1695 		if (err)
1696 			goto out;
1697 		err = ubifs_recover_inl_heads(c, c->sbuf);
1698 		if (err)
1699 			goto out;
1700 	} else {
1701 		/* A readonly mount is not allowed to have orphans */
1702 		ubifs_assert(c, c->tot_orphans == 0);
1703 		err = ubifs_clear_orphans(c);
1704 		if (err)
1705 			goto out;
1706 	}
1707 
1708 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1709 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1710 		err = ubifs_write_master(c);
1711 		if (err)
1712 			goto out;
1713 	}
1714 
1715 	if (c->superblock_need_write) {
1716 		struct ubifs_sb_node *sup = c->sup_node;
1717 
1718 		err = ubifs_write_sb_node(c, sup);
1719 		if (err)
1720 			goto out;
1721 
1722 		c->superblock_need_write = 0;
1723 	}
1724 
1725 	c->ileb_buf = vmalloc(c->leb_size);
1726 	if (!c->ileb_buf) {
1727 		err = -ENOMEM;
1728 		goto out;
1729 	}
1730 
1731 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1732 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1733 	if (!c->write_reserve_buf) {
1734 		err = -ENOMEM;
1735 		goto out;
1736 	}
1737 
1738 	err = ubifs_lpt_init(c, 0, 1);
1739 	if (err)
1740 		goto out;
1741 
1742 	/* Create background thread */
1743 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1744 	if (IS_ERR(c->bgt)) {
1745 		err = PTR_ERR(c->bgt);
1746 		c->bgt = NULL;
1747 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1748 			  c->bgt_name, err);
1749 		goto out;
1750 	}
1751 	wake_up_process(c->bgt);
1752 
1753 	c->orph_buf = vmalloc(c->leb_size);
1754 	if (!c->orph_buf) {
1755 		err = -ENOMEM;
1756 		goto out;
1757 	}
1758 
1759 	/* Check for enough log space */
1760 	lnum = c->lhead_lnum + 1;
1761 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1762 		lnum = UBIFS_LOG_LNUM;
1763 	if (lnum == c->ltail_lnum) {
1764 		err = ubifs_consolidate_log(c);
1765 		if (err)
1766 			goto out;
1767 	}
1768 
1769 	if (c->need_recovery) {
1770 		err = ubifs_rcvry_gc_commit(c);
1771 		if (err)
1772 			goto out;
1773 
1774 		if (ubifs_authenticated(c)) {
1775 			err = ubifs_recover_size(c, false);
1776 			if (err)
1777 				goto out;
1778 		}
1779 	} else {
1780 		err = ubifs_leb_unmap(c, c->gc_lnum);
1781 	}
1782 	if (err)
1783 		goto out;
1784 
1785 	dbg_gen("re-mounted read-write");
1786 	c->remounting_rw = 0;
1787 
1788 	if (c->need_recovery) {
1789 		c->need_recovery = 0;
1790 		ubifs_msg(c, "deferred recovery completed");
1791 	} else {
1792 		/*
1793 		 * Do not run the debugging space check if the were doing
1794 		 * recovery, because when we saved the information we had the
1795 		 * file-system in a state where the TNC and lprops has been
1796 		 * modified in memory, but all the I/O operations (including a
1797 		 * commit) were deferred. So the file-system was in
1798 		 * "non-committed" state. Now the file-system is in committed
1799 		 * state, and of course the amount of free space will change
1800 		 * because, for example, the old index size was imprecise.
1801 		 */
1802 		err = dbg_check_space_info(c);
1803 	}
1804 
1805 	mutex_unlock(&c->umount_mutex);
1806 	return err;
1807 
1808 out:
1809 	c->ro_mount = 1;
1810 	vfree(c->orph_buf);
1811 	c->orph_buf = NULL;
1812 	if (c->bgt) {
1813 		kthread_stop(c->bgt);
1814 		c->bgt = NULL;
1815 	}
1816 	free_wbufs(c);
1817 	kfree(c->write_reserve_buf);
1818 	c->write_reserve_buf = NULL;
1819 	vfree(c->ileb_buf);
1820 	c->ileb_buf = NULL;
1821 	ubifs_lpt_free(c, 1);
1822 	c->remounting_rw = 0;
1823 	mutex_unlock(&c->umount_mutex);
1824 	return err;
1825 }
1826 
1827 /**
1828  * ubifs_remount_ro - re-mount in read-only mode.
1829  * @c: UBIFS file-system description object
1830  *
1831  * We assume VFS has stopped writing. Possibly the background thread could be
1832  * running a commit, however kthread_stop will wait in that case.
1833  */
1834 static void ubifs_remount_ro(struct ubifs_info *c)
1835 {
1836 	int i, err;
1837 
1838 	ubifs_assert(c, !c->need_recovery);
1839 	ubifs_assert(c, !c->ro_mount);
1840 
1841 	mutex_lock(&c->umount_mutex);
1842 	if (c->bgt) {
1843 		kthread_stop(c->bgt);
1844 		c->bgt = NULL;
1845 	}
1846 
1847 	dbg_save_space_info(c);
1848 
1849 	for (i = 0; i < c->jhead_cnt; i++) {
1850 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1851 		if (err)
1852 			ubifs_ro_mode(c, err);
1853 	}
1854 
1855 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1856 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1857 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1858 	err = ubifs_write_master(c);
1859 	if (err)
1860 		ubifs_ro_mode(c, err);
1861 
1862 	vfree(c->orph_buf);
1863 	c->orph_buf = NULL;
1864 	kfree(c->write_reserve_buf);
1865 	c->write_reserve_buf = NULL;
1866 	vfree(c->ileb_buf);
1867 	c->ileb_buf = NULL;
1868 	ubifs_lpt_free(c, 1);
1869 	c->ro_mount = 1;
1870 	err = dbg_check_space_info(c);
1871 	if (err)
1872 		ubifs_ro_mode(c, err);
1873 	mutex_unlock(&c->umount_mutex);
1874 }
1875 
1876 static void ubifs_put_super(struct super_block *sb)
1877 {
1878 	int i;
1879 	struct ubifs_info *c = sb->s_fs_info;
1880 
1881 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1882 
1883 	/*
1884 	 * The following asserts are only valid if there has not been a failure
1885 	 * of the media. For example, there will be dirty inodes if we failed
1886 	 * to write them back because of I/O errors.
1887 	 */
1888 	if (!c->ro_error) {
1889 		ubifs_assert(c, c->bi.idx_growth == 0);
1890 		ubifs_assert(c, c->bi.dd_growth == 0);
1891 		ubifs_assert(c, c->bi.data_growth == 0);
1892 	}
1893 
1894 	/*
1895 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1896 	 * and file system un-mount. Namely, it prevents the shrinker from
1897 	 * picking this superblock for shrinking - it will be just skipped if
1898 	 * the mutex is locked.
1899 	 */
1900 	mutex_lock(&c->umount_mutex);
1901 	if (!c->ro_mount) {
1902 		/*
1903 		 * First of all kill the background thread to make sure it does
1904 		 * not interfere with un-mounting and freeing resources.
1905 		 */
1906 		if (c->bgt) {
1907 			kthread_stop(c->bgt);
1908 			c->bgt = NULL;
1909 		}
1910 
1911 		/*
1912 		 * On fatal errors c->ro_error is set to 1, in which case we do
1913 		 * not write the master node.
1914 		 */
1915 		if (!c->ro_error) {
1916 			int err;
1917 
1918 			/* Synchronize write-buffers */
1919 			for (i = 0; i < c->jhead_cnt; i++) {
1920 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1921 				if (err)
1922 					ubifs_ro_mode(c, err);
1923 			}
1924 
1925 			/*
1926 			 * We are being cleanly unmounted which means the
1927 			 * orphans were killed - indicate this in the master
1928 			 * node. Also save the reserved GC LEB number.
1929 			 */
1930 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1931 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1932 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1933 			err = ubifs_write_master(c);
1934 			if (err)
1935 				/*
1936 				 * Recovery will attempt to fix the master area
1937 				 * next mount, so we just print a message and
1938 				 * continue to unmount normally.
1939 				 */
1940 				ubifs_err(c, "failed to write master node, error %d",
1941 					  err);
1942 		} else {
1943 			for (i = 0; i < c->jhead_cnt; i++)
1944 				/* Make sure write-buffer timers are canceled */
1945 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1946 		}
1947 	}
1948 
1949 	ubifs_umount(c);
1950 	ubi_close_volume(c->ubi);
1951 	mutex_unlock(&c->umount_mutex);
1952 }
1953 
1954 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1955 {
1956 	int err;
1957 	struct ubifs_info *c = sb->s_fs_info;
1958 
1959 	sync_filesystem(sb);
1960 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1961 
1962 	err = ubifs_parse_options(c, data, 1);
1963 	if (err) {
1964 		ubifs_err(c, "invalid or unknown remount parameter");
1965 		return err;
1966 	}
1967 
1968 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1969 		if (c->ro_error) {
1970 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1971 			return -EROFS;
1972 		}
1973 		if (c->ro_media) {
1974 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1975 			return -EROFS;
1976 		}
1977 		err = ubifs_remount_rw(c);
1978 		if (err)
1979 			return err;
1980 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1981 		if (c->ro_error) {
1982 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1983 			return -EROFS;
1984 		}
1985 		ubifs_remount_ro(c);
1986 	}
1987 
1988 	if (c->bulk_read == 1)
1989 		bu_init(c);
1990 	else {
1991 		dbg_gen("disable bulk-read");
1992 		mutex_lock(&c->bu_mutex);
1993 		kfree(c->bu.buf);
1994 		c->bu.buf = NULL;
1995 		mutex_unlock(&c->bu_mutex);
1996 	}
1997 
1998 	if (!c->need_recovery)
1999 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2000 
2001 	return 0;
2002 }
2003 
2004 const struct super_operations ubifs_super_operations = {
2005 	.alloc_inode   = ubifs_alloc_inode,
2006 	.free_inode    = ubifs_free_inode,
2007 	.put_super     = ubifs_put_super,
2008 	.write_inode   = ubifs_write_inode,
2009 	.drop_inode    = ubifs_drop_inode,
2010 	.evict_inode   = ubifs_evict_inode,
2011 	.statfs        = ubifs_statfs,
2012 	.dirty_inode   = ubifs_dirty_inode,
2013 	.remount_fs    = ubifs_remount_fs,
2014 	.show_options  = ubifs_show_options,
2015 	.sync_fs       = ubifs_sync_fs,
2016 };
2017 
2018 /**
2019  * open_ubi - parse UBI device name string and open the UBI device.
2020  * @name: UBI volume name
2021  * @mode: UBI volume open mode
2022  *
2023  * The primary method of mounting UBIFS is by specifying the UBI volume
2024  * character device node path. However, UBIFS may also be mounted withoug any
2025  * character device node using one of the following methods:
2026  *
2027  * o ubiX_Y    - mount UBI device number X, volume Y;
2028  * o ubiY      - mount UBI device number 0, volume Y;
2029  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2031  *
2032  * Alternative '!' separator may be used instead of ':' (because some shells
2033  * like busybox may interpret ':' as an NFS host name separator). This function
2034  * returns UBI volume description object in case of success and a negative
2035  * error code in case of failure.
2036  */
2037 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2038 {
2039 	struct ubi_volume_desc *ubi;
2040 	int dev, vol;
2041 	char *endptr;
2042 
2043 	if (!name || !*name)
2044 		return ERR_PTR(-EINVAL);
2045 
2046 	/* First, try to open using the device node path method */
2047 	ubi = ubi_open_volume_path(name, mode);
2048 	if (!IS_ERR(ubi))
2049 		return ubi;
2050 
2051 	/* Try the "nodev" method */
2052 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2053 		return ERR_PTR(-EINVAL);
2054 
2055 	/* ubi:NAME method */
2056 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2057 		return ubi_open_volume_nm(0, name + 4, mode);
2058 
2059 	if (!isdigit(name[3]))
2060 		return ERR_PTR(-EINVAL);
2061 
2062 	dev = simple_strtoul(name + 3, &endptr, 0);
2063 
2064 	/* ubiY method */
2065 	if (*endptr == '\0')
2066 		return ubi_open_volume(0, dev, mode);
2067 
2068 	/* ubiX_Y method */
2069 	if (*endptr == '_' && isdigit(endptr[1])) {
2070 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2071 		if (*endptr != '\0')
2072 			return ERR_PTR(-EINVAL);
2073 		return ubi_open_volume(dev, vol, mode);
2074 	}
2075 
2076 	/* ubiX:NAME method */
2077 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2078 		return ubi_open_volume_nm(dev, ++endptr, mode);
2079 
2080 	return ERR_PTR(-EINVAL);
2081 }
2082 
2083 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2084 {
2085 	struct ubifs_info *c;
2086 
2087 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2088 	if (c) {
2089 		spin_lock_init(&c->cnt_lock);
2090 		spin_lock_init(&c->cs_lock);
2091 		spin_lock_init(&c->buds_lock);
2092 		spin_lock_init(&c->space_lock);
2093 		spin_lock_init(&c->orphan_lock);
2094 		init_rwsem(&c->commit_sem);
2095 		mutex_init(&c->lp_mutex);
2096 		mutex_init(&c->tnc_mutex);
2097 		mutex_init(&c->log_mutex);
2098 		mutex_init(&c->umount_mutex);
2099 		mutex_init(&c->bu_mutex);
2100 		mutex_init(&c->write_reserve_mutex);
2101 		init_waitqueue_head(&c->cmt_wq);
2102 		c->buds = RB_ROOT;
2103 		c->old_idx = RB_ROOT;
2104 		c->size_tree = RB_ROOT;
2105 		c->orph_tree = RB_ROOT;
2106 		INIT_LIST_HEAD(&c->infos_list);
2107 		INIT_LIST_HEAD(&c->idx_gc);
2108 		INIT_LIST_HEAD(&c->replay_list);
2109 		INIT_LIST_HEAD(&c->replay_buds);
2110 		INIT_LIST_HEAD(&c->uncat_list);
2111 		INIT_LIST_HEAD(&c->empty_list);
2112 		INIT_LIST_HEAD(&c->freeable_list);
2113 		INIT_LIST_HEAD(&c->frdi_idx_list);
2114 		INIT_LIST_HEAD(&c->unclean_leb_list);
2115 		INIT_LIST_HEAD(&c->old_buds);
2116 		INIT_LIST_HEAD(&c->orph_list);
2117 		INIT_LIST_HEAD(&c->orph_new);
2118 		c->no_chk_data_crc = 1;
2119 		c->assert_action = ASSACT_RO;
2120 
2121 		c->highest_inum = UBIFS_FIRST_INO;
2122 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2123 
2124 		ubi_get_volume_info(ubi, &c->vi);
2125 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2126 	}
2127 	return c;
2128 }
2129 
2130 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2131 {
2132 	struct ubifs_info *c = sb->s_fs_info;
2133 	struct inode *root;
2134 	int err;
2135 
2136 	c->vfs_sb = sb;
2137 	/* Re-open the UBI device in read-write mode */
2138 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2139 	if (IS_ERR(c->ubi)) {
2140 		err = PTR_ERR(c->ubi);
2141 		goto out;
2142 	}
2143 
2144 	err = ubifs_parse_options(c, data, 0);
2145 	if (err)
2146 		goto out_close;
2147 
2148 	/*
2149 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2150 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2151 	 * which means the user would have to wait not just for their own I/O
2152 	 * but the read-ahead I/O as well i.e. completely pointless.
2153 	 *
2154 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2155 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2156 	 * writeback happening.
2157 	 */
2158 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2159 				   c->vi.vol_id);
2160 	if (err)
2161 		goto out_close;
2162 
2163 	sb->s_fs_info = c;
2164 	sb->s_magic = UBIFS_SUPER_MAGIC;
2165 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2166 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2167 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2168 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2169 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2170 	sb->s_op = &ubifs_super_operations;
2171 #ifdef CONFIG_UBIFS_FS_XATTR
2172 	sb->s_xattr = ubifs_xattr_handlers;
2173 #endif
2174 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2175 
2176 	mutex_lock(&c->umount_mutex);
2177 	err = mount_ubifs(c);
2178 	if (err) {
2179 		ubifs_assert(c, err < 0);
2180 		goto out_unlock;
2181 	}
2182 
2183 	/* Read the root inode */
2184 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2185 	if (IS_ERR(root)) {
2186 		err = PTR_ERR(root);
2187 		goto out_umount;
2188 	}
2189 
2190 	sb->s_root = d_make_root(root);
2191 	if (!sb->s_root) {
2192 		err = -ENOMEM;
2193 		goto out_umount;
2194 	}
2195 
2196 	mutex_unlock(&c->umount_mutex);
2197 	return 0;
2198 
2199 out_umount:
2200 	ubifs_umount(c);
2201 out_unlock:
2202 	mutex_unlock(&c->umount_mutex);
2203 out_close:
2204 	ubi_close_volume(c->ubi);
2205 out:
2206 	return err;
2207 }
2208 
2209 static int sb_test(struct super_block *sb, void *data)
2210 {
2211 	struct ubifs_info *c1 = data;
2212 	struct ubifs_info *c = sb->s_fs_info;
2213 
2214 	return c->vi.cdev == c1->vi.cdev;
2215 }
2216 
2217 static int sb_set(struct super_block *sb, void *data)
2218 {
2219 	sb->s_fs_info = data;
2220 	return set_anon_super(sb, NULL);
2221 }
2222 
2223 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2224 			const char *name, void *data)
2225 {
2226 	struct ubi_volume_desc *ubi;
2227 	struct ubifs_info *c;
2228 	struct super_block *sb;
2229 	int err;
2230 
2231 	dbg_gen("name %s, flags %#x", name, flags);
2232 
2233 	/*
2234 	 * Get UBI device number and volume ID. Mount it read-only so far
2235 	 * because this might be a new mount point, and UBI allows only one
2236 	 * read-write user at a time.
2237 	 */
2238 	ubi = open_ubi(name, UBI_READONLY);
2239 	if (IS_ERR(ubi)) {
2240 		if (!(flags & SB_SILENT))
2241 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2242 			       current->pid, name, (int)PTR_ERR(ubi));
2243 		return ERR_CAST(ubi);
2244 	}
2245 
2246 	c = alloc_ubifs_info(ubi);
2247 	if (!c) {
2248 		err = -ENOMEM;
2249 		goto out_close;
2250 	}
2251 
2252 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2253 
2254 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2255 	if (IS_ERR(sb)) {
2256 		err = PTR_ERR(sb);
2257 		kfree(c);
2258 		goto out_close;
2259 	}
2260 
2261 	if (sb->s_root) {
2262 		struct ubifs_info *c1 = sb->s_fs_info;
2263 		kfree(c);
2264 		/* A new mount point for already mounted UBIFS */
2265 		dbg_gen("this ubi volume is already mounted");
2266 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2267 			err = -EBUSY;
2268 			goto out_deact;
2269 		}
2270 	} else {
2271 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2272 		if (err)
2273 			goto out_deact;
2274 		/* We do not support atime */
2275 		sb->s_flags |= SB_ACTIVE;
2276 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2277 			ubifs_msg(c, "full atime support is enabled.");
2278 		else
2279 			sb->s_flags |= SB_NOATIME;
2280 	}
2281 
2282 	/* 'fill_super()' opens ubi again so we must close it here */
2283 	ubi_close_volume(ubi);
2284 
2285 	return dget(sb->s_root);
2286 
2287 out_deact:
2288 	deactivate_locked_super(sb);
2289 out_close:
2290 	ubi_close_volume(ubi);
2291 	return ERR_PTR(err);
2292 }
2293 
2294 static void kill_ubifs_super(struct super_block *s)
2295 {
2296 	struct ubifs_info *c = s->s_fs_info;
2297 	kill_anon_super(s);
2298 	kfree(c);
2299 }
2300 
2301 static struct file_system_type ubifs_fs_type = {
2302 	.name    = "ubifs",
2303 	.owner   = THIS_MODULE,
2304 	.mount   = ubifs_mount,
2305 	.kill_sb = kill_ubifs_super,
2306 };
2307 MODULE_ALIAS_FS("ubifs");
2308 
2309 /*
2310  * Inode slab cache constructor.
2311  */
2312 static void inode_slab_ctor(void *obj)
2313 {
2314 	struct ubifs_inode *ui = obj;
2315 	inode_init_once(&ui->vfs_inode);
2316 }
2317 
2318 static int __init ubifs_init(void)
2319 {
2320 	int err;
2321 
2322 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2323 
2324 	/* Make sure node sizes are 8-byte aligned */
2325 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2326 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2327 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2328 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2329 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2330 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2331 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2332 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2333 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2334 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2335 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2336 
2337 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2338 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2339 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2340 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2341 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2342 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2343 
2344 	/* Check min. node size */
2345 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2346 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2347 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2348 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2349 
2350 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2351 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2352 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2353 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2354 
2355 	/* Defined node sizes */
2356 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2357 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2358 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2359 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2360 
2361 	/*
2362 	 * We use 2 bit wide bit-fields to store compression type, which should
2363 	 * be amended if more compressors are added. The bit-fields are:
2364 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2365 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2366 	 */
2367 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2368 
2369 	/*
2370 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2371 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2372 	 */
2373 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2374 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2375 		       current->pid, (unsigned int)PAGE_SIZE);
2376 		return -EINVAL;
2377 	}
2378 
2379 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2380 				sizeof(struct ubifs_inode), 0,
2381 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2382 				SLAB_ACCOUNT, &inode_slab_ctor);
2383 	if (!ubifs_inode_slab)
2384 		return -ENOMEM;
2385 
2386 	err = register_shrinker(&ubifs_shrinker_info);
2387 	if (err)
2388 		goto out_slab;
2389 
2390 	err = ubifs_compressors_init();
2391 	if (err)
2392 		goto out_shrinker;
2393 
2394 	dbg_debugfs_init();
2395 
2396 	err = register_filesystem(&ubifs_fs_type);
2397 	if (err) {
2398 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2399 		       current->pid, err);
2400 		goto out_dbg;
2401 	}
2402 	return 0;
2403 
2404 out_dbg:
2405 	dbg_debugfs_exit();
2406 	ubifs_compressors_exit();
2407 out_shrinker:
2408 	unregister_shrinker(&ubifs_shrinker_info);
2409 out_slab:
2410 	kmem_cache_destroy(ubifs_inode_slab);
2411 	return err;
2412 }
2413 /* late_initcall to let compressors initialize first */
2414 late_initcall(ubifs_init);
2415 
2416 static void __exit ubifs_exit(void)
2417 {
2418 	WARN_ON(!list_empty(&ubifs_infos));
2419 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2420 
2421 	dbg_debugfs_exit();
2422 	ubifs_compressors_exit();
2423 	unregister_shrinker(&ubifs_shrinker_info);
2424 
2425 	/*
2426 	 * Make sure all delayed rcu free inodes are flushed before we
2427 	 * destroy cache.
2428 	 */
2429 	rcu_barrier();
2430 	kmem_cache_destroy(ubifs_inode_slab);
2431 	unregister_filesystem(&ubifs_fs_type);
2432 }
2433 module_exit(ubifs_exit);
2434 
2435 MODULE_LICENSE("GPL");
2436 MODULE_VERSION(__stringify(UBIFS_VERSION));
2437 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2438 MODULE_DESCRIPTION("UBIFS - UBI File System");
2439